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Abstract
Lack of interoperable datasets in plant breeding research creates an innovation bottleneck, requiring additional effort to 
integrate diverse datasets—if access is possible at all. Handling of plant breeding data and metadata must, therefore, change 
toward adopting practices that promote openness, collaboration, standardization, ethical data sharing, sustainability, and 
transparency of provenance and methodology. FAIR Digital Objects, which build on research data infrastructures and FAIR 
principles, offer a path to address this interoperability crisis, yet their adoption remains in its infancy. In the present work, we 
identify data sharing practices in the plant breeding domain as Data Cohorts and establish their connection to FAIR Digital 
Objects. We further link these cohorts to broader research infrastructures and propose a Data Trustee model for federated 
data sharing. With this we aim to push the boundaries of data management, often viewed as the last step in plant breeding 
research, to an ongoing process to enable future innovations in the field.

Introduction

Genomic prediction has helped shape breeding programs 
toward higher genetic gains since its inception almost two 
decades ago (Crossa et al. 2017). Consequently, its adop-
tion has become integral to modern crop breeding strate-
gies, where genotypic information is used to predict pheno-
typic traits like crop grain yield. A prediction model learns 
from existing data (called training set) and then applies 
that knowledge to predict the traits in new data (called test 
set). Achieving high prediction accuracies, therefore, relies 

heavily on training/test set relatedness, and out-of-sample 
scenarios often result in lower values due to lack thereof 
(Hickey et al. 2017). One possibility to address the latter 
is leveraging historic breeding information by aggregating 
small and intermediate size data (Zhao et al. 2021). How-
ever, this remains challenging and largely undocumented 
for plant breeding domain since most historic data was not 
archived with interoperability in mind, this is especially true 
for publicly available data (Papoutsoglou et al. 2023). A shift 
in perspective toward aggregating data is therefore necessary 
and opens up opportunities to benefit from myriad of data 
generated within the domain (Wang et al. 2025; Xu et al. 
2022).

Interestingly, while many studies producing such data aim 
to ensure reproducibility, they often provide only minimal 
supplementary information, leaving broader aspects of data 
sharing unaddressed. The term FAIR summarizes guiding 
principles for scientific data to improve data handling, trans-
parency, and ultimately impact by making the data (1) find-
able, with rich metadata and uniquely indexed in a search-
able resource such as domain-specific repositories or general 
platforms like Google, (2) accessible, using a standardized 
communication protocol like HTTP (Hypertext Transfer 
Protocol), (3) interoperable, through the use of domain-
specific syntactic structures and semantic vocabularies (i.e., 
ontologies), and (4) reusable, with clear usage licenses and 
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provenance information (Wilkinson et al. 2016). To support 
this, the concept of FAIR Digital Object has been proposed 
to act as a building block (De Smedt et al. 2020) and help 
shape domain-specific data ecosystem(s) for future research 
and innovation. But, much needs to be done to cement these 
blocks, starting with their wider use.

If all publicly available data were truly FAIR Digital 
Object(s) (FDO), by design, discovering which FDOs to 
combine for answering specific research questions could, 
at least in part, be automated. This would be made possible 
through richly described provenance information and the use 
of ontologies to detail the data encapsulated within the FDO. 
In reality, however, these features are only partially avail-
able, making it easier to integrate data derived from a single 
study than from multiple studies. These studies may range 
from time-limited research activities to long-term breeding 
programs in public or private domains. The challenge, there-
fore, is not simply enforcing a top-down approach where 
“everything is FAIR”, but rather adapting FAIR principles 
to fit the data management practices commonly observed 
in the field.

To address this, we define a “Data Cohort” as the col-
lection of various kinds of data generated within a single 
study. When the data lifecycle adheres to FAIR princi-
ples, each kind of data within the cohort could potentially 
become an FDO. Alternatively, the study might choose to 
reuse an existing FDO. A Data Cohort, therefore, serves as 
a structured package of FDOs from or for a study, acting as 
the primary unit of data availability and exchange in plant 
breeding research. Expanding on this, we (1) summarize 
data management steps for creation of FDOs for major kinds 
of plant breeding data, (2) propose a framework to benefit 
and identify potential FDO within public data infrastruc-
tures to package as Data Cohorts, (3) share experiences in 
aggregating Data Cohorts for use in genomic predictions, 
and (4) present an outlook for genomic predictions as part 
of a data analysis platform to drive future innovation and 
research in the field.

Background

Digital objects as a unit for implementing FAIR

A digital object refers to any type of data shared on a trusted 
infrastructure—domain-specific repositories for example—
with sufficient metadata and a persistent identifier(s) to ena-
ble its reuse. FAIR Digital Object (FDO) is an extension of 
the concept (De Smedt et al. 2020) to satisfy properties of 
machine (1) interpretability with metadata description(s), (2) 
interoperability, and (3) actionability. The growing advocacy 
for FAIRness (Ewert et al. 2023) points to rising awareness 
within the plant breeding domain and attempts to address (1) 

siloed nature of studies and (2) sparse and inconsistent avail-
ability of domain-specific ontologies (Nédellec et al. 2024).

Ontologies provide a crucial framework for data inter-
operability by defining domain concepts, i.e., data seman-
tics and their relationships. This is generally done using an 
annotation model that defines levels of concept abstraction 
and information aggregation. For example, crop ontol-
ogy (https://​cropo​ntolo​gy.​org) uses GY_M_kgPlot (vari-
able_id CO_321:0001222) to refer to “Amount (weight) 
of grains that was harvested” (trait_id CO_321:0000013) 
after physiological maturity (method_id CO_321:0000236) 
at a plot level and measured in kilograms (scale_id 
CO_321:0000806). This hierarchical organization enables 
efficient data sharing through reusable components while 
facilitating ontology-driven knowledge discovery through 
standardized semantic relationships, especially for wide 
range of research data (Dumschott et al. 2023). Plant vari-
ety testing offices, which already define major traits for crop 
evaluation, represent promising initial sources for develop-
ing ontologies that could enable data interoperability, but 
may need to be adapted for wider use—crop ontology, for 
example, allows defining new ontologies.

While ontologies may be used to describe the data points, 
additional attributes on the experiment itself (study meta-
data) as well as the recorded data point (annotation meta-
data) may be captured using metadata recommendations like 
Minimum Information About Plant Phenotyping Experi-
ments (MIAPPE) (Papoutsoglou et al. 2020). MIAPPE pro-
vides a standardized list of metadata attributes specifically 
tailored to describe plant phenotyping experiments (https://​
github.​com/​MIAPPE/​MIAPPE). To organize this metadata, 
the attributes can be structured using the Investigation-
Study-Assay (ISA) data model (Sansone et al. 2012). The 
ISA breaks down metadata into three components: (1) the 
investigation file, detailing study goals and methods; (2) the 
study file, describing sample metadata, characteristics, and 
treatments; and (3) the assay file, cataloging qualitative or 
quantitative data from measurements. These files can be 
nested, with one investigation file covering multiple study 
components (e.g., genotypic and phenotypic data from a 
plant breeding experiment), each linked to its own assay file.

The flexibility of the ISA data model allows multiple 
file formats for serializations including the ISA-Tab, ISA-
JSON (https://​isa-​specs.​readt​hedocs.​io/​en/​latest), and ISA-
XLSX (Weil et al. 2023). ISA-Tab, in particular, has been 
extensively used for publishing Gene Bank datasets (Gon-
zalez et al. 2018; Philipp et al. 2019; Schulthess et al. 2022; 
Svoboda et al. 2024) and multi-environment trial datasets 
(Gogna et al. 2022), establishing precedence for future data 
submissions. Over time, data models like ISA and minimal 
information recommendations such as MIAPPE have been 
incorporated into FDO constructs to enable automated com-
munication between infrastructures hosting this data (Clarke 

https://cropontology.org
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et al. 2023). One such implementation is Annotated Research 
Contexts (ARCs), which builds upon the ISA data model, 
extends it with documentation of computational workflows 
(Crusoe et al. 2022), and includes data provenance using the 
Git version control system (Weil et al. 2023).

The increasing adoption of FDOs fuels the development 
of a FAIR data ecosystem (Hodson et al. 2018) based on: 
policies that define rules and manage component interac-
tions, data management plans outlining handling of data 
during a study, persistent identifiers as well as standards 
that guide FDO creation, and repositories for secure storage. 
Such an ecosystem would require data infrastructures to be 
interlinked with ontologies to maintain semantic consistency 
and shared data meaning across the domain. This will enable 
users to seamlessly discover and integrate relevant FDOs. 
For instance, in genomic prediction studies, combining gen-
otype and phenotype data from multiple sources could pro-
duce comprehensive datasets, addressing challenges such as 
limitations in training/test set relatedness (Zhao et al. 2021). 
More importantly, such an ecosystem could facilitate pub-
lic–private partnerships for genome-wide predictions as well 
as incorporation of artificial intelligence methods into plant 
breeding domain (Lell et al. 2025).

Data Cohorts define levels for data integration

Data provenance is fundamental to effective data integration, 
providing crucial context regarding data origin, curation 
methods, and associated uncertainties. While integrating 
data within a single Data Cohort is relatively straightfor-
ward due to their shared provenance, combining data across 
multiple cohorts presents significant challenges (Zhao et al. 
2021). These challenges stem from variations in experimen-
tal designs, data collection protocols, and the potential for 
incomplete or inconsistent metadata.

In the context of plant breeding, a common approach to 
phenotypic data processing involves a stage-wise analy-
sis. Initially, data from each environment (Fig. 1, E11–Emn) 
within a Data Cohort (Fig. 1, 1 to m) is independently ana-
lyzed to correct for experimental design effects specific to 
that environment (Fig. 1, yellow box). Subsequently, envi-
ronment specific effects corrected data within the cohort 
are aggregated, often using genotype identifiers to merge 
with genotypic data (Fig. 1, green box). Although auto-
mated pipelines for data quality control and preprocessing 
exist (Chen et al. 2024; Xu et al. 2022), they are not always 
applicable to the diverse and heterozygous data generation 
processes typical of plant breeding. Our framework there-
fore relies on data providers to ensure FAIR compliance, 
enabling Data Cohorts.

However, to leverage the full potential of historical and 
diverse datasets for genomic prediction, a more expansive 
integration strategy is required. This involves integrating 

data across Data Cohorts, effectively combining environ-
ments (E11–Emn) and genotypic datasets (GD1–GDm (Fig. 1, 
red box)). This cross-cohort integration necessitates rigor-
ous assessment of both data provenance and data veracity 
(i.e., quality and reliability). While metadata associated with 
FAIR Digital Object can provide crucial provenance infor-
mation, a consensus on standardized quality metrics for plant 
breeding data, particularly for genotypic data, is still evolv-
ing. Nevertheless, ongoing efforts to establish such standards 
(Beier et al. 2022; Hafner et al. 2025) offer a promising path 
forward.

The successful aggregation of Data Cohorts enables a 
wide spectrum of downstream analyses. These range from 
basic investigations of population structure within specific 
panels to complex studies aimed at dissecting genotype 
times environment interactions. Therefore, clearly defining 
the specific use case is paramount. This definition guides the 
selection of appropriate digital objects and the Data Cohorts 
that encompass them. This manuscript focuses on utilizing 
the Data Cohort concept to assemble datasets specifically 
for developing and refining genomic prediction models. A 
prerequisite for this is the availability of common, ideally 
standardized, genotypes in multiple Data Cohorts that enable 
this connectivity.

Revisiting data integration for big data in plant 
breeding

Aggregating Data Cohorts can generate Big Data, defining 
a collection of large (Volume), often very diverse (Variety) 
kinds of data generated at high Velocity that require com-
plex analytical methods for processing. The definition may 
further be refined (De Mauro et al. 2016; Ward 2013), by 
attributes such as Veracity, which refers to the trustworthi-
ness and reliability of both the data and results generated 

Fig. 1   Concept of Data Cohorts: Most plant breeding research com-
bines multi-environment phenotypic data (Green, Purple) with corre-
sponding genotypic data (Blue, Red). This combination of phenotypic 
and genotypic data is referred to as a “Data Cohort.” To generate 
Big Data from these cohorts, the red outlines illustrate an integration 
strategy across environments (E11–Emn) and genotypic data (GD1–
GDm) (color figure online)
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from it. Across diverse fields, the rapid growth in available 
data has catalyzed a shift toward Big Data methodologies 
(Ekbia et al. 2015)—a trend vividly reflected in plant breed-
ing today.

In plant breeding, the shift toward Big Data is largely 
process-oriented, enabling investigations into research ques-
tions that were previously constrained by data limitations. 
For instance, effectively studying genotype times environ-
ment (G × E) interactions often requires integrating data 
from multiple cohorts, as a single study rarely encompasses 
the full breadth of information needed. In the development 
of new methods for prediction of genotype performance in 
novel environments (Washburn et al. 2024), investigations 
into G × E patterns (Lopez-Cruz et al. 2023) have, for exam-
ple, benefitted from successful data integrations.

Whether a Data Cohort from a single study qualifies as 
Big Data remains debatable. A single cohort may include 
genotypic, phenotypic, and other data types, with the veloc-
ity of data generation influenced by the underlying biologi-
cal or physical processes. For example, while collecting 
and curating grain-yield data in winter wheat might span an 
entire growing season (October to August), genotyping data 
can be produced in just a few days, and climate data may 
be generated almost in real time. Data produced at higher 
velocities often contributes significantly to overall data vol-
ume, thereby meeting Big Data criteria.

Legacy data can also be transformed to adhere to FAIR 
data principles (Gogna et al. 2022), and used for building 
Data Cohorts. However, this process requires significant 
effort and may yield incomplete Data Cohorts with miss-
ing data and/or metadata. In order to address this issue, it 
is critical to adopt a “FAIR from the beginning” approach 
(Weil et al. 2023), with a particular emphasis on the estab-
lishment of fundamental data models and a comprehensive 
metadata description within the domain. This should include 
data pertaining to geno- and phenotypic characteristics, as 
well as data describing the environmental conditions under 
which the data was collected. The following sections will 
explore steps that should be taken with regard to each of the 
aforementioned data.

Genotypic data interoperability must account 
for platform associated ascertainment bias

Genotypic data may be produced using different technolo-
gies, each potentially yielding a distinct FAIR Digital Object 
(FDO). Producing genotypic data involves several steps, 
from DNA extraction of the organism under research to 
the actual genotyping, a technique used to identify specific 
genetic markers or sequences in the genome. Two commonly 
used technologies are sequencing-by-synthesis (Slatko et al. 
2018) and hybridization-based methods, such as SNP arrays. 
SNP arrays detect allele-specific hybridization, where DNA 

fragments from (plant) samples hybridize with allele-spe-
cific oligonucleotide markers immobilized on a microarray. 
Fluorescent signals are produced from this hybridization, 
indicating the allelic state for each marker. These signals 
are used to identify genotype clusters for respective markers 
(Wang et al. 2014) and variant data is summarized in, for 
example, HapMap (Gibbs et al. 2003)-based file formats.

In contrast, sequencing-by-synthesis-based methods, 
including DArTseq (Elshire et al. 2011), genotyping-by-
sequencing (Sansaloni et  al. 2011), and whole-genome 
sequencing (Yano et al. 2016), involve de novo sequenc-
ing of DNA fragments, although their sequencing library 
preparation methods may vary. The raw sequencing data 
obtained from these methods is typically presented as reads 
in FASTQ format (Cock et al. 2010) and is commonly pro-
cessed (Lefouili and Nam 2022) into a variant call format 
(VCF) format (Danecek et al. 2011). An important distinc-
tion from SNP arrays lies in the use of a reference genome 
to define the variants in VCF-based data. This data may be 
packaged into an FDO. For this, the provenance informa-
tion may be stored with header lines for both kinds of data 
(Beier et al. 2022), while maker-associated metadata may 
be derived from oligonucleotide information in case of SNP 
array data (EMBL-EBI 2025) and reference genome in case 
of VCF-based data.

Integration across Data Cohorts, whether based on 
HapMap or VCF data, may be required to enable broader 
analyses (Fig. 1). This benefits from shared provenance, 
overlap of marker variants, and investigated samples across 
the cohorts. However, additional considerations are crucial 
during the integration process. For example, when work-
ing with VCF-based FDOs, it is essential to ensure that a 
common reference genome was used for variant calling, 
e.g., RefSeqV1.1 or RefSeqV2.1 (Zhu et al. 2021) for bread 
wheat (Triticum aestivum L.). Similarly, the integration of 
HapMap-based FDO generated using different oligonucleo-
tide sets can be challenging due to (1) the proprietary nature 
of oligonucleotide sequences, (2) the imprecise determina-
tion of physical positions for variants captured by oligo-
nucleotide using local alignment (Bethesda 2008), and (3) 
difficulties in defining variants relative to a consistent refer-
ence genome, in species with large genomes and polyploidy 
(Martin et al. 2022). Moreover, the outcomes of both (2) and 
(3) are highly dependent on the thresholds applied during 
alignment and position inference. When integrating multi-
ple HapMap-based FDOs, it is therefore recommended that 
each of these is individually converted to a VCF-based FDO 
before integration using overlapping marker positions. This 
step corrects for any platform-associated bias(es) and, more 
importantly, allows integrating HapMap-based FDOs with 
those based on VCF format (Fig. 2).

With integrated data in a VCF format, preprocessing is 
easily done using vcftools (Danecek et al. 2011) and the 
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genotype calls may directly be converted to integer type 
representing marker effect values using plink (Purcell et al. 
2007) for downstream analysis. As a last step, data reduc-
tion may be performed to filter out markers with high miss-
ing values, low minor allele frequencies, and monomorphic 
markers. Any missing values for marker variants after pre-
processing can be imputed using mean effect values, though 
complex methods exist (He et al. 2015). Hybrid genotype 
information may also be derived from parent genotypic data, 
when needed, at this stage (Zhao et al. 2015).

Genotypes bridging the individual trials are 
required for integrated phenotypic analyses

The phenotypic component of a Data Cohort is collected 
from the field in a given environment, i.e., combination 
of location and year over the growing season of the crop. 

Presently, lack of standardization in how traits are recorded 
is a major restriction to ensuring interoperability across the 
domain. This is mainly due to differing agronomic prac-
tices and logistics involved in data generation. Trait ontolo-
gies, for example, crop ontology (https://​cropo​ntolo​gy.​
org), address part of this challenge by offering standardized 
vocabularies and concepts, while constructs like MIAPPE 
may be adapted for recording of study and annotation meta-
data from field trials.

Data processing following collection may be organized 
at multiple levels. Ideally, phenotypic data from each envi-
ronment needs to be processed individually, which majorly 
include checks for accurate digitalization of information 
from the field. Plausibility checks for expected data range, 
data type as well as patterns of missing information may 
also be performed. After which, data may be linked to 
established ontologies and stored following a standardized 

Fig. 2   An example decision tree outlining the steps to integrate HapMap and VCF-based data for curating genotypic data

https://cropontology.org
https://cropontology.org
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syntax (syntactic identity) to maintain interoperability across 
environments. This data may be published online as a FAIR 
Digital Object, with or without corresponding genotypic 
data (see previous section).

The data obtained from each environment, often compris-
ing a single trial, follows a statistical experimental design 
to allow adjustment for spatial field effects like heterogene-
ous soil composition, and, management practices, among 
others. Such corrections are often implemented at the level 
of trial itself (Fig. 3) using a stage-wise approach (Piepho 
et al. 2012), although exceptions exist in cases where: (1) 
trial is unreplicated, and (2) multiple trials are conducted 
at a given environment (Boeven et al. 2020). The adjusted 
phenotypic data is referred to as BLUEs. The term “Best 
Linear Unbiased Estimates” (BLUEs) is used to summarize 
that the adjusted data represents the most accurate estima-
tion of the true phenotypic value for the genotypes that have 
been evaluated in the trial. Given that variations in growth 
environments have the potential to influence BLUEs, it is 
necessary to distinguish between BLUEs derived at the envi-
ronment level (stage-one BLUEs) and those derived across 
environments (stage-two BLUEs). The former essentially 
correspond to BLUEs for a Data Cohort. Consequently, 
stage-two BLUEs may also be derived across Data Cohorts, 
as illustrated in Fig. 1, using following equation:

where y is a vector of stage-one BLUEs ordered as geno-
types within respective environments, µ represents the over-
all mean, while F and R are design matrices for fixed and 
random effects, respectively. τ, u, and e are vectors of fixed 
effects, random effects, and residuals, respectively. Gener-
ally, genotype effects are considered as fixed, whereas envi-
ronmental effects are considered as random components in 
the model, with the assumptions that u, e ~ (0, Iσ2). Addi-
tionally, the Data Cohort(s) may also be modeled as a fixed 
effect in the model (1).

For our approach, we use the phenotypic data corrected 
for experimental design effects at the trial level as the build-
ing block for the phenotypic component of a Data Cohort. 
While the environments within a single Data Cohort often 
demonstrate strong connections with check genotypes, this 
connectivity may not extend across different Data Cohorts. 
Uniquely identifying genotypes is a key challenge to address 
when integrating Data Cohorts, especially to avoid string-
based identity mismatches. For example, one study might 
label a genotype as “G7nZ2” while another uses “g7nz2,” 
resulting in two identifiers that look different to a com-
puter—even though they refer to the same biological entity. 
One way to resolve genotype identity is by using external 

(1)y = � + F� + Ru + e,

Fig. 3   An example decision tree outlining the steps to integrate phe-
notypic data collected from trials in the field. The abbreviations are 
as follows: “E” refers to environment, representing a combination of 

location and year; “R” stands for replication, indicating whether the 
material in the trial was replicated
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databases, such as http://​wheat​pedig​ree.​net/ for released 
varieties.

Genotype connectivity across Data Cohorts increases 
the risk of failing to accurately estimate model parameters, 
which could potentially lead to issues with model conver-
gence. This connectivity may be artificially introduced 
using genomic deduplication, if this leads to identical or 
near-identical genotypes in different Data Cohorts. The idea 
follows the estimation of genetic distances (Zhao et al. 2021) 
using integrated genotypic data with proxy identifiers gener-
ated for genotypes in the stage-one BLUEs to be integrated. 
These proxy identifiers are then used to derive genotype 
effects in model (1).

Quality metrics ensures that only high‑quality 
phenotypic data enters the integration pipeline

The fit of candidate stage-specific models to the data is 
typically evaluated using a step-up or step-down approach 
with the Akaike information criterion (AIC) or the Bayesian 
information criterion (BIC). Once the optimal model has 
been identified, an important subsequent step is the pheno-
typic variance decomposition, which assesses the trait vari-
ance architecture (Boeven et al. 2020).

Two important distinctions are vital here, firstly to esti-
mate a parameter for assessing the stability of the phenotype 
when a given genotype panel is phenotyped in different envi-
ronments, and secondly to estimate trait heritability. For the 
former, the term “reliability” has been proposed (Bernardo 
2020) as opposed to “repeatability”. For the purposes of this 
study, the two terms are used interchangeably. Repeatability 
is calculated akin to heritability and is expressed as the ratio 
of entry (or genotype) variance to phenotypic variation for a 
given environment. Phenotypic data with low repeatability 
values often requires additional investigations before it is 
used for integrated analysis. This is because low repeatabil-
ity values indicate major proportion of phenotypic variance 
being nongenetic in nature. If need be, environments with 
repeatability values dropping below a defined threshold, for 
example, 0.3 for grain yield, may be discarded before inte-
grating phenotypic data. This information may be included 
in the FAIR Digital Object by extending the list of attributes 
in MIAPPE.

Genomic repeatabilities for genotypic‑phenotypic 
data interoperability

Similar to repeatability values defined for phenotypic data 
quality in a given environment, a measure of fit between 
genotypic and phenotypic data can be derived using SNP-
based genomic repeatabilities (Yang et al. 2010). The vari-
ance in stage-one BLUEs may therefore be decomposed into 
additive and additive epistatic components, as follows,

where y is a vector of stage-one BLUEs and the rest of the 
model terms are similar to those described in (1). In this 
case, however, the random components are assumed to fol-
low a normal distribution, with u ~ (0, G�2 ), and e ~ (0, I�2

e
 ), 

where G represents the genomic relationship matrix and I is 
an identity matrix. �2 is the variance for G , representing the 
additive and additive epistatic effects ( Ga and Gaa ). These 
may be derived as follows (Jiang and Reif 2015);

If X = (xij) is a n × p matrix derived from integrated 
marker data, where xij represents the number of refer-
ence alleles for the i th genotype at the jth marker, then 
W = (xij − 2pj) , WT denotes the transpose of W  , and pj is 
the reference allele frequency at the jth marker. The sym-
bol “#” denotes a Hadamard product to approximate first 
degree epistasis interaction effects. Subsequently, narrow 
sense (Rnarrow) repeatabilities can then be derived using the 
formula:

where �2

a
 and �2

e
 are variance components derived from 

model (2) for the additive and error effects respectively. 
While genomic repeatabilities are reported per environment, 
the same concept can be extended to stage-two BLUEs, 
allowing the derivation of a measure of genomic heritabil-
ity using (2). This information may be included in the FAIR 
Digital Object by extending the list of attributes in MIAPPE.

Environmental data allows characterization of crop 
growth environments

Akin to genotype and phenotype data, the environment 
in which a trial is conducted can be characterized using 
climate variables such as precipitation, temperature, and 
solar radiation (Xu 2016). Other components of the envi-
ronment, including soil and crop management, may be 
used to enrich the description of the environmental con-
ditions (de los Campos et al. 2020). Additional informa-
tion regarding crop growth, like vegetation cover, surface 
temperature, etc., may be derived from remote sensing 
geospatial data (e.g., Moderate Resolution Imaging Spec-
troradiometer data). This data when generated within the 
course of a study may be packaged into the FAIR Digi-
tal Object, given ontologies and metadata attributes, e.g., 

(2)y = � + Ru + e,

(3)Ga =
WWT

2
∑p

k=1
pk
�

1 − pk
� ,

(4)Gaa = Ga#Ga,

(5)Rnarrow =
�
2

a

�2
a
+ �2

e

http://wheatpedigree.net/
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MIaGIS (Minimum Information about Geospatial Informa-
tion System) (Thompson et al. 2023), are richly described. 
For when this is not the case, potential ontology [climate 
(Eaton et al. 2024), soil (Palma et al. 2020), and crop 
management (Subirats-Coll et al. 2022)] and minimum 
attribute list sources [climate [https://​gcos.​wmo.​int/​site/​
global-​clima​te-​obser​ving-​system-​gcos/​essen​tial-​clima​
te-​varia​bles], soil [https://​www.​fao.​org/​global-​soil-​partn​
ership/​en/], and crop management (White et al. 2013)] may 
be adapted for breeding-specific applications.

Notably, climate-related data is often obtained from 
public resources, such as the Climate Data Center (Kas-
par et al. 2019), rather than being recorded on-site. This 
data is available at various spatial and temporal resolutions 
and may also be obtained from commercial platforms like 
ClearAg (DTN 2024) or through environmental sensors 
deployed in on-site micro weather stations. In the case 
of the latter, measurement uncertainty—including instru-
ment errors in field measurements and environmental sen-
sor accuracy—must be recorded for meaningful data inte-
gration. When multiple data sources are used to describe 
an environment, the data integration must additionally 
account for any spatiotemporal patterns and data gaps 
(Ruane et al. 2015).

Beyond the application of environmental data in the 
estimation of accurate BLUEs value within or across Data 
Cohorts (de los Campos et al. 2020), a nuanced understand-
ing of genotype times environment interactions may be 
achieved by integrating genomic prediction with process-
based crop growth modeling tools. However, this would 
require an additional layer of data to create cross-model-
friendly Data Cohort(s), facilitating better collaboration 
and insights across these domains. This need arises because 
breeding programs primarily focus on end-point traits like 
yield and measure only minimal phenological traits due to 
the large number of genotypes to screen. In contrast, crop 
models require detailed process-level data for calibration, 
creating a significant data integration challenge.

Key process data needed includes regular biomass meas-
urements throughout the growing season (with partition-
ing between plant organs), leaf area index. Phenological 
observations, like detailed timing of developmental stages, 
flowering dates, and senescence patterns, are also crucial. 
Additionally, resource use efficiency metrics, such as radia-
tion interception, water use efficiency, and nitrogen uptake, 
are needed for comprehensive model calibration. Especially 
for phenotypic data, the Data Cohort would need to account 
for data aggregation uncertainty (from combining replicated 
measurements, scaling between plot and field levels, and 
integrating across environments) and data quality uncer-
tainty (including missing data, outliers, and potential data 
entry errors) by adopting clear documentation of data life 
cycle.

Clusters minimizing GxE guide selection 
of environment clusters

Although it is technically feasible to integrate an unlimited 
number of Data Cohorts to generate Big Data, this integra-
tion must fulfill two essential conditions. Firstly, there must 
be sufficient genotype overlap between each pairwise combi-
nation to establish meaningful connectivity of Data Cohorts. 
Secondly, the integration must be meaningful in exploiting 
genotype times environment (G × E) interactions, in that it 
allows clustering similar environments. This second condi-
tion serves as a filter, excluding environments that exhibit 
opposing patterns of G × E interactions relative to the target 
group of environments. One approach to identify these pat-
terns is by using environmental variables, although more 
explicit methodologies could be explored. When identified, 
genomic prediction methods may be extended to account for 
G × E within clusters of similar environments. This has the 
potential to enable early selection of promising candidates in 
breeding programs by incorporating environment informa-
tion along with genotypic data.

Redefining combinations of Data Cohorts may be exem-
plified by data generated in Gene Banks. In this instance, the 
Gene Bank data would represent a single Data Cohort. Gene 
Banks characterize their accessions in trials that are unrepli-
cated, partially replicated or rarely replicated. The first step 
would be to derive genotype BLUEs for each environment, 
with corrections made for the experimental design or geno-
type replicates, if applicable, followed by the second step of 
deriving BLUEs for all environments across Gene Banks. 
In the third step, stage-two BLUEs may be integrated with 
fixed Gene Bank effects in model (1).

The availability of a curated set of standard reference 
genotypes included in trials across Gene Banks to establish 
connectivity and enable comparative analysis is essential for 
such an integration. Since Gene Banks are responsible for 
safeguarding genetic diversity, we propose the maintenance 
and availability of such check cassettes to be taken up by 
Gene Banks. Furthermore, these cassettes would also enable 
investigations into G × E interactions and determine groups 
of Gene Banks for a joint analysis.

Coordinating research data infrastructures 
for federated data sharing

The incorporation of FAIR Digital Object (s) (FDO) into 
Data Cohorts has, thus far, been described as a task for a 
user to reflect the current state of the data ecosystem in 
plant breeding (dotted black line in Fig. 4). Conversely, 
data federation—which enables seamless communication 
between different data infrastructures—should allow the 
design of Data Cohorts in the cloud and their later down-
load for end-use (dotted red line in Fig. 4). This approach 

https://gcos.wmo.int/site/global-climate-observing-system-gcos/essential-climate-variables
https://gcos.wmo.int/site/global-climate-observing-system-gcos/essential-climate-variables
https://gcos.wmo.int/site/global-climate-observing-system-gcos/essential-climate-variables
https://www.fao.org/global-soil-partnership/en/
https://www.fao.org/global-soil-partnership/en/
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effectively circumvents the necessity for manual creation of 
Data Cohorts, which is essential for expediting the process 
of knowledge discovery.

Achieving complete data federation requires addressing 
several challenges, most notably the heterogeneous nature 
of data infrastructures that are often built using different 
technology stacks. Furthermore, infrastructures serving the 
agroecosystem community frequently lack an application 
programming interface (API) (García Brizuela et al. 2024). 
To overcome this, the FAIRAgro consortium, which is part 
of the National Research Data Infrastructure (NFDI) in Ger-
many (Ewert et al. 2023), has proposed the introduction of 
a middleware concept to streamline (user) access to FDOs 
(Fig. 4).

It is also crucial to address specific challenges when 
sharing complex data types, such as matrix data or data 
with varying temporal resolutions. For these types, it is 
more practical to associate the data with an external file, 
rather than cataloging individual data points, for example, 
within a MIAPPE-compliant format like ISA-TAB (https://​
isa-​specs.​readt​hedocs.​io/​en/​latest/​isatab.​html; Sect. 2.3.9). 
This approach, however, means that the data is not imme-
diately machine-interpretable, interoperable, or actionable. 
To enable this, data infrastructures must expose an API to 
facilitate communication with other systems. Adopting the 

MIAPPE mapping to BrAPI (https://​github.​com/​MIAPPE/​
MIAPPE/​blob/​master/​Mappi​ng/​MIAPPE_​Check​list_​Mappi​
ng.​tsv) offers a potential solution, supporting the middleware 
approach discussed earlier and ensuring greater interoper-
ability within the federated infrastructures.

Journals as custodians for FAIR data ecosystem

The role of journals extends beyond the safekeeping of sci-
entific publications to facilitating data availability for repro-
ducibility of published results. It is becoming increasingly 
important for publishers to implement clear data sharing pol-
icies. Springer Nature, for example, has introduced a four-
tier data sharing policy that outlines the requirements for 
authors wishing to publish in their journals. These require-
ments reflect the growing scrutiny beginning with (1) data 
sharing, (2) citing datasets from public repositories, and (3) 
using data availability statements (Jones et al. 2019). The 
majority of life science journals in their portfolio adhere to 
Tier 3, which “strongly encourages” compliance with (1) and 
(2) while “requiring” (3). Although Tier 4 policies, such as 
those implemented by Scientific Data journal, mandate all 
three requirements and could support federated data infra-
structures, their adoption remains limited. This is primarily 
due to the increased workload and lack of incentives for 

Fig. 4   Diagram illustrating how 
FAIR Digital Objects (FDO) 
generated within a project (pur-
ple boxes) connect to research 
data infrastructures (RDIs; 
red boxes) and the Search and 
Inventory Portal (SIP), which is 
part of the middleware frame-
work, indexing these FDOs. 
The yellow boxes represent 
the agencies responsible for 
each of these components, viz. 
users, RDI operators, and larger 
FAIRAgro consortia. Journals, 
as represented with a yellow 
box on the right, are proposed to 
facilitate the creation of FDOs. 
The black dotted line represents 
the typical data flow from users 
to the SIP, whereas the red lines 
illustrate an alternative path in 
which users query the SIP to 
discover and access indexed 
FDO

https://isa-specs.readthedocs.io/en/latest/isatab.html
https://isa-specs.readthedocs.io/en/latest/isatab.html
https://github.com/MIAPPE/MIAPPE/blob/master/Mapping/MIAPPE_Checklist_Mapping.tsv
https://github.com/MIAPPE/MIAPPE/blob/master/Mapping/MIAPPE_Checklist_Mapping.tsv
https://github.com/MIAPPE/MIAPPE/blob/master/Mapping/MIAPPE_Checklist_Mapping.tsv
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authors, along with concerns that these requirements could 
discourage submissions (Rousi and Laakso 2020).

The transition from “encouraged” to “required” for FAIR 
submission of data needs to address three key issues: (1) 
the development of community recommendations, (2) the 
availability of specialist research infrastructures, and (3) 
the assessment of submissions. Whereas the first two are 
already established for at least some data generated within 
the plant breeding domain, the latter is still in its infancy. 
One possible solution is to couple FAIR submission with a 
data descriptor publication, such as in the Scientific Data 
journal. This delegates the responsibility of ensuring data 
FAIRness to the corresponding data infrastructure, which 
may automate this process with an assessment tool like 
FAIR-Checker (Gaignard et al. 2023). These tools, however, 
check only the “quality” of the infrastructure providing the 
data, but not the data itself.

In order to comply with increasingly demanding policies 
for submission of data, it is essential to promote awareness, 
provide training, and assistance within the community. In 
Germany, these challenges are addressed through a multi-
layered support ecosystem. The FAIRagro consortium 
(Ewert et al. 2023) provides discipline-specific commu-
nity workshops and a data steward service center to guide 
researchers, especially early career researchers, through the 
data lifecycle (FAIRagro 2025). This is complemented by 
the foundational bioinformatics resources of the German 
Network for Bioinformatics Infrastructure (de.NBI 2025) 
and the high-level recommendations for data management 
best practices developed by groups like the DINI/nestor 
Working Group on Research Data (DINI 2025). These 
national efforts are deeply integrated with broader activities 
at the European and global levels. For example, the Euro-
pean life sciences infrastructure (ELIXIR 2025) coordinates 
national activities into pan-European solutions. Together, 
these infrastructures are key contributors to the overarching 
vision of the European Open Science Cloud (EOSC 2025), 
which aims to create a federated web of FAIR data and ser-
vices for all researchers in Europe. On a discipline-specific 
international scale, consortia, like AgBioData (Harper et al. 
2018), bring together agricultural databases to promote com-
mon standards and ontologies.

In the pursuit of building a “FAIR data ecosystem,” (Hod-
son et al. 2018) funding agencies have also begun requiring 
data management plans for research projects. These plans 
outline a proposed timeline and associated steps in the 
project’s data lifecycle, ideally culminating in the creation 
of a FAIR Digital Objects (FDOs). For any fruitful use of 
such an ecosystem, it is essential that the FDOs have a clear 
reuse license. Reusability is challenging to achieve given the 
vested interests of data producers against those of potential 
data users, and successful examples of systems addressing 
the same are lacking in the plant breeding domain.

Revising reusability for a federated data ecosystem

Licenses enable a common understanding between data pro-
ducers and users, regarding potential data use and sharing. 
Commonly used licenses for data sharing include Creative 
Commons (https://​creat​iveco​mmons.​org/​share-​your-​work/​
cclic​enses/) and Open Data Commons (https://​opend​ataco​
mmons.​org/​licen​ses/). These, however, are immutable and 
may lack the necessary flexibility for cases involving pro-
prietary, sensitive, or confidential breeding data, where 
indiscriminate reuse may infringe on privacy, intellectual 
property rights, or competitive advantage. This challenge 
underscores the need for more dynamic, context-aware 
licensing models—such as tiered access licenses with usage 
tracking and benefit-sharing mechanisms for data (object) 
producers and users (called “parties” henceforth).

For data federation to facilitate smooth traffic of FAIR 
Digital Objects (FDOs), it must address the granular nature 
of data as well as benefit sharing between parties. We pro-
pose that intermediation be taken over by a plant breeding 
data centric Data Trustee Platform (TP). The TP could also 
function as a centralized hub for indexing public/private 
data, as well as a marketplace to identify relevant FDOs for 
creating corresponding Data Cohorts. Once identified, the 
TP could additionally facilitate exchange of both informa-
tion and material between parties via data/material transfer 
agreements.

As it develops, such a TP must also account for further 
points arising when data is shared, including security pro-
tocols, access control mechanisms, and data governance. 
Stakeholders from public and private domains should engage 
in the process to ensure transparent decision-making. This 
represents a distinct contribution to the plant breeding 
domain, as we move beyond isolated FAIR datasets to coor-
dinated data ecosystems that can facilitate complex breed-
ing decisions across public and private domains (Lell et al. 
2025).

The TP represents a potential business model that extends 
beyond a purely academic framework and will require fur-
ther development and validation in the open market. The 
core components of the TP, however, including API speci-
fications, data cohort assembly tools, and interoperability 
standards would benefit from being released under an open-
source license, to encourage community adoption and col-
laborative development (Rehm et al. 2021).

To protect proprietary data ownership, the TP might only 
allow search and discovery, not direct access to the data. 
To remedy this, the TP would need to be connected to a 
data analysis platform (AP), designed to operate indepen-
dently while maintaining on-demand compatibility with the 
TP. Once legal agreements are in place between parties—a 
process facilitated by professional data stewards who would 
manage compliance and assist users—the AP could allow 

https://creativecommons.org/share-your-work/cclicenses/
https://creativecommons.org/share-your-work/cclicenses/
https://opendatacommons.org/licenses/
https://opendatacommons.org/licenses/
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users to access and work with the data indexed in the TP in 
a defined cloud-based computing environment (https://​www.​
ukbio​bank.​ac.​uk/​enable-​your-​resea​rch/​apply-​for-​access). A 
user can, for instance, upload genotypic data to obtain pre-
dictions for a specific phenotype (e.g., grain yield). The AP 
would then enable the selection of the most relevant Data 
Cohorts to serve as the training set and perform predictions, 
which could then be downloaded from the cloud. Impor-
tantly, since the AP is independent from the TP, its scope 
may be extended beyond genomic predictions to embrace 
continuous improvement for (1) ongoing pipeline optimi-
zation, and (2) incorporating feedback from end users to 
enhance usability and effectiveness.

Outlook

The shift toward a process-oriented adoption of Big Data 
in plant breeding requires a fundamental rethinking of 
data sharing practices. As a first step, transitioning to Data 
Cohorts with clear licensing could improve data findability, 
accessibility, and interoperability, thereby easing the innova-
tion bottleneck. This perspective article demonstrates how 
genomic predictions can leverage such an approach to opti-
mize breeding programs, with winter wheat as an example. 
Potentially, our framework can be applied to additional crops 
to broaden the scope of the trusteeship platform. Achieving 
this requires changes in data policies, discussions on incen-
tives for data producers, and for increased community aware-
ness and training. We aim for this work to serve as a catalyst 
for these changes and to contribute to a broader cultural shift 
in data management within the community.
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