001050303 001__ 1050303
001050303 005__ 20260113204523.0
001050303 0247_ $$2doi$$a10.5194/egusphere-2025-4878
001050303 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00113
001050303 037__ $$aFZJ-2026-00113
001050303 1001_ $$00000-0001-6499-4620$$aNoble, Phoebe$$b0$$eCorresponding author
001050303 245__ $$aStratospheric gravity waves in three high-resolution models and AIRS satellite observations
001050303 260__ $$c2025
001050303 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1768289844_9544
001050303 3367_ $$2ORCID$$aWORKING_PAPER
001050303 3367_ $$028$$2EndNote$$aElectronic Article
001050303 3367_ $$2DRIVER$$apreprint
001050303 3367_ $$2BibTeX$$aARTICLE
001050303 3367_ $$2DataCite$$aOutput Types/Working Paper
001050303 520__ $$aAdvances in computational power and model development have enabled the generation of global high-resolution models. These new models can resolve a large proportion of gravity waves (GWs) explicitly, reducing reliance on subgrid parametrizations. GWs are vital components of the middle and upper atmosphere, they transport energy and momentum both horizontal and vertically, driving the atmospheric circulation. Evaluating the realism of these resolved waves is a crucial step in advancing future model development.Here we provide the first global multi-model GW observational comparison that accounts for the observational filter. We assess the representation of stratospheric GWs in three high-resolution (3–5 km horizontal resolution) global free-running simulations (ICON, IFS and GEOS), for the period 20th January–29th February 2020, against AIRS satellite observations.Wave amplitudes are systematically lower in the models than observations, consistent with previous studies. GW occurrence rates are higher in all models than the observations, dominated by low amplitude waves in the models. During the first 10 days spatial patterns of GW occurrence rate, amplitudes and momentum flux agree across the models and observations but subsequently they diverge. Agreement is more consistent in the northern hemisphere (where orographic waves dominate) than in the southern hemispheric convective regions.These results benchmark the current state of high-resolution modelling and demonstrate that whilst there are strengths in models' ability to capture the morphology of GWs (particularly orographically generated waves), there is room for improvement in modelling amplitudes, occurrence rates and zonal-mean flux magnitudes globally, with the largest discrepancies in the tropical convective regions.
001050303 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001050303 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001050303 588__ $$aDataset connected to CrossRef
001050303 7001_ $$00000-0002-1476-3362$$aOkui, Haruka$$b1
001050303 7001_ $$00000-0003-2495-3597$$aAlexander, Joan$$b2
001050303 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b3
001050303 7001_ $$00000-0003-4377-2038$$aHindley, Neil P.$$b4
001050303 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b5
001050303 7001_ $$00000-0003-0211-053X$$aHolt, Laura$$b6
001050303 7001_ $$0P:(DE-HGF)0$$avan Niekerk, Annelize$$b7
001050303 7001_ $$00000-0003-3310-8280$$aPlougonven, Riwal$$b8
001050303 7001_ $$00000-0002-8943-4993$$aPolichtchouk, Inna$$b9
001050303 7001_ $$00000-0001-5736-1948$$aStephan, Claudia C.$$b10
001050303 7001_ $$0P:(DE-HGF)0$$aBramberger, Martina$$b11
001050303 7001_ $$0P:(DE-HGF)0$$aCorcos, Milena$$b12
001050303 7001_ $$0P:(DE-HGF)0$$aPutnam, William$$b13
001050303 7001_ $$0P:(DE-HGF)0$$aKruse, Christopher$$b14
001050303 7001_ $$00000-0003-2496-953X$$aWright, Corwin J.$$b15
001050303 773__ $$a10.5194/egusphere-2025-4878
001050303 8564_ $$uhttps://juser.fz-juelich.de/record/1050303/files/egusphere-2025-4878.pdf$$yOpenAccess
001050303 909CO $$ooai:juser.fz-juelich.de:1050303$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001050303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b3$$kFZJ
001050303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b5$$kFZJ
001050303 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001050303 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001050303 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050303 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001050303 920__ $$lyes
001050303 9201_ $$0I:(DE-Juel1)ICE-4-20101013$$kICE-4$$lStratosphäre$$x0
001050303 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
001050303 9801_ $$aFullTexts
001050303 980__ $$apreprint
001050303 980__ $$aVDB
001050303 980__ $$aUNRESTRICTED
001050303 980__ $$aI:(DE-Juel1)ICE-4-20101013
001050303 980__ $$aI:(DE-Juel1)JSC-20090406