001050254 001__ 1050254
001050254 005__ 20260203123503.0
001050254 0247_ $$2doi$$a10.1038/s41467-025-67593-9
001050254 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00066
001050254 037__ $$aFZJ-2026-00066
001050254 041__ $$aEnglish
001050254 082__ $$a500
001050254 1001_ $$00000-0002-9803-1336$$aFrey, Ulrich Joachim$$b0$$eCorresponding author
001050254 245__ $$aThe benefits of exploring a large scenario space for future energy systems
001050254 260__ $$a[London]$$bSpringer Nature$$c2026
001050254 3367_ $$2DRIVER$$aarticle
001050254 3367_ $$2DataCite$$aOutput Types/Journal article
001050254 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769179441_12689
001050254 3367_ $$2BibTeX$$aARTICLE
001050254 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050254 3367_ $$00$$2EndNote$$aJournal Article
001050254 520__ $$aEnergy scenario analysis with optimization approaches rarely goes beyond a small number of scenarios. Disadvantages include limited coverage of uncertainties and assumptions, and a limited ability to provide robust policy advice. We present an approach that enables the multi-criterial evaluation of more than 11,000 scenarios and demonstrate it for the German power system. We vary both a wide range of input parameters and method choices. The resulting scenarios are assessed through a number of indicators on affordability, supply-security and sustainability. The most significant impacts on the results stem from considering multiple weather years. Furthermore, we estimate the number of runs required for robust energy systems analyses – well over 100 scenarios are needed. Nevertheless, fewer scenarios may be sufficient for limited scopes. Our analysis also underlines a challenge for future energy system design: cost-efficient decarbonization while conserving natural resources.
001050254 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001050254 536__ $$0G:(BMWi)03EI1004F$$aVerbundvorhaben: UNSEEN ' Bewertung der Unsicherheiten in linear optimierenden Energiesystem-Modellen unter Zuhilfenahme Neuronaler Netze, Teilvorhaben: Entwicklung einer integrierten HPC-Workflow Umgebung zur Kopplung von Optimierungsmethoden mit Methode (03EI1004F)$$c03EI1004F$$x1
001050254 536__ $$0G:(DE-Juel-1)ATMLAO$$aATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)$$cATMLAO$$x2
001050254 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050254 7001_ $$00000-0002-9720-0337$$aCao, Karl-Kiên$$b1$$eCorresponding author
001050254 7001_ $$00000-0002-7502-6841$$aSasanpour, Shima$$b2
001050254 7001_ $$0P:(DE-HGF)0$$aBuschmann, Jan$$b3
001050254 7001_ $$0P:(DE-Juel1)138707$$aBreuer, Thomas$$b4
001050254 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-025-67593-9$$p873$$tNature Communications$$v17$$x2041-1723$$y2026
001050254 8564_ $$uhttps://juser.fz-juelich.de/record/1050254/files/s41467-025-67593-9.pdf$$yOpenAccess
001050254 909CO $$ooai:juser.fz-juelich.de:1050254$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001050254 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138707$$aForschungszentrum Jülich$$b4$$kFZJ
001050254 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001050254 9141_ $$y2026
001050254 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001050254 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
001050254 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050254 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001050254 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001050254 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001050254 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001050254 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-11-10
001050254 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-11-10
001050254 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-11-10
001050254 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2025-11-10
001050254 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2025-08-21T14:06:14Z
001050254 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2025-08-21T14:06:14Z
001050254 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2025-08-21T14:06:14Z
001050254 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-11-10
001050254 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-11-10
001050254 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-11-10
001050254 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-11-10
001050254 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-11-10
001050254 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-11-10
001050254 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-11-10
001050254 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-11-10
001050254 920__ $$lyes
001050254 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001050254 980__ $$ajournal
001050254 980__ $$aVDB
001050254 980__ $$aUNRESTRICTED
001050254 980__ $$aI:(DE-Juel1)JSC-20090406
001050254 9801_ $$aFullTexts