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Abstract

Since the late 2010s, artificial intelligence (Al), encompassing machine learning and propelled by deep learning, has transformed life
science research. It has become a crucial tool for advancing the computational analysis of biological processes, the discovery of nat-
ural products, and the study of ecosystem dynamics. This review explores how the rapid increase in high-throughput omics data
acquisition has driven the need for Al-based analysis in life sciences, with a particular focus on plant sciences, animal sciences, and
microbiology. We highlight the role of omics-based predictive analytics in systems biology and innovative Al-based analytical ap-
proaches for gaining deeper insights into complex biological systems. Finally, we discuss the importance of FAIR (findable, accessible,
interoperable, reusable) principles for omics data, as well as the future challenges and opportunities presented by the increasing use

of Al in life sciences.
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Background

The explosion of omics requires artificial
intelligence in the study of life sciences

In the past 2 decades, research and society have entered the “big
data” era of life sciences. Technological advances have enhanced
our ability to measure qualitative and quantitative variations of
internal biological molecules (e.g., DNA, RNA, proteins, metabo-
lites) and phenotypes, making the acquisition of large and com-
plex omics datasets within a single experiment increasingly com-
mon.

The explosion of omics data in life sciences began with ge-
nomics, which was driven by the emergence of DNA next-
generation sequencing (NGS) platforms nearly 20 years ago. While
the groundbreaking discovery of the Sanger DNA sequencing
method dates back to the 1970s, it took 3 decades for the advent
of second-generation short-read sequencing-based NGS to further
revolutionize DNA sequencing, dramatically increasing its afford-
ability and throughput. This has led to the de novo assembly of
thousands of animal and plant genomes [1, 2] and to the discovery
of millions of genome-wide single nucleotide polymorphic (SNP)
variants. High-throughput analysis of multiple gene transcripts
(i.e., transcriptomics) began in the mid-1990s with the introduc-

tion of hybridization-based microarray technologies. However, it
was not until the 2000s that NGS enabled a more accurate assess-
ment of the qualitative and quantitative diversity (e.g., large dy-
namic range of expression levels and alternative splicing variants)
of messenger RNAs. This technique, known as RNA sequencing
(RNA-seq), uses NGS to sequence complementary DNAs (cDNAs)
derived from RNA transcripts [3, 4]. The current third-generation
single-molecule sequencing technologies (e.g., PacBio and Oxford
Nanopore Technologies) have further improved the read length,
throughput, and accuracy of data collection in the field of ge-
nomics and transcriptomics [5, 6]. The field of proteomics and
metabolomics relies on the use of mass spectrometry (MS) tech-
niques to explore the diversity of proteins and metabolites in
both a qualitative and quantitative manner. Although mass spec-
trometers have been available since the late 1940s, it was their
integration with gas chromatography (GC) or liquid chromatog-
raphy (LC) and the development of ionization techniques such
as electrospray ionization (ESI) and matrix-assisted laser desorp-
tion ionisation (MALDI) in the late 1980s that truly expanded
their application to biological research [7, 8]. There are various
ionization techniques in mass spectrometry and electronic im-
pact ionization that, while historically important for profiling
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Figure 1: Number of publications found in PubMed including [artificial intelligence] AND [omics] AND [life sciences] from 2004 to 2024. In total, 1,362
publications were found (19 September 2024). Considering the past 20 years, a literature search using the queries [omics] AND [artificial intelligence]
AND [life sciences] confirms that Al in life sciences is a rapidly expanding field of research.

primary compounds of biological samples, have been largely
superseded by softer ionization methods such as ESI and
MALDI. These newer techniques are more suitable for analyzing
biomolecules as they cause less fragmentation and tend to pre-
serve the integrity of molecules duringionization. Over the past 20
years, the advancement of high-resolution (HR) MS has been cru-
cial in significantly enhancing the identification of proteins and
metabolites. This has driven the widespread application of pro-
teomics and metabolomics in the analysis of complex biological
samples [9, 10].

Recent advancements in imaging technologies have improved
life science research, benefiting not only the medical field [11] but
also plant sciences. The field of plant/crop phenomics has rapidly
evolved due to breakthroughs in sensor technology, machine vi-
sion, and automation technology [12]. Today, automated, noninva-
sive, high-throughput imaging and sensor technologies generate
vast amounts of image and sensor data, presenting both opportu-
nities and challenges for analysis.

The ability to generate high-throughput large-scale omics data
through advanced technologies offers an unprecedented opportu-
nity for exploring the complexity of biological systems in depth.
Furthermore, integrating multiple omics datasets from a single
experiment facilitates a “holistic” approach, revealing the poten-
tial of how the “molecular endophenome” (at the cellular/tissue
level) is regulated and connected with the “external phenome” of
biological organisms. However, disentangling and deciphering the
intricate relationships among tens of thousands (sometimes mil-
lions) of molecular variables (i.e., SNPs, transcripts, proteins, and
metabolites), which are interconnected among themselves and
with the final phenotype, has been a major challenge in biolog-
ical research over the past 2 decades [13, 14]. The use of high-
dimensional solutions on complex omics datasets to address fun-
damental biological questions exceeds the capacity of the hu-
man brain. This requires a computer-based analytical approach,
which can benefit from the constant improvements in machine
processing power at all levels (single machine or physical/cloud-
based clusters). For these reasons, “artificial intelligence” (AI) has
emerged as a key tool in life science research (Fig. 1), with the ex-
pectation that Al will lead or assist in most of the future biological
discoveries.

Artificial intelligence, machine learning, and
deep learning

Despite its widespread use, the term Al remains an elusive “buz-
zword.” From a scientific perspective, the difficulty in defining Al
is associated with the complexity of the concept of intelligence
per se and with the fact that, despite a resurgence of interest in
Al started in the 1990s, fast progresses in Al research rapidly de-
veloped only from the 2010s, and, thus, this field of research is
far from reaching a level of maturity that can be translated into a
clear definition [15].

Oversimplifying, Al can be considered a branch of computer
science focused on programming machines (typically 1 or more
computers) to perform a specific tasks by learning from the in-
formation present in specific dataset(s) [16] (Fig. 2). This defi-
nition is appropriate only for “artificial narrow intelligence” or
“weak AlL” which is currently used for many routine and nearly
ubiquitous applications such as spam filtering, speech recog-
nition, language translation, online advertising, image tagging,
and so on. However, this definition is not accurate for “artificial
general intelligence” or “artificial super intelligence,” which are
both still far from being achieved. These forms of Al aim to de-
velop machines capable of learning and understand from data
in ways that are comparable to or surpass human intelligence
[17].

Considering “artificial narrow intelligence” (hereafter Al will
refer to this term) and, particularly, its most popular subfield
“machine learning” (ML), the “learning” feature defines the pro-
cess of using an algorithm that finds complex patterns in the
training data and translates them into an object-level algorithm
(such as a model of a domain problem), which, in turn, is able to
make predictions about unobserved data. It is in the context of
ML that biological research has benefited the most from the use
of large and complex omics data [18, 19]. Biological data-based
ML models have the double target of (i) accurately predicting ex-
perimental data and (ii) using this predicting ability to inform and
direct the efforts of future research. When developing ML models,
the characteristics of the training data determine the learning
approach. Training data refer to the dataset used to teach an ML
model, and a key distinction is whether these training data in-
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Figure 2: Data science in the era of artificial intelligence, machine learning and deep learning: a dynamic schematic breakdown.

clude annotations, which determine the learning method applied.
Training data can be labeled or unlabeled. Labeled data contain
explicit tags, such as categories or numerical values, allowing
the model to learn from predefined outcomes. When the data
are labeled, the model follows a supervised learning approach. In
contrast, unlabeled data lack predefined tags, requiring the model
to extract patterns and relationships independently—a process
known as unsupervised learning (Fig. 3) [20]. On the contrary,
if the same data are labeled (with qualitative or quantitative
tags), the ML model is defined as based on “supervised” learning.
Unsupervised ML models are mainly used to deal with clustering
problems where the algorithms (e.g., K-means clustering or
DBSCAN clustering) find relationships in the overall structure
of the training data [20]. In supervised learning, the algorithm
uses the provided labels as a guide to map data points to specific
outcomes or classifications.

Machine learning is built on a few fundamental algorithms
that serve as the foundation for more advanced techniques [21].
Here, we focus on a nonexhaustive list of these algorithms, partic-
ularly those that are interpretable and can clarify the importance
of each variable in making predictions. This interpretability is
especially valuable in life sciences, where it allows for a thor-
ough utilization of information found in omics data—such as
genomics, proteomics, and metabolomics—to uncover biological
insights [22].

First, linear regression, used in supervised learning, predicts
a continuous target variable by establishing a linear relationship
between inputs and outputs and adjusting parameters to mini-
mize the difference between expected and actual values. Linear
regression is highly interpretable, as it establishes a clear linear
relationship between input features and the target variable,
allowing a straightforward understanding of how changes in each
input affect the predicted outcome. The training process involves
iterative adjustments to reduce prediction errors, often guided by
optimization techniques [23]. Linear regression forms the basis
for methods like Ridge and Lasso regression, which incorporate
penalties to mitigate overfitting, where the model performs well
on the training data but poorly on new data, by constraining
model complexity [24]. These extensions enhance robustness
and inform the weight adjustment mechanisms central to neural

networks, demonstrating its role as a building block in machine
learning [25].

Next, support vector machines (SVMs) address classification by
identifying an optimal boundary that maximizes the distance to
the nearest data points, which are known as support vectors. The
support vectors provide insight into which data points are most
crucial for the classification boundary. By examining these vec-
tors and their corresponding features, one can infer which aspects
of the data are influential in decision-making. For datasets where
linear separation is infeasible, SVMs employ kernel functions—
such as polynomial or radial basis functions—to transform the
data into a higher-dimensional space, enabling complex separa-
tions [26]. This emphasis on margin maximization and spatial
transformation influences modern deep learning architectures,
notably in convolutional neural networks, where kernel-based op-
erations are prevalent [27].

Decision trees, another supervised learning approach, parti-
tion the feature space into distinct regions based on threshold
values applied to input variables. Criteria that maximize class
separation, such as reducing impurity (e.g., Gini index) or mini-
mizing prediction variance for regression tasks, determine these
splits. Their interpretability—from clear, rule-based decisions—
makes them particularly appealing for applications requiring
transparency, such as omics-driven research [28]. Moreover, inte-
grating them into ensemble methods like random forests, where
multiple trees vote to enhance accuracy, or gradient-boosted trees,
which iteratively refine predictions, amplifies their utility. These
ensembles illustrate how decision trees evolve into robust predic-
tive tools [29].

We take as the last example naive Bayes, which offers a prob-
abilistic framework for classification. It assumes that features
are independent within each class and uses probabilities to de-
termine the most likely class for a given set of data. By apply-
ing Bayes’s theorem, it calculates how likely something belongs
to a specific category based on past data. Hence, a naive Bayes
classifier provides probabilities for each class rather than hard
classifications. Furthermore, each feature’s contribution to the fi-
nal decision can be calculated based on its likelihood of occur-
rence on each class, thus giving a strong interpretability to the
model. However, assumptions like data independence could be
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Figure 3: Major approaches in machine learning and deep learning.

unrealistic for biological data. Naive Bayes forms the basis for
more advanced probabilistic models, like Bayesian networks. A
Bayesian network extends the naive Bayes classifier by allow-
ing dependencies between variables, unlike naive Bayes, which
assumes all features are conditionally independent given the
class label. It represents a probabilistic graphical model where
nodes (variables) have directed edges (dependencies) between
them [30].

Since its formal introduction in 2006, deep learning (DL) [31],
based on diverse artificial neural network (ANN) algorithms, has
further boosted the use of ML in many fields of research, particu-
larly in speech recognition and image analysis [32] but also in the
biological field, such as in regulatory genomics and protein classi-
fication [33, 34] (Fig. 3). Advanced DL-based models represent the
state-of-the-art of prediction accuracy in biological sciences [35,
36]. Nevertheless, they require the availability of very large-scale
training data (with an associated high computational demand),
and their interpretation remains elusive (they are often referred to
as “black-box models”), with this elusiveness representing a limi-
tation in biological experiments involving omics data for which
identifying the most important predicting features and feature
combinations is of primary importance [37]. Thus, when research
is aimed at better understanding the functioning of biological sys-
tems, DL-based models are still difficult to be commonly applied
[38, 39]. It is also for these reasons that in a society where Al al-
gorithms are becoming more central than ever before in all as-
pects of our daily life, the concepts of “interpretable ML” and “ex-

Classification

Assign input data to distinct
predefined categories based
on learned characteristics

)

Group similar data points
into clusters without using
predefined labels

Clustering

plainable AI” are gaining an always increasing attention and im-
portance [34, 40].

As mentioned above, innovations in high-throughput acquisition
of different omics data from single experiments are now enabling
capturing different layers of biological complexity. In fact, appli-
cation of omics approaches, such as transcriptomic, proteomics,
and metabolomics [41], to large diversity panels and/or samples
holds significant promise for unraveling the complexity of living
systems. Despite their overall potential for discovery, the diverse
nature of omics data acquired by different technological plat-
forms requires the use of integration strategies to effectively har-
ness their complementary information. Recent advances in mul-
tiomics analysis have been made possible by the development of
various tools and methods that can resolve the heterogeneous
nature of biological datasets, enabling their effective integration.
Notably, consensus orthogonal partial least squares discriminant
analysis (OPLS-DA) has emerged as an effective strategy for fusing
multiomics data, combining multiple kernel learning with OPLS-
DA [42]. The mixOmics R package provides a variety of multivariate
methods for integrating omics datasets, including extensions of
“Projection to Latent Structure” models for discriminant analysis
and molecular signature identification [43]. Additionally, ML tech-
niques, such as network-based diffusion and DL, are increasingly
used to capture complex nonlinear associations in multiomics
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data [44]. Among the available R resources, packages such moiraine
[45] provide a range of integrative methods for multiomics anal-
yses, including sPLS and DIABLO from the mixOmics package [43],
sO2PLS from the OmicsPLS package [46], and MOFA and MEFISTO
from the MOFA?2 package [47].

Al-based analysis of omics data in the fields of
plant sciences, animal sciences, and microbial
sciences

International initiatives are thriving in the field of Al-based anal-
ysis of omics data, aiming to advance the discovery of genotype-
phenotype relationships. One such example is the GLOMICAVE
project (GLobal OMIC data integration on Animal, Vegetal and
Environment sectors), an international project that involves all
the authors of this review paper. GLOMICAVE has created an
innovative digital platform that connects genotype to pheno-
type through Big Data analytics and Al, using extensive pub-
lic and experimental omic datasets [https://glomicave.eu/]. Like-
wise, cloud-based platforms like HiOmics offer a comprehen-
sive analysis of biomedical large-scale omics data [48]. Such
projects aim to facilitate the analysis of primary data and sup-
port large-scale omics experiments, thereby enhancing the util-
ity of omics data on a massive scale and deepening our un-
derstanding of entire biological systems. In line with GLOM-
ICAVE, and considering that the medical field has been ex-
tensively examined from an AI perspective, this review fo-
cuses on relevant applications from plant, animal, and microbial
sciences.

Plant sciences and Al

The explosion of omics has radically transformed research in
plant sciences, simultaneously driving the need for ML to han-
dle datasets characterized by high complexity and dimension-
ality. A paradigmatic example is plant phenomics, which has
rapidly shifted from a promising research sector with the po-
tential of bridging the gap with genomic advances to becom-
ing a widespread tool in plant and crop sciences [12]. This rapid
progress was enabled by integrating advanced sensors and imag-
ing technologies (e.g., RGB, multispectral, hyperspectral, thermal,
and fluorescence cameras and sensors) with unmanned aerial ve-
hicles (or drones) and ground robots, which are able to collect
high-throughput phenotyping data. Approaches based on ML al-
gorithms are now a practical and effective strategy for extracting
traits and features from massive amounts of imaging- and sensor-
based data. DL algorithms (e.g., convolutional neural networks
[CNNs]) show the highest versatility and success in image-based
plant phenotyping. These algorithms are particularly effective in
predicting the effects of biotic and abiotic stresses [49, 50] and en-
abling rapid and accurate diagnostics of plant diseases [51]. Ad-
ditionally, Al applications in root system architecture image anal-
ysis are emerging as crucial tools for improving this understud-
ied field of research, which holds significant potential to boost a
“Second Green Revolution” in agriculture [52]. Plant breeding is
another branch of plant science that has been radically trans-
formed by genomic advances, with breeders increasingly relying
on genome-wide SNP marker-based genomic prediction (GP) to ac-
celerate genetic gains for target traits in crops. Classic GP models
are based on best linear unbiased prediction, but efforts to develop
new ML-based and improved GP algorithms are ongoing [53]. Fur-
thermore, different sources of nongenetic variability and nonaddi-
tive modes of gene action have made the choice and implementa-

Al meets big

tion of GP models challenging for improving complex plant traits,
such as biomass and crop yield [54]. One possible solution to this
problem is to incorporate other genome-to-phenome intermedi-
ate omics data (e.g., transcriptomics, proteomics, metabolomics)
into the GP models to enhance their accuracy and predictive
power [55]. The potential of ML models based on single interme-
diate omics, particularly metabolomics, the omics layer closer to
the phenotype, has been demonstrated for the accurate prediction
of crop yield, notably in maize [56] and rice [57, 58]. However, for
plant breeding applications, the integration of large, highly dimen-
sional, and “noisy” omics datasets for complex trait prediction
remains a challenging field of study. This challenge will require
the use of ML/DL techniques, leveraging their superior capabil-
ity for Big Data analytics to effectively handle the complexity and
scale of these datasets [59]. Interestingly, recent studies have high-
lighted innovative approaches in metabolomics-based ML predic-
tion of plant complex traits showing innovative routes to iden-
tify breeding targets for plant improvement. For example, Colan-
tonio et al. [60] identified candidate metabolites acting as fruit fla-
vor enhancers and suppressors by metabolomics-based ML pre-
diction of tomato and blueberry fruit flavor profiles. In efforts to
improve plant tolerance to abiotic stress, Dussarrat et al. [61] ap-
plied a holistic ML prediction approach on environmental adapta-
tions based on the multispecies metabolome of plants collected in
the Atacama desert. This revealed a core set of metabolite targets
for extreme climate resilience (sugars, stress-related amino acids,
hormones, and antioxidants, including phenolics and major redox
buffers).

Animal sciences and Al

Modern biotechnologies, bio-sensing hardware, and IT infrastruc-
ture have led to a high-throughput data collection era in livestock
management, driving the need for faster and more efficient com-
putational methods. While traditional information sources in an-
imal breeding included phenotype and pedigree data, the field is
increasingly incorporating genomic data such as SNPs, gene anno-
tations, metabolic pathways, protein interaction networks, gene
expression, and protein structure information. These data can en-
hance trait predictions and improve our understanding of the un-
derlying biological phenotypes [62]. Despite these advancements
in animal genetics, many challenges still persist. The widespread
adoption of omics technologies is hindered by high cost and the
need for expertise across diverse fields. Accurate recording of phe-
notypic data and population/sample size are other constraints
that need to be addressed. However, omics technologies have
shown their potential to identify superior and disease-resistant
animals at an early stage [63]. For example, the metabolomes
of healthy and unhealthy chickens were characterized and com-
pared using untargeted mass spectrometry metabolomics [64].
Researchers were able to accurately distinguish chicken health
status in multiple countries using a random forest (RF)-based
ML model. This approach used raw mass spectrometry signals
(unannotated m/z values) as input features, effectively overcom-
ing one of the primary limitations of untargeted metabolomics:
the need for metabolite annotation and identification. The use
of ML models in animal breeding has recently attracted interest
due to their exceptional flexibility and ability to capture patterns
in large, noisy datasets [65]. For instance, gradient tree boosting
(GTB) has proven to be an effective ML algorithm for predicting dif-
ferent breeding values. GTB-based models have identified a subset
of genes contributing to feed efficiency in growing pigs using mus-
cle transcriptome data [66]. The potential of combining metage-
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nomics, metatranscriptomics, and metabolomics data was eval-
uated in rumen content, demonstrating their value as predictive
markers for feed efficiency and their potential applications for se-
lecting cows with high feed efficiency [67]. By using a RF-based
model, they were able to predict feed efficiency using a prese-
lected set of metabolites associated with this trait. Antimicrobial-
resistant microorganisms pose significant challenges in livestock
farming. A recent study [68] evaluated 10 supervised learning
classifiers to predict Escherichia coli strains susceptible or resis-
tant to 26 different antimicrobials using whole-genome shotgun
sequencing in intensive poultry farming. This findings provided
evidence of transmissible drug resistance in food-producing ani-
mals, which has contributed to the emergence of drug resistance
in zoonotic pathogens.

Microbial sciences and Al

Microorganisms exist naturally in microbial communities and es-
tablish multiple interactions between each other and with their
hosts. Omics experiments play a crucial role in studying these mi-
croorganisms in their natural environments, eliminating the need
for their isolation and cultivation. However, interpreting omics in-
formation and integrating results from different studies remains
challenging due to the complexity of omics data. Al has been in-
creasingly applied to help interpret the variations found in mi-
crobial communities, particularly in the human microbiome and
its relationship to health and disease [69-71]. In the field of en-
vironmental microbiology, recent reviews have highlighted ma-
jor developments in the application of ML to microbial ecology
omics [72]. This approach has been primarily applied to omics ex-
periments using 16S rRNA gene sequencing data, which provide
taxonomic information on microbial communities. RF-based ML
architecture has been widely used due to its ease of implemen-
tation, interpretation, low cost, and the requirement of less data
compared with DL [72]. Nevertheless, other ML algorithms, such
as naive Bayes (NB), SVM, and KNN, have also been applied in the
microbiology field [73]. In microbial ecology, the main objective
of ML has been to predict the presence of certain microbes (e.g.,
microbial bioindicators, predicting environmental pollution, and
key microbes affecting the performance of biotechnological pro-
cesses), as well as to predict microbe-microbe and microbe-host
interactions and facilitate data mining [72, 73]. For example, in the
particular case of anaerobic digestion microbiology (a biotechno-
logical process in which organic waste is converted to methane
by microbial communities), there are several studies on Al ap-
plied to omics data. Three different algorithms (i.e., linear regres-
sion, SVM, and RF regression) were used to predict the produc-
tion of medium-chain carboxylates, based on microbial commu-
nity dynamics (16S rRNA) and the bioreactor’s productivity data.
This study concluded that RF regression was the most effective
algorithm for this task [74]. Similarly, another study compared 6
different ML algorithms—namely, GLMNET, RF, NNET, KNN, SVM,
and extreme gradient boosting (XGBOOST)—to predict the per-
formance of the anaerobic digestion process, using 16S rRNA ge-
nomics as the basis for the analysis [75]. Interactions between
microorganisms are highly important and influence the activity
of microbial communities. Syntrophic interactions among differ-
ent species are key examples of microbial interactions, where mi-
crobes exchange electrons either via soluble molecules or directly
from cell to cell in an interdependent way. ML was recently used
to predict the type of syntrophic interaction that prevails in mi-
crobial communities by using a Bayesian network approach [76].
This analysis incorporated not only 16S rRNA sequencing but also
metagenomics and metatranscriptomics data.

Navigating the frontier: challenges and future
horizons in Al innovation

Al in biology research faces several major obstacles that must
be addressed through close collaboration between biologists and
computer scientists. Such interdisciplinary collaborations are es-
sential to exploit the full potential of Al in life sciences [77].

Tackling technical challenges in Al-based research

A summary of topics that represent challenges in Al-based re-
search is provided in Table 1. For each topic, the description and
its connection to ML and/or DL are highlighted. Additionally, the
topics are characterized based on 7 main technical challenges:
(i) noisy datasets, (ii) high dimensionality, (iii) omics data integra-
tion, (iv) interpretability, (v) computational requirements, (vi) FAIR
(Findable, Accessible, Interoperable, Reusable) principles, and (vii)
data size and diversity.

Importantly, data curation and integration across biological
subdisciplines continue to pose significant challenges, requiring
the development of new theories and predictive models tailored to
biology [77]. A significant problem is the lack of standardized for-
mats across different biological disciplines, which not only com-
plicates the handling of file formats [78] but also makes it diffi-
cult to interpret data generated by specialists of each omics data
type. Ethical concerns, particularly for animal sciences, and pri-
vacy issues surrounding data usage need to be addressed, along
with ensuring the reliability and safety of Al models through ro-
bust validation and transparency. The explainability of Al meth-
ods in biological data science remains a significant challenge, as
many current approaches lack interpretability. This can lead to
decreased trustworthiness and reliability in decision-making pro-
cesses. Moreover, improving the interpretability of ML-based mod-
els in life science is crucial, as it allows a better understanding
of the biological mechanisms behind the models (e.g., by helping
to identify important biomarkers, biological pathways, or features
that contribute to a specific process) [79].

The scarcity of labeled data for training AI models

Labeling large amounts of data has become one of the main bot-
tleneck in the development of Al systems [80]. Over the past 15
years, advanced ML models, particularly those based on deep neu-
ral networks (DNNs), have enabled unprecedented results in a
variety of fields, including omics research in life sciences [81].
However, these models require vast amounts of labeled train-
ing data, which in many practical scenarios are either unavail-
able or very arduous to obtain [82, 83]. Creating hand-labeled
training datasets is expensive and time-consuming, often taking
months or years to develop, particularly when domain expertise
is required. In response to this technical challenge, a subfield of
ML know as weakly supervised learning, a concept developed back
in the 1960s, has evolved into an approach capable of generat-
ing large training datasets more rapidly. These datasets, though
noisier and of lower quality, are constructed via strategies such
as using cheaper annotators, programmatic scripts, or more cre-
ative and high-level input from domain experts. In principle, these
techniques offer higher-level or less precise forms of supervision,
which, while less accurate, are faster and easier to obtain than
manual annotation [84]. Another approach motivated by the same
goal is semi-supervised learning, which strives to create large train-
ing datasets by combining a small amount of labeled data with a
much larger amount of unlabeled data [85]. Omics-based research
in life sciences has quickly adopted solutions derived from these
approaches across various applications, such as molecular path-
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Table 1: Major technical challenges in Al-based research
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S.

Technical challenge

Description

Connection to ML and DL

1. Noisy datasets
Impact on model performance

Data cleaning

2. High dimensionality
Curse of dimensionality

Feature selection

3. Omics data integration
Heterogeneity

Data fusion

4. Interpretability of results
Complex models

Explainability techniques

5. Computational requirements
Resource intensity

Scalability

6. Importance of FAIR
principles

Findable, Accessible, Interoperable,
Reusable (FAIR)

Data sharing

7. Data size and diversity
Scalability of models

Bias and generalization

Noisy or erroneous data can degrade Al model
performance, leading to inaccurate predictions,
especially in high-precision fields like life
sciences.

Effective noise reduction and robust data
cleaning are essential but challenging,
particularly at large scales.

High-dimensional data can lead to overfitting,
making models perform well on training data
but poorly on unseen data.

Identifying relevant features from a large
number of variables is complex and requires
advanced techniques to prevent redundancy
and enhance model efficiency.

Omics data from various sources (e.g.,
genomics, proteomics) are often
heterogeneous, differing in scale, format, and
noise, complicating integration.

Developing methods for effective multiomics
data fusion that preserves biological context
and relationships is an ongoing challenge.

Deep learning models, especially those with
complex architectures, can act as “black
boxes,” making it hard to interpret how
conclusions are reached.

Emerging techniques like sHapley additive
exPlanations (SHAP) or local intrepretable
model-agnostic explanations (LIME) offer ways
to explain Al decisions but may not always
provide comprehensive or intuitive insights.

Training state-of-the-art Al models,
particularly deep learning models, requires
significant computational resources, including
high-performance GPUs and extensive memory.
Ensuring algorithms scale efficiently with
increasing data sizes and complexity without
excessive computational costs is a critical
challenge.

Adhering to FAIR principles for data and scripts
is essential for reproducibility and
collaboration but challenging, particularly in
standardizing metadata and documentation.
Facilitating access to well-documented,
standardized datasets while maintaining
privacy and security can be complex.

Handling and processing large-scale datasets
requires models that can manage and learn
from vast amounts of data without
compromising performance.

Ensuring data diversity to avoid biases and
ensure models generalize well across different
populations or conditions is crucial.
Imbalanced datasets can lead to skewed
results.

ML: Often struggles with noisy data unless
advanced preprocessing is applied. DL: Sensitive
to noise, impacting performance.

ML: Requires preprocessing techniques to handle
noisy data. DL: Needs data cleaning to improve
model accuracy.

ML: Can overfit if dimensionality is not managed,
requires feature selection. DL: Needs strategies to
handle high dimensions.

ML: Involves sophisticated techniques for
effective feature selection. DL: Uses embedded
feature selection or reduction techniques.

ML: Requires methods to handle heterogeneous
data. DL: Needs effective data fusion strategies for
multiomics.

ML: Must integrate diverse data types. DL:
Benefits from advanced fusion techniques for
comprehensive analysis.

ML: Generally more interpretable than DL but still
faces challenges. DL: Requires explainability
techniques for transparency.

ML: May utilize various explainability methods.
DL: Needs specific techniques for understanding
model behavior.

ML: Generally less resource-intensive but can still
require significant computational power. DL:
Highly resource-demanding.

ML: Needs to manage scalability efficiently. DL:
Must handle large-scale data and complex models
effectively.

ML: Requires well-documented datasets for
reproducibility. DL: Benefits from FAIR practices
for consistent data use.

ML: Needs secure and standardized data-sharing
practices. DL: Requires access to high-quality,
FAIR-compliant datasets.

ML: Must be scalable to handle large data. DL:
Efficiently manages large datasets but with high
computational costs.

ML: Needs diverse data to prevent bias. DL:
Requires careful data handling to ensure
generalization across conditions.
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ways status prediction in cancer [86] or protein-DNA binding pre-
diction [87], and in the field of plant sciences (applications specific
to plant and field phenomics) [88-91]. These examples provide ev-
idence of the effectiveness of weakly and semi-supervised learning
when applied to omics science and indicate a promising future
direction.

Al for the prediction and annotation of metabolites

Recent developments in Al-based metabolite annotation reflects
significant advancements in the application of ML and DL tech-
niques to improve the accuracy and efficiency of metabolite iden-
tification and characterization in mass spectrometry-based stud-
les [92]. As an example, the chemical language model “DeepMet”
utilizes CNNs to learn features from raw MS/MS spectral data and
predict human metabolite identities [93]. Similarly, the “MetFID”
model uses ANNs to predict molecular fingerprints from MS/MS
data, enhancing annotation accuracy compared to existing tools
[94]. Computational annotation strategies, including peak group-
ing,ion adduction analysis, and incorporation of biological knowl-
edge, help overcome the limitations of accurate mass search-
ing alone [95]. ML-based approaches and molecular networking
have shown promise in large-scale metabolite annotation, partic-
ularly in natural product discovery [96]. Another compelling ML-
based tool includes the “PeakDecoder” algorithm, which enables
metabolite annotation and accurate profiling in multidimensional
mass spectrometry measurements [97]. Despite the availability of
ML-based tools for metabolite annotation, inconsistencies in their
benchmarking hinder users from selecting the most appropriate
method for their research, highlighting the need for standardized
evaluation practices [96].

In the context of ecosystem metabolomics, computational
methods can now predict previously unobserved metabolites in
new microbial communities by leveraging paired metabolome
and metagenome data, achieving over 50% accuracy for related
metabolites [98]. Additionally, knowledge-based and ML-driven
approaches are being developed to refine metabolite identification
and analyze primary microbial metabolism in mixed samples [99].
This demonstrates that predictive metabolomics can aid experi-
mental design and reveal valuable insights into numerous com-
munity profiles where only metagenomic data are available.

Al-based gene annotation

Advances in genomics have been largely driven by the increas-
ing throughput and lower cost of DNA sequencing. This has made
it possible to sequence thousands of individual genomes within
a species and a large number of new species. While generating
sequencing data has become a relatively straightforward task,
the subsequent processing steps to produce a genome assem-
bly with structural annotations of genomic elements (e.g., genes,
promoters, and regulatory elements) and gene functional annota-
tions still represent a challenge. Long-read sequencing technolo-
gies have alleviated some of these issues, particularly for genome
assembly, but the structural annotation of genes, especially in
novel genomes, remains problematic in the absence of other ex-
trinsic data sources. Well-known structural annotation tools, such
as AUGUSTUS [100], use hidden Markov models (HMMs) for in-
trinsic ab initio gene finding. A recent ab initio gene calling tool,
Helixer [101], uses DNNs combined with HMMs to identify genes
in genomes without the need for extrinsic data and has shown
promising results. Gene functional annotation has traditionally
relied on homology to characterize proteins for ascribing a func-
tion to newly identified genes. The bottleneck of this methodology
is mainly due to knowledge gaps that are producing annotation
of genes of “unknown function.” DeepGO [102] is a tool that em-

ploys DL methods and interactive networks to annotate protein
sequences with Gene Ontology (GO) terms. A later improvement,
DeepGOPlus [103] removed many of the restrictions of the earlier
version and no longer needs the interaction networks. DeepGO-
Plus has the additional advantage of being species agnostic and
gives equally good results from protein sequences derived from
genomes of newly sequenced species and clades.

FAIR practices for omics data and Al

Despite the advances outlined above, challenges in standardizing
methods and interpreting results persist, highlighting the need for
FAIR practices and proper benchmarking to ensure reproducibil-
ity and reliability in multiomics and Al research. In this context,
ontologies play a crucial role by tagging datasets with metadata,
thereby improving data understanding and interoperability [104].
They define domain-specific concepts and relationships, making
data both human- and machine-readable for easier reuse. How-
ever, identifying relevant ontologies can be difficult due to the
large amount available. For example, as of September 2024, 1,147
different ontologies are available in BioPortal [105], including 24
specific for plants and 37 for animal science. As ML becomes in-
creasingly indispensable, ensuring data privacy, algorithmic fair-
ness, and transparency will be paramount for maintaining public
trust and ensuring equitable access to the benefits of ML-driven
advancements [106]. Additionally, many open data sources in the
life sciences are not yet fully FAIR-compliant, with issues related
to the absence of proper metadata, inadequate data documenta-
tion, and the lack of crosslinking between datasets. This requires
significant effort to upgrade their FAIRness for integration into se-
mantic web platforms [107]. While the FAIR principles aim to en-
hance machine readability and processing of scientific data, con-
cerns have been raised about potential epistemic losses, such as a
reduction in semantic freedom and the displacement of human
expertise, which could discourage trust in Al [108]. To address
skepticism and foster trust among stakeholders, a more balanced
discussion of both the benefits and epistemic costs of implement-
ing FAIR is needed. Remarkably, a systematic review of 124 LC/MS
metabolomics software that subsequently retained 61 for detailed
analysis based on FAIR Principles for Research Software (FAIR4RS)
criteria reported that software fulfillment of these criteria ranged
from 21.6% to 71.8%, with no significant improvement in FAIRness
over time [109]. Key issues identified included the lack of semantic
annotation (0%, i.e., no software had semantic annotation of key
information), low registration on Zenodo with DOIs (6.3%), limited
containerization of code or use of virtual machines (14.5%), and
insufficiently documented functions in code (16.7%). This recent
work highlights clear caveats that need to be addressed in further
Big Data-based life science research. To further advance the FAIR
principles, collaboration between researchers, data scientists, and
data managers is more than ever needed.

Concluding remarks

In conclusion, Al has already transformed biomedical research by
accelerating drug discovery, enhancing clinical trials, and provid-
ing powerful tools for analyzing complex biological data [110]. Its
ability to optimize processes, reduce costs, and increase precision
is revolutionizing how researchers approach biological challenges.
The 2020s is the decade of Al applied to biology: as Al continues to
advance, its impact on animal, plant, and environmental research
will be paramount. Al is reshaping animal research by enhancing
data analysis, improving animal welfare, and reducing reliance
on traditional testing methods. Through predictive modeling, Al
helps refine experimental designs, minimizing the number of an-
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imals used while increasing the accuracy of results. It also sup-
ports the monitoring of animal behavior and health, contributing
to better care and more ethical practices. The growing role of Alin
animal research will likely lead to more humane, efficient, and sci-
entifically robust studies. Additionally, the evolution of ML in plant
biology, ranging from its early explorations to its current promi-
nence as a transformative tool, demonstrates its remarkable po-
tential. As ML continues to advance, its integration with other Al
techniques, real-time data processing, and ethical considerations,
including agroecological transitions, will shape the future of plant
biology research and agricultural practices. In a wider context, Al
is making significant strides in environmental research by pro-
viding sophisticated tools for monitoring ecosystems, predicting
climate patterns, and analyzing environmental data. Its ability to
process vast amounts of information and identify complex pat-
terns helps in understanding and mitigating the impacts of cli-
mate change, pollution, and habitat loss. Al promises to enhance
our capacity for environmental stewardship, driving more effec-
tive and data-driven strategies to protect and sustain our planet.
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