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Positron emission tomography (PET) and magnetic resonance imaging (MRI) offer 
complementary information about the human brain in health and disease. The 
simultaneous 7 T MR-BrainPET insert enables molecular imaging quantification 
beyond the current limits. Here we present the current status of the field highlighting 
PET/MR synergies for the image-derived input function (IDIF). We also discuss 
promising applications that will benefit from these advancements, as well the 
challenges to be addressed in the near future.
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1 Introduction

In vivo neuroimaging techniques have progressed significantly in recent decades, 
advancing understanding of neural processes in health and disease (Jones et al., 2012; Fink 
and Schneider, 2007). A major step toward simultaneous multimodal imaging was achieved 
with the combination of PET and MRI (Schlemmer et al., 2008), and has been continuously 
developed since (Herzog and Lerche, 2016). While MRI enables precise access to 
neuroanatomy, flow dynamics and several other functional mappings, its sensitivity is 
insufficient for molecular imaging, which studies the biodistribution of molecular targets and 
metabolic processes in vivo. Compared to MRI, PET has a million-fold higher detection 
sensitivity and is, therefore, the most important, non-invasive molecular imaging modality. 
The pico-molar detection sensitivity of PET enables imaging of neurotransmitter/receptor 
concentrations, and potentially allows the evaluation of endogenous neurotransmitter 
fluctuations—stimulated by pharmacologic or cognitive challenges (Kegeles and Mann, 1997). 
Most brain-PET scans are performed with whole-body scanners, which requires trade-offs in 
the image performance. Therefore, several brain-dedicated scanners have been developed 
(Caldeira et al., 2019; Catana, 2019; Li et al., 2024).

Brain-dedicated PET scanners are adapted to brain geometry, with reduced ring diameter 
(solid angle coverage) and thicker scintillation crystals leading to a better sensitivity and 
smaller scintillation crystals leading to a better spatial resolution. High detection sensitivity 
and time resolution are needed for a good image signal-to-noise ratio (SNR), quantification 
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precision, and allow short acquisition intervals in the case of dynamic 
studies. The high spatial resolution of brain-PET scanners enables 
reliable region delineation and minimizes the partial volume effect 
(PVE) for the human cortex. As the cortex is highly folded, the spatial 
resolution should, ideally, be homogeneous over the entire field-of-
view (FOV). Another important advantage of improved image-
derived input function (IDIF) performance is it avoids the need for 
arterial cannulation, as the internal carotid arteries (ICAs) can be 
resolved in the PET image and used as input for the full quantification 
with kinetic modeling (Figure 1; Volpi et al., 2024). In addition, 
temporal resolution is very important, since for IDIF the whole-blood 
curves can be sampled with shorter image frames to better estimate its 
peak (<2–5 s; Kang et al., 2025; Volpi et al., 2023).

Despite the advantages of brain-dedicated PET scanners, a 
disadvantage is the increased parallax error whenever the scintillation 
detectors are not prepared to estimate the depth of interaction (DOI) 
of the γ-photons (Lerche et al., 2018). Additionally, care has to be 
taken to implement adequate data corrections to minimize motion 
effects, γ-photon attenuation, and scattering to assure high 
quantification fidelity.

2 Instrumentation innovations in MR 
and brain PET imaging

Compared to conventional field strengths (1.5 and 3 T), 7 T MRI 
offers increased SNR and specificity (Feinberg et al., 2023). This 
enables imaging with both higher spatial and temporal resolutions, 
allowing for better characterization of subtle and prominent 
anatomical features and microvascular structures. The benefits of 7 T 
(Springer et al., 2016; De Cocker et al., 2018; Feng et al., 2022; Koning 
et al., 2015; Zhu et al., 2016) have been demonstrated in various 
applications, with the focus here on the brain and the ICA imaging.

Accessing superior visualization of tiny intracranial branches, 
e.g., vessel walls, enables more specific assessment of properties, such 
as wall thickening and other subtle vascular characteristics that are 
hardly identifiable at lower fields, leading to more accurate images. To 
provide a comprehensive characterization of the vessel wall, modified 

turbo spin-echo (van der Kolk et al., 2013; Blankena et al., 2016; Zhu 
et al., 2018; Kleinloog et al., 2014) and time-of-flight (TOF; Park et 
al., 2018; Cosottini et al., 2024; von Morze et al., 2007), contrast-
enhanced (Osuafor et al., 2022; Harteveld et al., 2015) and phase-
contrast (Kang et al., 2016). MR angiography techniques are 
frequently employed.

One possible method for visualizing the ICA without using a 
contrast agent is TOF MR angiography (TOF-MRA), which provides 
precise localization information on the arterial inflow. TOF-MRA at 
7 T has been shown to improve contrast-to-noise ratio (CNR) and 
thus visualization of cerebral arteries compared to 3 T (von Morze et 
al., 2007; Dimitrakopoulou-Strauss et al., 2021). This offers the 
possibility for higher resolution TOF-MRA with more precise 
delineation of the ICA lumen, enabling more accurate correction of 
the PVE and segmentation of the PET images to improve the IDIF 
estimation in MR-driven techniques.

A common challenge in cross-calibrating IDIF data to bolus 
injections and blood sampling is correcting for dispersion due to 
varying flow velocities across the vessel cross-section and course 
(Dimitrakopoulou-Strauss et al., 2021).

The advanced speed-accelerated 4D flow sequence (Schmitter et 
al., 2020) provides valuable haemodynamic information within the 
ICAs that improves our understanding of cerebrovascular disease 
progression. However, (B1

+) inhomogeneity can be a challenge, but 
using a robust, large-dynamic-range parallel-transmit mapping 
technique to enable B1-shimming enhanced ICA image quality (de 
Buck et al., 2024). Furthermore, the introduction of artificial 
intelligence (AI)-driven models has advanced vascular imaging data 
analysis, enabling precise vessel identification and localization 
(Banerjee et al., 2024), and supporting an automated workflow that 
reduces reliance on inconsistent MRA data.

Despite the advantages afforded by 7 T MRI, the higher field 
strength increases the susceptibility to artifacts caused by arterial and 
cerebrospinal fluid (CSF) pulsation (Seginer et al., 2024), which 
reduces the accurate delineation of the vessel volume due to signal 
loss, ghosting artifacts and blurring. To minimize these artifacts, 
cardiac gating and motion compensation techniques can be used (Kuo 
et al., 2019).

FIGURE 1

(A) Schematic visualization of the brain and ICAs. (B) Designed anthropomorphic head phantom with ICAs (updated from phantom shown in C). 
(C) Head phantom (Iida et al., 2013) acquisition in the 7 T MR-BrainPET showing the cortex and cerebellar structures in contrast with the human head 
from Figure 2A bottom (upper: BrainPET 7 T image, middle: PET/MR fused image and bottom: 7 T MR MP2RAGE T1-weighted image).
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Several projects are developing simultaneous PET/MR imaging at 
7 T, aiming for full MR compatibility, significantly increased spatial 
resolution (1-2 mm), and increased sensitivity compared to standard 
clinical PET scanners (Allen et al., 2024; Won et al., 2021; Lerche et 
al., 2023). To achieve high spatial resolution across the entire PET 
FOV, the aforementioned scanners use DOI-capable scintillation 
detectors, which reduce parallax errors.

The cortex and ICA are of interest in neuroscientific 
applications, with average thicknesses or internal diameters of 
2-5 mm and 4-5 mm, respectively (Baz et al., 2021). A noticeable 
PVE occurs in these structures when they are smaller than twice the 
spatial resolution of the system (Hoffman et al., 1979), requiring a 
spatial resolution around 1-2 mm to minimize this. On the other 
hand, increased detection sensitivity enhances image SNR, reducing 
statistical errors in the PET quantitative measurements, e.g., the rate 
constants required for compartment kinetic modeling (Dahlbom et 
al., 2005). Additionally, higher SNR enables shorter image frames 
for denser sampling of the radiotracer’s vascular phase, crucial for 
IDIF, which lasts ~90 s. Currently available PET scanners only allow 
very coarse sampling, resulting in an inaccurate determination of 
the bolus activity concentration, leading to error propagation 
during quantification. Reducing the sampling interval (currently 
~15 s), while simultaneously increasing the SNR, would significantly 
reduce these errors. The PET image SNR can also be improved by 
taking TOF information into account during image reconstruction, 
and coincidence resolving time (CRT) has improved considerably 
to 200 ps in recent years. The BrainPET 7 T insert developed at the 
Forschungszentrum Jülich (FZJ) achieves a spatial resolution of 
1.6 mm, a sensitivity of 11%, and a CRT of 620 ± 6 ps (Niekämper 
et al., 2025). This corresponds to a 2–3 times better resolution and 
is more than double the sensitivity of the BrainPET 3 T insert 
(Caldeira et al., 2019). At the same time, the BrainPET 7 T achieves 
a detection rate for the noise equivalent counts that is ~10 times 
higher than that of the BrainPET 3 T. Similar values are expected 
with the Human Dynamic NeuroChemical Connectome (HDNCC) 
scanner (Allen et al., 2024). However, due to the use of DOI-capable 
scintillation detectors, the two 7 T inserts under development have 
poorer CRT.

2.1 Brain PET in image quantification

For over 15 years, scientists at FZJ have advanced PET/MR brain 
imaging using one of only four prototype hybrid commercial 3 T 
MR-BrainPET inserts available worldwide (Herzog et al., 2011). 
Multiple tracers, including [18F]FDG, [18F]FET, [15O]H2O, have been 
employed alongside diverse MR sequences in clinical studies (Caldeira 
et al., 2019; Rajkumar et al., 2021; Mauler et al., 2024; Zhang et al., 
2014; Mauler et al., 2020; Régio Brambilla et al., 2022).

In the context of IDIF, studies have applied semi-automatic ICA 
segmentation, PVC, new reconstruction methods, and dual 
simultaneous PET/MR acquisitions (Caldeira et al., 2015; da Silva et 
al., 2015; Anasovi et al., 2024). Most recently, AI has been applied in 
our studies for segmentation (Hilgers et al., 2025). In a pilot study with 
retrospective [15O]H2O data (Zhang et al., 2014), we achieved a 
volume of distribution (VT) agreement of R2 = 0.95 and 0.98 in gray 
matter (GM) and white matter (WM), when compared to VT using 
arterial input function (AIF). However, microparameters showed 
quantification biases of 6.5–10.5%.

The feasibility of combined and individual IDIF derivation from 
both, simultaneously acquired PET and MR data has already been 
demonstrated by extracting IDIF curves from 3 T MR EPIK (Yun et 
al., 2013) images with Gd-DTPA contrast and BrainPET images with 
[18F]FET (Figure 2), as well as by evaluating the relationships between 
the fit parameters obtained with both modalities (Caldeira et al., 
2015). The shape (two parameters) and amplitudes (one parameter) 
of both curves in Figure 2 display linear relationships with agreements 
of R2  = 0.86, R2  = 0.98 and R2  = 0.92, respectively. Using these 
relationships, a conversion between the MRI and PET IDIF curves can 
be achieved, and a considerable potentiation of the joint determination 
can be expected at higher field strength (7 T vs. 3 T) and the improved 
imaging performance of the BrainPET 7 T component (spatial 
resolution 1.6 mm vs. 2 to 6 mm and sensitivity of 11% vs. 7%; Kolb 
et al., 2012).

Methodologically, enhancing PET/MR performance will be a vital 
addition to current IDIF approaches. These approaches have 
demonstrated that ICAs-based IDIFs—augmented by standardized 
PVC, motion correction, and small sets of blood samples for residual 

FIGURE 2

(A) Upper row from left to right: transaxial contrast-enhanced EPIK image, coronal MPRAGE T1-weighted structural image at 3 T MR showing the 
structure of the ICAs with contrast, and coronal [18F]FET 4th frame with 5 s. Bottom: transaxial MP2RAGE T1-weighted structural image at 7 T MR clearly 
showing the structure of the ICAs, cortex, and cerebellum without contrast agents. (B) Plots with IDIF curves from each modality with Gamma function 
fits and conversion from MRI IDIF to PET IDIF (estimated with 3 T MR-BrainPET upper images in A). Figure adapted from Caldeira et al. (2015).
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corrections—can approach arterial-line performance for many 
radiotracers. In addition, PET quantification can be further improved 
by using MR data from 7 T for automatic carotid segmentation, PVC, 
and refined estimation of IDIF (Caldeira et al., 2015).

2.2 Vessel segmentation and partial volume 
effects

The segmentation task of small vessel diameters like ICAs in brain 
PET images is currently challenging because of their diameter, which 
may lie at the limit of the spatial resolution of most PET scanners 
(~3–5 mm), their tortuous shape, and pulsation. Therefore, small 
intracranial vessels have traditionally been segmented manually or 
semi-automatically, but this may change in the light of the new 
scanners. Methods such as k-means (Liptrot et al., 2004), soft-decision 
similar component analysis (Brankov et al., 2003), local mean analysis 
(Maroy et al., 2008), region-growing (Galovic et al., 2021) and others 
have already been validated (Sundar et al., 2019; Naganawa et al., 2005; 
Chavan et al., 2024) for a limited number of tracers.

The U-Net topology is a widely used convolutional neural network 
for biomedical image segmentation (Ronneberger et al., 2015), with 
the newer version, nnU-Net, demonstrating excellent accuracy with 
Dice Coefficients up to 0.97 when segmenting blood vessels (Zhu et 
al., 2022).

In our pilot studies for estimating the IDIF using images acquired 
from the 3 T MR-BrainPET insert, the U-Net model achieved a Dice 
coefficient of 0.82, while the nnU-Net model achieved a Dice 
coefficient of 0.64 compared to the manually segmented reference. The 
PVE, resulting from the small ICA structure and limited PET scanner 
resolution, leads to activity spill-out (signal loss in ICA) and spill-in 
from neighboring tissues, leading to systematic absolute quantification 
errors in the IDIF estimations compared to the AIF. Several methods 
have been implemented for PVC, reducing the need for blood samples 
or estimating a recovery coefficient based on the vessel volume and 
scanner resolution (Silvestri et al., 2022; de Salvi Souza et al., 2025). 
Options include arterialized or venous samples when equilibrium 
occurs during the acquisition (Galovic et al., 2021; van der Weijden et 
al., 2023).

Combining superior MR images with higher native contrast 
(TOF-MRA), without contrast agents, alongside improved PET 
performance, would enhance PET quantification overall. Higher-
quality images would reduce or eliminate the need for extensive 
pre-processing, increase segmentation accuracy (e.g., minimize tissue 
fraction effects due to limited sampling), and ultimately speed up and 
streamline the research pipeline.

We believe that with this synergy, it could be possible to exceed a 
Dice score of 0.90 with the U-Net and nnU-Net architectures and, 
moreover, establish a robust IDIF estimation.

2.3 Reconstruction

Apart from hardware improvements and data corrections, image 
reconstruction algorithms significantly impact final image quality and 
quantification accuracy. In this regard, the BrainPET 7 T insert poses 
a challenge due to the number of LORs (5 × 109), which is addressed 
by the multi-layer DOI detectors. Here, the PET Reconstruction 

Software Toolkit (PRESTO) is ideally suited to deal with the inherent 
trade-off between accuracy and numerical effort in iterative 
reconstruction by applying scanner-independent, adaptive projection 
data (Scheins et al., 2011) in combination with speed-optimized 
projectors (Scheins et al., 2015). As a further asset, PRESTO supports 
Maximum-aposteriori (MAP) reconstruction using prior knowledge. 
In future work, specific vessel delineation, as provided by MR, could 
be exploited to minimize PVE. In terms of data correction accuracy, 
PET requires the estimation of background from Compton scattering, 
which can easily exceed 30% of the total statistics in neuro applications. 
Meanwhile, Monte Carlo simulations become feasible (Scheins et al., 
2021) in dynamic imaging, potentially replacing Single Scatter 
Simulation, which is known to have limited accuracy and some pitfalls 
(Ma et al., 2020).

2.4 Multi-tracer applications

Multi-tracer imaging represents a promising advancement for 
assessing multiple physiological processes in a single scan session. By 
leveraging high-resolution PET systems and optimized signal 
processing algorithms, this approach can separate overlapping tracer 
signals, reducing patient burden and scan time compared to 
traditional protocols. For instance, studies have demonstrated the 
feasibility of triple-tracer imaging using synthetic data from clinical 
datasets (Hu et al., 2025).

Emerging technologies, such as those incorporating prompt 
gamma detection using ML-EM reconstruction methods, further 
enable precise multi-tracer imaging for studying complex brain 
disorders (Pfaehler et al., 2024). However, in multi-tracer brain PET, 
the IDIF faces challenges, as the overlapping signals complicate the 
accurate extraction of individual TACs essential for kinetic modeling. 
That being said, advanced signal decomposition techniques can 
potentially isolate tracer-specific contributions from vascular regions. 
Recent updates on IDIF methods highlight their non-invasive 
potential for human brain PET studies, noting that while ICA-based 
IDIF is viable for single tracers like [15O]H2O and [18F]FDG, extensions 
to multi-tracer scenarios will face new challenges to account for PVE, 
metabolite corrections (Volpi et al., 2023) and to minimize mixing 
effects in vascular structures (Vestergaard et al., 2021).

2.5 Phantoms for validation of IDIF 
estimation

Despite advances in IDIF, robust validation remains a critical 
challenge, particularly due to PVE (Zanotti-Fregonara et al., 2009). 
Dynamic phantoms incorporating realistic arterial structures and flow 
simulation are essential for validation. However, although most 
commercial head phantoms are designed for static anatomical 
simulation, attenuation correction, and lack dynamic flow, some 
prototypes simulate large vessels or modular flow-tube phantoms to 
systematically study IDIF recovery (Driscoll et al., 2022). Nevertheless, 
no commercially available dynamic head phantom with ICAs 
currently exists. To address this gap, we have recently developed a 
CT-derived, 3D printed prototype based on an existing head phantom 
(Iida et al., 2013). The phantom contains different fillable 
compartments (GM and WM), with incorporated ICAs that allow 
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dynamic flow simulation through the phantom during PET/MR 
acquisitions. Additionally, we designed a cylindrical geometric 
phantom with an ICA insert (Ramnarine et al., 1998) as a reliable 
platform for IDIF validation.

Looking ahead, further improvements are envisioned, especially 
with the 7 T MR-BrainPET insert. Advanced 3D printing and multi-
material techniques now allow more complex, accurate geometries 
and realistic flow simulations, leading to more reliable IDIF-based 
quantification (Liaw and Guvendiren, 2017).

3 Remaining challenges

3.1 Motion

Head motion during PET imaging can lead to image blurring, 
artifacts, and inaccurate quantification of tracer uptake and 
distribution. This degrades spatial resolution, reduces signal intensity 
in high-uptake regions, e.g., the brain cortex, and introduces bias in 
kinetic modeling (Spangler-Bickell et al., 2022). Common effects 
include motion-induced bias in binding potential estimates and 
overall reduced image quality, which is particularly problematic in 
dynamic scans lasting usually 30–90 min, where involuntary shifts 
from discomfort or neurological symptoms are common 
(Montgomery et al., 2006). To mitigate this, various correction 
strategies have been developed (Spangler-Bickell et al., 2022; Iwao et 
al., 2022; Wang et al., 2024; Chiu et al., 2025; Chen et al., 2021; Zeng 
et al., 2023; Ullisch et al., 2012).

The advent of next-generation systems amplifies the necessity for 
robust motion correction to preserve the benefits of enhanced 
sensitivity and spatial resolution. This correction is indispensable, 
because these scanners are inherently more sensitive to head 
displacements (~2 mm and 10), which can obliterate the improved 
contrast and quantitative accuracy promised by such technology. This 
perspective underscores the shift toward real-time, data-driven 
corrections to support advanced applications for accurate 
quantification in research and clinical applications.

Despite these advancements, implementing effective head motion 
correction presents notable challenges, including the need for precise 
real-time tracking, which can be computationally intensive and 
susceptible to artifacts from rapid or complex head movements. For 
the systems described previously, integrating motion data with 
reconstruction algorithms should take into account the DOI effects, 
attenuation map mismatches and TOF precision, but signal 
degradation in low-count scenarios or interference from patient-
specific factors (e.g., Parkinson) compromise quantification accuracy. 
Additionally, in hybrid PET/MR, aligning motion correction across 
modalities adds layers of complexity, requiring synergistic strategies.

3.2 Radiometabolites

Radiometabolite correction in brain PET applications is essential 
for accurate quantification, as radiolabelled metabolites can 
contaminate the IDIF derived from vascular regions, leading to 
overestimation of tracer uptake and biased kinetic parameters. Unlike 
invasive arterial sampling, which allows direct metabolite analysis, e.g., 

via radio high-performance liquid chromatography (radio-HPLC), 
IDIF relies on PET image data, where metabolites contribute to the 
total signal without differentiation, exacerbating issues in dynamic 
studies of neurotransmitters. The current status of the field reflects 
limited widespread adoption, with IDIF successfully implemented for 
only a minority of tracers (Table 1) due to challenges like PVE and 
inter-subject metabolic variability; however, recent advances include 
blood-free modeling approaches for early-phase tracer dynamics to 
estimate parameters with non-invasive kinetic modeling (Maccioni et 
al., 2024; Asch et al., 2025). Looking ahead, challenges persist in 
achieving reliable metabolite separation without blood samples for the 
majority of tracers.

In a multi-tracer approach, overlapping signals and complex 
metabolite profiles amplify the challenges. Precise blood sample 
analysis is needed to separate the contributions of each tracer and 
their metabolites. However, traditional methods like radio-HPLC are 
cumbersome and time-intensive when dealing with multiple 
compounds, potentially introducing errors from incomplete 
separation or variable metabolism rates across tracers. In IDIF 
methods, these issues are exacerbated by the inability to distinguish 
tracer-specific metabolites directly from vascular regions, leading to 
biased quantification in brain regions and reduced reliability for 
dynamic studies. Future techniques may address these hurdles with 
advanced imaging reconstruction and signal processing, enabling 
separation of multi-tracer signals into the ICAs dynamic imaging. 
Chromatographic methods, such as radio-HPLC with automated 
detection (including tracer signal separation), could enable real-time 
separation of tracers and metabolites in a few (arterialized/venous) 
samples taken at later time points during multi-tracer PET, providing 
individualized IDIF with less manual processing and invasiveness. 
These approaches, combined with new brain-dedicated PET systems, 
could streamline multi-tracer protocols, enhance quantitative 
accuracy, and facilitate broader adoption in research.

4 Discussion

In summary, the evolution of brain PET scanners represents a 
transformative leap in simultaneous multimodal neuroimaging, 
offering unprecedented spatial resolution, high sensitivity and 
temporal precision that synergize with 7 T MR techniques. These 
advancements address longstanding limitations in PET 
quantification, particularly through enhanced IDIF methods that 
minimize invasive arterial sampling while improving accuracy in 
capturing the radiotracer bolus peak and reducing PVE in 
vascular structures.

From a broader perspective, IDIF in brain PET quantification 
is poised to become closer to a standard non-invasive tool as next-
generation systems close gaps in resolution and sensitivity. By 
integrating AI-driven segmentation, advanced reconstruction 
algorithms with improved correction methods, and dynamic 
phantoms for validation, IDIF can evolve from a tracer-specific to 
a multi-tracer studies. This shift reduces patient burden and 
unlocks new possibilities for studying the brain, such as mapping 
multiple dynamic neurotransmitter systems, elucidating subtle 
pathologies in neurodegenerative disorders and tracking 
psychiatric conditions. In translational medicine, IDIF-enabled 
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PET/MR could accelerate drug development by providing 
biomarker-driven endpoints for clinical trials, support personalized 
therapies for brain tumors or epilepsy, and enhance early 
diagnostics with multimodal data integration. However, realizing 
this potential requires overcoming residual challenges such as 
motion artifacts, radiometabolite corrections, and standardizations. 
Collaborative, interdisciplinary efforts are therefore needed to 
propel the field toward validated, blood-free, full-
brain quantification.
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TABLE 1  List of radiotracers with IDIF validation methods depicted by imaging systems, IDIF region estimation, technique for blood sampling and 
metabolite’s correction when applicable.

Radiotracer Reference System IDIF Region Metabolites Technique

[11C]PIB
Lopresti BJ et al. (2005)

J Nucl Med.
ECAT HR + PET ICAs Yes AIF; HPLC

[18F]FLT
Backes H et al. (2009)

J Nucl Med.
ECAT EXACT HR PET ICAs Yes

AIF; average metabolite 

correction

[18F]FDG

Zanotti-Fregonara P et al. 

(2009)

J Cereb Blood Flow 

Metab.

ECAT HR+ PET ICAs No AIF; blood calibration

[18F]FDG

Sundar LK et al. (2019)

J Cereb Blood Flow 

Metab.

Siemens Biograph mMR 

PET/MRI
ICAs No AIF

[15O]H2O
Vestergaard MB et al. 

(2021) Neuroimage.

Siemens Biograph mMR 

PET/MRI
ICAs No AIF

[18F]GE-179
Galovic M et al. (2021)

NeuroImage.
GE SIGNA PET/MRI ICAs Yes 5 venous samples; HPLC

[18F]FDG
Silvestri E et al. (2022)

IEEE EMBC.
GE SIGNA PET/MRI

ICAs, superior 

sagittal sinus
No No blood

[18F]MC225
Salvi de Souza G et al. 

(2025) Front. Nucl. Med.

uEXPLORER Total-Body 

PET
Aortic arch, ICAs Yes AIF; HPLC

[18F]FDG [18F]SynVesT-1 [18F]

Flubatine [11C]LSN3172176

[11C]PHNO

Volpi T et al. (2025)

J Nucl Med.
NeuroEXPLORER

ICAs, common 

carotid (CC)
Yes AIF; HPLC
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