001     1050254
005     20260203123503.0
024 7 _ |a 10.1038/s41467-025-67593-9
|2 doi
024 7 _ |a 10.34734/FZJ-2026-00066
|2 datacite_doi
037 _ _ |a FZJ-2026-00066
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Frey, Ulrich Joachim
|0 0000-0002-9803-1336
|b 0
|e Corresponding author
245 _ _ |a The benefits of exploring a large scenario space for future energy systems
260 _ _ |a [London]
|c 2026
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769179441_12689
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Energy scenario analysis with optimization approaches rarely goes beyond a small number of scenarios. Disadvantages include limited coverage of uncertainties and assumptions, and a limited ability to provide robust policy advice. We present an approach that enables the multi-criterial evaluation of more than 11,000 scenarios and demonstrate it for the German power system. We vary both a wide range of input parameters and method choices. The resulting scenarios are assessed through a number of indicators on affordability, supply-security and sustainability. The most significant impacts on the results stem from considering multiple weather years. Furthermore, we estimate the number of runs required for robust energy systems analyses – well over 100 scenarios are needed. Nevertheless, fewer scenarios may be sufficient for limited scopes. Our analysis also underlines a challenge for future energy system design: cost-efficient decarbonization while conserving natural resources.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Verbundvorhaben: UNSEEN ' Bewertung der Unsicherheiten in linear optimierenden Energiesystem-Modellen unter Zuhilfenahme Neuronaler Netze, Teilvorhaben: Entwicklung einer integrierten HPC-Workflow Umgebung zur Kopplung von Optimierungsmethoden mit Methode (03EI1004F)
|0 G:(BMWi)03EI1004F
|c 03EI1004F
|x 1
536 _ _ |a ATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)
|0 G:(DE-Juel-1)ATMLAO
|c ATMLAO
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cao, Karl-Kiên
|0 0000-0002-9720-0337
|b 1
|e Corresponding author
700 1 _ |a Sasanpour, Shima
|0 0000-0002-7502-6841
|b 2
700 1 _ |a Buschmann, Jan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Breuer, Thomas
|0 P:(DE-Juel1)138707
|b 4
773 _ _ |a 10.1038/s41467-025-67593-9
|0 PERI:(DE-600)2553671-0
|p 873
|t Nature Communications
|v 17
|y 2026
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/1050254/files/s41467-025-67593-9.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1050254
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138707
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2026
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2025-08-21T14:06:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2025-08-21T14:06:14Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2025-08-21T14:06:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-11-10
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-11-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21