001050304 001__ 1050304
001050304 005__ 20260109202558.0
001050304 037__ $$aFZJ-2026-00114
001050304 041__ $$aEnglish
001050304 1001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b0$$eCorresponding author
001050304 1112_ $$a76th Annual Meeting of the International Society of Electrochemistry$$cMainz$$d2025-09-07 - 2025-09-12$$gISE$$wGermany
001050304 245__ $$aBoosting Zinc Anode Activity in Near-Neutral Zinc-Air Batteries Through EDTA Electrolyte Additive
001050304 260__ $$c2025
001050304 3367_ $$033$$2EndNote$$aConference Paper
001050304 3367_ $$2DataCite$$aOther
001050304 3367_ $$2BibTeX$$aINPROCEEDINGS
001050304 3367_ $$2DRIVER$$aconferenceObject
001050304 3367_ $$2ORCID$$aLECTURE_SPEECH
001050304 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1767947389_23896$$xAfter Call
001050304 520__ $$aMetal-air batteries are emerging as a promising electrochemical energy storage technology, offering high theoretical energy densities and relying on cost-effective, safe, and abundant active materials. Among them, zinc-based metal-air batteries stand out for both primary and secondary applications. While primary zinc-air batteries (ZABs) are already commercially available for various uses, secondary ZABs face significant challenges, especially in alkaline environments. One potential solution is the use of aqueous neutral electrolytes, which help mitigate issues like electrolyte carbonization and dendrite formation. However, despite these advantages, neutral-electrolyte ZABs still struggle with performance limitations due to zinc surface passivation, the formation of insoluble zinc species, and corrosion.This study investigates the effect of ethylenediaminetetraacetic acid (EDTA) as an electrolyte additive on the performance of near-neutral secondary Zn-air batteries. The electrochemical behavior of Zn electrodes was analyzed in a 2M NaCl solution (pH 10) with and without EDTA. Open-circuit and potentiodynamic polarization experiments were first conducted to assess the corrosion parameters of Zn electrodes. Intermediate-term (24-hour) discharge experiments were then performed in a three-electrode cell setup under various current densities. The results indicated that in pure 2M NaCl electrolytes, Zn exhibited only partial activity, with discharge occurring primarily due to localized pitting. In contrast, the electrolyte containing EDTA enabled full Zn activity and significantly higher discharge potentials, highlighting its effectiveness in enhancing electrochemical performance.To further examine the dissolution behavior and discharge products, the electrode surfaces were analyzed using laser scanning microscopy (LSM), X-ray diffraction (XRD), and scanning electron microscopy (SEM) after discharge experiments. Additionally, the performance of full-cell Zn-air batteries was evaluated through galvanostatic discharge experiments (in primary mode) lasting up to 930 hours, achieving specific energies of up to 840 Wh/kgZn, and through galvanostatic cycling experiments (in secondary mode) lasting up to 575 hours with 70 cycles. The inclusion of EDTA in the electrolyte significantly improved specific energies and mass utilization efficiencies compared to pure electrolytes, demonstrating its potential as a promising additive for enhancing near-neutral Zn-air battery performance.
001050304 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001050304 536__ $$0G:(BMBF)03SF0627B$$aBMBF 03SF0627B - Verbundvorhaben iNEW2.0: In iNEW (Inkubator Nachhaltige Elektrochemische Wertschöpfungsketten) werden neuartige und leistungsfähige Elektrolyseverfahren zur Anwendung in nachhaltigen Power-to-X Wertschöpfungsketten erforscht und entwickelt (03SF0627B)$$c03SF0627B$$x1
001050304 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b1
001050304 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2
001050304 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3$$ufzj
001050304 909CO $$ooai:juser.fz-juelich.de:1050304$$pVDB
001050304 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b0$$kFZJ
001050304 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b1$$kFZJ
001050304 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
001050304 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
001050304 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
001050304 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001050304 920__ $$lyes
001050304 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001050304 980__ $$aconf
001050304 980__ $$aVDB
001050304 980__ $$aI:(DE-Juel1)IET-1-20110218
001050304 980__ $$aUNRESTRICTED