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Positron emission tomography (PET) and magnetic resonance imaging (MRI) offer
complementary information about the human brain in health and disease. The
simultaneous 7 T MR-BrainPET insert enables molecular imaging quantification
beyond the current limits. Here we present the current status of the field highlighting
PET/MR synergies for the image-derived input function (IDIF). We also discuss
promising applications that will benefit from these advancements, as well the
challenges to be addressed in the near future.
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1 Introduction

In vivo neuroimaging techniques have progressed significantly in recent decades,
advancing understanding of neural processes in health and disease (Jones et al., 2012; Fink
and Schneider, 2007). A major step toward simultaneous multimodal imaging was achieved
with the combination of PET and MRI (Schlemmer et al., 2008), and has been continuously
developed since (Herzog and Lerche, 2016). While MRI enables precise access to
neuroanatomy, flow dynamics and several other functional mappings, its sensitivity is
insufficient for molecular imaging, which studies the biodistribution of molecular targets and
metabolic processes in vivo. Compared to MRI, PET has a million-fold higher detection
sensitivity and is, therefore, the most important, non-invasive molecular imaging modality.
The pico-molar detection sensitivity of PET enables imaging of neurotransmitter/receptor
concentrations, and potentially allows the evaluation of endogenous neurotransmitter
fluctuations—stimulated by pharmacologic or cognitive challenges (Kegeles and Mann, 1997).
Most brain-PET scans are performed with whole-body scanners, which requires trade-offs in
the image performance. Therefore, several brain-dedicated scanners have been developed
(Caldeira et al., 2019; Catana, 2019; Li et al., 2024).

Brain-dedicated PET scanners are adapted to brain geometry, with reduced ring diameter
(solid angle coverage) and thicker scintillation crystals leading to a better sensitivity and
smaller scintillation crystals leading to a better spatial resolution. High detection sensitivity
and time resolution are needed for a good image signal-to-noise ratio (SNR), quantification
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precision, and allow short acquisition intervals in the case of dynamic
studies. The high spatial resolution of brain-PET scanners enables
reliable region delineation and minimizes the partial volume effect
(PVE) for the human cortex. As the cortex is highly folded, the spatial
resolution should, ideally, be homogeneous over the entire field-of-
view (FOV). Another important advantage of improved image-
derived input function (IDIF) performance is it avoids the need for
arterial cannulation, as the internal carotid arteries (ICAs) can be
resolved in the PET image and used as input for the full quantification
with kinetic modeling (Figure 1; Volpi et al., 2024). In addition,
temporal resolution is very important, since for IDIF the whole-blood
curves can be sampled with shorter image frames to better estimate its
peak (<2-5 s; Kang et al., 2025; Volpi et al., 2023).

Despite the advantages of brain-dedicated PET scanners, a
disadvantage is the increased parallax error whenever the scintillation
detectors are not prepared to estimate the depth of interaction (DOI)
of the y-photons (Lerche et al., 2018). Additionally, care has to be
taken to implement adequate data corrections to minimize motion
effects, y-photon attenuation, and scattering to assure high
quantification fidelity.

2 Instrumentation innovations in MR
and brain PET imaging

Compared to conventional field strengths (1.5 and 3 T), 7 T MRI
offers increased SNR and specificity (Feinberg et al., 2023). This
enables imaging with both higher spatial and temporal resolutions,
allowing for better characterization of subtle and prominent
anatomical features and microvascular structures. The benefits of 7 T
(Springer et al., 2016; De Cocker et al., 2018; Feng et al., 2022; Koning
et al.,, 2015; Zhu et al., 2016) have been demonstrated in various
applications, with the focus here on the brain and the ICA imaging.

Accessing superior visualization of tiny intracranial branches,
e.g., vessel walls, enables more specific assessment of properties, such
as wall thickening and other subtle vascular characteristics that are
hardly identifiable at lower fields, leading to more accurate images. To
provide a comprehensive characterization of the vessel wall, modified

10.3389/fnins.2025.1725728

turbo spin-echo (van der Kolk et al., 2013; Blankena et al., 2016; Zhu
et al,, 2018; Kleinloog et al., 2014) and time-of-flight (TOF; Park et
al., 2018; Cosottini et al., 2024; von Morze et al., 2007), contrast-
enhanced (Osuafor et al., 2022; Harteveld et al., 2015) and phase-
contrast (Kang et al, 2016). MR angiography techniques are
frequently employed.

One possible method for visualizing the ICA without using a
contrast agent is TOF MR angiography (TOF-MRA), which provides
precise localization information on the arterial inflow. TOF-MRA at
7 T has been shown to improve contrast-to-noise ratio (CNR) and
thus visualization of cerebral arteries compared to 3 T (von Morze et
al., 2007; Dimitrakopoulou-Strauss et al., 2021). This offers the
possibility for higher resolution TOF-MRA with more precise
delineation of the ICA lumen, enabling more accurate correction of
the PVE and segmentation of the PET images to improve the IDIF
estimation in MR-driven techniques.

A common challenge in cross-calibrating IDIF data to bolus
injections and blood sampling is correcting for dispersion due to
varying flow velocities across the vessel cross-section and course
(Dimitrakopoulou-Strauss et al., 2021).

The advanced speed-accelerated 4D flow sequence (Schmitter et
al.,, 2020) provides valuable haemodynamic information within the
ICAs that improves our understanding of cerebrovascular disease
progression. However, (B,*) inhomogeneity can be a challenge, but
using a robust, large-dynamic-range parallel-transmit mapping
technique to enable B,-shimming enhanced ICA image quality (de
Buck et al., 2024). Furthermore, the introduction of artificial
intelligence (AI)-driven models has advanced vascular imaging data
analysis, enabling precise vessel identification and localization
(Banerjee et al., 2024), and supporting an automated workflow that
reduces reliance on inconsistent MRA data.

Despite the advantages afforded by 7 T MRI, the higher field
strength increases the susceptibility to artifacts caused by arterial and
cerebrospinal fluid (CSF) pulsation (Seginer et al., 2024), which
reduces the accurate delineation of the vessel volume due to signal
loss, ghosting artifacts and blurring. To minimize these artifacts,
cardiac gating and motion compensation techniques can be used (Kuo
etal., 2019).

A)

4-5mm

FIGURE 1

(A) Schematic visualization of the brain and ICAs. (B) Designed anthropomorphic head phantom with ICAs (updated from phantom shown in C).
(C) Head phantom (lida et al., 2013) acquisition in the 7 T MR-BrainPET showing the cortex and cerebellar structures in contrast with the human head
from Figure 2A bottom (upper: BrainPET 7 T image, middle: PET/MR fused image and bottom: 7 T MR MP2RAGE T;-weighted image)
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FIGURE 2

(A) Upper row from left to right: transaxial contrast-enhanced EPIK image, coronal MPRAGE T;-weighted structural image at 3 T MR showing the
structure of the ICAs with contrast, and coronal [*FIFET 4th frame with 5 s. Bottom: transaxial MP2RAGE T;-weighted structural image at 7 T MR clearly
showing the structure of the ICAs, cortex, and cerebellum without contrast agents. (B) Plots with IDIF curves from each modality with Gamma function
fits and conversion from MRI IDIF to PET IDIF (estimated with 3 T MR-BrainPET upper images in A). Figure adapted from Caldeira et al. (2015).

Several projects are developing simultaneous PET/MR imaging at
7 T, aiming for full MR compatibility, significantly increased spatial
resolution (1-2 mm), and increased sensitivity compared to standard
clinical PET scanners (Allen et al., 2024; Won et al., 2021; Lerche et
al., 2023). To achieve high spatial resolution across the entire PET
FOV, the aforementioned scanners use DOI-capable scintillation
detectors, which reduce parallax errors.

The cortex and ICA are of interest in neuroscientific
applications, with average thicknesses or internal diameters of
2-5 mm and 4-5 mm, respectively (Baz et al., 2021). A noticeable
PVE occurs in these structures when they are smaller than twice the
spatial resolution of the system (Hoffman et al., 1979), requiring a
spatial resolution around 1-2 mm to minimize this. On the other
hand, increased detection sensitivity enhances image SNR, reducing
statistical errors in the PET quantitative measurements, e.g., the rate
constants required for compartment kinetic modeling (Dahlbom et
al., 2005). Additionally, higher SNR enables shorter image frames
for denser sampling of the radiotracer’s vascular phase, crucial for
IDIF, which lasts ~90 s. Currently available PET scanners only allow
very coarse sampling, resulting in an inaccurate determination of
the bolus activity concentration, leading to error propagation
during quantification. Reducing the sampling interval (currently
~15's), while simultaneously increasing the SNR, would significantly
reduce these errors. The PET image SNR can also be improved by
taking TOF information into account during image reconstruction,
and coincidence resolving time (CRT) has improved considerably
to 200 ps in recent years. The BrainPET 7 T insert developed at the
Forschungszentrum Jiilich (FZ]) achieves a spatial resolution of
1.6 mm, a sensitivity of 11%, and a CRT of 620 + 6 ps (Niekdmper
et al., 2025). This corresponds to a 2-3 times better resolution and
is more than double the sensitivity of the BrainPET 3 T insert
(Caldeira et al., 2019). At the same time, the BrainPET 7 T achieves
a detection rate for the noise equivalent counts that is ~10 times
higher than that of the BrainPET 3 T. Similar values are expected
with the Human Dynamic NeuroChemical Connectome (HDNCC)
scanner (Allen et al., 2024). However, due to the use of DOI-capable
scintillation detectors, the two 7 T inserts under development have
poorer CRT.
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2.1 Brain PET in image quantification

For over 15 years, scientists at FZ] have advanced PET/MR brain
imaging using one of only four prototype hybrid commercial 3 T
MR-BrainPET inserts available worldwide (Herzog et al., 2011).
Multiple tracers, including [*F]FDG, [*F]FET, [*O]H,O, have been
employed alongside diverse MR sequences in clinical studies (Caldeira
et al,, 2019; Rajkumar et al., 2021; Mauler et al., 2024; Zhang et al.,
2014; Mauler et al., 2020; Régio Brambilla et al., 2022).

In the context of IDIF, studies have applied semi-automatic ICA
segmentation, PVC, new reconstruction methods, and dual
simultaneous PET/MR acquisitions (Caldeira et al., 2015; da Silva et
al,, 2015; Anasovi et al., 2024). Most recently, Al has been applied in
our studies for segmentation (Hilgers et al., 2025). In a pilot study with
retrospective ["OJH,O data (Zhang et al., 2014), we achieved a
volume of distribution (V) agreement of R* = 0.95 and 0.98 in gray
matter (GM) and white matter (WM), when compared to Vr using
arterial input function (AIF). However, microparameters showed
quantification biases of 6.5-10.5%.

The feasibility of combined and individual IDIF derivation from
both, simultaneously acquired PET and MR data has already been
demonstrated by extracting IDIF curves from 3 T MR EPIK (Yun et
al.,, 2013) images with Gd-DTPA contrast and BrainPET images with
['*F]FET (Figure 2), as well as by evaluating the relationships between
the fit parameters obtained with both modalities (Caldeira et al.,
2015). The shape (two parameters) and amplitudes (one parameter)
of both curves in Figure 2 display linear relationships with agreements
of R* =0.86, R* =0.98 and R* =0.92, respectively. Using these
relationships, a conversion between the MRI and PET IDIF curves can
be achieved, and a considerable potentiation of the joint determination
can be expected at higher field strength (7 T vs. 3 T) and the improved
imaging performance of the BrainPET 7T component (spatial
resolution 1.6 mm vs. 2 to 6 mm and sensitivity of 11% vs. 7%; Kolb
etal., 2012).

Methodologically, enhancing PET/MR performance will be a vital
addition to current IDIF approaches. These approaches have
demonstrated that ICAs-based IDIFs—augmented by standardized
PVC, motion correction, and small sets of blood samples for residual
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corrections—can approach arterial-line performance for many
radiotracers. In addition, PET quantification can be further improved
by using MR data from 7 T for automatic carotid segmentation, PVC,
and refined estimation of IDIF (Caldeira et al., 2015).

2.2 Vessel segmentation and partial volume
effects

The segmentation task of small vessel diameters like ICAs in brain
PET images is currently challenging because of their diameter, which
may lie at the limit of the spatial resolution of most PET scanners
(~3-5mm), their tortuous shape, and pulsation. Therefore, small
intracranial vessels have traditionally been segmented manually or
semi-automatically, but this may change in the light of the new
scanners. Methods such as k-means (Liptrot et al., 2004), soft-decision
similar component analysis (Brankov et al., 2003), local mean analysis
(Maroy et al., 2008), region-growing (Galovic et al., 2021) and others
have already been validated (Sundar et al., 2019; Naganawa et al., 2005;
Chavan et al., 2024) for a limited number of tracers.

The U-Net topology is a widely used convolutional neural network
for biomedical image segmentation (Ronneberger et al., 2015), with
the newer version, nnU-Net, demonstrating excellent accuracy with
Dice Coefficients up to 0.97 when segmenting blood vessels (Zhu et
al., 2022).

In our pilot studies for estimating the IDIF using images acquired
from the 3 T MR-BrainPET insert, the U-Net model achieved a Dice
coefficient of 0.82, while the nnU-Net model achieved a Dice
coefficient of 0.64 compared to the manually segmented reference. The
PVE, resulting from the small ICA structure and limited PET scanner
resolution, leads to activity spill-out (signal loss in ICA) and spill-in
from neighboring tissues, leading to systematic absolute quantification
errors in the IDIF estimations compared to the AIF. Several methods
have been implemented for PVC, reducing the need for blood samples
or estimating a recovery coeflicient based on the vessel volume and
scanner resolution (Silvestri et al., 2022; de Salvi Souza et al., 2025).
Options include arterialized or venous samples when equilibrium
occurs during the acquisition (Galovic et al., 2021; van der Weijden et
al., 2023).

Combining superior MR images with higher native contrast
(TOF-MRA), without contrast agents, alongside improved PET
performance, would enhance PET quantification overall. Higher-
quality images would reduce or eliminate the need for extensive
pre-processing, increase segmentation accuracy (e.g., minimize tissue
fraction effects due to limited sampling), and ultimately speed up and
streamline the research pipeline.

We believe that with this synergy, it could be possible to exceed a
Dice score of 0.90 with the U-Net and nnU-Net architectures and,
moreover, establish a robust IDIF estimation.

2.3 Reconstruction

Apart from hardware improvements and data corrections, image
reconstruction algorithms significantly impact final image quality and
quantification accuracy. In this regard, the BrainPET 7 T insert poses
a challenge due to the number of LORs (5 x 10°), which is addressed
by the multi-layer DOI detectors. Here, the PET Reconstruction
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Software Toolkit (PRESTO) is ideally suited to deal with the inherent
trade-off between accuracy and numerical effort in iterative
reconstruction by applying scanner-independent, adaptive projection
data (Scheins et al.,, 2011) in combination with speed-optimized
projectors (Scheins et al., 2015). As a further asset, PRESTO supports
Maximum-aposteriori (MAP) reconstruction using prior knowledge.
In future work, specific vessel delineation, as provided by MR, could
be exploited to minimize PVE. In terms of data correction accuracy,
PET requires the estimation of background from Compton scattering,
which can easily exceed 30% of the total statistics in neuro applications.
Meanwhile, Monte Carlo simulations become feasible (Scheins et al.,
2021) in dynamic imaging, potentially replacing Single Scatter
Simulation, which is known to have limited accuracy and some pitfalls
(Ma et al., 2020).

2.4 Multi-tracer applications

Multi-tracer imaging represents a promising advancement for
assessing multiple physiological processes in a single scan session. By
leveraging high-resolution PET systems and optimized signal
processing algorithms, this approach can separate overlapping tracer
signals, reducing patient burden and scan time compared to
traditional protocols. For instance, studies have demonstrated the
feasibility of triple-tracer imaging using synthetic data from clinical
datasets (Hu et al., 2025).

Emerging technologies, such as those incorporating prompt
gamma detection using ML-EM reconstruction methods, further
enable precise multi-tracer imaging for studying complex brain
disorders (Pfaehler et al., 2024). However, in multi-tracer brain PET,
the IDIF faces challenges, as the overlapping signals complicate the
accurate extraction of individual TACs essential for kinetic modeling.
That being said, advanced signal decomposition techniques can
potentially isolate tracer-specific contributions from vascular regions.
Recent updates on IDIF methods highlight their non-invasive
potential for human brain PET studies, noting that while ICA-based
IDIF is viable for single tracers like [*O]JH,O and ["*F]FDG, extensions
to multi-tracer scenarios will face new challenges to account for PVE,
metabolite corrections (Volpi et al., 2023) and to minimize mixing
effects in vascular structures (Vestergaard et al., 2021).

2.5 Phantoms for validation of IDIF
estimation

Despite advances in IDIF, robust validation remains a critical
challenge, particularly due to PVE (Zanotti-Fregonara et al., 2009).
Dynamic phantoms incorporating realistic arterial structures and flow
simulation are essential for validation. However, although most
commercial head phantoms are designed for static anatomical
simulation, attenuation correction, and lack dynamic flow, some
prototypes simulate large vessels or modular flow-tube phantoms to
systematically study IDIF recovery (Driscoll et al., 2022). Nevertheless,
no commercially available dynamic head phantom with ICAs
currently exists. To address this gap, we have recently developed a
CT-derived, 3D printed prototype based on an existing head phantom
(Iida et al, 2013). The phantom contains different fillable
compartments (GM and WM), with incorporated ICAs that allow
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dynamic flow simulation through the phantom during PET/MR
acquisitions. Additionally, we designed a cylindrical geometric
phantom with an ICA insert (Ramnarine et al., 1998) as a reliable
platform for IDIF validation.

Looking ahead, further improvements are envisioned, especially
with the 7 T MR-BrainPET insert. Advanced 3D printing and multi-
material techniques now allow more complex, accurate geometries
and realistic flow simulations, leading to more reliable IDIF-based
quantification (Liaw and Guvendiren, 2017).

3 Remaining challenges

3.1 Motion

Head motion during PET imaging can lead to image blurring,
artifacts, and inaccurate quantification of tracer uptake and
distribution. This degrades spatial resolution, reduces signal intensity
in high-uptake regions, e.g., the brain cortex, and introduces bias in
kinetic modeling (Spangler-Bickell et al., 2022). Common effects
include motion-induced bias in binding potential estimates and
overall reduced image quality, which is particularly problematic in
dynamic scans lasting usually 30-90 min, where involuntary shifts
from discomfort or neurological symptoms are common
(Montgomery et al., 2006). To mitigate this, various correction
strategies have been developed (Spangler-Bickell et al., 2022; Iwao et
al,, 2022; Wang et al., 2024; Chiu et al., 2025; Chen et al., 2021; Zeng
et al., 2023; Ullisch et al., 2012).

The advent of next-generation systems amplifies the necessity for
robust motion correction to preserve the benefits of enhanced
sensitivity and spatial resolution. This correction is indispensable,
because these scanners are inherently more sensitive to head
displacements (~2 mm and 1°), which can obliterate the improved
contrast and quantitative accuracy promised by such technology. This
perspective underscores the shift toward real-time, data-driven
corrections to support advanced applications for accurate
quantification in research and clinical applications.

Despite these advancements, implementing effective head motion
correction presents notable challenges, including the need for precise
real-time tracking, which can be computationally intensive and
susceptible to artifacts from rapid or complex head movements. For
the systems described previously, integrating motion data with
reconstruction algorithms should take into account the DOI effects,
attenuation map mismatches and TOF precision, but signal
degradation in low-count scenarios or interference from patient-
specific factors (e.g., Parkinson) compromise quantification accuracy.
Additionally, in hybrid PET/MR, aligning motion correction across
modalities adds layers of complexity, requiring synergistic strategies.

3.2 Radiometabolites

Radiometabolite correction in brain PET applications is essential
for accurate quantification, as radiolabelled metabolites can
contaminate the IDIF derived from vascular regions, leading to
overestimation of tracer uptake and biased kinetic parameters. Unlike
invasive arterial sampling, which allows direct metabolite analysis, e.g.,
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via radio high-performance liquid chromatography (radio-HPLC),
IDIF relies on PET image data, where metabolites contribute to the
total signal without differentiation, exacerbating issues in dynamic
studies of neurotransmitters. The current status of the field reflects
limited widespread adoption, with IDIF successfully implemented for
only a minority of tracers (Table 1) due to challenges like PVE and
inter-subject metabolic variability; however, recent advances include
blood-free modeling approaches for early-phase tracer dynamics to
estimate parameters with non-invasive kinetic modeling (Maccioni et
al., 2024; Asch et al.,, 2025). Looking ahead, challenges persist in
achieving reliable metabolite separation without blood samples for the
majority of tracers.

In a multi-tracer approach, overlapping signals and complex
metabolite profiles amplify the challenges. Precise blood sample
analysis is needed to separate the contributions of each tracer and
their metabolites. However, traditional methods like radio-HPLC are
cumbersome and time-intensive when dealing with multiple
compounds, potentially introducing errors from incomplete
separation or variable metabolism rates across tracers. In IDIF
methods, these issues are exacerbated by the inability to distinguish
tracer-specific metabolites directly from vascular regions, leading to
biased quantification in brain regions and reduced reliability for
dynamic studies. Future techniques may address these hurdles with
advanced imaging reconstruction and signal processing, enabling
separation of multi-tracer signals into the ICAs dynamic imaging.
Chromatographic methods, such as radio-HPLC with automated
detection (including tracer signal separation), could enable real-time
separation of tracers and metabolites in a few (arterialized/venous)
samples taken at later time points during multi-tracer PET, providing
individualized IDIF with less manual processing and invasiveness.
These approaches, combined with new brain-dedicated PET systems,
could streamline multi-tracer protocols, enhance quantitative
accuracy, and facilitate broader adoption in research.

4 Discussion

In summary, the evolution of brain PET scanners represents a
transformative leap in simultaneous multimodal neuroimaging,
offering unprecedented spatial resolution, high sensitivity and
temporal precision that synergize with 7 T MR techniques. These
in PET
quantification, particularly through enhanced IDIF methods that

advancements address longstanding limitations
minimize invasive arterial sampling while improving accuracy in
capturing the radiotracer bolus peak and reducing PVE in
vascular structures.

From a broader perspective, IDIF in brain PET quantification
is poised to become closer to a standard non-invasive tool as next-
generation systems close gaps in resolution and sensitivity. By
integrating Al-driven segmentation, advanced reconstruction
algorithms with improved correction methods, and dynamic
phantoms for validation, IDIF can evolve from a tracer-specific to
a multi-tracer studies. This shift reduces patient burden and
unlocks new possibilities for studying the brain, such as mapping
multiple dynamic neurotransmitter systems, elucidating subtle
pathologies

in neurodegenerative disorders and tracking

psychiatric conditions. In translational medicine, IDIF-enabled
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TABLE 1 List of radiotracers with IDIF validation methods depicted by imaging systems, IDIF region estimation, technique for blood sampling and
metabolite’s correction when applicable.

Radiotracer Reference IDIF Region Metabolites Technique
Lopresti B et al. (2005)
["'C]PIB ECAT HR + PET ICAs Yes AIF; HPLC
J Nucl Med.
Backes H et al. (2009) AIF; average metabolite
["*F]FLT ECAT EXACT HR PET ICAs Yes
J Nucl Med. correction
Zanotti-Fregonara P et al.
(2009) o
[*FIFDG ECAT HR+ PET ICAs No AIF; blood calibration
] Cereb Blood Flow
Metab.
Sundar LK et al. (2019)
Siemens Biograph mMR
[¥F]FDG ] Cereb Blood Flow ICAs No AIF
PET/MRI
Metab.
Vestergaard MB et al. Siemens Biograph mMR
[*O]H,O ICAs No AIF
(2021) Neuroimage. PET/MRI
Galovic M et al. (2021)
["*F]GE-179 GE SIGNA PET/MRI ICAs Yes 5 venous samples; HPLC
Neurolmage.
Silvestri E et al. (2022) ICAs, superior
[®FIFDG GE SIGNA PET/MRI No No blood
IEEE EMBC. sagittal sinus
Salvi de Souza G et al. uEXPLORER Total-Body
[*F]MC225 Aortic arch, ICAs Yes AIF; HPLC
(2025) Front. Nucl. Med. PET
[*FIEDG [“FSynVesT-1 [*F]
Volpi T et al. (2025) ICAs, common
Flubatine ["'C]LSN3172176 NeuroEXPLORER Yes AIF; HPLC
["CIPHNO J Nucl Med. carotid (CC)

PET/MR could accelerate drug development by providing
biomarker-driven endpoints for clinical trials, support personalized
therapies for brain tumors or epilepsy, and enhance early
diagnostics with multimodal data integration. However, realizing
this potential requires overcoming residual challenges such as
motion artifacts, radiometabolite corrections, and standardizations.
Collaborative, interdisciplinary efforts are therefore needed to
field validated, Dblood-free, full-
brain quantification.

propel  the toward
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