001050257 001__ 1050257
001050257 005__ 20260108204825.0
001050257 0247_ $$2doi$$a10.1093/mam/ozaf123
001050257 0247_ $$2ISSN$$a1079-8501
001050257 0247_ $$2ISSN$$a1431-9276
001050257 0247_ $$2ISSN$$a1435-8115
001050257 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00069
001050257 037__ $$aFZJ-2026-00069
001050257 082__ $$a500
001050257 1001_ $$0P:(DE-Juel1)186015$$aLeidl, Max Leo$$b0
001050257 245__ $$aTowards a Protein-Size Dependent Resolution Limit due to Dynamical Scattering in Cryo-transmission Electron Microscopy
001050257 260__ $$aOxford$$bOxford University Press$$c2025
001050257 3367_ $$2DRIVER$$aarticle
001050257 3367_ $$2DataCite$$aOutput Types/Journal article
001050257 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767812259_10642
001050257 3367_ $$2BibTeX$$aARTICLE
001050257 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050257 3367_ $$00$$2EndNote$$aJournal Article
001050257 520__ $$aIn cryo-transmission electron microscopy, single-particle reconstructions exploit the weak phase object approximation. A decisive aspect to be studied systematically is to what extent underlying scattering assumptions limit the resolution, whether theoretical limits are compatible with experimental observations, and if current experimental benchmarks achieve this limit. Single-, multislice, and hybrid scattering models are employed in this work for simulating eight protein complexes up to 97.5 nm in thickness, embedded in low-density amorphous ice obtained from molecular dynamics. With the multislice scheme providing an accurate solution to the multiple scattering problem as reference, the reliability of the different models is assessed in both real and Fourier space, particularly via Fourier ring correlations at the specimen exit wave level. A comparison with benchmarking literature resolutions is performed. Our results show proportionality of the attainable resolution to the square root of the projection thickness. This is in reasonable quantitative agreement with the highest resolution published experimentally for proteins with at least the size of apoferritin. The study provides a rationale for the expectable resolution for a protein complex of known size. The implications of structural noise due to the ice background for the minimal ice thickness on protein size-dependent resolution are discussed, as well as efficient methods to approximate multiple scattering and propagation in thick proteins.
001050257 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001050257 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001050257 536__ $$0G:(DE-Juel-1)DE002325$$a4D-BioSTEM (DE002325)$$cDE002325$$x2
001050257 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050257 7001_ $$0P:(DE-HGF)0$$aSturm, Sebastian$$b1
001050257 7001_ $$0P:(DE-Juel1)184560$$aFilopoulou, Aikaterina$$b2
001050257 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b3
001050257 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b4$$eCorresponding author
001050257 773__ $$0PERI:(DE-600)1481716-0$$a10.1093/mam/ozaf123$$gVol. 31, no. 6, p. ozaf123$$n6$$pozaf123$$tMicroscopy and microanalysis$$v31$$x1079-8501$$y2025
001050257 8564_ $$uhttps://juser.fz-juelich.de/record/1050257/files/Towards%20a%20protein-size%20dependant%20resolution%20limit.pdf$$yOpenAccess
001050257 909CO $$ooai:juser.fz-juelich.de:1050257$$popen_access$$popenaire$$pVDB$$pdriver$$pdnbdelivery
001050257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186015$$aForschungszentrum Jülich$$b0$$kFZJ
001050257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184560$$aForschungszentrum Jülich$$b2$$kFZJ
001050257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b3$$kFZJ
001050257 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001050257 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001050257 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001050257 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-17
001050257 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-17
001050257 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-17
001050257 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001050257 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROSC MICROANAL : 2022$$d2024-12-17
001050257 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-17
001050257 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-17
001050257 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001050257 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-17
001050257 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050257 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-17
001050257 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001050257 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-17$$wger
001050257 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001050257 920__ $$lyes
001050257 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001050257 980__ $$ajournal
001050257 980__ $$aVDB
001050257 980__ $$aUNRESTRICTED
001050257 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001050257 9801_ $$aFullTexts