001050252 001__ 1050252
001050252 005__ 20260107202519.0
001050252 0247_ $$2doi$$a10.48550/ARXIV.2512.19653
001050252 037__ $$aFZJ-2026-00064
001050252 088__ $$2Other$$a2512.19653
001050252 1001_ $$0P:(DE-HGF)0$$aZimborás, Zoltán$$b0
001050252 245__ $$aThe EU Quantum Flagship's Key Performance Indicators for Quantum Computing
001050252 260__ $$barXiv$$c2025
001050252 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1767812212_11037
001050252 3367_ $$2ORCID$$aWORKING_PAPER
001050252 3367_ $$028$$2EndNote$$aElectronic Article
001050252 3367_ $$2DRIVER$$apreprint
001050252 3367_ $$2BibTeX$$aARTICLE
001050252 3367_ $$2DataCite$$aOutput Types/Working Paper
001050252 520__ $$aAs quantum processors continue to scale in size and complexity, the need for well-defined, reproducible, and technology-agnostic performance metrics becomes increasingly critical. Here we present a suite of scalable quantum computing benchmarks developed as key performance indicators (KPIs) within the EU Quantum Flagship. These proposed benchmarks are designed to assess holistic system performance rather than isolated components, and to remain applicable across both noisy intermediate-scale quantum (NISQ) devices and future fault-tolerant architectures. We introduce four core benchmarks addressing complementary aspects of quantum computing capability: large multi-qubit circuit execution via a Clifford Volume benchmark, scalable multipartite entanglement generation through GHZ-state preparation, a benchmark based on the application of Shor's period-finding subroutine to simple functions, and a protocol quantifying the benefit of quantum error correction using Bell states. Each benchmark is accompanied by clearly specified protocols, reporting standards, and scalable evaluation methods. Together, these KPIs provide a coherent framework for transparent and fair performance assessment across quantum hardware platforms and for tracking progress late-NISQ toward early fault-tolerant quantum computation.
001050252 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001050252 536__ $$0G:(EU-Grant)101113946$$aOpenSuperQPlus100 - Open Superconducting Quantum Computers (OpenSuperQPlus) (101113946)$$c101113946$$fHORIZON-CL4-2022-QUANTUM-01-SGA$$x1
001050252 536__ $$0G:(EU-Grant)101135699$$aSPINUS - Spin based quantum computer and simulator (101135699)$$c101135699$$fHORIZON_HORIZON-CL4-2023-DIGITAL-EMERGING-01-41$$x2
001050252 536__ $$0G:(EU-Grant)101080097$$aMILLENION - Modular Industrial Large-scaLE quaNtum computing with trapped IONs (101080097)$$c101080097$$fHORIZON-CL4-2021-DIGITAL-EMERGING-02$$x3
001050252 588__ $$aDataset connected to DataCite
001050252 650_7 $$2Other$$aQuantum Physics (quant-ph)
001050252 650_7 $$2Other$$aFOS: Physical sciences
001050252 7001_ $$0P:(DE-HGF)0$$aPortik, Attila$$b1
001050252 7001_ $$0P:(DE-HGF)0$$aAguirre, David$$b2
001050252 7001_ $$aPeña, Rubén$$b3
001050252 7001_ $$aSvastits, Domonkos$$b4
001050252 7001_ $$aPályi, András$$b5
001050252 7001_ $$0P:(DE-Juel1)206640$$aMárton, Áron$$b6$$ufzj
001050252 7001_ $$0P:(DE-HGF)0$$aAsbóth, János K.$$b7
001050252 7001_ $$aKockum, Anton Frisk$$b8
001050252 7001_ $$aSanz, Mikel$$b9
001050252 7001_ $$aKálmán, Orsolya$$b10
001050252 7001_ $$aMonz, Thomas$$b11
001050252 7001_ $$0P:(DE-Juel1)184630$$aWilhelm-Mauch, Frank$$b12$$ufzj
001050252 773__ $$a10.48550/ARXIV.2512.19653
001050252 909CO $$ooai:juser.fz-juelich.de:1050252$$popenaire$$pVDB$$pec_fundedresources
001050252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206640$$aForschungszentrum Jülich$$b6$$kFZJ
001050252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b12$$kFZJ
001050252 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001050252 920__ $$lyes
001050252 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001050252 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
001050252 980__ $$apreprint
001050252 980__ $$aVDB
001050252 980__ $$aI:(DE-Juel1)PGI-12-20200716
001050252 980__ $$aI:(DE-Juel1)PGI-2-20110106
001050252 980__ $$aUNRESTRICTED