001050341 001__ 1050341
001050341 005__ 20260108204826.0
001050341 0247_ $$2doi$$a10.1109/ISGTEurope64741.2025.11305506
001050341 037__ $$aFZJ-2026-00141
001050341 1001_ $$0P:(DE-HGF)0$$aStoyanova, Ivelina$$b0$$eCorresponding author
001050341 1112_ $$a2025 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe)$$cValletta$$d2025-10-20 - 2025-10-23$$wMalta
001050341 245__ $$aQuantum Computing Methods for Dynamic State Estimation in Power Systems
001050341 260__ $$bIEEE$$c2025
001050341 300__ $$a5p.
001050341 3367_ $$2ORCID$$aCONFERENCE_PAPER
001050341 3367_ $$033$$2EndNote$$aConference Paper
001050341 3367_ $$2BibTeX$$aINPROCEEDINGS
001050341 3367_ $$2DRIVER$$aconferenceObject
001050341 3367_ $$2DataCite$$aOutput Types/Conference Paper
001050341 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1767877742_20481
001050341 520__ $$aThis work investigates the applicability, limitations and advantages of six quantum computing methods for a dynamic state estimation scenario. The paper analyzes the computational challenges of a Kalman filter scenario to evaluate the feasibility of the quantum computing methods for this use case. The methods are introduced with their mathematical formulations and compared based on their level of maturity, their compatibility with existing hardware, the expected speedup and the caveats relevant to their applicability for the dynamic state estimation scenario. The central findings are that two of the methods are not applicable and two methods will not be further considered due to issues with the scalability. However, two methods seem promising for the application and will be used for more advanced studies on the matter.
001050341 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001050341 536__ $$0G:(MKW-NRW)QuGrids20231101$$aQuGrids - Quantum-based Energy Grids (QuGrids20231101)$$cQuGrids20231101$$x1
001050341 588__ $$aDataset connected to CrossRef Conference
001050341 7001_ $$0P:(DE-Juel1)195826$$aŞensebat, Orkun$$b1$$ufzj
001050341 7001_ $$0P:(DE-Juel1)204481$$aJi, Yanjun$$b2$$ufzj
001050341 7001_ $$0P:(DE-HGF)0$$aGaneshamurthy, Priyanka Arkalgud$$b3
001050341 7001_ $$0P:(DE-HGF)0$$aKajganic, Sonja$$b4
001050341 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b5$$ufzj
001050341 7001_ $$0P:(DE-HGF)0$$aMonti, Antonello$$b6
001050341 770__ $$z979-8-3315-2503-3
001050341 773__ $$a10.1109/ISGTEurope64741.2025.11305506
001050341 8564_ $$uhttps://juser.fz-juelich.de/record/1050341/files/Quantum_Computing_Methods_for_Dynamic_State_Estimation_in_Power_Systems.pdf$$yRestricted
001050341 909CO $$ooai:juser.fz-juelich.de:1050341$$pVDB
001050341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195826$$aForschungszentrum Jülich$$b1$$kFZJ
001050341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204481$$aForschungszentrum Jülich$$b2$$kFZJ
001050341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b5$$kFZJ
001050341 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001050341 920__ $$lyes
001050341 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001050341 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x1
001050341 980__ $$acontrib
001050341 980__ $$aVDB
001050341 980__ $$aI:(DE-Juel1)JSC-20090406
001050341 980__ $$aI:(DE-Juel1)PGI-12-20200716
001050341 980__ $$aUNRESTRICTED