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Abstract 

Since the late 2010s, artificial intelligence (AI), encompassing machine learning and propelled by deep learning, has transformed life 
science resear c h. It has become a crucial tool for ad v ancing the computational anal ysis of biological pr ocesses, the discov er y of nat- 
ural products, and the study of ecosystem dynamics. This re vie w explores how the rapid increase in high-throughput omics data 
acquisition has dri v en the need for AI-based analysis in life sciences, with a particular focus on plant sciences, animal sciences, and 

microbiology. We highlight the role of omics-based predictive analytics in systems biology and innov ati v e AI-based anal ytical ap- 
proaches for gaining deeper insights into comple x biolo gical systems. F inally, w e discuss the importance of FAIR (finda b le, accessib le, 
inter opera b le, r eusa b le) principles for omics data, as well as the future challenges and opportunities presented by the increasing use 
of AI in life sciences. 

Ke yw ords: artificial intelligence, machine learning, deep learning, omics, life science, biology 
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Bac kgr ound 

The explosion of omics requires artificial 
intelligence in the study of life sciences 

In the past 2 decades, r esearc h and society hav e enter ed the “big 
data” era of life sciences. Technological advances have enhanced 

our ability to measure qualitative and quantitative variations of 
internal biological molecules (e.g., DN A, RN A, proteins, metabo- 
lites) and phenotypes, making the acquisition of large and com- 
plex omics datasets within a single experiment incr easingl y com- 
mon. 

The explosion of omics data in life sciences began with ge- 
nomics, whic h was driv en by the emer gence of DNA next- 
generation sequencing (NGS) platforms nearly 20 years ago. While 
the gr oundbr eaking discov ery of the Sanger DNA sequencing 
method dates back to the 1970s, it took 3 decades for the advent 
of second-generation short-read sequencing-based NGS to further 
r e v olutionize DN A sequencing, dr amaticall y incr easing its afford- 
ability and throughput. This has led to the de novo assembly of 
thousands of animal and plant genomes [ 1 , 2 ] and to the discovery 
of millions of genome-wide single nucleotide pol ymor phic (SNP) 
v ariants. High-thr oughput anal ysis of m ultiple gene tr anscripts 
(i.e., transcriptomics) began in the mid-1990s with the introduc- 
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ion of hybridization-based micr oarr ay tec hnologies. Ho w e v er, it
as not until the 2000s that NGS enabled a mor e accur ate assess-
ent of the qualitative and quantitative diversity (e.g., large dy-

amic range of expression levels and alternative splicing variants) 
f messenger RNAs . T his technique , known as RNA sequencing
RNA-seq), uses NGS to sequence complementary DNAs (cDNAs) 
eriv ed fr om RNA tr anscripts [ 3 , 4 ]. The curr ent third-gener ation
ingle-molecule sequencing technologies (e.g., PacBio and Oxford 

anopor e Tec hnologies) hav e further impr ov ed the r ead length,
hr oughput, and accur acy of data collection in the field of ge-
omics and transcriptomics [ 5 , 6 ]. The field of proteomics and
etabolomics relies on the use of mass spectrometry (MS) tech-

iques to explore the diversity of proteins and metabolites in
oth a qualitative and quantitative manner. Although mass spec- 
r ometers hav e been av ailable since the late 1940s, it was their
ntegration with gas chromatography (GC) or liquid chromatog- 
 a phy (LC) and the de v elopment of ionization tec hniques suc h
s electr ospr ay ionization (ESI) and matrix-assisted laser desorp-
ion ionisation (MALDI) in the late 1980s that truly expanded
heir application to biological r esearc h [ 7 , 8 ]. Ther e ar e v arious
onization techniques in mass spectrometry and electronic im- 
act ionization that, while historically important for profiling 
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Search query: ((ar�ficial intelligence) AND (omics)) AND (life sciences)
Year Count

2004 2
2005 0
2006 2
2008 5
2009 3
2010 1
2011 8
2012 9
2013 14
2014 24
2015 26
2016 38
2017 42
2018 78
2019 114
2020 165
2021 183
2022 182
2023 215
2024 251 0
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Figure 1: Number of publications found in PubMed including [artificial intelligence] AND [omics] AND [life sciences] from 2004 to 2024. In total, 1,362 
publications were found (19 September 2024). Considering the past 20 years, a liter atur e searc h using the queries [omics] AND [artificial intelligence] 
AND [life sciences] confirms that AI in life sciences is a r a pidl y expanding field of r esearc h. 
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rimary compounds of biological samples , ha v e been lar gel y
uperseded by softer ionization methods such as ESI and
ALDI. These newer techniques are more suitable for analyzing

iomolecules as they cause less fr a gmentation and tend to pre-
erve the integrity of molecules during ionization. Over the past 20
ears, the advancement of high-resolution (HR) MS has been cru-
ial in significantly enhancing the identification of proteins and
etabolites . T his has driven the widespread application of pro-

eomics and metabolomics in the analysis of complex biological
amples [ 9 , 10 ]. 

Recent advancements in imaging technologies have improved
ife science r esearc h, benefiting not only the medical field [ 11 ] but
lso plant sciences . T he field of plant/crop phenomics has r a pidl y
 volv ed due to br eakthr oughs in sensor tec hnology, mac hine vi-
ion, and automation technology [ 12 ]. Toda y, automated, nonin va-
iv e, high-thr oughput ima ging and sensor tec hnologies gener ate
ast amounts of image and sensor data, presenting both opportu-
ities and challenges for analysis. 

The ability to generate high-throughput large-scale omics data
hr ough adv anced tec hnologies offers an unpr ecedented opportu-
ity for exploring the complexity of biological systems in depth.
urthermor e, integr ating m ultiple omics datasets from a single
xperiment facilitates a “holistic” a ppr oac h, r e v ealing the poten-
ial of how the “molecular endophenome” (at the cellular/tissue
e v el) is regulated and connected with the “external phenome” of
iological organisms. Ho w ever, disentangling and deciphering the

ntricate relationships among tens of thousands (sometimes mil-
ions) of molecular variables (i.e ., SNPs , transcripts , proteins , and

etabolites), whic h ar e interconnected among themselves and
ith the final phenotype, has been a major challenge in biolog-

cal r esearc h ov er the past 2 decades [ 13 , 14 ]. The use of high-
imensional solutions on complex omics datasets to address fun-
amental biological questions exceeds the capacity of the hu-
an brain. This requires a computer-based analytical approach,
hich can benefit from the constant improvements in machine
rocessing po w er at all le v els (single mac hine or physical/cloud-
ased clusters). For these reasons, “artificial intelligence” (AI) has
merged as a k e y tool in life science r esearc h (Fig. 1 ), with the ex-
ectation that AI will lead or assist in most of the future biological
isco veries . 
rtificial intelligence, machine learning, and 

eep learning 

espite its widespread use, the term AI remains an elusive “buz-
w or d.” F rom a scientific perspective, the difficulty in defining AI
s associated with the complexity of the concept of intelligence
er se and with the fact that, despite a r esur gence of interest in
I started in the 1990s, fast pr ogr esses in AI r esearc h r a pidl y de-
 eloped onl y fr om the 2010s , and, thus , this field of r esearc h is
ar from reaching a level of maturity that can be translated into a
lear definition [ 15 ]. 

Ov ersimplifying, AI can be consider ed a br anc h of computer
cience focused on pr ogr amming mac hines (typicall y 1 or more
omputers) to perform a specific tasks by learning from the in-
ormation present in specific dataset(s) [ 16 ] (Fig. 2 ). This defi-
ition is a ppr opriate onl y for “artificial narr ow intelligence” or
weak AI,” which is currently used for many routine and nearly
biquitous applications such as spam filtering, speech recog-
ition, langua ge tr anslation, online adv ertising, ima ge ta gging,
nd so on. Ho w e v er, this definition is not accurate for “artificial
eneral intelligence” or “artificial super intelligence,” which are
oth still far from being achieved. These forms of AI aim to de-
 elop mac hines ca pable of learning and understand fr om data
n ways that ar e compar able to or surpass human intelligence
 17 ]. 

Considering “artificial narrow intelligence” (hereafter AI will
efer to this term) and, particularly, its most popular subfield
machine learning” (ML), the “learning” featur e defines the pr o-
ess of using an algorithm that finds complex patterns in the
raining data and translates them into an object-le v el algorithm
such as a model of a domain problem), which, in turn, is able to

ake predictions about unobserved data. It is in the context of
L that biological r esearc h has benefited the most from the use

f large and complex omics data [ 18 , 19 ]. Biological data-based
L models have the double target of (i) accurately predicting ex-

erimental data and (ii) using this predicting ability to inform and
irect the efforts of future research. When developing ML models,
he c har acteristics of the tr aining data determine the learning
 ppr oac h. Tr aining data r efer to the dataset used to teach an ML
odel, and a k e y distinction is whether these training data in-
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Figure 2: Data science in the era of artificial intelligence, machine learning and deep learning: a dynamic schematic breakdown. 
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clude annotations, which determine the learning method applied.
Training data can be labeled or unlabeled. Labeled data contain 

explicit ta gs, suc h as categories or numerical v alues, allowing 
the model to learn from predefined outcomes. When the data 
are labeled, the model follows a supervised learning a ppr oac h. In 

contr ast, unlabeled data lac k pr edefined ta gs, r equiring the model 
to extract patterns and relationships independently—a process 
known as unsupervised learning (Fig. 3 ) [ 20 ]. On the contrary,
if the same data are labeled (with qualitative or quantitative 
tags), the ML model is defined as based on “supervised” learning.
Unsupervised ML models ar e mainl y used to deal with clustering 
pr oblems wher e the algorithms (e.g., K-means clustering or 
DBSCAN clustering) find relationships in the ov er all structur e 
of the training data [ 20 ]. In supervised learning, the algorithm 

uses the provided labels as a guide to map data points to specific 
outcomes or classifications. 

Machine learning is built on a few fundamental algorithms 
that serve as the foundation for more advanced techniques [ 21 ].
Here, we focus on a nonexhaustive list of these algorithms, partic- 
ularly those that are interpretable and can clarify the importance 
of eac h v ariable in making pr edictions . T his inter pr etability is 
especiall y v aluable in life sciences, where it allows for a thor- 
ough utilization of information found in omics data—such as 
genomics , proteomics , and metabolomics—to unco ver biological 
insights [ 22 ]. 

First, linear r egr ession, used in supervised learning, pr edicts 
a continuous target variable by establishing a linear relationship 

between inputs and outputs and adjusting parameters to mini- 
mize the difference between expected and actual values. Linear 
r egr ession is highl y inter pr etable, as it establishes a clear linear 
relationship between input features and the target variable, 
allowing a straightforward understanding of how changes in each 

input affect the predicted outcome . T he tr aining pr ocess involv es 
iter ativ e adjustments to r educe pr ediction err ors, often guided by 
optimization techniques [ 23 ]. Linear regression forms the basis 
for methods like Ridge and Lasso r egr ession, whic h incor por ate 
penalties to mitigate ov erfitting, wher e the model performs well 
on the training data but poorly on new data, by constraining 
model complexity [ 24 ]. These extensions enhance robustness 
and inform the weight adjustment mec hanisms centr al to neur al 
etworks, demonstrating its role as a building block in machine
earning [ 25 ]. 

Next, support vector machines (SVMs) address classification by 
dentifying an optimal boundary that maximizes the distance to 
he nearest data points, which are known as support vectors . T he
upport vectors provide insight into which data points are most
rucial for the classification boundary. By examining these vec- 
ors and their corr esponding featur es, one can infer whic h aspects
f the data are influential in decision-making. For datasets where
inear separation is infeasible, SVMs employ kernel functions—
uc h as pol ynomial or r adial basis functions—to tr ansform the
ata into a higher-dimensional space, enabling complex separa- 
ions [ 26 ]. This emphasis on margin maximization and spatial
ransformation influences modern deep learning architectures,
otably in convolutional neural networks, where kernel-based op- 
r ations ar e pr e v alent [ 27 ]. 

Decision trees, another supervised learning approach, parti- 
ion the feature space into distinct regions based on threshold
 alues a pplied to input v ariables. Criteria that maximize class
epar ation, suc h as reducing impurity (e.g., Gini index) or mini-
izing prediction variance for regression tasks, determine these 

plits . T heir inter pr etability—fr om clear, rule-based decisions—
akes them particularly appealing for applications requiring 

r anspar ency, suc h as omics-driv en r esearc h [ 28 ]. Mor eov er, inte-
rating them into ensemble methods like random forests, where 
 ultiple tr ees vote to enhance accur acy, or gr adient-boosted tr ees,
hic h iter ativ el y r efine pr edictions , amplifies their utility. T hese

nsembles illustrate how decision trees evolve into robust predic- 
ive tools [ 29 ]. 

We take as the last example naive Ba yes , which offers a prob-
bilistic fr ame work for classification. It assumes that featur es
re independent within each class and uses probabilities to de-
ermine the most likely class for a given set of data. By apply-
ng Bayes’s theorem, it calculates how likely something belongs 
o a specific category based on past data. Hence, a naive Bayes
lassifier provides probabilities for each class rather than hard 

lassifications . Furthermore , each feature’s contribution to the fi-
al decision can be calculated based on its likelihood of occur-
ence on each class, thus giving a strong interpretability to the

odel. Ho w e v er, assumptions like data independence could be
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Figure 3: Major a ppr oac hes in machine learning and deep learning. 
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nrealistic for biological data. Naive Bayes forms the basis for
or e adv anced pr obabilistic models , like Ba y esian netw orks. A

ay esian netw ork extends the naive Bay es classifier b y allo w-
ng dependencies between variables, unlike naive Ba yes , which
ssumes all features are conditionally independent given the
lass label. It r epr esents a pr obabilistic gr a phical model wher e
odes (variables) have directed edges (dependencies) between
hem [ 30 ]. 

Since its formal introduction in 2006, deep learning (DL) [ 31 ],
ased on diverse artificial neural network (ANN) algorithms, has
urther boosted the use of ML in many fields of r esearc h, particu-
arl y in speec h r ecognition and ima ge anal ysis [ 32 ] but also in the
iological field, such as in regulatory genomics and protein classi-
cation [ 33 , 34 ] (Fig. 3 ). Advanced DL-based models represent the
tate-of-the-art of prediction accuracy in biological sciences [ 35 ,
6 ]. Ne v ertheless, they r equir e the av ailability of v ery lar ge-scale
raining data (with an associated high computational demand),
nd their inter pr etation r emains elusiv e (they ar e often r eferr ed to
s “black-box models”), with this elusiveness representing a limi-
ation in biological experiments involving omics data for which
dentifying the most important predicting features and feature
ombinations is of primary importance [ 37 ]. T hus , when r esearc h
s aimed at better understanding the functioning of biological sys-
ems, DL-based models are still difficult to be commonly applied
 38 , 39 ]. It is also for these reasons that in a society where AI al-
orithms are becoming more central than ever before in all as-
ects of our daily life, the concepts of “interpretable ML” and “ex-
lainable AI” are gaining an always increasing attention and im-
ortance [ 34 , 40 ]. 

ultiomics integr a tion for ML anal ysis 

s mentioned abo ve , inno vations in high-throughput acquisition
f different omics data from single experiments are now enabling
a pturing differ ent layers of biological complexity. In fact, appli-
ation of omics a ppr oac hes, suc h as tr anscriptomic, pr oteomics,
nd metabolomics [ 41 ], to large diversity panels and/or samples
olds significant promise for unr av eling the complexity of living
ystems. Despite their ov er all potential for discovery, the diverse
ature of omics data acquired by different technological plat-

orms r equir es the use of integr ation str ategies to effectiv el y har-
ess their complementary information. Recent advances in mul-
iomics anal ysis hav e been made possible by the de v elopment of
arious tools and methods that can r esolv e the heter ogeneous
ature of biological datasets, enabling their effective integration.
otably, consensus orthogonal partial least squares discriminant
nalysis (OPLS-DA) has emerged as an effective strategy for fusing
 ultiomics data, combining m ultiple kernel learning with OPLS-
A [ 42 ]. The mixOmics R pac ka ge pr ovides a v ariety of m ultiv ariate
ethods for integrating omics datasets, including extensions of

Projection to Latent Structure” models for discriminant analysis
nd molecular signature identification [ 43 ]. Additionally, ML tech-
iques, such as network-based diffusion and DL, are increasingly
sed to ca ptur e complex nonlinear associations in multiomics
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data [ 44 ]. Among the av ailable R r esources, pac ka ges suc h moiraine 
[ 45 ] provide a range of integrative methods for multiomics anal- 
yses, including sPLS and DIABLO from the mixOmics pac ka ge [ 43 ],
sO2PLS from the OmicsPLS package [ 46 ], and MOFA and MEFISTO 

from the MOFA2 package [ 47 ]. 

AI-based analysis of omics data in the fields of 
plant sciences, animal sciences, and microbial 
sciences 

International initiatives are thriving in the field of AI-based anal- 
ysis of omics data, aiming to advance the discovery of genotype–
phenotype r elationships. One suc h example is the GLOMICAVE 
project (GLobal OMIC data integration on Animal, Vegetal and 

Environment sectors), an international project that involves all 
the authors of this r e vie w pa per . GLOMICA VE has created an 

innov ativ e digital platform that connects genotype to pheno- 
type through Big Data analytics and AI, using extensive pub- 
lic and experimental omic datasets [ https://glomica ve .eu/]. Like- 
wise, cloud-based platforms like HiOmics offer a comprehen- 
siv e anal ysis of biomedical lar ge-scale omics data [ 48 ]. Suc h 

projects aim to facilitate the analysis of primary data and sup- 
port large-scale omics experiments, thereby enhancing the util- 
ity of omics data on a massive scale and deepening our un- 
derstanding of entire biological systems. In line with GLOM- 
ICAVE , and considering that the medical field has been ex- 
tensiv el y examined from an AI perspective, this review fo- 
cuses on r ele v ant a pplications fr om plant, animal, and microbial 
sciences. 

Plant sciences and AI 
The explosion of omics has r adicall y tr ansformed r esearc h in 

plant sciences, sim ultaneousl y driving the need for ML to han- 
dle datasets c har acterized by high complexity and dimension- 
ality. A paradigmatic example is plant phenomics, which has 
r a pidl y shifted from a promising research sector with the po- 
tential of bridging the gap with genomic advances to becom- 
ing a widespread tool in plant and crop sciences [ 12 ]. This rapid 

pr ogr ess was enabled by integrating advanced sensors and imag- 
ing tec hnologies (e.g., RGB, m ultispectr al, hyperspectr al, thermal,
and fluor escence camer as and sensors) with unmanned aerial ve- 
hicles (or drones) and ground robots, which are able to collect 
high-thr oughput phenotyping data. Appr oac hes based on ML al- 
gorithms are now a practical and effective strategy for extracting 
tr aits and featur es fr om massiv e amounts of ima ging- and sensor- 
based data. DL algorithms (e .g., con volutional neural networks 
[CNNs]) show the highest versatility and success in image-based 

plant phenotyping. These algorithms are particularly effective in 

predicting the effects of biotic and abiotic stresses [ 49 , 50 ] and en- 
abling r a pid and accur ate dia gnostics of plant diseases [ 51 ]. Ad- 
ditionall y, AI a pplications in root system architecture image anal- 
ysis ar e emer ging as crucial tools for improving this understud- 
ied field of r esearc h, whic h holds significant potential to boost a 
“Second Gr een Re volution” in a gricultur e [ 52 ]. Plant br eeding is 
another br anc h of plant science that has been r adicall y tr ans- 
formed by genomic advances, with breeders increasingly relying 
on genome-wide SNP marker-based genomic prediction (GP) to ac- 
celerate genetic gains for target traits in crops. Classic GP models 
are based on best linear unbiased prediction, but efforts to de v elop 

new ML-based and improved GP algorithms are ongoing [ 53 ]. Fur- 
thermor e, differ ent sources of nongenetic variability and nonaddi- 
tive modes of gene action have made the choice and implementa- 
ion of GP models challenging for improving complex plant traits,
uch as biomass and crop yield [ 54 ]. One possible solution to this
roblem is to incorporate other genome-to-phenome intermedi- 
te omics data (e .g., transcriptomics , proteomics , metabolomics) 
nto the GP models to enhance their accuracy and pr edictiv e
o w er [ 55 ]. The potential of ML models based on single interme-
iate omics, particularly metabolomics, the omics layer closer to 
he phenotype, has been demonstrated for the accurate prediction 

f cr op yield, notabl y in maize [ 56 ] and rice [ 57 , 58 ]. Ho w e v er, for
lant breeding applications, the integration of large, highly dimen- 
ional, and “noisy” omics datasets for complex trait prediction 

emains a challenging field of study. This challenge will require
he use of ML/DL tec hniques, le v er a ging their superior capabil-
ty for Big Data analytics to effectively handle the complexity and
cale of these datasets [ 59 ]. Inter estingl y, r ecent studies have high-
ighted innov ativ e a ppr oac hes in metabolomics-based ML pr edic-
ion of plant complex traits showing innovative routes to iden-
ify br eeding tar gets for plant impr ov ement. For example, Colan-
onio et al. [ 60 ] identified candidate metabolites acting as fruit fla-
or enhancers and suppressors by metabolomics-based ML pre- 
iction of tomato and blueberry fruit flavor profiles. In efforts to

mpr ov e plant tolerance to abiotic stress, Dussarrat et al. [ 61 ] ap-
lied a holistic ML prediction approach on environmental adapta- 
ions based on the multispecies metabolome of plants collected in
he Atacama desert. This r e v ealed a cor e set of metabolite tar gets
or extreme climate resilience (sugars, stress-related amino acids,
ormones , and antioxidants , including phenolics and major redox
uffers). 

nimal sciences and AI 
odern biotechnologies, bio-sensing har dw are, and IT infrastruc- 

ur e hav e led to a high-throughput data collection era in liv estoc k
anagement, driving the need for faster and more efficient com-

utational methods. While traditional information sources in an- 
mal breeding included phenotype and pedigree data, the field is
ncr easingl y incor por ating genomic data suc h as SNPs, gene anno-
ations , metabolic pathwa ys , pr otein inter action networks, gene
xpr ession, and pr otein structur e information. These data can en-
ance trait predictions and improve our understanding of the un-
erlying biological phenotypes [ 62 ]. Despite these advancements 

n animal genetics, many challenges still persist. The widespread 

doption of omics technologies is hindered by high cost and the
eed for expertise across diverse fields. Accurate recording of phe-
otypic data and population/sample size are other constraints 
hat need to be addressed. Ho w ever, omics technologies have
hown their potential to identify superior and disease-resistant 
nimals at an early stage [ 63 ]. For example, the metabolomes
f healthy and unhealthy c hic kens wer e c har acterized and com-
ar ed using untar geted mass spectr ometry metabolomics [ 64 ].
esear chers w ere able to accurately distinguish chicken health
tatus in multiple countries using a r andom for est (RF)–based
L model. This a ppr oac h used r aw mass spectr ometry signals

unannotated m/z values) as input featur es, effectiv el y ov ercom-
ng one of the primary limitations of untargeted metabolomics: 
he need for metabolite annotation and identification. The use 
f ML models in animal breeding has recently attracted interest
ue to their exceptional flexibility and ability to ca ptur e patterns

n large, noisy datasets [ 65 ]. For instance, gradient tree boosting
GTB) has pr ov en to be an effectiv e ML algorithm for pr edicting dif-
er ent br eeding v alues . GTB-based models ha ve identified a subset
f genes contributing to feed efficiency in growing pigs using mus-
le transcriptome data [ 66 ]. The potential of combining metage-
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omics , metatranscriptomics , and metabolomics data was e v al-
ated in rumen content, demonstrating their value as predictive
arkers for feed efficiency and their potential applications for se-

ecting cows with high feed efficiency [ 67 ]. By using a RF-based
odel, they were able to predict feed efficiency using a prese-

ected set of metabolites associated with this tr ait. Antimicr obial-
 esistant micr oor ganisms pose significant c hallenges in liv estoc k
arming. A recent study [ 68 ] evaluated 10 supervised learning
lassifiers to pr edict Esc heric hia coli strains susceptible or resis-
ant to 26 differ ent antimicr obials using whole-genome shotgun
equencing in intensive poultry farming. This findings provided
 vidence of tr ansmissible drug r esistance in food-pr oducing ani-
als, which has contributed to the emergence of drug resistance

n zoonotic pathogens. 

icrobial sciences and AI 
icr oor ganisms exist natur all y in microbial communities and es-

ablish multiple interactions between each other and with their
osts. Omics experiments play a crucial role in studying these mi-
r oor ganisms in their natural en vironments , eliminating the need
or their isolation and cultivation. Ho w ever, interpreting omics in-
ormation and integrating results from different studies remains
hallenging due to the complexity of omics data. AI has been in-
r easingl y a pplied to help inter pr et the v ariations found in mi-
r obial comm unities, particularl y in the human micr obiome and
ts relationship to health and disease [ 69–71 ]. In the field of en-
ir onmental micr obiology, r ecent r e vie ws hav e highlighted ma-
or de v elopments in the application of ML to microbial ecology
mics [ 72 ]. This a ppr oac h has been primaril y a pplied to omics ex-
eriments using 16S rRNA gene sequencing data, which provide
axonomic information on microbial communities. RF-based ML
rc hitectur e has been widely used due to its ease of implemen-
ation, inter pr etation, low cost, and the r equir ement of less data
ompar ed with DL [ 72 ]. Ne v ertheless , other ML algorithms , such
s naive Bayes (NB), SVM, and KNN, have also been applied in the
icrobiology field [ 73 ]. In microbial ecology, the main objective

f ML has been to predict the presence of certain microbes (e.g.,
icr obial bioindicators, pr edicting envir onmental pollution, and
 e y microbes affecting the performance of biotechnological pro-
esses), as well as to predict microbe-microbe and microbe–host
nteractions and facilitate data mining [ 72 , 73 ]. For example, in the
articular case of anaerobic digestion microbiology (a biotechno-

ogical process in which organic waste is converted to methane
y microbial communities), there are several studies on AI ap-
lied to omics data. Three different algorithms (i.e., linear regres-
ion, SVM, and RF r egr ession) wer e used to pr edict the pr oduc-
ion of medium-chain carboxylates, based on microbial commu-
ity dynamics (16S rRNA) and the bior eactor’s pr oductivity data.
his study concluded that RF r egr ession was the most effective
lgorithm for this task [ 74 ]. Similarly, another study compared 6
iffer ent ML algorithms—namel y , GLMNET, RF , NNET, KNN, SVM,
nd extr eme gr adient boosting (XGBOOST)—to pr edict the per-
ormance of the anaerobic digestion process, using 16S rRNA ge-
omics as the basis for the analysis [ 75 ]. Interactions between
icr oor ganisms ar e highl y important and influence the activity

f microbial communities. Syntrophic interactions among differ-
nt species are k e y examples of microbial interactions, where mi-
r obes exc hange electr ons either via soluble molecules or dir ectl y
rom cell to cell in an interdependent way. ML was r ecentl y used
o predict the type of syntrophic interaction that prevails in mi-
r obial comm unities b y using a Bay esian netw ork a ppr oac h [ 76 ].
his anal ysis incor por ated not onl y 16S rRNA sequencing but also
etagenomics and metatranscriptomics data. 
avigating the frontier: challenges and future 

orizons in AI inno v a tion 

I in biology r esearc h faces se v er al major obstacles that must
e addressed through close collaboration between biologists and
omputer scientists. Such interdisciplinary collaborations are es-
ential to exploit the full potential of AI in life sciences [ 77 ]. 

ac kling tec hnical c hallenges in AI-based resear c h 

 summary of topics that r epr esent c hallenges in AI-based r e-
earc h is pr ovided in Table 1 . For each topic, the description and
ts connection to ML and/or DL ar e highlighted. Additionall y, the
opics ar e c har acterized based on 7 main tec hnical c hallenges:
i) noisy datasets, (ii) high dimensionality, (iii) omics data integra-
ion, (iv) inter pr etability, (v) computational r equir ements, (vi) FAIR
Findable , Accessible , Inter oper able , Reusable) principles , and (vii)
ata size and diversity. 

Importantl y, data cur ation and integr ation acr oss biological
ubdisciplines continue to pose significant c hallenges, r equiring
he de v elopment of ne w theories and pr edictiv e models tailor ed to
iology [ 77 ]. A significant problem is the lack of standardized for-
ats across different biological disciplines, which not only com-

licates the handling of file formats [ 78 ] but also makes it diffi-
ult to inter pr et data gener ated by specialists of eac h omics data
ype . Ethical concerns , particularly for animal sciences , and pri-
 acy issues surr ounding data usa ge need to be addr essed, along
ith ensuring the reliability and safety of AI models through ro-
ust validation and transparency. The explainability of AI meth-
ds in biological data science remains a significant challenge, as
an y curr ent a ppr oac hes lac k inter pr etability. This can lead to

ecreased trustworthiness and reliability in decision-making pro-
esses . Moreo ver, impro ving the interpretability of ML-based mod-
ls in life science is crucial, as it allows a better understanding
f the biological mechanisms behind the models (e.g., by helping
o identify important biomarkers, biological pathways, or features
hat contribute to a specific process) [ 79 ]. 

he scarcity of labeled data for training AI models 
abeling large amounts of data has become one of the main bot-
leneck in the development of AI systems [ 80 ]. Over the past 15
ears , advanced ML models , particularly those based on deep neu-
 al networks (DNNs), hav e enabled unpr ecedented r esults in a
ariety of fields, including omics r esearc h in life sciences [ 81 ].
o w e v er, these models r equir e v ast amounts of labeled tr ain-

ng data, which in many practical scenarios are either unavail-
ble or very arduous to obtain [ 82 , 83 ]. Creating hand-labeled
raining datasets is expensive and time-consuming, often taking

onths or years to de v elop, particularl y when domain expertise
s r equir ed. In r esponse to this tec hnical c hallenge, a subfield of

L know as weakly supervised learning , a concept de v eloped bac k
n the 1960s, has e volv ed into an a ppr oac h ca pable of gener at-
ng lar ge tr aining datasets mor e r a pidl y. T hese datasets , though
oisier and of lo w er quality, are constructed via strategies such
s using c hea per annotators, pr ogr ammatic scripts, or mor e cr e-
tiv e and high-le v el input fr om domain experts . In principle , these
echniques offer higher-level or less precise forms of supervision,
hic h, while less accur ate, ar e faster and easier to obtain than
anual annotation [ 84 ]. Another a ppr oac h motiv ated by the same

oal is semi-supervised learning , which strives to create large train-
ng datasets by combining a small amount of labeled data with a
 uc h lar ger amount of unlabeled data [ 85 ]. Omics-based r esearc h

n life sciences has quic kl y adopted solutions derived from these
 ppr oac hes acr oss v arious a pplications, suc h as molecular path-
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Table 1: Major technical challenges in AI-based research 

Tec hnical c hallenge Description Connection to ML and DL 

1. Noisy datasets 
Impact on model performance Noisy or erroneous data can degrade AI model 

performance, leading to inaccurate predictions, 
especially in high-precision fields like life 
sciences. 

ML : Often struggles with noisy data unless 
adv anced pr epr ocessing is applied. DL : Sensitive 
to noise, impacting performance. 

Data cleaning Effective noise reduction and robust data 
cleaning are essential but challenging, 
particularly at large scales. 

ML : Requires preprocessing techniques to handle 
noisy data. DL : Needs data cleaning to impr ov e 
model accuracy. 

2. High dimensionality 
Curse of dimensionality High-dimensional data can lead to overfitting, 

making models perform well on training data 
but poorly on unseen data. 

ML : Can overfit if dimensionality is not managed; 
r equir es featur e selection. DL : Needs str ategies to 
handle high dimensions. 

Feature selection Identifying r ele v ant featur es fr om a lar ge 
number of variables is complex and requires 
adv anced tec hniques to pr e v ent r edundancy 
and enhance model efficiency. 

ML : Involves sophisticated techniques for 
effectiv e featur e selection. DL : Uses embedded 
feature selection or reduction techniques. 

3. Omics data integration 
Heterogeneity Omics data from various sources (e.g., 

genomics, pr oteomics) ar e often 
heterogeneous, differing in scale, format, and 
noise, complicating integration. 

ML : Requires methods to handle heterogeneous 
data. DL : Needs effective data fusion strategies for 
multiomics. 

Data fusion De v eloping methods for effective multiomics 
data fusion that pr eserv es biological context 
and relationships is an ongoing challenge. 

ML : Must integrate diverse data types. DL : 
Benefits from advanced fusion techniques for 
compr ehensiv e anal ysis. 

4. Interpretability of results 
Complex models Deep learning models, especially those with 

complex arc hitectur es, can act as “blac k 
boxes,” making it hard to inter pr et how 

conclusions are reached. 

ML : Gener all y mor e inter pr etable than DL but still 
faces challenges. DL : Requires explainability 
techniques for transparency. 

Explainability techniques Emer ging tec hniques like sHa ple y ad diti ve 
exPlanations (SHAP) or local intr epr etable 
model-agnostic explanations (LIME) offer ways 
to explain AI decisions but may not always 
pr ovide compr ehensiv e or intuitiv e insights. 

ML : May utilize various explainability methods. 
DL : Needs specific techniques for understanding 
model behavior. 

5. Computational requirements 
Resource intensity Training state-of-the-art AI models, 

particularly deep learning models, requires 
significant computational resources, including 
high-performance GPUs and extensive memory. 

ML : Gener all y less r esource-intensiv e but can still 
r equir e significant computational po w er. DL : 
Highl y r esource-demanding. 

Scalability Ensuring algorithms scale efficiently with 
increasing data sizes and complexity without 
excessive computational costs is a critical 
challenge. 

ML : Needs to manage scalability efficiently. DL : 
Must handle large-scale data and complex models 
effectiv el y. 

6. Importance of FAIR 
principles 
Findable, Accessible, Interoperable, 
Reusable (FAIR) 

Adhering to FAIR principles for data and scripts 
is essential for r epr oducibility and 
collaboration but challenging, particularly in 
standardizing metadata and documentation. 

ML : Requires well-documented datasets for 
r epr oducibility. DL : Benefits from FAIR practices 
for consistent data use. 

Data sharing Facilitating access to well-documented, 
standardized datasets while maintaining 
privacy and security can be complex. 

ML : Needs secure and standardized data-sharing 
pr actices. DL : Requir es access to high-quality, 
FAIR-compliant datasets. 

7. Data size and di v ersity 
Scalability of models Handling and processing large-scale datasets 

r equir es models that can manage and learn 
fr om v ast amounts of data without 
compromising performance. 

ML : Must be scalable to handle large data. DL : 
Efficientl y mana ges lar ge datasets but with high 
computational costs. 

Bias and generalization Ensuring data diversity to avoid biases and 
ensure models generalize well across different 
populations or conditions is crucial. 
Imbalanced datasets can lead to skewed 
results. 

ML : Needs diverse data to prevent bias. DL : 
Requir es car eful data handling to ensur e 
gener alization acr oss conditions. 
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ays status prediction in cancer [ 86 ] or protein-DNA binding pre-
iction [ 87 ], and in the field of plant sciences (applications specific
o plant and field phenomics) [ 88–91 ]. These examples provide ev-
dence of the effectiveness of weakly and semi-supervised learning
hen applied to omics science and indicate a promising future
irection. 

I for the prediction and annotation of metabolites 
ecent de v elopments in AI-based metabolite annotation r eflects
ignificant advancements in the application of ML and DL tech-
iques to impr ov e the accur ac y and efficienc y of metabolite iden-
ification and c har acterization in mass spectrometry–based stud-
es [ 92 ]. As an example, the chemical language model “DeepMet”
tilizes CNNs to learn featur es fr om r aw MS/MS spectr al data and
redict human metabolite identities [ 93 ]. Similarly, the “MetFID”
odel uses ANNs to predict molecular finger prints fr om MS/MS

ata, enhancing annotation accuracy compared to existing tools
 94 ]. Computational annotation strategies, including peak group-
ng, ion adduction analysis, and incor por ation of biological knowl-
dge , help o vercome the limitations of accurate mass search-
ng alone [ 95 ]. ML-based a ppr oac hes and molecular networking
ave shown promise in large-scale metabolite annotation, partic-
larl y in natur al pr oduct discov ery [ 96 ]. Another compelling ML-
ased tool includes the “PeakDecoder” algorithm, which enables
etabolite annotation and accur ate pr ofiling in m ultidimensional
ass spectr ometry measur ements [ 97 ]. Despite the av ailability of
L-based tools for metabolite annotation, inconsistencies in their

enchmarking hinder users from selecting the most appropriate
ethod for their r esearc h, highlighting the need for standardized

 v aluation pr actices [ 96 ]. 
In the context of ecosystem metabolomics, computational

ethods can now pr edict pr e viousl y unobserv ed metabolites in
e w micr obial comm unities by le v er a ging pair ed metabolome
nd metagenome data, achieving over 50% accuracy for related
etabolites [ 98 ]. Additionally, knowledge-based and ML-driven
 ppr oac hes ar e being de v eloped to r efine metabolite identification
nd analyze primary microbial metabolism in mixed samples [ 99 ].
his demonstrates that predictive metabolomics can aid experi-
ental design and r e v eal v aluable insights into numer ous com-
 unity pr ofiles wher e onl y meta genomic data ar e av ailable. 

I-based gene annotation 

dvances in genomics have been largely driven by the increas-
ng throughput and lo w er cost of DNA sequencing. This has made
t possible to sequence thousands of individual genomes within
 species and a large number of new species. While generating
equencing data has become a r elativ el y str aightforw ar d task,
he subsequent processing steps to produce a genome assem-
ly with structural annotations of genomic elements (e .g., genes ,
r omoters, and r egulatory elements) and gene functional annota-
ions still r epr esent a c hallenge. Long-r ead sequencing tec hnolo-
ies have alleviated some of these issues, particularly for genome
ssembly, but the structural annotation of genes, especially in
o vel genomes , remains problematic in the absence of other ex-
rinsic data sour ces. Well-kno wn structural annotation tools, such
s AUGUSTUS [ 100 ], use hidden Markov models (HMMs) for in-
rinsic ab initio gene finding. A recent ab initio gene calling tool,
elixer [ 101 ], uses DNNs combined with HMMs to identify genes

n genomes without the need for extrinsic data and has shown
r omising r esults. Gene functional annotation has tr aditionall y
elied on homology to c har acterize pr oteins for ascribing a func-
ion to ne wl y identified genes . T he bottleneck of this methodology
s mainly due to knowledge gaps that are producing annotation
f genes of “unknown function.” DeepGO [ 102 ] is a tool that em-
loys DL methods and inter activ e networks to annotate protein
equences with Gene Ontology (GO) terms. A later impr ov ement,
eepGOPlus [ 103 ] r emov ed man y of the restrictions of the earlier
ersion and no longer needs the interaction networks. DeepGO-
lus has the additional adv anta ge of being species agnostic and
iv es equall y good r esults fr om pr otein sequences deriv ed fr om
enomes of ne wl y sequenced species and clades. 

AIR practices for omics data and AI 
espite the advances outlined abo ve , challenges in standardizing
ethods and inter pr eting r esults persist, highlighting the need for

AIR pr actices and pr oper benc hmarking to ensur e r epr oducibil-
ty and reliability in multiomics and AI r esearc h. In this context,
ntologies play a crucial role by tagging datasets with metadata,
her eby impr oving data understanding and inter oper ability [ 104 ].
hey define domain-specific concepts and relationships, making
ata both human- and mac hine-r eadable for easier reuse. How-
 v er, identifying r ele v ant ontologies can be difficult due to the
arge amount a vailable . For example , as of September 2024, 1,147
iffer ent ontologies ar e av ailable in BioPortal [ 105 ], including 24
pecific for plants and 37 for animal science. As ML becomes in-
r easingl y indispensable, ensuring data privacy, algorithmic fair-
ess, and tr anspar ency will be paramount for maintaining public
rust and ensuring equitable access to the benefits of ML-driven
d vancements [ 106 ]. Ad ditionally, many open data sources in the
ife sciences are not yet fully FAIR-compliant, with issues related
o the absence of proper metadata, inadequate data documenta-
ion, and the lack of crosslinking between datasets . T his r equir es
ignificant effort to upgrade their FAIRness for integration into se-
antic web platforms [ 107 ]. While the FAIR principles aim to en-

ance mac hine r eadability and pr ocessing of scientific data, con-
erns have been raised about potential epistemic losses, such as a
eduction in semantic freedom and the displacement of human
xpertise, whic h could discour a ge trust in AI [ 108 ]. To addr ess
k e pticism and foster trust among stakeholders, a more balanced
iscussion of both the benefits and epistemic costs of implement-

ng FAIR is needed. Remarkably, a systematic review of 124 LC/MS
etabolomics software that subsequently retained 61 for detailed

nalysis based on FAIR Principles for Research Software (FAIR4RS)
riteria reported that software fulfillment of these criteria ranged
rom 21.6% to 71.8%, with no significant impr ov ement in FAIRness
ver time [ 109 ]. Key issues identified included the lack of semantic
nnotation (0%, i.e., no software had semantic annotation of k e y
nformation), low r egistr ation on Zenodo with DOIs (6.3%), limited
ontainerization of code or use of virtual machines (14.5%), and
nsufficiently documented functions in code (16.7%). This recent
ork highlights clear caveats that need to be addressed in further
ig Data–based life science r esearc h. To further adv ance the FAIR
rinciples, collabor ation between r esearc hers , data scientists , and
ata managers is more than ever needed. 

oncluding remarks 

n conclusion, AI has already transformed biomedical research by
ccelerating drug discovery, enhancing clinical trials, and provid-
ng po w erful tools for analyzing complex biological data [ 110 ]. Its
bility to optimize pr ocesses, r educe costs, and incr ease pr ecision
s r e v olutionizing ho w resear chers approach biological challenges.
he 2020s is the decade of AI applied to biology: as AI continues to
dvance, its impact on animal, plant, and environmental research
ill be paramount. AI is reshaping animal resear ch b y enhancing
ata anal ysis, impr oving animal welfare, and reducing reliance
n traditional testing methods . T hrough predictive modeling, AI
elps refine experimental designs, minimizing the number of an-
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imals used while increasing the accuracy of results. It also sup- 
ports the monitoring of animal behavior and health, contributing 
to better care and more ethical practices . T he growing role of AI in 

animal r esearc h will likel y lead to mor e humane, efficient, and sci- 
entificall y r obust studies. Additionall y, the e volution of ML in plant 
biology, r anging fr om its earl y explor ations to its curr ent pr omi- 
nence as a tr ansformativ e tool, demonstr ates its r emarkable po- 
tential. As ML continues to advance, its integration with other AI 
tec hniques, r eal-time data pr ocessing, and ethical consider ations,
including a gr oecological tr ansitions, will sha pe the futur e of plant 
biology r esearc h and a gricultur al pr actices. In a wider context, AI 
is making significant strides in environmental resear ch b y pro- 
viding sophisticated tools for monitoring ecosystems, predicting 
climate patterns, and analyzing environmental data. Its ability to 
pr ocess v ast amounts of information and identify complex pat- 
terns helps in understanding and mitigating the impacts of cli- 
mate change, pollution, and habitat loss. AI promises to enhance 
our capacity for environmental stew ar dship, driving more effec- 
tive and data-driven strategies to protect and sustain our planet. 
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