001     1050257
005     20260108204825.0
024 7 _ |a 10.1093/mam/ozaf123
|2 doi
024 7 _ |a 1079-8501
|2 ISSN
024 7 _ |a 1431-9276
|2 ISSN
024 7 _ |a 1435-8115
|2 ISSN
024 7 _ |a 10.34734/FZJ-2026-00069
|2 datacite_doi
037 _ _ |a FZJ-2026-00069
082 _ _ |a 500
100 1 _ |a Leidl, Max Leo
|0 P:(DE-Juel1)186015
|b 0
245 _ _ |a Towards a Protein-Size Dependent Resolution Limit due to Dynamical Scattering in Cryo-transmission Electron Microscopy
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767812259_10642
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In cryo-transmission electron microscopy, single-particle reconstructions exploit the weak phase object approximation. A decisive aspect to be studied systematically is to what extent underlying scattering assumptions limit the resolution, whether theoretical limits are compatible with experimental observations, and if current experimental benchmarks achieve this limit. Single-, multislice, and hybrid scattering models are employed in this work for simulating eight protein complexes up to 97.5 nm in thickness, embedded in low-density amorphous ice obtained from molecular dynamics. With the multislice scheme providing an accurate solution to the multiple scattering problem as reference, the reliability of the different models is assessed in both real and Fourier space, particularly via Fourier ring correlations at the specimen exit wave level. A comparison with benchmarking literature resolutions is performed. Our results show proportionality of the attainable resolution to the square root of the projection thickness. This is in reasonable quantitative agreement with the highest resolution published experimentally for proteins with at least the size of apoferritin. The study provides a rationale for the expectable resolution for a protein complex of known size. The implications of structural noise due to the ice background for the minimal ice thickness on protein size-dependent resolution are discussed, as well as efficient methods to approximate multiple scattering and propagation in thick proteins.
536 _ _ |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)
|0 G:(DE-HGF)POF4-5352
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 1
536 _ _ |a 4D-BioSTEM (DE002325)
|0 G:(DE-Juel-1)DE002325
|c DE002325
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sturm, Sebastian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Filopoulou, Aikaterina
|0 P:(DE-Juel1)184560
|b 2
700 1 _ |a Sachse, Carsten
|0 P:(DE-Juel1)173949
|b 3
700 1 _ |a Müller-Caspary, Knut
|0 P:(DE-Juel1)165314
|b 4
|e Corresponding author
773 _ _ |a 10.1093/mam/ozaf123
|g Vol. 31, no. 6, p. ozaf123
|0 PERI:(DE-600)1481716-0
|n 6
|p ozaf123
|t Microscopy and microanalysis
|v 31
|y 2025
|x 1079-8501
856 4 _ |u https://juser.fz-juelich.de/record/1050257/files/Towards%20a%20protein-size%20dependant%20resolution%20limit.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1050257
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186015
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)184560
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173949
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5352
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 1
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-17
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROSC MICROANAL : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-3-20170113
|k ER-C-3
|l Strukturbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-3-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21