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Abstract

Plant diseases impair yield and quality of crops and threaten the health of natural plant
communities. Epidemiological models can predict disease and inform management.
However, data are scarce, since traditional methods to measure plant diseases are resource
intensive and this often limits model performance. Optical sensing offers a methodology to
acquire detailed data on plant diseases across various spatial and temporal scales. Key
technologies include multispectral, hyperspectral and thermal imaging, and light detection
and ranging; the associated sensors can be installed on ground-based platforms, uncrewed
aerial vehicles, aeroplanes and satellites. However, despite enormous potential for synergy,
optical sensing and epidemiological modelling have rarely been integrated. To address this
gap, we first review the state-of-the-art to develop a common language accessible to both
research communities. We then explore the opportunities and challenges in combining
optical sensing with epidemiological modelling. We discuss how optical sensing can inform
epidemiological modelling by improving model selection and parameterisation and providing
accurate maps of host plants. Epidemiological modelling can inform optical sensing by
boosting measurement accuracy, improving data interpretation and optimising sensor
deployment. We consider outstanding challenges in: A) identifying particular diseases; B)
data availability, quality and resolution; C) linking optical sensing and epidemiological
modelling; and D) emerging diseases. We conclude with recommendations to motivate and
shape research and practice in both fields. Among other suggestions, we propose to
standardise methods and protocols for optical sensing of plant health and develop open
access databases including both optical sensing data and epidemiological models to foster
cross-disciplinary work.

Introduction

Plant diseases affect yield, quality and profitability of crops and forestry products. Estimated
impacts vary, making it difficult to unambiguously quantify losses (Oerke, 2006; Savary et al,
2019; Savary et al, 2023). However, consequences of disease can be substantial and can
even impact food security (Strange and Scott, 2005). Analogous impacts upon ecosystem
services are caused by pathogens of natural vegetation (Boyd et al, 2013). Some pathogens
are endemic, routinely causing disease in locations within which they are well-established, at
least in the absence of management. Other pathogens are emerging, i.e., increasing in
incidence, or geographic range, or host range (Ristaino et al, 2021). Outbreaks of emerging
pathogens are increasingly well documented (Rosace et al, 2023; Jeger et al, 2023; Fielder
et al, 2024), and rates of invasion are escalating (Ristaino et al, 2021).

Plant disease epidemics develop across multiple spatial and temporal scales. Models
tracking the dynamics of disease in time and space, and the epidemiological mechanisms
causing these dynamics, have been improved and have become increasingly popular over
the past few decades (Madden et al., 2007; Gilligan 2008). The current state-of-the-art (see
below) often involves complex spatiotemporal epidemic models fitted using advanced
Bayesian techniques (e.g., Soubeyrand et al., 2009; Pleydell et al., 2018; Godding et al.,
2023). Modelling provides a rational basis to integrate what is known with what is unknown,
but can reasonably be inferred, to predict the future epidemic dynamics. Predictions from
such models can then be used to design surveillance and control strategies (Parnell et al.,
2017; Cunniffe and Gilligan, 2020). However, to make concrete predictions for a specific
pathosystem, models must be fitted to and validated using experimental or observational
data, and lack of suitable data is often a significant limiting factor.

In part, this data limitation is because traditional methods for the detection and quantification
of plant diseases are time and resource intensive, largely since they involve human
observers (Bock et al. 2020). Proximal and remote sensing - which can be distinguished
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from each other in terms of distances separating sensor and target (Oerke, 2020) - have
great potential in this context. Many pathogens cause changes in plant health that can be
detected not only in the visible spectral range but also beyond that range (Mahlein et al.,
2024). Among many examples are tan spot on wheat leaves (caused by the fungus
Drechslera tritici-repentis) that results in a characteristic reduction in reflectance in the near-
infrared plateau (Bohnenkamp et al., 2021) and latent infections by Venturia inaequalis
(apple scab) that were detected as spots of lower temperature by capturing light in the
thermal infrared range (Oerke et al., 2011). Use of optical sensing to measure these signals
is thus particularly attractive. Here we use “optical sensing” as a common term to describe a
range of proximal and remote sensing techniques making use of electro-magnetic radiation
across a potentially wide spectral domain, including ultraviolet (UV; a list of acronyms used
is given in Table 1), visible and infrared (IR).

Optical sensing technologies and platforms have advanced in the past decades, meaning
that cheap uncrewed aerial vehicles (UAVSs), standard piloted aircraft carrying affordable
imaging sensors, and spaceborne systems collecting ever higher-resolution (spatial and
spectral) imagery have become available (Jin et al., 2021a). As a result, a portfolio of digital
systems can now deliver optical sensing data at unprecedented spatial, spectral and
temporal resolutions and scales. Optical sensing of vegetation is now a leading focus in
remote sensing science, allowing us to use nested data that span a wide range of spatial
scales (Gamon et al., 2019). Further developments, including hyperspectral satellite imagery
at high temporal and spatial resolutions, will accelerate use of remote sensing data to detect
and map disease and inform epidemiological modelling.

In plant disease research, there is a significant focus on epidemiology and modelling.
However, it is hitherto uncommon for modellers to use optical sensing derived
measurements of plant diseases. Although there are some exceptions in which optical
sensing is used to inform summaries such as logistic or Gompertz disease progress curves
(e.g., Gongora-Canul et al., 2020; Zhang et al., 2023), only few papers make meaningful
links between optical sensing and the state-of-the-art approaches in epidemiological
modelling (e.g., Camino et al., 2021, Leclerc et al., 2023). Indeed, in part due to deficiencies
in current training programmes and a lack of training focusing on applied data science, most
individuals interested in sensing technologies for plant disease do not have a background in
epidemiological modelling. On the other hand, disease modellers, who can often be skilled
data scientists, generally lack understanding of the opportunities and challenges involved in
processing and interpreting remotely sensed information. Significant links between the
optical sensing community and disease modellers remain absent, despite the logical benefits
of such collaboration (Heim et al., 2019).

Excited by the possibilities of building such links, a subset of the authors of this paper
organised a Satellite Meeting of the 2023 International Congress of Plant Pathology in Lyon:
“How to combine remote sensing with epidemiological modelling to improve plant disease
management?”. By assigning all attendees preparatory work focusing on identifying
challenges in linking the fields, and by making time for didactic talks in the meeting’s
programme (archive: https://reseau-modstatsap.mathnum.inrae.fr/episense), attendees from
backgrounds predominantly in remote sensing or epidemiological modelling were able to
engage and to discuss. By working collaboratively, we came to a consensus view on the
opportunities - and challenges - in linking the two fields and allowing epidemiological
modelling to inform work in optical sensing, and vice versa.

This paper is the output of this work. We review the opportunities and challenges in
combining optical sensing with epidemiological modelling. We start by describing the state-
of-the-art in each field. Although thorough reviews of both fields are available (e.g., Oerke,
2020; Bock et al. 2020; Gilligan and van den Bosch, 2008; Cunniffe and Gilligan, 2020;
Fabre et al., 2021; Mahlein et al., 2024), in part we wanted to use this paper to develop a
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common language accessible to both research communities. This requires a more detailed
explanation. To illustrate what might be possible, we highlight opportunities for optical
sensing to contribute to epidemiological modelling, and vice versa. We then review the
outstanding challenges and categorise them into those associated with: A) identifying
particular diseases; B) data availability, quality and resolution; C) linking optical sensing and
epidemiological models; D) emerging diseases. We conclude with a set of
recommendations, to provide a road map to motivate and shape future research and
practice in both fields.

Current state of the art

Optical sensing of plant diseases
Sensors

The most commonly used sensors are standard red-green-blue (RGB) and colour-infrared
(CIR) cameras. These are affordable and portable, and capable of millimeter-scale spatial
resolution when used in proximal sensing settings (Barbedo 2016; Bock et al., 2020;
Anderegg et al., 2024). However, such sensors only capture images in three spectral bands,
reducing the number of spectral characteristics that can be monitored. Despite their fine
spatial resolution and low prices, RGB and CIR cameras are optimised to reflect human
vision and thus do not provide quantitative measurements of light reflection and absorption.

Multispectral imaging systems, in contrast, operate across multiple discrete spectral bands,
and are often designed to quantitatively measure the intensity of electromagnetic radiation.
Since the spectral bands tend to be narrower than those used in RGB and CIR sensors, this
enables more precise estimation of changes in specific absorption features. They also often
cover spectral regions beyond the visible, enabling characterisation of pigments or structural
plant traits (Xie et al., 2008; Blasch et al., 2023). Hyperspectral imaging (aka HSI or imaging
spectroscopy) captures light across a much wider spectral range in narrow contiguous
bands, including ultra-violet (UV; 250-400 nm wavelength), visible (400-700 nm), near-
infrared (NIR; 700-1300 nm) and shortwave infrared (SWIR; 1300-2500 nm), and has a high
spectral resolution (Fiorani et al. 2012; Mishra et al., 2017; Mahlein et al., 2019; Sari¢ et al.,
2022; Rayhana et al., 2023; Brugger et al., 2023).

Very generally, plant and fungal pigments (e.g., chlorophyll, anthocyanins, carotenoids,
melanins) affect reflectance spectra in the UV and visible ranges (Gay et al., 2008;
Bohnenkamp et al., 2019b; Brugger et al., 2023). Reflectance in the visible and NIR/SWIR
ranges carries information about foliar plant traits relevant to disease, including nutrient and
water content, photosynthetic capacity, pigment and phenolic compound concentration, as
well as other physiological and morphological properties of plants including leaf area index
(Delalieux et al., 2008; Singh et al., 2015; Mishra et al., 2017; Mahlein et al., 2019;
Vanbrabant et al., 2019; Gold et al. 2019a,b; Garrett et al., 2022). Reflectance in the red
edge area (680-750 nm) is sensitive to plant stress, because it is affected by chlorophyll
absorption (Horler et al., 1982). HSI has been extended to retrieve passive solar-induced
fluorescence (SIF) in the field and with airborne hyperspectral sensors (Mohammed et al.,
2019), in contrast to classical chlorophyll fluorescence that is mainly limited to controlled
environments. This makes HSI more useful for disease measurement (Calderon et al. 2013;
Mabhlein et. al. 2018; Zarco-Tejada et al. 2018) and monitoring (Porcar-Castell et al. 2021).
HSI can quantify subtle changes in plant constituents and the rich information content of
hyperspectral data is promising for disease detection and quantification.

Recent publications have established scalable detection of multiple economically important
diseases caused by bacterial (Zarco-Tejada et al., 2018; Schoofs et al., 2020), fungal
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(Sapes et al., 2022), oomycete (Hornero et al., 2021), and viral (Romero Galvan et al., 2023)
pathogens asymptomatically with visible-SWIR hyperspectral imagery collected via aircraft.
Once the most discriminatory wavelengths are identified, hyperspectral sensors may be
replaced with cheaper multispectral sensors which capture fewer spectral bands located at
the most informative spectral regions sensitive to the biotic-induced physiological changes
(Bohnenkamp et al., 2019b; Poblete et al., 2020).

Thermal infrared (TIR) imaging (aka thermography) captures radiation in the long-infrared,
thermal range (8—14 uym wavelength), providing information complementary to HSI. Typical
outputs include maps of canopy or leaf temperature normalised by air temperature (Still et
al., 2019), thermal-based indices such as the crop water stress index (CWSI; Jackson et al.,
1981) and the index of stomatal conductance (Jones 1999). For foliar diseases, plant-
pathogen interactions can disrupt stomatal function, leading to changes in temperature
within affected leaf areas (e.g. Bassanezi et al., 2002; Hellebrand et al., 2006; Smith et al.,
1986). Vascular pathogens can block plant vessels, which reduces transpiration rates, and
this can also be quantified by TIR imaging (e.g., Calderon et al., 2015; Zarco-Tejada et al.,
2018). TIR imaging in controlled environments has achieved pre-symptomatic detection in
several pathosystems (e.g., Chaerle et al., 2004; Oerke et al., 2011), although reliable
signals of pre-symptomatic disease appear absent for others (Pineda et al., 2021). In the
field, higher severities of Dothistroma needle blight in pine trees and septoria tritici blotch in
wheat have been associated with increased canopy temperatures via TIR imaging (Smigaj et
al., 2019; Wang et al., 2019). TIR imaging is potentially a powerful tool for detecting plant
stress (Messina and Modica, 2020). However, its outputs are not pathosystem specific and
can be confounded with abiotic stress (Pineda et al., 2021; Kuska et al., 2022), and even
without stress, temperature distributions in field canopies vary in space and time. Hence, TIR
imaging is expected to be most useful in combination with other sensing technologies
(Berger et al., 2022).

Light detection and ranging (LIDAR) is an optical sensing technology that uses reflected
laser pulses to measure distances (Wang and Menenti, 2021), generating dense 3D point
clouds to map an environment. The technology is increasingly used to measure structural
characteristics of plants (Omasa et al., 2007), especially crops (Jin et al., 2021b; Rivera et
al., 2023). Applications include detecting individual plants, classifying them according to
species (Fasshacht et al., 2016), and estimating plant height, leaf area index (Wang and
Fang, 2020), canopy density and volume, dry matter and yield. Since structural and
geometric plant traits captured by LIDAR can be affected by pathogens, in principle LIDAR
can also be used to measure plant diseases, although examples are rare (see, for example,
Husin et al., 2020). More often LIDAR has been used in conjunction with other sensing
techniques, e.g., for Dothistroma needle blight (Smigaj et al., 2019) or wilt disease (Yu et al.,
2021), and for vascular wilt (‘Blackleg’) disease in potato (Franceschini et al., 2024), since
LiDAR provides information complementary to other sensing methods.

Platforms and spatiotemporal scales

Several platforms have been developed to gather proximal and remote sensing
measurements (Jin et al., 2021a). Some platforms are stationary, fixed in place by poles
(Parmentier et al., 2021), cable suspension (Kirchgessner et al., 2017), or rails (Virlet et al.,
2017). Others are mobile, ranging from hand-held (Cerovic et al., 2012; Behmann et al.,
2018), to those mounted on human-driven (Buelvas et al., 2023) and/or robotic vehicles
(Underwood et al., 2017; Cubero et al., 2020; Pearson et al., 2022), to uncrewed aerial
vehicles (UAVs) (Sankaran et al., 2015; Aasen et al., 2018; Kim et al., 2019; Kouadio et al.,
2023), to piloted aircrafts (Kampe et al., 2010; Wang et al., 2020), to high altitude balloons
(Hobbs et al., 2023), and satellites (Rast and Painter, 2019; Paek et al., 2020; Qian, 2021).



The features of the sensor-platform combination determine the spectral, temporal and spatial
characteristics of the observations and typically trade off detail (resolution), scale (extent),
and fidelity (precision and accuracy) (we discuss these tradeoffs in more detail in Challenge
Biii). We note that, because the sensors and platforms are undergoing rapid development,
these trade-offs are continuously changing. Mass production of UAV components makes it
now possible to relatively cheaply and regularly collect spatially detailed plot or landscape-
scale images that until recently required piloted aircrafts. Thanks to the miniaturisation of
sensors, both piloted aircrafts and UAVs can carry sensors chosen for their sensitivity to
specific vegetation traits of interest to an epidemiological problem (Jin et al., 2021a).

New and forthcoming imaging spectroscopy satellites include the German Aerospace
Center’s Environmental Mapping and Analysis Program (EnMAP) (Storch et al. 2023;
Chabrillat et al., 2024), NASA’s Surface Biology and Geology (SBG) (Cawse-Nicholson et al.
2021), ltalian Space Agency’s PRecursore IperSpettrale della Missione Applicativa
(PRISMA) (Tagliabue et al., 2022) and ESA’s Copernicus Hyperspectral Imaging Mission for
the Environment (CHIME) (Celesti et al., 2022). These will provide vast open datasets which
can be used for plant disease measurement, with smaller missions like CSIMBA-IPERLITE
(a non-commercial in-orbit demonstration mission of the EU) adding hyperspectral capacity
at higher spatial resolution (=20 m) (Livens et al., 2024). These systems provide high
spectral and temporal resolutions (sub-monthly), but intermediate spatial resolutions (=30
m). Current thermal imaging satellites, such as NASA's ECOSTRESS, have insufficient
spatial resolution for effective plant disease monitoring (>100 m). However, upcoming high-
resolution TIR satellite sensors, such as NASA's Landsat Next and ESA's Land Surface
Temperature Monitoring (LSTM), will offer improved revisit intervals (3-6 days) and spatial
resolutions (50-60 m).

These advances promise to improve characterisation of plant diseases, but the relatively
coarse spatial resolution remains a challenge. The commercial satellite industry has sought
to fill this gap. Recent developments in satellite design have improved the spatial-temporal
resolution and scalability of spaceborne sensing platforms, making them more suitable for
disease detection (Kanaley et al., 2024; Poblete et al., 2023; Raza et al., 2020). Largely, this
has become possible thanks to developing satellite constellations, groups of satellites
working together, often designed to complement each other in terms of coverage, revisit
time, or other functions. For example, Planet Lab’s cube multispectral satellite constellations
provide global imagery with high spatial resolution and frequent revisit times. Planet’s
SuperDoves collect eight-band images at 3 m resolution with a 24-hour revisit time (Tu et al.,
2022), while the SkySat C constellation captures four-band images with 0.5 m resolution at
revisit intervals set by tasking contracts (Planet, 2023). In contrast, MAXAR’s 16+ band
Worldview-3 has a more traditional satellite design that offers spatial resolution of 0.3 m for
panchromatic imagery, 1.24 m for visible and near-infrared (VNIR) imagery, and 3.7 m for
shortwave infrared (SWIR) imagery (Longbotham et al., 2015). Other emerging systems
offer moderate spatial resolution, but in the hyperspectral domain, including Planet Tanager
(30 m, 420 bands; Planet, 2024), Kuvaspace Hyperfield-1 (25 m, 150 bands; Kuvaspace,
2024), PIXXEL (5-10 m, 250 bands; Petropoulos et al., 2024), Orbital Sidekick GHOSt (8 m,
500 bands; Sanders et al., 2024). In the thermal domain, Hydrosat’s 16 constellation
promises thermal infrared imagery targeted for agricultural use at 30 m spatial resolution
(Lalli et al., 2022).

Data pre-processing and analysis

To measure plant diseases using optical sensing, the data requires pre-processing (Bioucas-
Dias et al., 2013; Aasen et al., 2018) and extraction of disease measures (Behmann et al.,
2015; Verrelst et al., 2019). The raw signal acquired by a sensor must be converted to a
meaningful biophysical quantity, e.g., surface reflectance (for multispectral imaging [MSI]
and HSI; Daniels et al., 2023) or temperature (for TIR; Messina and Modica, 2020), via
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radiometric calibration (Sterckx et al., 2019, 2020). To convert hyperspectral imagery into
surface reflectance, it is essential to measure irradiance (the amount of incoming sunlight) at
the time of image capture. To achieve this, irradiance should be recorded simultaneously
with the imagery. This signal conversion should incorporate corrections for both the sensor
and the local environmental conditions. Further, plant canopies can have different patterns of
sunlit versus shaded, depending on solar and view geometries. This can confound analyses
when multiple images captured at different times are stitched together (mosaicking; Ghosh
and Kaabouch, 2016; Gomez-Reyes et al., 2022) or compared, although bidirectional
reflectance distribution function (BRDF) approaches can correct for these effects (Collings et
al., 2010; Queally et al., 2022). Terrain slopes may also distort the images, in which case
topographic corrections are needed (Soenen et al., 2005; Vreys et al., 2016a, 2016b). Open-
source packages are available which implement BRDF and topographic corrections (e.qg.,
Chlus et al., 2023). For high-altitude platforms, light travels large distances, making
atmospheric correction essential (Bioucas-Dias et al., 2013; Sterckx et al., 2016). This can
be done by inverting radiative transfer models (RTM; Verhoef and Bach, 2003). In HSI,
single pixels can contain spectra from different “pure materials”, or endmembers (e.g., soil,
vegetation and shadow; Galvan et al., 2023), and spectral unmixing can tease out the
spectra of individual endmembers for each pixel (Bioucas-Dias et al., 2012; Gu et al., 2023).
Each pixel also needs to be attributed to a spatial location by georeferencing (Aasen et al.,
2018), which may require ground control points (GCP), inertial measurement units, global
positioning systems (GPS) or a combination of these (Bryson et al., 2010; Turner et al.,
2014). When multiple sensors are used, their spatial co-registration is desirable (Scheffler et
al., 2017). Several studies offer examples of standardisation and assessment of reliability of
the data acquired using multispectral and hyperspectral sensors in controlled environments
(Paulus and Mahlein, 2020), via ground-based measurements (Detring et al., 2024) and on-
board UAV platforms (Aasen et al., 2018).

After data pre-processing, meaningful disease measures must be extracted, such as disease
presence/absence, incidence or severity. To capture disease presence/absence or distinct
gualitative classes of disease intensity (nominal scales; Bock et al., 2020), classification
methods need to be used, whereas to capture quantitative measures of disease (e.g.,
incidence or severity), regression methods are more suitable. This can be done using
parametric regression, machine learning (ML), RTM (see Challenge Ai below), or a
combination of these methods (Verrelst et al., 2019). A range of ML approaches have gained
particular prominence because of their capacity to handle complex, high-dimensional
datasets (Behmann et al., 2015), including penalised linear regression (e.g., partial least
squares regression; Geladi and Kowalski, 1986), kernel-based methods (e.g., support vector
machine; Tuia et al., 2011), decision trees (e.g., random forest; Belgiu and Dragut, 2016),
and artificial neural networks (especially, deep learning; Yuan et al., 2020; Osco et al., 2021,
Ispizua et al., 2024). Each of the ML approaches mentioned above can be formulated as a
classification or a regression method. Further, in ML-based image analysis, we can train ML
models to detect objects of certain types within images (e.g., diseased plants or fungal
fruiting bodies), or perform image segmentation, where we subdivide an image into multiple
regions, according to certain criteria (e.g., to separate diseased leaf areas from healthy leaf
areas). We mainly focus on supervised ML that requires reference measurements of disease
to be used as training and testing datasets but consider self-supervised ML that requires
minimal reference measurements in Challenge Bi below.

Current state-of-the-art in optical sensing of plant diseases

Several studies have reported plant disease measurements using various combinations of
platforms and sensors across a range of spatial and temporal scales. For example, ground-
based hyperspectral radiometers were used to detect and quantify septoria tritici blotch in
diverse wheat cultivars (Yu et al., 2018; Anderegg et al., 2019). Further examples include
detection and quantification of yellow (stripe) rust in wheat using UAV-based multispectral
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(Su et al., 2018, 2019) and hyperspectral imaging (Guo et al., 2021), and hyperspectral
imaging using both a ground-based vehicle and UAVs (Bohnenkamp et al., 2019a). Wheat
blast has been quantified using UAV-based multispectral imaging (Gongora-Canul et al.,
2020). Several UAV-based studies reported quantification of potato late blight using RGB
imaging (Sugiura et al., 2016), multispectral imaging focusing on quantifying low severities
(Franceschini et al., 2019), and detection of the disease using hyperspectral imaging (Shi et
al., 2022). Tar spot disease in corn has been quantified with the help of ground-based RGB
imaging (Lee et al., 2021, Lee et al, 2025), UAV multispectral imaging (Oh et al., 2021,
Zhang et al., 2023) and a combination of multispectral and thermal imaging (Loladze et al.,
2019). Ground robotics and rovers that automate side and lower canopy disease data
acquisition offer a promising complement to aerial imaging (Liu et al. 2022a, 2022b, 2023).

Box 1. Aerial avengers: remote sensing of Xylella fastidiosa on olives

The vector-borne, xylem-limited bacterium Xylella fastidiosa causes serious diseases in a range
of cultivated and wild plants, including Pierce’s disease in grapevines and variegated chlorosis in
citrus (EFSA, 2021). In 2013, the first report of X. fastidiosa in the European Union came from
Italy (EFSA, 2013), where the pathogen was recognized to cause olive quick decline syndrome
(OQDS, Martelli et al., 2016). OQDS has subsequently killed millions of olive trees in southern
Europe (Bajocco et al., 2023), with reports now coming from several EU countries. Nevertheless,
remote sensing of OQDS represents an inspiring success.

Substantial reference datasets have been collected for OQDS by quantitative polymerase chain
reaction (QPCR; Harper et al., 2010) assays and in situ inspections, and linked to aircraft (Zarco-
Tejada et al., 2018; 2021) and satellite (Hornero et al., 2020) remote sensing measurements.
Combining results from visible to near-infrared HSI and TIR imaging sensors onboard piloted
aircraft, Zarco-Tejada et al. (2018) detected OQDS symptoms in individual olive trees, often
before they were visible to the naked eye. Camino et al. (2021) extended this approach with
images in the shortwave infrared region, and showed how linking to dispersal processes from an
epidemiological model could improve detection accuracy of X. fastidiosa in almonds at a pre-
visual stage. Nevertheless, the confounding physiological effects caused by vascular pathogens
and water stress in olive and almond required further work to reduce the detection of false
positives. The evaluation of a wide range of spectral plant traits quantified from airborne
hyperspectral and thermal images across host species (olive vs. almond) and across vascular
plant pathogens (X. fastidiosa vs. Verticillium dahliae, a soil-borne pathogen that causes
analogous symptoms) demonstrated that there are specific spectral-based traits for each plant
species and pathogen (Zarco-Tejada et al., 2021; Poblete et al., 2021). Accounting for distinct
spectral plant traits associated with the dynamics of water-induced stress improved early and
pre-symptomatic disease detection (Zarco-Tejada et al., 2021). While detection of middle and
advanced stages of OQDS development was reasonably successful using high-resolution
multispectral satellite imagery, a critical conclusion is that the early (i.e., pre-visual) detection of
X. fastidiosa- and V. dahliae-induced symptoms required a combination of HSI and TIR imaging
from aircraft or UAV at high spatial resolutions (40-60 cm) to capture pure tree crowns (Poblete
etal., 2023).

However, transferability of spectral signatures of OQDS to other olive-growing regions, and to
other host species (e.g., coffee, citrus, grapevines) is an outstanding challenge. Remote sensing
may be particularly suited to the slower dynamics of vascular wilt disease progression in trees
compared to annual crops. Trees are larger and persist for longer than annual crop plants in a
fixed spatial location, making the multitemporal monitoring of orchards at the required resolution
and frequency technologically and operationally feasible. This means higher temporal resolutions
and quicker turn-around processing times are required to achieve similar success in optical
sensing measurements of annual crop diseases.

For some pathogens at certain spatial scales, it is now firmly established that visible to
shortwave infrared (VSWIR) imaging spectrometers mounted on piloted aircraft (e.g.
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AVIRIS-NG; Chapman et al., 2019) are capable of pre- and post-symptomatic disease
detection (Zarco-Tejada et al., 2018, 2022; Hornero et al., 2021; Sapes et al., 2022; Romero
Galvan et al., 2023). Satellite data have been used to map and monitor host plants across
large areas (e.qg., citrus in China; Xu et al., 2021), and to detect both systemic (e.g.,
Huanglongbing in citrus; Li et al., 2015) and localised (e.qg., foliar grapevine downy mildew;
Kanaley et al. 2024) diseases. More recently, optical satellite data have been used to track
the spread of rice blast, and ground-based hyperspectral reflectance used to verify the
satellite-derived predictions (Tian et al., 2023).

We highlight two research programmes that have achieved encouraging success in sensor-
based disease detection and/or measurements in two contrasting pathosystems (systemic
vs. localised): Xylella fastidiosa in olives (Box 1; a xylem-limited bacterial pathogen of a
woody perennial crop) and Cercospora beticola in sugar beet (Box 2; a foliar fungal
pathogen of an annual field crop). We note that the set of examples we have identified
above is far from being complete. Many studies have achieved high accuracies of disease
detection/quantification. However, with a few exceptions (e.g., Box 1), investigations have
been conducted for a single disease in the absence of abiotic stress, and often in a single
location. It is not clear whether the sensing signatures derived from these studies would be
robust with respect to presence of other biotic and/or abiotic stresses (Challenge Aii), and to
what extent the outcomes would be transferable to other host genotypes or other geographic
locations (Challenge Aiii).

Box 2. Fifteen years of optical sensing of Cercospora leaf spot in sugar beet

Cercospora leaf spot (CLS), caused by the ascomycete Cercospora beticola (Sacc.), is a serious
threat to sugar beet production worldwide (Weiland and Koch, 2004; Rangel et al., 2020). This
hemibiotrophic pathogen causes characteristic leaf spots with a reddish-brown border and a
necrotic centre. Under favourable conditions, entire leaves become necrotic, causing reductions
in the photosynthetically active canopy. Yield losses can reach 50% in regions with high disease
pressure (Shane and Teng, 1992).

Thanks to intensive research during the last 15 years, clearly defined symptoms and the
dicotyledonous growth with flat leaves of the host plant, C. beticola is now established as a
model organism for plant disease detection using spectral sensors (Ruwona and Scherm, 2022).
Diverse studies have characterised and detected CLS at different scales, from the microscopic
(Leucker et al., 2016; 2017), to the tissue scale (Mahlein et al., 2012; Arens et al., 2016), to the
leaf (Mahlein et al., 2010) and single plant scale (Giinder et al., 2022). HSI with high spectral and
spatial resolution in the visible, NIR and SWIR ranges provided high-quality data sets of
reflectance and transmittance complemented with reference data from visual monitoring or
analytics. Studies under controlled conditions provide basic knowledge on spectral
characteristics of the disease (Mahlein et al., 2010), insights into sporulation and lesion
phenotyping (Leucker et al., 2016; 2017), have linked disease aetiology to biochemical and
structural processes (Arens et al., 2016; Mahlein et al., 2012) and permitted early detection
before visible symptoms (Arens et al., 2016; Rumpf et al., 2010). Early studies addressed the
differentiation of CLS from other foliar diseases such as sugar beet rust or powdery mildew and
for the first time, disease specific spectral vegetation indices were developed (Mahlein et al.,
2013). Due to recent innovations in robotics and the increasing availability of UAVs and spatially
highly resolved RGB or multispectral cameras, these studies are now complemented by field
scale studies on monitoring and detection of CLS (Barreto et al., 2023; Ispizua et al., 2022).
Remote sensing using UAVs was successfully used for phenotyping of tolerant and resistant
varieties (Gorlich et al., 2021; Ispizua et al., 2022) and for extracting disease incidence and
severity for decision making in integrated pest management.

The progress and knowledge gained in detecting CLS are likely to be useful for other host
pathogen systems, because similar experimental approaches and data analysis pipelines are
expected to work for a range of foliar fungal pathogens of field crops.
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Epidemiological modelling
Data- versus process-based models

In categorising model structure, a key distinction is between data- and process-based
models (Madden, 2006). Data-based models (aka empirical or correlative or statistical
models; Gonzalez-Dominguez et al., 2023) are driven entirely by data, and do not attempt to
capture or track biological mechanisms underpinning disease or disease risk. This class of
model has a long history, with mathematical and statistical methods becoming increasingly
complex. Current work often emphasises models including complex non-linear responses
and/or multiple predictor variables (Shah et al., 2019), as well as statistically sound
treatments of different types of measurements and their associated error structures (Garrett
et al., 2004; Madden et al., 2007). Promising recent developments echo trends in
epidemiology more broadly (Li et al., 2017) to develop techniques for combining multiple
predictions from ensembles of models (Shah et al., 2021), and to account for and weigh
different sources of evidence using Bayesian analysis and decision theory (Hughes, 2017).

Data availability is often a limiting factor for data-based models (Madden, 2006). This makes
linking with optical sensing attractive, as it increases the volume, range and scope of data
available for model parameterisation and validation. In turn, these expanded datasets enable
the direct application of recent developments in machine learning to disease prediction.
Although some recent studies have shown the potential of machine learning for plant
disease prediction (e.g., Skelsey, 2021; Xu et al., 2018; Hamer et al., 2020; Martinetti and
Soubeyrand, 2019), applications have so far been predominantly focused on data analysis
for disease detection (Gobalakrishnan et al., 2020; Xie et al., 2022) and/or quantification
(Anderegg et al., 2019; Oh et al., 2021; Barreto et al., 2023; Leclerc et al., 2023; Zhang et
al., 2023; Lee et al., 2025).

Process-based models

Process-based (or mechanistic) models instead aim to represent the biological basis of
disease epidemics, focusing on the dynamics of disease in time and perhaps space
(Madden, 2006). The dominant paradigm is compartmental modelling, an approach also
widely adopted for diseases of animals and humans (Keeling and Rohani, 2008).
Compartmental models divide a host population into mutually exclusive classes based on
disease status. Levels of complexity vary, but the most common formulation distinguishes
healthy and infected tissue, with a further partitioning of infected tissue into pre-infectious,
infectious and post-infectious. In plant disease modelling this is often referred to as the H-L-
I-R (Healthy-Latent-Infected-Removed) model (Madden et al., 2007), which - perhaps
unhelpfully - obscures links with work on S-E-I-R (Susceptible-Exposed-Infected-Removed)
models for pathogens of other host taxa (Keeling and Rohani, 2008). For plant diseases, the
unit of interest tracked by a compartmental model is often the individual host plant, although
host tissue can be tracked at smaller (e.g., organs such as roots or leaves, or infectible sites)
or larger scales (e.g., entire fields or farms, or even counties/states), depending on the scale
at which predictions are required.

Much work using compartmental models is theoretical, aiming to develop strategic
understanding, and therefore not explicitly tied to a single system. The focus is on
understanding broad principles relevant to a class of pathosystems without detailed
reference to any single pathosystem. Often the key output is an improved understanding of
epidemiological factors promoting invasion and persistence of pathogens (Gilligan and van
den Bosch, 2008). Much work has also focused on how crop diversification affects disease
dynamics, particularly for cultivar mixtures (e.g., Mikaberidze et al., 2015; Clin et al., 2022)
and intercropping (Allen-Perkins and Estrada, 2019; Levionnois et al., 2023). Other
theoretical work focuses on evolution and/or dynamics of adapted pathogen strains, for
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fungicide resistance (van den Bosch et al., 2013; Mikaberidze et al., 2014; Mikaberidze et
al., 2017; Taylor and Cunniffe, 2023a, 2023b; Corkley et al., 2025a, 2025b), resistance-
breaking pathogens (Watkinson-Powell et al., 2020; Rimbaud et al., 2021; Zaffaroni et al.,
2024a, 2024Db), or both simultaneously (Carolan et al., 2017; Taylor and Cunniffe, 2023b).
Yet other work has concentrated on complex interactions, e.g., in the context of climate
change (e.g., Jiranek et al., 2023), interactions between different pathogens (e.g., Allen et
al., 2019; Hamelin et al., 2019), between pathogens and their biological control agents (e.g.,
Jeger et al., 2009; Cunniffe and Gilligan, 2011), and between pathogens and their vectors
(e.g., Donnelly et al., 2019; Falla and Cunniffe, 2024). Socio-economic implications of
epidemics are explored by linking economic analyses or game theory with simpler models of
exponential growth of disease (van den Bosch et al., 2018; van den Bosch et al., 2023) or
with full compartmental models (Murray-Watson et al, 2022; Murray-Watson and Cunniffe,
2022, 2023; Mikaberidze et al., 2023; Hilker et al., 2024). Several studies have incorporated
plant physiological processes into epidemiological models (e.g., Précigout et al., 2017). A
final theme is the use of compartmental models to understand factors promoting disease
detection (e.g., Parnell et al, 2015; Parnell et al., 2017; Lovell-Read et al., 2022) and control
(e.g., Bussell et al., 2018; Russell and Cunniffe, 2025). Since underpinning compartmental
models can easily be cast in stochastic as well as deterministic forms, work of this type often
now also explicitly considers the risk of disease outbreaks (or, equivalently, the risk of failure
of control) (Thompson et al., 2020).

Using process-based models to make predictions and/or assess disease management

Process-based models can also be used to make predictions - in time and in space - for a
given disease (Cunniffe and Gilligan, 2020). Similarly to data-based models, many process-
based models target a single location - or set of distinct locations, with no consideration of
the flow of inoculum between them - focusing on how aspects of the abiotic environment
drive rates of epidemiological processes (see Gonzalez-Dominguez et al. (2023) for a recent
review). Note that, despite the commonality of approach with compartmental models, in plant
pathology such models are - arguably unhelpfully - often framed as “simulation models”
(Savary and Willocquet, 2014) and presented in terms of visual systems dynamics modelling
languages (Costanza and Voinov, 2001), although we should note these models can be
readily translated into differential equations or discrete maps (Willocquet et al., 2020). Other
process-based models, particularly when applied to emerging or invading pathogens, make
predictions of spatial spread of a particular named pathogen across a region through a
landscape of hosts susceptible to disease, considering the effects of particular disease
detection and control strategies (see Cunniffe and Gilligan (2020) for a review).

For applications to spatial spread, underpinning models must consider flow of inoculum and
so disease transmission between locations. Although network approaches have been
promoted (Jeger et al, 2007; Shaw and Pautasso, 2014; Garrett et al., 2018), the large
number of parameters that would need to be fitted, mean that full network-based models of
dispersal tend not to be explicitly linked to data. Detailed spatial predictions instead tend to
use the abstraction of the dispersal kernel, an idea used very widely in ecology more broadly
(Nathan et al., 2012), to capture spatial dependencies via a parameterised functional form
(reviewed in the context of plant disease epidemiology by Fabre et al. (2021)). The challenge
is then to parameterise dispersal kernels and infection rates from (often very restricted)
disease spread data at different spatial scales. Broadly speaking, three distinct approaches
are used to characterise dispersal kernels: i) measurements of empirical disease gradients
(Madden et al., 2007) in an experimental setting, using fungicide or other treatment to
ensure there is only a single round of dispersal; ii) using a separate detailed model of
dispersal parameterised to capture the underlying mechanism of spread,; or iii) inferring the
likely dispersal kernel from within a range of possibilities in process-based models using
statistical approaches based on successive spatial snapshots of the pattern of disease
(Cunniffe and Gilligan, 2020). Several studies have estimated dispersal kernels from disease



gradients, but only at distinct geographic locations and often within individual crop fields
(e.g., Rieux et al., 2014; Mikaberidze et al., 2016; Karisto et al., 2022; Karisto et al., 2023).
Explicit models of the dispersal process tend to be applied over large spatial scales, most
often via computationally demanding spore trajectory simulations for wind-borne spread
(Schmale and Ross, 2015; Meyer et al., 2017; Gilligan, 2024). Process-based models can
be fitted using various statistical methodologies, ranging from simple least-squares or
maximum likelihood techniques (Cunniffe and Gilligan, 2020) to more complex Bayesian
methodologies based on likelihood functions and data augmentation (Gibson and Austin,
1996; Papaix et al., 2022). For successful examples of doing so, see e.g., Soubeyrand et al.
(2008), Cunniffe et al. (2014), Neri et al. (2014), Parry et al. (2014), Adrakey et al. (2017,
2023) or Nyugen et al. (2023). Some studies explicitly couple process-based and data-based
approaches in the framework of state-space modelling or mechanistic-statistical modelling
by defining a model of the observation process conditional on the model of the
epidemiological dynamics and deducing from this construction a Bayesian inference scheme
(Soubeyrand et al., 2009; Pleydell et al., 2018; Papaix et al., 2022; Abboud et al., 2023;
Saubin et al., 2024). When likelihoods are intractable or very complex, as can often be the
case when fitting stochastic models at the landscape scale, the current vogue relies on
Approximate Bayesian Computation via repeated simulation and the use of a distance
between summary statistics computed from the observed and simulated data sets as a proxy
for a formal likelihood function (Minter and Retkute, 2019; Godding et al., 2023).

The current state-of-the-art in epidemiological modelling often involves use of parameterised
stochastic compartmental models to predict how epidemics will spread in time and space.
While some work focuses on spread within fields (e.g., Mikaberidze et al., 2016; Karisto et
al., 2022; Karisto et al., 2023) or relatively small production sites (e.g., Cunniffe et al., 2014;
Parry et al., 2015; Craig et al., 2018), recent applications of these models tend to focus on
large spatial scales and link spread modelling to optimisation of disease detection (e.g.,
Mastin et al. (2020) for citrus greening and Martinetti and Soubeyrand (2018) for Xylella
fastidiosa) or disease control (e.g., Cunniffe et al. (2016) for sudden oak death in California,
Ellis et al. (2025) and Nyugen et al. (2023) for citrus greening, Godding et al. (2023) for
cassava viruses in sub Saharan Africa). The huge increase in availability of spatial data on
sets of locations infected over time promised by optical sensing is incredibly attractive for
predictive use of process-based models.

Opportunities in linking epidemiological modelling and optical
sensing for plant disease

How can optical sensing inform epidemiological modelling?

Oi) The vast amounts of data generated by optical sensing will greatly benefit the
development of epidemiological models.

The predictive power of any epidemiological model is limited by the amount and quality of
data used for parameterisation. Similarly, our confidence in model robustness depends on
the range of data used for validation (Challenges Bi-Biii). Traditional methods to acquire
plant disease data, whether in controlled environments or under field conditions, can be
costly and often require expert assessors. Optical sensing promises to generate disease
data at hitherto impossible spatio-temporal scales and resolutions, while allowing a much
wider range of environmental conditions and locations to be sampled, including locations
that are inaccessible from the ground. Increased data availability enhances the reliability and
usefulness of any data-based disease model, meaning less extrapolation is required for
model use in real-world settings (Madden, 2006).
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Optical sensing also has the potential to improve parameterisation of process-based models.
More finely resolved spatio-temporal data then leads to more accurate parameter estimation
and/or better prospects for (practical) identifiability of parameters (Cunniffe et al., 2024).
Similarly, model selection (and model averaging) is often expected to become more powerful
with an increased amount of data (Kuparinen, et al., 2007). High revisit frequencies allow the
amount or spatial pattern of disease to be assessed repeatedly, leading to an improved
understanding of disease dynamics over time. Focusing on spatial dynamics in particular,
optical sensing would enable disease measurements over much denser and larger grids of
locations (e.qg., as disease gradients) with higher numbers of treatments and replicate
experimental plots than is feasible by conventional visual assessments (e.g., Sackett and
Mundt, 2005). This would dramatically improve our capacity to quantify pathogen dispersal
and reproduction via estimation of dispersal kernels (Soubeyrand et al., 2007; Farber et al.,
2019; Karisto et al., 2022, 2023) together with strengths of infected source areas producing
spores or other infectious propagules (Bousset et al., 2015), and basic reproduction
numbers (Segarra et al., 2001; Mikaberidze et al., 2016; van den Bosch et al., 2024).
Conducting such experiments characterising disease gradients across diverse geographic
locations would provide (in conjunction with weather data) detailed knowledge of how
pathogen dispersal and reproduction depend on the three aspects of the disease triangle
(i.e., the genotypes of the host and the pathogen as controlled by the experimental design,
and the environmental variables; Madden et al., 2007). This improved knowledge concerning
dispersal and reproduction can then feed into spatially explicit process-based models,
increasing their power to predict epidemics and evaluate disease management approaches.

Oii) Non-destructive and objective disease quantification by optical sensing will
overcome difficulties and bias in human scouting and rating

However, optical sensing can do more than simply increase the volume of data. Certain
diseases have symptoms that are difficult to recognise or distinguish from other diseases, or
from more general signs of abiotic/biotic stress (Challenges Ai and Aii). It can also be quite
difficult and time consuming even for trained assessors to unambiguously assess severity,
i.e., to measure the level of infection within a single host or group of hosts. These factors
introduce subjectivity and bias into human scouting and rating (Nita et al., 2003; Nutter et al.,
2006; Bock et al., 2020), in turn affecting the reliability of epidemiological models using these
types of data for their parameterisation, albeit in a way that is seldom, if ever accounted for
in the analysis (Challenge Ciii). Although lab-based molecular diagnosis is recognised for its
sensitivity, accuracy, and reliability (Venbruz et al., 2023), it is typically destructive, requiring
plant tissue to be removed for assessment, and may not be cost-effective (Mastin et al.,
2019). Non-destructive, objective disease quantification - as would be generated by methods
based on optical sensing - is therefore very valuable, even when sensors are not deployed
over large spatio-temporal scales and resolutions, provided that the sensing and analytical
approaches allow for correct disease diagnosis and quantification (Oh, et al., 2021; Zhang et
l., 2023).

Qiii) Host maps and comprehensive environmental characterization provided by
optical sensing will improve landscape-scale models

For landscape-scale spatial process-based models (Cunniffe & Gilligan, 2020; Fabre et al.,
2021), remote sensing also offers various classes of data that might be used directly as a
model input, rather than as a source of data for model fitting. An important example is
information on the location of susceptible hosts. Although maps have been produced for
certain major crops (You et al., 2014), location data are often either unavailable or are only
available at low spatial resolution, or perhaps even for other host species entirely. In such
cases, host maps used as model inputs tend to be based on statistical inference (e.g.,
Meentemeyer et al., 2011; Ellis et al., 2025), losing small-grained but relevant features such
as sizes and relative locations of individual fields or orchards. Since remote sensing can now



reliably distinguish between different plant species (Fassnacht et al., 2016; Kordi and
Yousefi, 2022; Ashourloo et al. 2022) and in some cases even between different sub-
species/varieties/cultivars (Rauf et al., 2022; Lyu et al., 2024; Bégué et al., 2024), the level
of biological realism in host maps could be increased. In the context of landscape
epidemiology, locations of potential inoculum reservoirs might be particularly important
(Plantegenest et al., 2007), both populations of the same host species and/or of
cultivated/wild alternative hosts (Emery et al., 2021; Morris et al., 2022), or crop residues
from previous growing seasons (e.g., piles of potentially infectious tubers for potato late
blight, or pathogen-harbouring standing stubble from previous host crops). Such reservoirs
force epidemics, as well as potentially providing refugia for pathogens to persist between
growing seasons/years. However, the potential for proliferation of species-specific
parameters in epidemiological models would need to be carefully considered (Cunniffe et al,
2015). Models could also better reflect spatial variation in host plant density for a given
growing season if they used real-time information from optical sensing, rather than - as
present - resorting to use of historical data or simple functions to parameterise growth over
time. This would also allow time-dependent ecophysiological information on plant status to
inform epidemiological models.

Other biotic/abiotic factors affecting disease can be characterised by optical sensing
(Dlamini et al., 2019), and so in turn could be included in disease models. This includes
information on landscape topography, soil structure and water availability, as well as the
phenology of the host crop. An example of integrating phenological information with
modelling is a regional-scale Susceptible-Exposed-Infected-Removed model of Fusarium
head blight (Xiao et al., 2022). There is also real-time information that can be remotely
sensed and contribute to prediction when epidemiological models are used predictively for
short-term forecasting (Gilligan, 2024). Exciting examples include sets of currently infected
locations (e.qg., Allen-Sader et al., 2019), definitive confirmation of whether previously
scheduled control by host removal has in fact occurred (Carnegie et al., 2023), and real time
information on meteorological driving variables as sensed by Global Navigation Satellite
Systems (Bianchi et al., 2016).

How can epidemiological modelling inform optical sensing?

Oiv) Model outputs will help to improve disease classification and interpretation of
optical sensing data

Arguably most importantly, epidemiological modelling offers a mechanism to improve the
accuracy of disease measurement via optical sensing. Optical sensing of plant disease often
has a classification task at its core, in which a binary decision is made about whether a given
location (i.e., a position in an image) is diseased or not. Outputs of epidemiological models
could improve this classification by providing the classifier with additional relevant
information. For example, positive confirmation from simple weather data-based models to
estimate the risk of disease at a given location could provide greater confidence that an
ambiguous signal from optical sensing in fact corresponds to disease.

There is also useful information in the spatial and spatio-temporal pattern of disease that can
be used in interpreting optical sensing data. It is well known that plant diseases are clustered
at a range of scales: accordingly, much statistical modelling work in plant disease
epidemiology concentrates on quantifying these relationships (Madden et al., 2007; Madden
et al., 2018). The corollary is that any location is more likely to be infected if its neighbours
are also infected. This idea is at the core of the methodology used by Camino et al. (2021)
for X. fastidiosa in almond orchards (Box 1) in which predictions from a static probabilistic
model of disease risk (Parnell et al., 2011) were used to ascribe a probability of infection to
different trees via a model based on an exponential dispersal kernel. These predictions were
then combined with remote sensing results to come to an overall prediction of infection

Page 14 of 66



Page 15 of 66

status on a tree-by-tree basis. Also more complex, dynamic epidemiological models could be
used in this framework, closely coupling interpretation of optical sensing data to the explicitly
probabilistic predictions in space and time made by a process-based epidemic model.
Similar improvement may be achieved by using convolutional neural networks (CNN) to
extract disease information from optical sensing data: CNNs use convolutional kernels with
combination pooling to extract local features, potentially allowing the spatial topology and
geometry of optical sensing data to be incorporated into predictions. However, in contrast to
process-based models, the parameters of CNN lack biological interpretation and hence this
approach would not provide as much insight into the processes driving epidemics.

Ov) Models will help to decide where, when and how to deploy sensors, including
guiding flight routes in near real-time for surveillance

The other way in which epidemiological modelling might be useful for optical sensing is in
setting where, when and how sensors should be deployed (Mahlein et al., 2024). Optical
sensing is particularly promising for early detection, a key constraint in the “controllability” of
an infectious disease outbreak (Fraser et al., 2004). The possibilities here range from being
able to detect pathogens in near real-time over hitherto unimaginable spatial scales
(Challenge Aiii), to “anomaly detection”, i.e., characterising spectral signatures associated
with healthy plants and using any deviation from this to trigger ground scouting or other
disease management (Challenge D). Real-time information could also be used to better
guide disease surveillance, e.g., incorporating epidemiological models into automated flight
route planning for UAVs or planning satellite surveillance patterns. In principle, each
successive sample could then be taken from areas in which knowledge is weakest, and so
from which confirmation of disease positives (or negatives) would be most useful (see Cook
et al., 2008 and Parisey et al., 2022 for examples of this broad idea). Of course, reliably
detecting disease is only the first step in disease management, and many disease controls
are applied reactively in response to detections of disease. Much modelling work focuses on
how optimal patterns of reactive control can be identified based on observation patterns of
disease until a given time (Hyatt-Twynam et al., 2017; Bussell et al., 2018). This raises the
possibility of a moveable platform that combines optical sensing with disease control, such
as a robotic ground-based vehicle that operates within a greenhouse or in the field (e.g.
Oberti et al. 2016). This has obvious applications in precision agriculture (Yang, 2020) and
would echo well-publicised parallel developments for automatic weed detection and
destruction mounted on tractors and other cultivation equipment (Zhang et al., 2022).

We summarise the opportunities presented above in Table 2. There, we list the relevant
plant traits and features that could be estimated via optical sensing and indicate how this
estimation could aid epidemiological modelling, and how epidemiological modelling could aid
the estimation.

A) Challenges in identifying a particular disease from optical
sensing data

Ai) Immature understanding of disease mechanisms underpinning spectral responses

Understanding spectral plant traits associated with disease is clearly important (Mahlein et
al., 2012; Zhang et al., 2012; Zarco-Tejada et al., 2018; 2021). However, and with some
exceptions, we lack knowledge of mechanisms by which disease-induced alterations in
plant physiology and biochemistry translate into detectable variations in spectral signatures
(Oerke, 2020). Additionally, the degree of conservation of spectral responses across plant
genotypes and/or environments is unclear (Terentev et al., 2022). Other domains of spectral
biology suggest the more highly conserved the underlying processes, the more likely their



associated spectral features will be too, as shown for hyperspectral reflectance of healthy
leaves across 544 plant species (Meireles et al., 2020). Divergent spectral pathways
associated with shared physiological symptoms have been disentangled recently between
major fungal foliar diseases of wheat (Bohnenkamp et al., 2021) and sugar beet (Mahlein et
al., 2012; Brugger et al., 2023) in controlled environments, and in other pathosystems in the
field (Fallon et al., 2020; Gold et al., 2019a; 2019b; 2020; Zarco-Tejada et al., 2021). Studying
differences and similarities in spectral responses for pathogens affecting plant health via
different underlying mechanisms is therefore essential.

Opportunities and challenges in integrating optical sensing and epidemiological modelling
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Fig. 1. Summary of opportunities and challenges in integrating optical sensing and
epidemiological modelling.

A promising methodology to distinguish plant disease from other stress responses is based
on plant functional traits, which has emerged as a unifying framework to understand natural
and stress-induced variation in vegetation (Wright et al., 2004; Ustin et al., 2004). Plant
pathogens damage, impair and/or alter plant function, and their impacts on plant traits can
be sensed both before and after disease symptoms appear. Methods to quantify functional
traits from optical sensing data can be based on either statistical modelling (e.g., partial
least squares regression [PLSR], random forests or Gaussian process regression) or
radiative transfer modelling (RTM). RTM allows leaf and canopy traits linked to plant
physiological processes to be retrieved from spectra (Essery et al., 2008; Kattenborn and
Schmidtlein, 2019), whereas PLSR iteratively transforms predictor (spectra) and response
variables (traits) to create predictive models (Serbin and Townsend, 2020). Compared to
empirical approaches based on single-band or vegetation indices, quantifying spectral traits
linked to stress-induced biological mechanisms improves model accuracy and
transferability (Camino et al., 2021; Hornero et al., 2021; Poblete et al., 2021; Zarco-Tejada et
al., 2018). Machine learning further allows robust extraction of these traits from complex
spectral data even under diverse conditions (Verrelst et al., 2019; Serbin and Townsend,
2020). Combining PLSR/RTM and machine learning should improve our ability to scale from
controlled studies to the field (Challenge Aiii) and from foliar to spaceborne scales (Poblete
et al., 2023; Zarco-Tejada et al., 2021).
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Aii) Spectral signatures are inherently variable and unknown for some pathogens

Many spectral sighatures of plant diseases have been reported. However, a given plant
pathogen in an identical environment can very often show different symptoms. For instance,
symptoms of Phytophthora spp. on citrus depend on the tissue affected (i.e., root rot, fruit
brown rot, gummosis of bark or twig desiccation) (Cacciola et al., 2007). Identifying specific
signatures of pre-symptomatic infection remains particularly challenging (Gold et al., 2019b;
Rumpf et al., 2010), requiring deep knowledge of the plant-pathogen interaction to determine
physiological parameters that could be affected early in disease development. Diseases can
also manifest differently depending on location (Calderén et al., 2014), pathovar (Gold et al.,
2019b) and host genotype (Gold et al., 2019a; Surano et al., 2022), or depending on
interactions between pathogen isolates and host genotypes (Kader et al. 2022), as well as
when plant hosts experience abiotic stresses, such as nutrient deficiencies (Abdulridha et
al., 2019) and water stress (Zarco-Tejada et al., 2021). Biotic stresses can also be
confounding factors (Gold et al., 2020; Poblete et al., 2021), particularly in cases of co-
infection by distinct pathogen species (Bohnenkamp et al., 2019b). Differentiating between
above-ground symptoms of abiotic stresses and diseases is particularly challenging for soil-
borne pathogens (Hillnhitter et al., 2011). Ontogenic resistance, as well as other effects of
leaf age on spectral responses, may also play confounding roles (Chavana-Bryant et al.,
2019). Anthropomorphic factors, e.g., mechanical damage and pesticides/fertilisers, may
further mask spectral responses (Gambhir et al., 2024, Wang et al., 2022). Additional
variation stems from interactions between these factors, as well as simply from the natural
variability of agro- and natural ecosystems (Oerke, 2020).

Even setting aside significant but unavoidable complications caused by variability, optical
spectral signatures of many pathosystems remain to be characterised. Of course, finding
signatures may be intrinsically challenging for certain pathosystems. For example, shorter
plant and pathogen life cycles may allow less time to characterise disease-associated
signatures than for diseases in longer lived pathosystems, although in some pathogens with
fast life cycles this might be easier due to a lack of significant asymptomatic infection. Other
aspects of any given pathosystem - e.g., whether symptoms are exhibited on foliar or woody
tissue, as well as the size/pigmentation of affected plant organs - also clearly play a role.

Spectral libraries cataloguing signatures across scales, diverse environments, conditions,
host ages and species, stages of infection, and damage mechanisms (Boote et al., 1983)
are sorely needed (Bohnenkamp et al., 2021; Zhu et al., 2023). This would allow us to
investigate the transferability of spectral signatures given these potentially confounding
factors.

Aiii) Scaling from controlled to field conditions and from proximal to remote sensing

Spectral signatures also depend on choices of sensors, platforms and spatial/spectral
resolutions, as well as lighting and exposure times, even under controlled conditions (see
‘Current state-of-the-art’). Scaling to field conditions is therefore expected to be challenging.
Additionally, signatures that are specific at the foliar scale are not necessarily most useful at
the canopy scale (Calderén et al., 2013; 2014; 2015; Herrmann et al., 2018, Bohnenkamp et
al. 2019b, 2021). If effective detection depends on expensive sensors, e.g., with high
detection sensitivity across narrow bands in the SWIR, lack of access to such sensors may
hinder scaling to the field. Using openly available earth observations from space agencies is
appealing, with particular success for detecting defoliating insects (Dalponte et al., 2022),
but other applications may be hindered by limited spectral and/or spatial resolution of the
currently available satellite data.

In low to medium spatial resolution imagery (where the pixel size exceeds the size of the
plant or plant unit of interest), it can be difficult to separate vegetation spectra from mixed
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signals of soil background, shadows and understory vegetation (Hornero et al., 2020),
although spectral unmixing techniques can disentangle spectral diversity at sub-pixel levels
(Galvan et al., 2023). Nadir (straight-down) view systems are valuable for capturing visible
symptoms on upper canopies but are less useful for diseases developing primarily in the
lower canopy (Abdulridha et al., 2020; Carlier et al., 2023, Kanaley et al., 2024). Spectral
signatures can become distorted when scaling the measurements from the leaf scale to the
canopy scale and systematic investigation of these changes is challenging (e.g., comparison
of leaf versus canopy reflectance for cereals in the red edge region; Li et al., 2017). Although
high-spatial resolution and multiangular remote sensing enhance disease detection across
canopy layers, operational challenges arise for regional-scale monitoring (He et al., 2021,
Zhang et al., 2023). Various factors can introduce uncertainties, including canopy
complexity, atmospheric conditions, sensor calibration inaccuracies, and radiometric
correction (Daniels et al., 2023; Delalieux et al., 2009; Tanner et al., 2022). In particular,
bidirectional reflectance effects, influenced by solar illumination and viewing geometry
changes, pose difficulties with data collected at different times of day, under varying lighting
conditions, and across different canopy structures. However, as described above, BRDF
(Collings et al., 2010; Queally et al., 2022) and RTM approaches (Hornero et al., 2021;
Zarco-Tejada et al., 2018) may be able to correct for these effects.

B) Challenges associated with data availability, quality and
resolution in optical sensing of plant diseases

Bi) Insufficient reference data

Optical sensing requires accurate reference measurements of disease for training, testing
and validation (depending on the field, reference measurements are sometimes called
“annotated data”, “labelled data” or “ground truth”). But as described in Opportunities above,
such data are scarce, because they tend to be time- and resource-consuming to acquire.
Visual assessments in the field can be cost-effective and under certain conditions can have
high throughput, but yet require skilled evaluators and can also be prone to error, most often
due to inherent variability (Nutter et al., 2017; Bock et al., 2021). Attention needs to be paid
to training of assessors, standardisation of measurement protocols, data verification,
normalization and calibration, and assessment of measurement uncertainties (Bock et al.,
2021).

Crowd source annotation (e.g., like Pl@ntNet; Joly et al., 2016), in which data labelling or
classification is outsourced to a large group of people, could become a valuable additional
source of reference data, but also requires careful validation. Even with enhancements,
visual assessment may overlook indicators not immediately apparent to the naked eye.
Ideally, visual assessment should be confirmed by molecular laboratory analyses (Martinelli
et al., 2015; Donoso and Valenzuela, 2018). This can be especially important for pathogens
not easily recognised in the field, or when multiple pathogens cause similar symptoms
(Abdullah et al., 2018) (Challenges Ai and Aii).

RGB imaging provides a potential source of reference measurements (Anderegg et al.,
2019). The methodology has been developed to measure foliar diseases in major crops,
e.g., septoria tritici blotch on wheat (Stewart et al., 2016; Karisto et al., 2018), tar spot on
corn (Lee et al., 2021; Lee et al., 2025), as well as bean angular leaf spot, rice brown spot,
wheat tan spot and soybean rust (Olivoto et al., 2022). However, with some exceptions, such
as a recent study on red needle cast of pine (Fraser et al., 2022), acquiring RGB images of
sufficient quality has thus far required destructive sampling and manual processing (e.g.,
Karisto et al., 2018; Lee et al., 2021; Zenkl et al., 2024) or non-invasive in-field imaging
(Anderegg et al., 2024; Lee et al., 2025) of individual diseased leaves. This tends to be more
resource consuming than visual assessments. A higher throughput will be achieved by
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capturing close-range images from within entire canopies, but several challenges need to be
overcome, including variable lighting, blur due to canopy movement for example from wind
or UAV downdraft, and extraction of relevant image parts (Zenkl et al., 2024). Most existing
RGB imaging methods are yet to be used to produce reference data for optical sensing.
Calibration and optimisation for this specific purpose are therefore required.

Self-supervised learning (SSL) or foundation models may overcome insufficient labelled data
in a different way (Wang et al., 2022; Moor et al., 2023; Culman et al., 2023). SSL models
can be formulated as convolution neural networks or vision transformers (Han et al., 2023).
First, an SSL model is “pre-trained” on a large, unlabelled dataset, ideally, capturing a wide
range of conditions, according to automatically generated objectives rather than annotated
data as in conventional ML (Zhao et al., 2023). In this way, SSL models can extract useful,
abstract and generic high-level representations from unlabelled data (e.g., visual
representations; Doersch et al., 2015). Next, the SSL models are trained for a specific task
(i.e., “fine-tuned”) using a limited amount of labelled data (Bengar et al., 2021). Similarly,
foundation models can be trained on broad sets of unlabelled data and apply information
about one situation to another (Moor et al., 2023). Both approaches can therefore learn from
large volumes of unlabelled data and this promises to improve model generalisability to
unseen domains (Wang et al., 2022, Lan et al., 2022). However, it will be important to
evaluate the outcomes to ensure accuracy.

Bii) Repurposing data originally collected for other purposes

Data potentially valuable as reference data could be sourced from growers, agronomists or
diagnostic clinics. However, disease severity is often not available, and geolocation is often
absent. There can also be questions around reliability, as well as the willingness of
stakeholders to engage and share data in a standardised format (Buhrdel et al., 2020). As
described in Challenge Bi, above, severity is difficult to assess even for experts (Bock et al.,
2022), and certain diseases can be challenging to distinguish from each other (Barbedo,
2016; Abdullah et al., 2018), as well as from other stressors, especially when they occur
together. However, apps for disease identification/detection (e.g., Siddiqua et al., 2022) —
deployed on smartphones and so automatically geolocated — are promising, as are phone
surveys (Allen-Sadler et al., 2019). But the potential for bias in citizen science observations
where public volunteers help to collect data (e.g. Baker et al., 2019) cannot be ignored.
Another ever-growing source of data is social media/online news (Tateosian et al., 2023),
the potential of which is highlighted by a system integrating internet media scraping into a
predictive early warning system for wheat stem rust in South Asia (Smith et al., 2024).

At larger scales, global searchable repositories including CABI (2023) and EPPO (2023)
collate presence-absence data for plant diseases. However, spatial scales are far too
coarse, and temporal resolutions too low, for epidemiological modelling applications. Despite
this, large-scale crop health assessments have been used with earth observation data, e.g.,
CIMMYT's multi-seasonal survey of wheat rusts (Pryzant et al., 2017). Data from long-term
forest biosecurity and health surveys have also been used to validate identifying
Phytophthora pluvialis from satellite imagery in New Zealand forests (Watt et al., 2024). For
pathogens of crops, data from regulatory surveys of disease are sometimes becoming
available (e.g., Turner et al., 2021 for cereal diseases in the UK), and large-scale
participatory surveillance efforts involving growers/agronomists are also appearing (e.g.,
Bregaglio et al., 2022 for grapevine downy mildew in Italy). However, potentially highly
valuable field trial data collected by breeding/agrochemical companies tends to remain
siloed for commercial reasons. Other potentially useful regional-scale data sources include
daily disease risk maps (e.g., Shah et al., 2014), particularly when informed by real-time
spore trapping data (e.g., Fall et al., 2015), although methods to integrate probabilistic
disease predictions with optical sensing are needed (as discussed in Opportunities above).
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Biii) Resolution and scales in time and space

Clearly, measurements should capture relevant scales in time and space to quantify traits of
interest, which informs the choice of sensor-platform setups. As part of this decision-making
process, host units of infection (e.g., individual plant organs such as leaves or
inflorescences, or individual plants, or groups of plants) must be identified based on the
pathosystem in question. However, this raises trade-offs. Ground-based platforms and UAVs
can capture images down to millimeter-scale resolutions (e.g., Bohnenkamp et al., 2019),
but only across a limited area. In contrast, measurements via aircraft and satellite platforms
capture scales up to entire regions (e.g., Poblete et al., 2023; Galvan et al., 2023) or even
continents (Kampe et al., 2010), but with lower resolution. A similar trade-off affects temporal
resolution. With a fixed budget, any sensing platform can only be deployed a fixed number of
times, requiring decisions over whether to sample densely over a limited time interval or

more sparsely over a longer time (Mateu & Muller, 2012). Commercial satellites now capture

near-daily images of the entire globe with spatial resolution of =3 m (e.g., Planet; Liu et al.,

2012). Governmental satellites Landsat-8, Sentinel-2A, and Sentinel-2B together provide a
global median average revisit time of 2.9 days (Li and Roy, 2017), with a spatial resolution of
10 to 30 m for the multispectral sensors. On the other hand, currently operational
hyperspectral satellites (e.g., EnNMAP) can provide high spectral resolution (224 contiguous
narrow bands) over a wider spectral range (420-2450 nm) with a spatial resolution similar to
Landsat-8 although revisit time is coarser at 4 days for off-nadir capture, and longer in nadir
view mode (Chabrillat et al., 2024). Plant disease measurement projects need to adapt to
these specific revisit times and other parameters of satellite imagery. Yet, the long-term,
large-extent sets of satellite images will allow modelling of long-term trends in disease
dynamics, which would simply not be available from other data collection methods.

Combining datasets acquired using different sensing platforms and technologies can help to
overcome these limitations and tradeoffs in scales and resolutions (Berger et al., 2022), for
example, via spectral and spatial unmixing (Delalieux et al., 2014). Multiple hyperspectral
reflectance datasets acquired via both remote and proximal sensing have been merged to
improve characterisation of uncertainties and transferability of estimates of functional plant
traits (Singh et al., 2015; Cherif et al., 2023; Challenge Ai). Also, results of small-scale
proximal sensing confirmed via collection of reference data at a small number of tightly
monitored sites could be combined with large-scale remote sensing, for example satellite
imagery, to lead to more expansive inferences (Camarretta et al., 2024).

However, integrating data from different sources can be complex (Wang et al., 2023;
Sisodiya et al., 2023), particularly if some data are missing (Ekue-wei and Blackburn, 2018;
Zhao et al., 2018). Different datasets might not be aligned in space and/or time and might
use different formats. Data fusion, defined as “the process of combining data from multiple
sources to produce more accurate, consistent, and concise information than that provided by
any individual data source” (Munir et al., 2021), is a potential solution (Barbedo 2022;
Ouhami et al., 2021). Data fusion techniques, some applied to agricultural problems for
almost three decades (Solberg et al., 1994), include regression methods, spatial and
temporal adaptive reflectance fusion model (STARFM)-like statistical methods, geostatistical
tools, principal component analysis (PCA), Kalman filters and machine learning (Barbedo,
2022). However, persistent challenges hinder the widespread adoption of data fusion. These
include data variability and representativeness, integration complexity, overfitting, unrealistic
assumptions, demand for high-performance computing, economic and technological
constraints, and socio-political factors (Barbedo, 2022). Data fusion should be used in
conjunction with comprehensive model-data integration approaches to address the
complexities and uncertainties inherent in plant systems data (Cui et al., 2024; Kofidou et al.,
2023). In this context, data fusion might be developed in the framework of Bayesian
hierarchical modelling (Bourgeois et al., 2012; Wang et al., 2018), allowing us to couple
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multiple observation models - corresponding to different types of optical sensing data -
defined conditionally on a particular epidemic model.

Biv) Socio-economic constraints including regulatory barriers and privacy concerns

A lack of access to data may drive new power relations around data (Kos and Kloppenburg,
2019). Growers may lack the basic infrastructure required for measurements (Garske et al.,
2021), may perceive the monitoring of their fields as revealing commercially sensitive data,
or perhaps experience it as invasive in other ways (European Court of Auditors, 2020), or
may not trust the interpretation of the data (Purdy, 2011). In some contexts, there are also
concerns that data may be used for purposes other than those intended (Gardner et al.,
2019; Kos and Kloppenburg, 2019). Privacy legislation varies by country (Maniadaki et al.,
2021) further challenging the application of the technologies. To address these concerns,
governments and international organisations should focus on improving data regulation and
legislation, as well as digital literacy (Kos and Kloppenburg, 2019). Support by growers and
other stakeholders might increase if efforts were made to communicate, to develop data
sharing agreements, and to promote co-production approaches with them (Purdy, 2011; van
Rees et al., 2022). Thanks to technological developments in sensors and platforms, optical
sensing data relevant to plant diseases can now be acquired at a much lower cost than
before. Also, data storage and computing facilities for data processing have become more
affordable. All these factors promise to make commercial deployment of optical sensing
more profitable (Weiss et al., 2020; Wolfert et al., 2017).

C) Challenges in linking optical sensing and epidemiological
modelling

Ci) Compatibility between optical sensing data and epidemiological models

Optical sensing data may inform state variables of epidemiological models (e.g., susceptible,
infected or symptomatic states), particularly when models are spatially explicit. But the
spatial and temporal resolutions of the data must then match the spatial and temporal
resolutions tracked by the model. Super-resolution methods can improve the spatial
resolution of sensing data, at least to some extent (Wang et al., 2022), and signal processing
methods (Li and Revesz, 2004; Yang and Hu, 2018) can be used to interpolate sensing data
to achieve desired resolutions in space and time. However, handling high-resolution data
may become computationally demanding. Statistical downsampling can be used if coarser
resolution is needed (Atkinson, 2013). Optical sensors can be used to characterise aspects
of plant physiology (e.g., photosynthesis or water relations) (Zhang et al., 2021), while these
aspects are omitted by most current epidemiological models. However, integrating plant
physiological processes into epidemiological models is an active area of research (e.g.,
Precigout et al., 2017), suggesting physiologically designed sensors will likely inform future
epidemiological models. In general, statistical methods for spatio-temporal designs (Mateu
and Miiller, 2012) could be used to efficiently design plant disease monitoring via optical
sensing for compatibility with epidemiological models, but these may require heterogeneous
data acquisition across different spatial scales, meaning data fusion becomes challenging
(see also Challenge Biii; Berger et al., 2022; Barbedo, 2022).

Cii) Using data assimilation methods for model fitting

A major opportunity for combining epidemiological models and optical sensing data is to
obtain estimates of epidemiological parameters. This problem is referred to as parameter
estimation or identification, or in some cases as inverse problems. Several methods are
available. As epidemiologists often already must tackle sparse and noisy data, they routinely
formulate suitable observation processes (e.g., zero-inflated) and methods (e.g. Markov



chain Monte Carlo [MCMC], likelihood, or nonlinear least-squares optimization) for inferring
parameters when potentially useful information is unavailable (Gibson, 1997, Soubeyrand et
al., 2014), in both frequentist and Bayesian statistical frameworks. Alternatively, model
parameters or states can be estimated using data assimilation (DA) (Asch et al., 2016;
Pandya et al., 2022). These methods may prove particularly suitable for fitting
epidemiological models to optical sensing data, because they have been adapted to handle
image data (Papadakis et al., 2008; Mang et al., 2020). DA is broader than parameter
estimation and is well-suited for sequential data acquisition, meaning model parameters and
predictions could be automatically updated as new image data are acquired. Finally, we can
draw inspiration from recent machine learning methods developed to solve DA problems in
physics (physics-based deep learning; Cheng et al., 2023; Thuerey et al., 2021), that are
increasingly used in epidemiology (Ye et al., 2025), to fit mechanistic epidemiological models
to optical sensing data.

Ciii) Accounting for data uncertainty in epidemiological models

While optical sensing data offers new opportunities for epidemiological modelling, additional
uncertainties and errors will also be introduced. For example, environmental conditions (e.g.,
cloud cover, aerosol loading), can influence sensor measurements (Daniels et al., 2023).
The frequency of data acquisition can also vary (Challenge Biii), meaning sensors may fail to
capture important events such as early infections (Gold et al., 2019b; Rumpf et al., 2010).
Similarly, spatial heterogeneity in host topology and species/cultivar can only ever be
partially captured by optical sensing. Pre-processing techniques applied to raw data from
optical sensors (as described above in current state-of-the-art) may introduce further
uncertainties.

Following pre-processing and analysis, it is now established that optical sensing data can be
used to obtain point estimates of the spatial distribution of infections (e.g., Boxes 1 and 2).
However, predictions have two main sources of uncertainties. Firstly, prediction of disease
occurrence and severity from remote sensed data is subject to several, known and unknown,
potential confusions between biotic and abiotic causes (Challenge Aii). We note the types of
errors in optical sensing data may be different from those in reference measurements (e.qg.,
human observations of symptoms, molecular detection) and this will require specific
treatment. Secondly, ML algorithms used for processing optical sensing data themselves
make errors. This may make epidemiological parameters as inferred from optical sensing
data either potentially unreliable or difficult to interpret (Leclerc et al., 2023). Furthermore,
there are challenges associated with intra-class variability (where it can be difficult to
establish a boundary between classes) and inter-class similarity (where the inherent
similarity between certain classes means that the class of an individual pixel can be difficult
to determine unambiguously) (Qin and Liu, 2022; Bi et al., 2021).

Both types of error should be considered for forward predictions from epidemiological
models. Promising methods have been developed in the environmental sciences, where
spatial models are fitted to remote sensing data (Chabot et al., 2015; Janji¢ et al., 2018), and
these could be co-opted to this use case. In principle, the Bayesian statistical framework
used in parameter inference in plant disease epidemiology also provides a mechanism by
which these types of uncertainty can be propagated. However, despite some promising
successes in related fields (e.g., Bauer-Marschallinger et al., 2022), methods to do this
specifically for optical sensing data and plant disease will require more research.

D) Particular challenges associated with emerging diseases

Reacting rapidly to invasion of a region hitherto unaffected by a plant pathogen is important
to give disease management the best possible chance of success (Epanchin-Niell, 2010;
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Fraser, 2004). However, since spread data only become available as any outbreak unfolds
(Thompson et al., 2018), pathogen biology and transmission become more precisely
characterised the longer any epidemic has been spreading in the region of interest (Neri et
al., 2014). This unavoidable tension between when models are most useful and when the
data to drive them become available leads to challenges characteristic of emerging plant
disease epidemics, affecting both optical sensing and epidemiological modelling.

A challenge is that reference data are almost always more limited for emerging than for
established diseases. The probability a disease will truly be present if detected - the “positive
predictive value”, PPV (Bours et al., 2021) - is likely to be low. Indeed, the PPV depends on
the prevalence of the disease (a priori low for an emerging disease) and the sensitivity and
specificity of the detection method. With sensitivity and specificity of 90%, the PPV is 0.083
for a prevalence of 1%, meaning that the disease is truly present in only 8.3% of detections.
This value drops to 0.89% for a prevalence of 0.1%. Nearly perfect sensors with 99%
sensitivity/specificity are necessary to reach PPV of 50% (at prevalence 1%) and 9% (at
prevalence 0.1%). The levels of sensitivity and specificity of optical sensing in the field
depend on many factors, but values higher than 90-95% are currently unlikely (Terentev et
al., 2022).

Arguably the larger challenge for optical sensing of emerging pathogens is that spectral
signatures are often not characterised. It would, of course, be plausible to use signatures
from geographic regions where the pathogen of interest is well-established and well-
characterised (Negrisoli et al., 2022; Gongora-Canul et al., 2020; Zhang et al., 2023). But
this raises challenges around the robustness/transferability of the signatures from different
geographic areas. A second approach could be to use proximal sensing and reference
disease intensity data from controlled environment experiments. However, here the related
challenge is the robustness/transferability between controlled environments and epidemics
in the field (see Challenge Aiii).

An approach which simultaneously targets a range of potential invading pathogens while
sidestepping the need to obtain disease-specific spectral signatures in a hovel environment
is “anomaly detection”. Spectral signatures associated with healthy plants are characterised
and deviation from typical signatures then acts as a trigger to initiate ground scouting or
other efforts (Kanaley et al., 2024). It may be possible to derive robust and species specific
spectral signatures of plant health based on foliar functional plant traits (Reich et al., 1997;
Wright et al., 2004). Some of these traits (e.g., leaf mass per area, chlorophylls) may reflect
overall plant health, while others (e.g., lignins, carotenoids) hint at diseases. Robust
estimation of many of these traits via optical sensing has been achieved (Singh et al., 2015;
Wang et al., 2019, 2020; Zhang et al., 2021; Cherif et al., 2023). Measuring abnormal plant
mortality (Wegmueller et al., 2024) and detecting abnormal changes in plant traits (Fekete
and Cserep, 2021) via optical sensing combined with novelty detection classification
techniques (AlSuwaidi et al., 2018) may provide valuable information about emerging
diseases. These approaches may become especially effective in nursery and greenhouse
production: a relatively small footprint and controlled growth conditions makes it easier to
characterise and monitor spectral signatures of healthy plants. However, going from
characterisation of functional plant traits to a robust assessment of plant health requires a
nontrivial synthesis of existing knowledge/data and dedicated new datasets.

Parameterised mathematical models will also tend not to be available when a pathogen is
emerging and spreading in a new region. Indeed, fully parameterised predictive models have
often only become available after control has ceased to be a viable proposition (e.g., sudden
oak death in California (Meentemeyer et al., 2011; Cunniffe et al., 2016)). Similarly to the
trade-offs for optical sensing above, options for making models available before or during
outbreaks tend to require either significant assumptions on pathogen spread (e.g., Hilker et
al., 2017) or direct transfer of models originally parameterised for spread in other locations
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(e.g., Ellis et al., 2025). Both options introduce uncertainties and potentially inaccuracies in
spread predictions. Predictive models of emerging pathogens are therefore particularly
challenging to develop (Cunniffe et al 2015; Cunniffe & Gilligan, 2020), and links with optical
sensing must be alert to this. Where possible, a combination approach - use of predictive
models along with anomaly detection, described above - may help to improve timely
detection of emerging diseases.

Finally, ethical considerations, including privacy and data sharing concerns, can pose
particular challenges for emerging diseases (Challenge Biv). Emerging diseases tend to
require interdisciplinary collaboration between remote sensing specialists, epidemiologists,
and plant pathologists, sometimes under significant time pressure, and this may not be easy.
In many developing countries, limited infrastructure and resources, a lack of experts in
relevant fields, or limited funding might reasonably be expected to lead to particularly
extreme challenges in this regard.

We summarise the opportunities and challenges presented above in Figure 1.

Recommendations to support integration of optical sensing and epidemiological modelling

Data
Policies and Frameworks « Routi
outinely capture a range of
Promote opportunities to conditions to improve
funding agencies, governments, generalisability and transferability
plant protection organisations | * Optimise optical sensing data
and technology companies \ / collection both for use with
[Recommendation 11] ~ - models and by using models
Epidemiological Optical [Recommendations 4,6]
modelling sensing
257 PSS
\ .
2 - &.
Technology and Infrastructure — R ch and Development
* Identify signatures of plant

¢ Establish standards for optical
sensing in plant health
monitoring
¢ Develop and maintain open
access databases
[Recommendations 1,2]

health beyond the one host-one
pathogen paradigm
¢ Ensure uncertainties are
captured and propagated
through analyses
[Recommendations 7,8]

Human Expertise

» Develop awareness by working with stakeholders
* Establish multi-disciplinary collaborations
* Use crowd-sourcing and gamification to improve
annotation of data when possible
* Teach big data analysis in plant pathology training
[Recommendations 3,5,9,10]

Fig. 2. Summary of recommendations to support integration of optical sensing and
epidemiological modelling.

Recommendations

1. Establish standards

There is a critical need to standardise methods for optical sensing in plant health monitoring,
to acquire data comparable across sensors, sites and dates. This includes developing
common protocols for data acquisition, processing, and interpretation; ideally this should be
led by experts in these fields. Assuming they are widely adopted, consistent, reproducible
and reliable practices will help minimise bias, improve accuracy, and enable comparability
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across studies. This is critical for hyperspectral imaging due to the complexity of the sensors’
operation, data acquisition and processing (Aasen et al., 2018). To convert hyperspectral
imagery into surface reflectance (the proportion of incoming light reflected by a surface), it is
essential to measure irradiance (the amount of incoming sunlight) at the time of image
capture. This requires recording irradiance data simultaneously with the other imagery
captured by measurement platforms. Radiometric calibration of the sensors and standard
models (such as RTM; Verhoef and Bach, 2003) need to be optimised for local conditions to
enable atmospheric correction of the imagery. For UAV platforms, Chakhvashvili et al.
(2024) propose a structured approach to multi-sensor campaigns encompassing mission
planning, calibration and spatial referencing and using additional sensors to assess ambient
environmental conditions (e.g., weather stations, Internet of Things environmental sensors).
A recent positive development is the publication of a European and Mediterranean Plant
Protection Organization (EPPO) standard on “Adoption of digital technology for data
generation for the efficacy evaluation of plant protection products” (Anonymous, 2024).

2. Develop, maintain and use open access databases

Open access, standardised databases including optical sensing data, epidemiological
models, and reference data, would foster cross-disciplinary work (Sparks et al., 2023).
However, data privacy and intellectual property implications would need attention (Kaur et
al., 2022), as would long-term funding to maintain such a system. To achieve this, we can
draw inspiration from genomics, where open access data repositories are well established
(e.g., GenBank of the National Center for Biotechnology Information). Using openEO
(https://dataspace.copernicus.eu/analyse/apis/openeo-api) in remote sensing of plant
diseases would provide a standardised, scalable, and interoperable platform that simplifies
access to diverse Earth observation datasets (Schramm et al., 2021).

3. Develop awareness by working with stakeholders

To address socio-economic constraints, governments and international organisations should
improve data regulation, legislation and digital literacy (Kos and Kloppenburg, 2019). Our
research communities need to work with social scientists and stakeholders to find ways to
reconcile data availability with respecting data privacy and intellectual property (Everts et al.,
2012; Kaur et al., 2022).

4. Routinely capture a range of conditions to improve generalisability & transferability

Many studies report disease measurement via optical sensing, but the outcomes may not be
robust with respect to other biotic or abiotic stresses and may not be transferable to other
host genotypes or geographic locations. To address these challenges, comprehensive
ranges of conditions (related to host plant, pathogen and the environment) need to be
captured in both reference and optical sensing measurements, which need to be
georeferenced. Possible abiotic and biotic confounding factors also need to be assessed in
the field.

5. Use crowdsourcing and gamification to improve annotation of data when possible

Annotated reference data for model training is a key limiting factor, and crowdsourcing may
help to overcome this (Wazny, 2017). However, despite the emergence of various paid for
platforms, e.g., Amazon’s Mechanical Turk (Mason & Suri, 2012), and the possibility to use
gamification to reduce costs (Khakpour & Colomo-Palacios, 2020), the necessary specialist
knowledge required to annotate plant diseases might make this challenging (Bock et al,
2020). Yet, these efforts would be of great educational value and help to promote plant
health to wider audiences.
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6. Optimise optical sensing data collection both for use with models and by using
models

Spatial and temporal scales and resolutions and trade-offs between them need to be
considered when combining optical sensing and epidemiological modelling. Acquisition of
optical sensing data can be optimised using epidemiological modelling, but model
development needs to be informed by the characteristics of the available optical sensing
data.

7. ldentify signatures of plant health beyond the one host-one pathogen paradigm

Linking epidemiological models and optical sensing data is difficult because it is hard to
identify a given disease, particularly given the range of biotic and abiotic conditions that must
be handled (Challenges A). Focusing on anomaly detection is therefore very attractive,
although it requires us to overcome the significant challenge of robustly assessing plant
health from measured traits (while accounting for multiple pathogens).

8. Ensure uncertainties are captured and propagated through analyses

Uncertainty can be introduced at various stages in analytic pipelines, from uncertainty in
measurements (e.g., due to cloud cover), to confusions caused by interactions with biotic
and/or abiotic factors (Challenge Aii), to errors or imprecision in machine learning methods
for processing data (Qin and Liu, 2022), to uncertainties in model parameters as fitted to
data (Minter and Retkute, 2019), to sampling effects when using stochastic models
predictively (Cunniffe and Gilligan, 2020). Sorely needed are methods to capture and
propagate these uncertainties forward, building on promising methods from related fields
(Charbot et al., 2015).

9. Establish multidisciplinary collaborations

We need to foster multidisciplinary and interdisciplinary collaborations, bringing together
optical sensing experts, computer scientists, plant pathologists, plant physiologists, crop
modellers and epidemiological modellers (Camino et al., 2021). Encouragingly, a growing
body of work in phytopathometry (Gongora-Canul et al., 2020; Kanaley et al., 2024; Lee et
al., 2021; Lee et al., 2025; Oh et al., 2021; Zhang et al., 2023) exemplifies this, and shows
how integrated methodologies can enhance the reliability and scalability of plant disease
detection, quantification, and assessment under field conditions. In going further and linking
optical sensing with epidemiological modelling, we should not reinvent the wheel but instead
draw inspiration from disciplines such as environmental sciences (Liu, 2015; Weng, 2009)
and meteorology (Bevis et al., 1992; Mittaz et al., 2019), which have long coupled optical
data with mathematical modelling. We can also reflect on other uses of new sources of data
in epidemiological modelling. Notable examples include phylogenetic data (Pybus and
Rambaut, 2009; Gougherty and Davies, 2021), and human mobility data from mobile phones
and social media (Grantz et al., 2020; Kostandova et al., 2024).

10. Teach basic sciences and modern data analysis in plant pathology training

A major obstacle to integrating optical sensing and epidemiological modelling is the
inconsistent and often insufficient training in basic sciences and modern data analysis at the
bachelors and masters levels in agricultural and biological sciences. While addressing this
requires systemic changes and broader discussions across the academic community, there
are practical steps we can take to train the next generation of plant health researchers.
These include: (i) designing and teaching courses on digital plant health, incorporating
necessary elements of basic sciences (mathematics, physics, chemistry, and biology),
programming, data sciences and mathematical modelling; (ii) organising summer schools on
interdisciplinary approaches to plant health; (iii) organising informal study groups and other
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communities that bring together students and researchers from different disciplines, perhaps
leveraging internet technologies to do so. Ensuring accessibility to these opportunities —
particularly for researchers from the Global South and underrepresented communities —
should be a key priority. In doing this, we can draw inspiration from similar discussions in
related multidisciplinary fields such as bioinformatics (Mulder et al., 2018) and big
data/artificial intelligence (Luan et al., 2020).

11. Promote opportunities to funding agencies, governments, plant protection
organisations and technology companies

Interdisciplinary and transdisciplinary research in digital plant health must be supported more
strongly by funding agencies. Traditional three-year funding periods are often too short to
perform the necessary field trials or observational studies, collect and analyse data, and
publish the outcomes. More comprehensive support, longer term funding and
interdisciplinary projects are needed to collect these datasets, transform them into
meaningful interpretations and publish them open access in accordance with the findable,
accessible, interoperable, and reusable (FAIR) data principles (Kumar et al. 2024). This
approach is data intensive, and therefore we need to establish the necessary infrastructure
to develop sophisticated artificial intelligence models (e.g., self-supervised learning or
foundation models) in cooperation with machine learning experts. Further, we need to
collaborate with plant protection companies and technology companies to make the
applications rapidly accessible and to foster their adoption by growers. A particular challenge
is to communicate with political decision-makers and convince them of the many possibilities
and necessary steps, as well as the commensurate need for investment.

We summarise the recommendations presented above in Figure 2.
Acknowledgements

This paper was initiated during the satellite meeting “How to combine remote sensing with
epidemiological modelling to improve plant disease management”, organised as part of the
12th International Congress for Plant Pathology in Lyon, France in August 2023. The
satellite meeting would not have been possible without funding provided by the BSPP
(British Society for Plant Pathology), SFP (Société Francaise de Phytopathologie) and
INRAE (Plant Health & Environment division, Mathematics & Digital Technologies division
and ModStatSAP, the research network in Modelling and Statistics for Animal and Crop
Health). Publication of the work was supported by the Agricultural Biosecurity program,
project award no. 2024-67013-42399, from the U.S. Department of Agriculture’s National
Institute of Food and Agriculture.

A. M. gratefully acknowledges funding by the Royal Society Research Grant RG\R1\251181
and the University of Reading (UK). A.-K. M. and A. B. gratefully acknowledge funding by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's
Excellence Strategy—EXC 2070-390732324 — PhenoRob. F. F. gratefully acknowledges the
IMPACT Project (agreement 23-1315) of the APR 'Extended Epidemiological Surveillance
(an action of Ecophyto I+ plan) supported by the French Office for Biodiversity. S. S.
gratefully acknowledges the support of the BEYOND project (Grant ANR-20-PCPA-0002)
and the SEPIM project (FranceAgriMer Grant 3890396). J. R. and N. J. C. gratefully
acknowledge support from Girton College, University of Cambridge. S. F. and E. M.
gratefully acknowledge the funding to the Resilient Forests Programme from the New
Zealand Ministry of Business, Innovation & Employment through Strategic Science
Investment Funding to Scion and the Forest Growers Levy Trust. M. L. acknowledges the
support of the Pl@ntAgroEco (Grant ANR-22-PEAE-0009) and AgroStat (Grant ANR-23-
EXMA-0002) projects. C. D. C. gratefully acknowledges support by the Agricultural



Biosecurity project, through award number 2023-67013-39300, from the U.S. Department of
Agriculture’s National Institute of Food and Agriculture.

References

Aasen, H., Honkavaara, E., Lucieer, A., and Zarco-Tejada, P. J. 2018. Quantitative remote sensing at ultra-high
resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction
workflows. Remote Sens. 10:1091. https://doi.org/10.3390/rs10071091

Abboud, C., Parent, E., Bonnefon, O., and Soubeyrand, S. 2023. Forecasting pathogen dynamics with Bayesian
model-averaging: Application to Xylella fastidiosa. Bull. Math. Biol. 85:67. https://doi.org/10.1007/s11538-023-
01169-w

Abdulridha, J., Ampatzidis, Y., Roberts, P., and Kakarla, S. C. 2020. Detecting powdery mildew disease in
squash at different stages using UAV-based hyperspectral imaging and artificial intelligence. Biosyst. Eng.
197:135-148. https://doi.org/10.1016/j.biosystemseng.2020.07.001

Abdulridha, J., Ehsani, R., Abd-Elrahman, A., and Ampatzidis, Y. 2019. A remote sensing technique for detecting
laurel wilt disease in avocado in presence of other biotic and abiotic stresses. Comput. Electron. Agric. 156:549-
557. https://doi.org/10.1016/j.compag.2018.12.018

Acufa, |., Andrade-Piedra, J., Andrivon, D., Armengol, J., Arnold, A. E., Avelino, J., Bandyopadhyay, R.,
Legesse, W. B., Bock, C. H., Bove, F., Brenes-Arguedas, T., Calonnec, A., Carmona, M., Carnegie, A. J.,
Castilla, N. P., Chen, X., Coletta-Filho, H. D., Coley, P. D., Cox, K. D., Davey, T., Del Ponte, E., Denman, S.,
Desprez-Loustau, M.-L., Dewdney, M. M., Djurle, A., Drenth, A., Ducousso, A., Esker, P., Fiaboe, K. M., Fourie,
P. H., Frankel, S. J., Frey, P., Garcia-Figuera, S., Garrett, K. A., Guérin, M., Hardy, G. E. St. J., Hausladen, H.,
Hu, X., Huberli, D., Juzwik, J., Kang, Z., Kenyon, L., Kreuze, J., Kromann, P., Kubiriba, J., Kuhnem, P., Kumar,
J., Kumar, P. L., Lebrun, M.-H., Legg, J. P., Leon, A., Ma, Z., Mahuku, G., Makinson, R. O., Marzachi, C.,
McDonald, B. A., McRoberts, N., Menkir, A., Mikaberidze, A., Munck, |. A., Nelson, A., Nguyen, N. T. T., O’Gara,
E., Ojiambo, P., Ortega-Beltran, A., Paul, P., Pethybridge, S., Pinon, J., Ramsfield, T., Rizzo, D. M., Rossi, V.,
Safni, I., Sah, S., Santini, A., Sautua, F., Savary, S., Schreinemachers, P., Singh, M., Spear, E. R., Srinivasan,
R., Tripathi, L., Vicent, A., Viljoen, A., Willocquet, L., Woods, A. J., Wu, B., Xia, X., Xu, X., Yuen, J., Zalamea, P.-
C., and Zhou, C. 2023. A Global Assessment of the State of Plant Health. Plant Dis. 107:3649-3665.
https://doi.org/10.1094/PDIS-01-23-0166-FE

Adrakey, H. K., Gibson, G. J., Eveillard, S., Malembic-Maher, S., and Fabre, F. 2023. Bayesian inference for
spatio-temporal stochastic transmission of plant disease in the presence of roguing: A case study to characterise
the dispersal of Flavescence dorée. PLoS Comput. Biol. €1011399. https://doi.org/10.1371/journal.pcbi.1011399

Adrakey, H. K., Streftaris, G., Cunniffe, N. J., Gottwald, T. R., Gilligan, C. A., and Gibson, G. J. 2017. Evidence-
based controls for epidemics using spatio-temporal stochastic models in a Bayesian framework. J. R. Soc.
Interface 14:20170386. https://doi.org/10.1098/rsif.2017.0386.

Ajigboye, O. O., Bousquet, L., Murchie, E. H., and Ray, R. V. 2016. Chlorophyll fluorescence parameters allow
the rapid detection and differentiation of plant responses in three different wheat pathosystems. Funct. Plant Biol.
43:356-369. https://doi.org/10.1071/FP15280

AlSuwaidi, A., Grieve, B., and Yin, H. 2018. Feature-ensemble-based novelty detection for analyzing plant
hyperspectral datasets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11:1041-1055.
https://doi.org/10.1109/JSTARS.2017.2788426

Alisaac, E., Behmann, J., Kuska, M. T., Dehne, H. W., and Mahlein, A. K. 2018. Hyperspectral quantification of
wheat resistance to Fusarium head blight: Comparison of two Fusarium species. Eur. J. Plant Pathol. 152:869-

884. https://doi.org/10.1007/s10658-018-1505-9

Allen, L. J. S., Bokil, V. A., Cunniffe, N. J., Hamelin, F. M., Hilker, F. M., and Jeger, M. J. 2019. Modelling vector

transmission and epidemiology of co-infecting plant viruses. Viruses 11:1153. https://doi.org/10.3390/v11121153.

Page 28 of 66



Page 29 of 66

Allen-Perkins, A., and Estrada, E. 2019. Mathematical modelling for sustainable aphid control in agriculture via
intercropping. Proc. R. Soc. A 475:20190136. https://doi.org/10.1098/rspa.2019.0136.

Allen-Sader, C., Thurston, W., Meyer, M., Nure, E., Bacha, N., Alemayehu, Y., Stutt, R. O. J. H., Safka, D., Craig,
A. P., Derso, E., Burgin, L. E., Millington, S. C., Hort, M. C., Hodson, D. P., and Gilligan, C. A. 2019. An early
warning system to predict and mitigate wheat rust diseases in Ethiopia. Environ. Res. Lett. 14:115004.
https://doi.org/10.1088/1748-9326/ab4034

Alvarez-Vanhard, E., Corpetti, T., and Houet, T. 2021. UAV & satellite synergies for optical remote sensing
applications: A literature review. Sci. Remote Sens. 3:100019. https://doi.org/10.1016/j.srs.2021.100019

Alves, K.S., and Del Ponte, E.M. Analysis and simulation of plant disease progress curves in R: introducing the
epifitter package. Phytopathology Research 3:22. https://doi.org/10.1186/s42483-021-00098-7

Anderegg, J., Hund, A., Karisto, P., and Mikaberidze, A. 2019. In-field detection and quantification of septoria
tritici blotch in diverse wheat germplasm using spectral-temporal features. Front. Plant Sci. 10:1355.
https://doi.org/10.3389/fpls.2019.01355.

Anderegg, J., Zenkl, R., Kirchgessner, N., Hund, A., Walter, A., and McDonald, B. A. 2024. SYMPATHIQUE:
image-based tracking of symptoms and monitoring of pathogenesis to decompose quantitative disease
resistance in the field. Plant Methods 20:170. https://doi.org/10.1186/s13007-024-01290-4

Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., and Daszak, P. 2004. Emerging
infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol.
19:535-544. https://doi.org/10.1016/j.tree.2004.07.021.

Anonymous. 2025. PP 1/333 (1) Adoption of digital technology for data generation for the efficacy evaluation of
plant protection products. EPPO Bull. https://doi.org/10.1111/epp.13037

Arens, N., Backhaus, A., Déll, S., Fischer, S., Seiffert, U., and Mock, H.-P. 2016. Non-invasive presymptomatic
detection of Cercospora beticola infection and identification of early metabolic responses in sugar beet. Front.
Plant Sci. 7:1377. https://doi.org/10.3389/fpls.2016.01377

Asch, M., Bocquet, M., and Nodet, M. 2016. Data assimilation: methods, algorithms, and applications. Society for
Industrial and Applied Mathematics. SIAM, Philadelphia, PA. https://doi.org/10.1137/1.9781611974546

Atkinson, P. M. 2013. Downscaling in remote sensing. Int. J. Appl. Earth Obs. Geoinf. 22:106-114.
https://doi.org/10.1016/j.jag.2012.04.012

Aylor, D. 2017. Aerial dispersal of pollen and spores. APS Press, St. Paul, MN.
https://doi.org/10.1094/9780890545430

Bajocco, S., Raparelli, E., and Bregaglio, S. 2023. Assessing the driving role of the anthropogenic landscape on
the distribution of the Xylella fastidiosa-driven “olive quick decline syndrome” in Apulia (ltaly). Sci. Total Environ.
896:165231. https://doi.org/10.1016/j.scitotenv.2023.165231.

Baker, E., Jeger, M. J., Mumford, J. D., and Brown, N. 2019. Enhancing plant biosecurity with citizen science
monitoring: comparing methodologies using reports of acute oak decline. J. Geogr. Syst. 21:111-131.
https://doi.org/10.1007/s10109-018-0285-2

Barbedo, J. G. A. 2016. A review on the main challenges in automatic plant disease identification based on
visible range images. Biosyst. Eng. 144:52-60. https://doi.org/10.1016/j.biosystemseng.2016.01.017

Barbedo, J. G. A. 2022. Data fusion in agriculture: Resolving ambiguities and closing data gaps. Sensors
22:2285. https://doi.org/10.3390/s22062285


https://doi.org/10.1186/s13007-024-01290-4

Page 30 of 66

Barreto, A., Ispizua Yamati, F. R., Varrelmann, M., Paulus, S., and Mahlein, A.-K. 2023. Disease incidence and
severity of Cercospora leaf spot in sugar beet assessed by multispectral unmanned aerial images and machine
learning. Plant Dis. 107:188-200. https://doi.org/10.1094/pdis-12-21-2734-re

Bassanezi, R. B., Amorim, L., Filho, A. B., and Berger, R. D. 2002. Gas exchange and emission of chlorophyll
fluorescence during the monocycle of rust, angular leaf spot and anthracnose on bean leaves as a function of
their trophic characteristics. J. Phytopathol. 150:37-47. https://doi.org/10.1046/j.1439-0434.2002.00714.x

Bauer-Marschallinger, B., Cao, S., Tupas, M. E., Roth, F., Navacchi, C., Melzer, T., Freeman, V., and Wagner,
W. 2022. Satellite-based flood mapping through Bayesian inference from a Sentinel-1 SAR datacube. Remote
Sens. 14:3673. https://doi.org/10.3390/rs14153673.

Bauriegel, E., Brabandt, H., Garber, U., and Herppich, W. B. 2014. Chlorophyll fluorescence imaging to facilitate
breeding of Bremia lactucae-resistant lettuce cultivars. Comput. Electron. Agric. 105:74-82.
https://doi.org/10.1016/j.compag.2014.04.010

Behmann, J., Acebron, K., Emin, D., Bennertz, S., Matsubara, S., Thomas, S., Bohnenkamp, D., Kuska, M. T.,
Jussila, J., Salo, H., Mahlein, A.-K., and Rascher, U. 2018. Specim 1Q: Evaluation of a new, miniaturized
handheld hyperspectral camera and its application for plant phenotyping and disease detection. Sensors 18:441.
https://doi.org/10.3390/s18020441

Behmann, J., Mahlein, A. K., Rumpf, T., Romer, C., and Plimer, L. 2015. A review of advanced machine learning
methods for the detection of biotic stress in precision crop protection. Precis. Agric. 16:239-260.
https://doi.org/10.1007/s11119-014-9372-7

Belgiu, M., and Dragut, L. 2016. Random forest in remote sensing: A review of applications and future directions.
ISPRS J. Photogramm. Remote Sens. 114:24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Bengar, J. Z., van de Weijer, J., Twardowski, B., and Raducanu, B. 2021. Reducing label effort: self-supervised
meets active learning. IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW) 2021:1631-1639.
https://doi.org/10.1109/ICCVW54120.2021.00188.

Berger, K., Machwitz, M., Kycko, M., Kefauver, S. C., Van Wittenberghe, S., Gerhards, M., Verrelst, J., Atzberger,
C.,van der Tol, C., Damm, A., Rascher, U., Herrmann, |., Sobejano Paz, V., Fahrner, S., Pieruschka, R.,
Prikaziuk, E., Buchaillot, M. L., Halabuk, A., Celesti, M., Koren, G., Gormus, E. T., Rossini, M., Foerster, M.,
Siegmann, B., Abdelbaki, A., Tagliabue, G., Hank, T., Darvishzadeh, R., Aasen, H., Garcia, M., Pégas, I.,
Bandopadhyay, S., Sulis, M., Tomelleri, E., Rozenstein, O., Filchev, L., Stancile, G., and Schlerf, M. 2022. Multi-
sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. Remote Sens.
Environ. 280:113198. https://doi.org/10.1016/j.rse.2022.113198

Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H. 1992. GPS meteorology:
Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. 97:D14,
15787-15801.

Bianchi, C. E., Mendoza, L. P. O., Fernandez, L. I., Natali, M. P., Meza, A. M., and Moirano, J. F. 2016. Multi-
year GNSS monitoring of atmospheric IWV over central and south america for climate studies. Ann. Geophys.
34:623-639. https://doi.org/10.5194/angeo0-34-623-2016.

Bioucas-Dias, J. M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., and Chanussot, J. 2013.
Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1:6-36.
https://doi.org/10.1109/MGRS.2013.2244672.

Blasch, G., Anberbir, T., Negash, T., Tilahun, L., Belayineh, F. Y., Alemayehu, Y., Mamo, G., Hodson, D. P., and
Rodrigues, F. A. 2023. The potential of UAV and very high-resolution satellite imagery for yellow and stem rust
detection and phenotyping in Ethiopia. Sci. Rep. 13:16768. https://doi.org/10.1038/s41598-023-43770-y



Page 31 of 66

Bock, C. H., Barbedo, J. G. A,, Del Ponte, E. M., Bohnenkamp, D., and Mahlein, A. K. 2020. From visual
estimates to fully automated sensor-based measurements of plant disease severity: status and challenges for
improving accuracy. Phytopathol. Res. 2:9. https://doi.org/10.1186/s42483-020-00049-8

Bock, C. H., Chiang, K.-S., and Del Ponte, E. M. 2022. Plant disease severity estimated visually: a century of
research, best practices, and opportunities for improving methods and practices to maximize accuracy. Trop.
Plant Pathol. 47:25-42. https://doi.org/10.1007/s40858-021-00439-z

Bohnenkamp, D., Behmann, J., Paulus, S., Steiner, U., and Mahlein, A.-K. 2021. A hyperspectral library of foliar
diseases of wheat. Phytopathology 111:1583-1593. https://doi.org/10.1094/PHYTO-09-19-0335-R

Bohnenkamp, D., Behmann, J., and Mahlein, A.-K. 2019a. In-field detection of yellow rust in wheat on the ground
canopy and UAV scale. Remote Sens. 11:2495. https://doi.org/10.3390/rs11212495.

Bohnenkamp, D., Kuska, M. T., Mahlein, A. K., and Behmann, J. 2019b. Hyperspectral signal decomposition and
symptom detection of wheat rust disease at the leaf scale using pure fungal spore spectra as reference. Plant
Pathol. 68:1188-1195. https://doi.org/10.1111/ppa.13020

Bourgeois, A., Gaba, S., Munier-Jolain, N., Borgy, B., Monestiez, P., and Soubeyrand, S. 2012. Inferring weed
spatial distribution from multi-type data. Ecol. Model. 226:92-98. https://doi.org/10.1016/j.ecolmodel.2011.10.010

Bousset, L., Jumel, S., Garreta, V., Picault, H., and Soubeyrand, S. 2015. Transmission of Leptosphaeria
maculans from a cropping season to the following one. Ann. Appl. Biol. 166:530-543.
https://doi.org/10.1111/aab.12205

Boyd, I. L., Freer-Smith, P. H., Gilligan, C. A., and Godfray, H. C. 2013. The consequence of tree pests and
diseases for ecosystem services. Science 342:1235773. https://doi.org/10.1126/science.1235773.

Brakke, T. W. 1994. Specular and diffuse components of radiation scattered by leaves. Agric. For. Meteorol.
71:283-295. https://doi.org/10.1016/0168-1923(94)90016-7

Brasier, C. M. 2008. The biosecurity threat to the UK and global environment from international trade in plants.
Plant Pathol. 57:792-808. https://doi.org/10.1111/j.1365-3059.2008.01886.x

Bregaglio, S., Savian, F., Raparelli, E., Morelli, D., Epifani, R., Pietrangeli, F., Nigro, C., Bugiani, R., Pini, S.,
Culatti, P., Tognetti, D., Spanna, F., Gerardi, M., Delillo, I., Bajocco, S., Fanchini, D., Fila, G., Ginaldi, F., and
Manici, L. M. 2022. A public decision support system for the assessment of plant disease infection risk shared by
Italian regions. J. Environ. Manag. 317:115365. https://doi.org/10.1016/j.jenvman.2022.115365

Brown, J. K., and Hovmgller, M. S. 2002. Aerial dispersal of pathogens on the global and continental scales and
its impact on plant disease. Science 297:537-541. https://doi.org/10.1126/science.1072678

Brugger, A., Yamati, F. |, Barreto, A., Paulus, S., Schramowsk, P., Kersting, K., Steiner, U., Neugart, S., and
Mabhlein, A. K. 2023. Hyperspectral imaging in the UV range allows for differentiation of sugar beet diseases
based on changes in secondary plant metabolites. Phytopathology 113:44-54. https://doi.org/10.1094/PHYTO-
03-22-0086-R

Bryson, M., Reid, A., Ramos, F., and Sukkarieh, S. 2010. Airborne vision-based mapping and classification of
large farmland environments. J. Field Robot. 27:632-655. https://doi.org/10.1002/rob.20343

Buelvas, R. M., Adamchuk, V. I., Lan, J., Hoyos-Villegas, V., Whitmore, A., and Stromvik, M. V. 2023.
Development of a Quick-Install Rapid Phenotyping System. Sensors 23:4253. https://doi.org/10.3390/s23094253.

Buhrdel, J., Walter, M., and Campbell, R. E. 2020. Geodata collection and visualisation in orchards: interfacing
science-grower data using a disease example (European canker in apple, Neonectria ditissima). N. Z. Plant Prot.
73:57-64. https://doi.org/10.30843/nzpp.2020.73.11721



Page 32 of 66

Bussell, E. H., Dangerfield, C. E., Gilligan, C. A., and Cunniffe, N. J. 2018. Applying optimal control theory to
complex epidemiological models to inform real-world disease management. Philos. Trans. R. Soc. Lond., Ser. B
Biol. Sci. 373:20170285. https://doi.org/10.1098/rstb.2017.0285

Bégué, A., Arvor, D., Bellon, B., Betbeder, J., De Abelleyra, D., Ferraz, P. D., Lebourgeois, V., Lelong, C.,
Simdes, M., and Verdn, R. 2018. Remote sensing and cropping practices: A review. Remote Sens. 10:99.
https://doi.org/10.3390/rs10010099

CABI. 2023. CABI Compendium. Available at: https://www.cabidigitallibrary.org/journal/cabicompendium
[Accessed November 5 2024].

Cacciola, S. 0., Lo Giudice, V., Magnano Di San Lio, G., and Raudino, F. 2007. Phytophthora spp. in agrumeti
unica malattia con piu sintomi. L'Informatore Agrario 39:44-50.

Calderon, R., Navas-Cortés, J. A., Lucena, C., and Zarco-Tejada, P. J. 2013. High-resolution airborne
hyperspectral and thermal imagery for early detection of Verticillium wilt using fluorescence, temperature and
narrow-band spectral indices. Remote Sens. Environ. 139:231-245. https://doi.org/10.1016/j.rse.2013.07.031

Calderoén, R., Lucena, C., Trapero-Casas, J. L., Zarco-Tejada, P. J., and Navas-Cortés, J. A. 2014. Soll
temperature determines the reaction of olive cultivars to Verticillium dahliae pathotypes. PLoS One 9:89142.
https://doi.org/10.1371/journal.pone.0089142

Calderén, R., Navas-Cortés, J.A., and Zarco-Tejada, P.J. 2015. Early detection and quantification of Verticillium
wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sens. 7:5584-5610.
https://doi.org/10.3390/rs70505584

Camarretta, N., Pearse, G. D., Steer, B. S. C., McLay, E., Fraser, S., and Watt, M. S. 2024. Automatic Detection
of Phytophthora pluvialis Outbreaks in Radiata Pine Plantations Using Multi-Scene, Multi-Temporal Satellite
Imagery. Remote Sens. 16:338. https://doi.org/10.3390/rs16020338

Camino, C., Calderon, R., Parnell, S., Dierkes, H., Chemin, Y., Roman-Ecija, M., Montes-Borrego, M., Landa, B.
B., Navas-Cortes, J. A., Zarco-Tejada, P. J., and Beck, P. S. A. 2021. Detection of Xylella fastidiosa in almond
orchards by synergic use of an epidemic spread model and remotely sensed plant traits. Remote Sens. Environ.
260:112420. https://doi.org/10.1016/j.rse.2021.112420.

Carlier, A., Dandrifosse, S., Dumont, B., and Mercatoris, B. 2023. To what extent does yellow rust infestation
affect remotely sensed nitrogen status? Plant Phenomics 5:1-14. https://doi.org/10.34133/plantphenomics.0083

Carnegie, A. J., Eslick, H., Barber, P., Nagel, M., and Stone, C. 2023. Airborne multispectral imagery and deep
learning for biosecurity surveillance of invasive forest pests in urban landscapes. Urban For. Urban Green.
81:127859. https://doi.org/10.1016/j.ufug.2023.127859

Carolan, K., Helps, J., van den Berg, F., Bain, R., Paveley, N., and van den Bosch, F. 2017. Extending the
durability of cultivar resistance by limiting epidemic growth rates. Proc. R. Soc. B. 284:20170828.
https://doi.org/10.1098/rspb.2017.0828

Cawse-Nicholson, K., Townsend, P. A., Schimel, D., Assiri, A. M., Blake, P. L., Buongiorno, M. F., Campbell, P.,
Carmon, N., Casey, K. A., Correa-Pabon, R. E., Dahlin, K. M., Dashti, H., Dennison, P. E., Dierssen, H.,
Erickson, A., Fisher, J. B., Frouin, R., Gatebe, C. K., Gholizadeh, H., Gierach, M., Glenn, N. F., Goodman, J. A.,
Griffith, D. M., Guild, L., Hakkenberg, C. R., Hochberg, E. J., Holmes, T. R. H., Hu, C., Hulley, G., Huemmrich, K.
F., Kudela, R. M., Kokaly, R. F., Lee, C. M., Martin, R., Miller, C. E., Moses, W. J., Muller-Karger, F. E., Ortiz, J.
D., Otis, D. B., Pahlevan, N., Painter, T. H., Pavlick, R., Poulter, B., Qi, Y., Realmuto, V. J., Roberts, D.,
Schaepman, M. E., Schneider, F. D., Schwandner, F. M., Serbin, S. P., Shiklomanov, A. N., Stavros, E. N.,
Thompson, D. R., Torres-Perez, J. L., Turpie, K. R., Tzortziou, M., Ustin, S., Yu, Q., Yusup, Y., Zhang, Q. 2021.
NASA'’s surface biology and geology designated observable: A perspective on surface imaging algorithms.
Remote Sens. Environ. 257:112349. https://doi.org/10.1016/j.rse.2021.112349.



Page 33 of 66

Celesti, M., Rast, M., Adams, J., Boccia, V., Gascon, F., Isola, C., and Nieke, J. 2022. The Copernicus
Hyperspectral Imaging Mission for the Environment (CHIME): Status and planning. IGARSS 2022 - 2022 IEEE
Int. Geosci. Remote Sens. Symp. 5011-5014. https://doi.org/10.1109/IGARSS46834.2022.9883592

Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B., and Latouche, G. 2012. A new optical leaf-clip meter for
simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 146:251-
260. https://doi.org/10.1111/j.1399-3054.2012.01639.x.

Chabot, V., Nodet, M., Papadakis, N., and Vidard, A. 2015. Accounting for observation errors in image data
assimilation. Tellus A: Dyn. Meteorol. Oceanogr. 67:23629. https://doi.org/10.3402/tellusa.v67.23629

Chabrillat, S., Foerster, S., Segl, K., Beamish, A., Brell, M., Asadzadeh, S., Milewski, R., Ward, K. J., Brosinsky,
A., Koch, K., Scheffler, D., Guillaso, S., Kokhanovsky, A., Roessner, S., Guanter, L., Kaufmann, H., Pinnel, N.,
Carmona, E., Storch, T., Hank, T., Berger, K., Wocher, M., Hostert, P., van der Linden, S., Okujeni, A., Janz, A.,
Jakimow, B., Bracher, A., Soppa, M. A., Alvarado, L. M. A., Buddenbaum, H., Heim, B., Heiden, U., Moreno, J.,
Ong, C., Bohn, N., Green, R. O., Bachmann, M., Kokaly, R., Schodlok, M., Painter, T. H., Gascon, F.,
Buongiorno, F., Mottus, M., Brando, V. E., Feilhauer, H., Betz, M., Baur, S., Feckl, R., Schickling, A., Krieger, V.,
Bock, M., La Porta, L., and Fischer, S. 2024. The EnMAP spaceborne imaging spectroscopy mission: Initial
scientific results two years after launch. Remote Sens. Environ. 315:114379.
https://doi.org/10.1016/j.rse.2024.114379.

Chaerle, L., Hagenbeek, D., De Bruyne, E., Valcke, R., and Van der Straeten, D. 2004. Thermal and chlorophyll-
fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol. 45:887-896.
https://doi.org/10.1093/pcp/pch097

Chakhvashvili, E., M. Machwitz, M. Antala, O. Rozenstein, E. Prikaziuk, M. Schlerf, P. Naethe, Q. Wan, J.
Komarek, T. Klouek, S. Wieneke, B. Siegmann, S. Kefauver, M. Kycko, H. Balde, V. Sobejano Paz, J. A.
Jimenez-Berni, H. Buddenbaum, L. Hanchen, N. Wang, A. Weinman, A. Rastogi, N. Malachy, M.-L. Buchaillot, J.
Bendig, and U. Rascher. 2024. Crop stress detection from UAVSs: best practices and lessons learned for
exploiting sensor synergies. Precision Agriculture 25:2614-2642. https://doi.org/10.1007/s11119-024-10168-3

Chavana-Bryant, C., Malhi, Y., Anastasiou, A., Enquist, B. J., Cosio, E. G., Keenan, T. F., and Gerard, F. F.
2019. Leaf age effects on the spectral predictability of leaf traits in Amazonian canopy trees. Sci. Total Environ.
666:1301-1315. https://doi.org/10.1016/j.scitotenv.2019.01.379

Cheng, S., Quilodran-Casas, C., Ouala, S., Farchi, A, Liu, C., Tandeo, P., Fablet, R., Lucor, D., looss, B.,
Brajard, J., Xiao, D., Janjic, T., Ding, W., Guo, Y., Carrassi, A., Bocquet, M., and Arcucci, R. 2023. Machine
learning with data assimilation and uncertainty quantification for dynamical systems: a review. IEEE/CAA J.
Autom. Sin. 10(6):1361-1387. https://doi.org/10.1109/JAS.2023.123537.

Chlus, A., Olson, W., oldmanye007, and Greenberg, E. 2023. EnSpec/hytools: 1.5.0. Zenodo.
https://zenodo.org/record/5997755

Cieniewicz, E. J., Qiu, W., Saldarelli, P., and Fuchs, M. 2020. Believing is seeing: lessons from emerging viruses
in grapevine. J. Plant Pathol. 102:619-632. https://doi.org/10.1007/s42161-019-00484-3.

Clin, P., Grognard, F., Andrivon, D., Mailleret, L., and Hamelin, F. M. 2022. Host mixtures for plant disease
control: Benefits from pathogen selection and immune priming. Evol. Appl. 15:967-975.
https://doi.org/10.1111/eva.13386

Collings, S., Caccetta, P., Campbell, N., and Wu, X. 2010. Techniques for BRDF Correction of Hyperspectral
Mosaics. IEEE Trans. Geosci. Remote Sens. 48:3733-3746. https://doi.org/10.1109/TGRS.2010.2048574.

Colomina, I., and Molina, P. 2014. Unmanned aerial systems for photogrammetry and remote sensing: A review.
ISPRS J. Photogramm. Remote Sens. 92:79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013

Cook, A. R., Gibson, G. J., and Gilligan, C. A. 2008. Optimal observation times in experimental epidemic
processes. Biometrics 64:860-868. https://doi.org/10.1111/j.1541-0420.2007.00931 .x.



Page 34 of 66

Corkley, I., Helps, J., van den Bosch, F., Paveley, N. D., Milne, A. E., Mikaberidze, A., Sierotzki, H., and Skirvin,
D. J. 2025a. Delaying infection through phytosanitary soybean-free periods contributes to fungicide resistance
management in Phakopsora pachyrhizi: A modelling analysis. Plant Pathol. 74:1078-1096.
https://doi.org/10.1111/ppa.14074

Corkley, I., Mikaberidze, A., Paveley, N., van den Bosch, F., Shaw, M. W., and Milne, A. E. 2025b. Dose splitting
increases selection for both target-site and non-target-site fungicide resistance—A modelling analysis. Plant
Pathol. 74:1152-1167. https://doi.org/10.1111/ppa.14080

Costanza, R., and Voinov, A. 2001. Modeling ecological and economic systems with STELLA: Part Ill. Ecol.
Modell. 143:1-7. https://doi.org/10.1016/S0304-3800(01)00358-1.

Couture, J. J., Singh, A., Charkowski, A. O., Groves, R. L., Gray, S. M., Bethke, P. C., and Townsend, P. A.
2018. Integrating spectroscopy with potato disease management. Plant Dis. 102:2233-2240.
https://doi.org/10.1094/PDIS-01-18-0054-RE

Craig, A. P., Cunniffe, N. J., Parry, M., Laranjeira, F. F., and Gilligan, C. A. 2018. Grower and regulator conflict in
management of the citrus disease Huanglongbing in Brazil: A modelling study. J. Appl. Ecol. 55:1956-1965.
https://doi.org/10.1111/1365-2664.13122.

Cubero, S., Marco-Noales, E., Aleixos, N., Barbé, S., and Blasco, J. 2020. RobHortic: A Field Robot to Detect
Pests and Diseases in Horticultural Crops by Proximal Sensing. Agriculture 10:276.
https://doi.org/10.3390/agriculture10070276

Culman, M., Delalieux, S., Beusen, B., and Somers, B. 2023. Automatic labeling to overcome the limitations of
deep learning in applications with insufficient training data: A case study on fruit detection in pear orchards.
Comput. Electron. Agric. 213:108196. https://doi.org/10.1016/j.compag.2023.108196.

Cunniffe, N. J., Cobb, R. C., Meentemeyer, R. K., Rizzo, D. R., and Gilligan, C. A. 2016. Modeling when, where
and how to manage a forest epidemic, motivated by sudden oak death in California. Proc. Natl. Acad. Sci. U.S.A.
113:5640-5645. https://doi.org/10.1073/pnas.1602153113

Cunniffe, N. J., Koskella, B., Metcalf, C. J. E., Parnell, S., Gottwald, T. R., and Gilligan, C. A. 2015. Thirteen
challenges in modelling plant diseases. Epidemics 10:6-10. https://doi.org/10.1016/j.epidem.2014.06.002

Cunniffe, N. J., Laranjeira, F. F., Neri, F. M., DeSimone, R. E., and Gilligan, C. A. 2014. Cost-effective control of
plant disease when epidemiological knowledge is incomplete: modelling Bahia bark scaling of citrus. PLoS
Comput. Biol. 10:e1003753. https://doi.org/10.1371/journal.pchi.1003753

Cunniffe, N. J., and Gilligan, C. A. 2011. A theoretical framework for biological control of soil-borne plant
pathogens: identifying effective strategies. J. Theor. Biol. 278:32-43. https://doi.org/10.1016/j.jthi.2011.02.023

Cunniffe, N. J., and Gilligan, C. A. 2020. Mathematical Models of Plant Disease Outbreaks. Chap. 12, pages 239-
266 in: Emerging Plant Diseases and Global Food Security. J. Ristaino and A. Records, eds. APS Press, St.
Paul, MN. https://doi.org/10.1094/9780890546383.012

Cunniffe, N., Hamelin, F., Iggidr, A., Rapaport, A., and Sallet, G. 2024. Identifiability and Observability in
Epidemiological Models: A Primer. Springer, Singapore. https://doi.org/10.1007/978-981-97-2539-7

Dalponte, M., Solano-Correa, Y. T., Frizzera, L., and Gianelle, D. 2022. Mapping a European spruce bark beetle
outbreak using Sentinel-2 remote sensing data. Remote Sens. 14:3135. https://doi.org/10.3390/rs14133135.

Daniels, L., Eeckhout, E., Wieme, J., Dejaegher, Y., Audenaert, K., and Maes, W. H. 2023. Identifying the optimal
radiometric calibration method for UAV-based multispectral imaging. Remote Sens. 15:2909.
https://doi.org/10.3390/rs15112909



Page 35 of 66

De Wolf, E. D., and Isard, S. A. 2007. Disease cycle approach to plant disease prediction. Annu. Rev.
Phytopathol. 45:203-220. https://doi.org/10.1146/annurev.phyto.44.070505.143329

Defourny, P., Bontemps, S., Bellemans, N., Cara, C., Dedieu, G., Guzzonato, E., Hagolle, O., Inglada, J., Nicola,
L., Rabaute, T., Savinaud, M., Udroiu, C., Valero, S., Bégué, A., Dejoux, J.-F., El Harti, A., Ezzahar, J., Kussul,
N., Labbassi, K., Lebourgeois, V., Miao, Z., Newby, T., Nyamugama, A., Salh, N., Shelestov, A., Simonneaux, V.,
Sibiry Traore, P., Traore, S. S., and Koetz, B. 2019. Near real-time agriculture monitoring at national scale at
parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems
around the world. Remote Sens. Environ. 221:551-568. https://doi.org/10.1016/j.rse.2018.11.007.

Defra. 2014. Tree health management plan. Available at:
https://assets.publishing.service.gov.uk/media/5a7ed71540f0b6230268bde4/pb14167-tree-health-management-
plan.pdf

Delalieux, S., Somers, B., Hereijgers, S., Verstraeten, W. W., Keulemans, J., and Coppin, P. 2008. A near-
infrared narrow-waveband ratio to determine Leaf Area Index in orchards. Remote Sens. Environ. 112:3762-
3772. https://doi.org/10.1016/j.rse.2008.05.003

Delalieux, S., Somers, B., Verstraeten, W. W., van Aardt, J. A. N., Keulemans, W., and Coppin, P. 2009.
Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. Int. J. Remote
Sens. 30:1887-1912. https://doi.org/10.1080/01431160802541556

Delalieux, S., Zarco-Tejada, P., Tits, L., Jiménez-Bello, M. A, Intrigliolo, D. S., and Somers, B. 2014. Unmixing-
based fusion of hyperspatial and hyperspectral airborne imagery for early detection of vegetation stress. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 7:2571-2582. https://doi.org/10.1109/JSTARS.2014.2330352

Detring, J., Barreto, A., Mahlein, A.-K., and Paulus, S. 2024. Quality assurance of hyperspectral imaging systems
for neural network supported plant phenotyping. Plant Methods 20:189. https://doi.org/10.1186/s13007-024-
01315-y

Dlamini, S. N., Beloconi, A., Mabaso, S., Vounatsou, P., Impouma, B., and Fall, I. S. 2019. Review of remotely
sensed data products for disease mapping and epidemiology. Remote Sens. Appl. Soc. Environ. 14:108-118.
https://doi.org/10.1016/j.rsase.2019.02.005

Doersch, C., Gupta, A., and Efros, A. A. 2015. Unsupervised visual representation learning by context prediction.
Proc. IEEE Int. Conf. Comput. Vis. 2015:1422-1430. https://doi.org/10.1109/ICCV.2015.167.

Donnelly, R., Cunniffe, N. J., Carr, J. P., and Gilligan, C. A. 2019. Pathogenic modification of plants enhances
long-distance dispersal of non-persistently transmitted viruses to new hosts. Ecology 100:e02725.
https://doi.org/10.1002/ecy.2725

EFSA (European Food Safety Authority). 2013. Statement of EFSA on host plants, entry and spread pathways
and risk reduction options for Xylella fastidiosa Wells et al. EFSA J. 11(11):3468, 50 pp.
https://doi.org/10.2903/j.efsa.2013.3468

EFSA (European Food Safety Authority), Delbianco, A., Gibin, D., Pasinato, L., and Morelli, M. 2022. Scientific
Report on the update of the Xylella spp. host plant database — systematic literature search up to 30 June 2021.
EFSA J. 20:7039. https://doi.org/10.2903/j.efsa.2022.7039

EPPO. 2023. EPPO Global Database. Available at: https://gd.eppo.int [Accessed November 5, 2024]

ESA. 2020. Plans for a New Wave of European Sentinel Satellites. Available at: https://futureearth.org/wp-
content/uploads/2020/01/issuebrief_04_03.pdf.

Ellis, J., Lazaro, E., Duarte, B., Magalhaes, T., Duarte, A., Benhadi-Marin, J., Pereira, J. A., Vicent, A., Parnell,
S., and Cunniffe, N. J. 2025. Developing epidemiological preparedness for a plant disease invasion: modelling
citrus huangléngbing in the European Union. Plants, People, Planet. https://doi.org/10.1002/ppp3.10643



Emery, S. E., Jonsson, M., Silva, H., Ribeiro, A., and Mills, N. J. 2021. High agricultural intensity at the landscape
scale benefits pests, but low intensity practices at the local scale can mitigate these effects. Agric. Ecosyst.
Environ. 306:107199. https://doi.org/10.1016/j.agee.2020.107199

Epanchin-Niell, R., and Hastings, A. 2010. Controlling established invaders: integrating economics and spread
dynamics to determine optimal management. Ecol. Lett. 13:528-541. https://doi.org/10.1111/j.1461-
0248.2010.01440.x

Essery, R., Bunting, P., Rowlands, A., Rutter, N., Hardy, J., Melloh, R., Link, T., Marks, D., and Pomeroy, J.
2008. Radiative Transfer Modeling of a Coniferous Canopy Characterized by Airborne Remote Sensing. J.
Hydrometeorol. 9:228-241. https://doi.org/10.1175/2007JHM870.1.

European Court of Auditors. 2020. Using new imaging technologies to monitor the common agricultural policy —
Steady progress overall, but slower for climate and environment monitoring. Special report No 04. Publications
Office. https://data.europa.eu/doi/10.2865/46869

Fabre, F., Coville, J., and Cunniffe, N. J. 2021. Optimising reactive disease management using spatially explicit
models at the landscape scale. In Plant Diseases and Food Security in the 21st Century (eds., Scott, P., Strange,
R., Korsten, L., and Gullino, L.). Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-030-57899-2_4

Fall, M. L., van der Heyden, H., Brodeur, L., Leclerc, Y., Moreau, G., and Carisse, O. 2015. Spatiotemporal
variation in airborne sporangia of Phytophthora infestans: characterization and initiatives towards improving
potato late blight risk estimation. Plant Pathol. 64:178-190. https://doi.org/10.1111/ppa.12235

Falla, E. K., and Cunniffe, N. J. 2024. Why aphid virus retention needs more attention: Modelling aphid behaviour
and virus manipulation in non-persistent plant virus transmission. PLOS Computational Biology 20:€1012479.
https://doi.org/10.1371/journal.pcbi.1012479

Fallon, B., Yang, A., Nguyen, C., Armour, I., Juzwik, J., Montgomery, R. A., and Cavender-Bares, J. 2020.
Spectral differentiation of oak wilt from foliar fungal disease and drought is correlated with physiological changes.
Tree Physiol. https://doi.org/10.1093/treephys/tpaa005

Faraz, A., Khan, N. A., Raza, H. Y., Malik, Z., and Cetinel, B. 2022. Remote Sensing: A New Tool for Disease
Assessment in Crops. Trends Plant Dis. Assess. 47-67. https://doi.org/10.1007/978-981-19-5896-0_3

Farber, D. H., De Leenheer, P., and Mundt, C. C. 2019. Dispersal kernels may be scalable: Implications from a
plant pathogen. J. Biogeogr. 46:2042-2055. https://doi.org/10.1111/jbi.13642.

Fassnacht, F. E., Latifi, H., Sterefczak, K., Modzelewska, A., Lefsky, M., Waser, L. T., Straub, C., and Ghosh, A.
2016. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ.
186:64-87. https://doi.org/10.1016/j.rse.2016.08.013

Fielder, H., Beale, T., Jeger, M. J., Oliver, G., Parnell, S., Szyniszewska, A. M., Taylor, P., and Cunniffe, N. J.
2024. A synoptic review of plant disease epidemics and outbreaks published in 2022. Phytopathology.

Fiorani, F., Rascher, U., Jahnke, S., and Schurr, U. 2012. Imaging plants dynamics in heterogenic environments.
Curr. Opin. Biotechnol. 23:227-235. https://doi.org/10.1016/j.copbio.2011.12.010

Franceschini, M. H. D., Bartholomeus, H., van Apeldoorn, D. F., Suomalainen, J., and Kooistra, L. 2019.
Feasibility of unmanned aerial vehicle optical imagery for early detection and severity assessment of late blight in
Potato. Remote Sens. 11:224. https://doi.org/10.3390/rs11030224

Franceschini, M. H. D., Brede, B., Kamp, J., Bartholomeus, H., and Kooistra, L. 2024. Detection of a vascular wilt
disease in potato (‘Blackleg’) based on UAV hyperspectral imagery: Can structural features from LiDAR or SfM
improve plant-wise classification accuracy? Comput. Electron. Agric. 227:109527.
https://doi.org/10.1016/j.compag.2024.109527

Page 36 of 66



Page 37 of 66

Fraser, C., Riley, S., Anderson, R. M., and Ferguson, N. M. 2004. Factors that make an infectious disease
outbreak controllable. Proc. Natl. Acad. Sci. U. S. A. 101:6146-6151. https://doi.org/10.1073/pnas.0307506101.

Fraser, S., Baker, M., Pearse, G., Todoroki, C. L., Estarija, H. J., Hood, I. A., Bulman, L. S., Somchit, C., and
Rolando, C. A. 2022. Efficacy and optimal timing of low-volume aerial applications of copper fungicides for the
control of red needle cast of pine. N. Z. J. For. Sci. 52. https://doi.org/10.33494/nzjfs522022x211x

Gambhir, N., Paul, A, Qiu, T., Combs, D. B., Hosseinzadeh, S., Underhill, A., Jiang, Y., Cadle-Davidson, L. E.,
and Gold, K. M. 2024. Non-destructive monitoring of foliar fungicide efficacy with hyperspectral sensing in
grapevine. Phytopathology 114:464-473. https://doi.org/10.1094/PHYTO-02-23-0061-R

Gamon, J. A., Somers, B., Malenovsky, Z., Middleton, E., Rascher, U., and Schaepman, M. 2019. Assessing
vegetation function with imaging spectroscopy. Surveys in Geophysics 40:489-513.
https://doi.org/10.1007/s10712-019-09511-5.

Garcia-Penia, J. C., Ramirez-Gil, J. G., Gongora-Canul, C., Calderon, L., Cuellar, J., and Cruz, C. D. 2023.
Multiscale temporal and spatiotemporal analysis of wheat blast infection-like dynamics using vertical plant
stratification, regression and Markov chain approaches. Plant Pathol. 72:1570-1584.
https://doi.org/10.1111/ppa.13789.

Gardner, T. A., Benzie, M., Borner, J., Dawkins, E., Fick, S., Garrett, R., Godar, J., Grimard, A., Lake, S., Larsen,
R.K., Mardas, N., McDermott, C. L., Meyfroidt, P., Osbeck, M., Persson, M., Sembres, T., Suavet, C., Strassburg,
B., Trevisan, A., West, C., and Wolvekamp, P. 2019. Transparency and sustainability in global commodity supply
chains. World Development. 121: 163-177. https://doi.org/10.1016/j.worlddev.2018.05.025

Garrett, K. A., Alcala-Briseno, R. ., Andersen, K. F., Buddenhagen, C. E., Choudhury, R. A., Fulton, J. C.,
Hernandez-Nopsa, J. F., Poudel, R., and Xing, Y. 2018. Network analysis: A systems framework to address
grand challenges in plant pathology. Annu. Rev. Phytopathol. 56:559-580. https://doi.org/10.1146/annurev-phyto-
080516-035326

Garrett, K. A., Madden, L. V., Hughes, G., and Pfender, W. F. 2004. New applications of statistical tools in plant
pathology. Phytopathology 94:999-1003. https://doi.org/10.1094/PHYTO0.2004.94.9.999

Garske, B., Bau, A., and Ekardt, F. 2021. Digitalization and Al in European Agriculture: A Strategy for Achieving
Climate and Biodiversity Targets? Sustainability. 13: 4652. https://doi.org/10.3390/su13094652

Gay, A. P,, Thomas, H., Roca, M., James, C., Taylor, J., Rowland, J., and Ougham, H. 2008. Nondestructive
analysis of senescence in mesophyll cells by spectral resolution of protein synthesis-dependent pigment
metabolism. New Phytologist 179:663-674. https://doi.org/10.1111/j.1469-8137.2008.02412.x.

Geladi, P., and Kowalski, B. R. 1986. Partial least-squares regression: a tutorial. Anal. Chim. Acta 185:1-17.
https://doi.org/10.1016/0003-2670(86)80028-9

Gent, D.H., Mahaffee, W.F., McRoberts, N., and Pfender, W.F. 2013. The use and role of predictive systems for
disease management. Annu. Rev. Phytopathol. 51:267-289.
https://doi.org/10.1146/annurev.phyto.43.113004.133839.

Ghosh, D., and Kaabouch, N. 2016. A survey on image mosaicing techniques. J. Vis. Commun. Image
Represent. 34:1-11. https://doi.org/10.1016/j.jvcir.2015.10.014.

Gibson, G. J. 1997. Markov chain Monte Carlo methods for fitting spatiotemporal stochastic models in plant
epidemiology. J. R. Stat. Soc. Ser. C Appl. Stat. 46:215-233. https://doi.org/10.1111/1467-9876.00061

Gibson, G. J., and Austin, E. J. 1996. Fitting and testing spatio-temporal stochastic models with application in
plant epidemiology. Plant Pathol. 45:172-184. https://doi.org/10.1046/j.1365-3059.1996.d01-116.x

Gilligan, C. A. 2002. An epidemiological framework for disease management. Adv. Bot. Res. 38:1-64.
https://doi.org/10.1016/S0065-2296(02)38027-3



Page 38 of 66

Gilligan, C. A. 2024. Developing predictive models and early warning systems for invading pathogens: wheat
rusts. Annu. Rev. Phytopathol. 62:217-241. https://doi.org/10.1146/annurev-phyto-121423-041956.

Gilligan, C. A., and van den Bosch, F. 2008. Epidemiological models for invasion and persistence of pathogens.
Annu. Rev. Phytopathol. 46:385-418. https://doi.org/10.1146/annurev.phyto.43.113004.133839.

Gilligan, C.A. 2008. Sustainable agriculture and plant diseases: an epidemiological perspective. Philos. Trans. R.
Soc. Lond., B, Biol. Sci. 363:741-759. https://doi.org/10.1098/rstb.2007.2181.

Gobalakrishnan, N., Pradeep, K., Raman, C. J., Javid Ali, L., and Gopinath, M. P. 2020. A systematic review on
image processing and machine learning techniques for detecting plant diseases. 2020 International Conference
on Communication and Signal Processing (ICCSP). https://doi.org/10.1109/ICCSP48568.2020.9182046

Godding, D., Stutt, R. O. J. H., Alicai, T., Abidrabo, P., Okao-Okuja, G., and Gilligan, C. A. 2023. Developing a
predictive model for an emerging epidemic on cassava in sub-Saharan Africa. Sci. Rep. 13:12603.
https://doi.org/10.1038/s41598-023-38819-x

Gold, K. M., Townsend, P. A., Chlus, A., Herrmann, |., Couture, J. J., Larson, E. R., and Gevens, A. J. 2020.
Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological
effects of late blight and early blight in potato. Remote Sens. 12(2): Article 2. https://doi.org/10.3390/rs12020286

Gold, K. M., Townsend, P. A., Herrmann, |., and Gevens, A. J. 2019a. Investigating potato late blight
physiological differences across potato cultivars with spectroscopy and machine learning. Plant Sci. 110316.
https://doi.org/10.1016/j.plantsci.2019.110316

Gold, K. M., Townsend, P. A., Larson, E. R., Herrmann, |., and Gevens, A. J. 2019b. Contact Reflectance
Spectroscopy for Rapid, Accurate, and Nondestructive Phytophthora infestans Clonal Lineage Discrimination.
Phytopathology 110:851-862. https://doi.org/10.1094/PHYTO-08-19-0294-R

Gold, K. M. 2021. Plant disease sensing: studying plant-pathogen interactions at scale. mSystems 6:€0122821.
https://doi.org/10.1128/mSystems.01228-21.

Gongora-Canul, C., Salgado, J. D., Singh, D., Cruz, A. P., Cotrozzi, L., Couture, J., Rivadeneira, M. G., Cruppe,
G., Valent, B., Todd, T., Poland, J., and Cruz, C. D. 2020. Temporal dynamics of wheat blast epidemics and
disease measurements using multispectral imagery. Phytopathology 110:393-405.
https://doi.org/10.1094/PHYTO-08-19-0297-R

Gonzalez-Dominguez, E., Caffi, T., Rossi, V., Salotti, I., and Fedele, G. 2023. Plant disease models and
forecasting: changes in principles and applications over the last 50 years. Phytopathology 113:678-693.
https://doi.org/10.1094/PHYTO-10-22-0362-KD

Gougherty, A. V., and Davies, T. J. 2021. Towards a phylogenetic ecology of plant pests and pathogens. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 376:20200359. https://doi.org/10.1098/rstb.2020.0359

Grantz, K. H., Meredith, H. R., Cummings, D. A. T., Metcalf, C. J. E., Grenfell, B. T., Giles, J. R., Mehta, S.,
Solomon, S., Labrique, A., Kishore, N., Buckee, C. O., and Wesolowski, A. 2020. The use of mobile phone data
to inform analysis of COVID-19 pandemic epidemiology. Nat. Commun. 11:4961. https://doi.org/10.1038/s41467-
020-18190-5

Grunwald, N. J., Bock, C. H., Chang, J. H., Alves, A., Souza, D., Ponte, E. M. del, du Toit, L. J., Dorrance, A. E.,
Dung, J., Gent, D., Goss, E. M., Lowe-Power, T. M., Madden, L., Martin, F., Mcdowell, J., Naegele, R., Potnis, N.,
Quesada-Ocampo, L., Sundin, G., Thiessen, L., Vinatzer, B. A., and Zeng, Q. 2024. Open access and
reproducibility in plant pathology research: Guidelines and best practices. Phytopathology 114:910-916.
https://doi.org/10.1094/phyto-12-23-0483-ia



Page 39 of 66

Gu, Y., Huang, Y., and Liu, T. 2023. Intrinsic decomposition embedded spectral unmixing for satellite
hyperspectral images with endmembers from UAV platform. IEEE Trans. Geosci. Remote Sens. 61:1-12.
https://doi.org/10.1109/TGRS.2023.3307346.

Guo, A. T., Huang, W. J., Dong, Y. Y., Ye, H. C., Ma, H. Q., Liu, B., Wu, W. B., Ren, Y., Ruan, C., and Geng, Y.
2021. Wheat yellow rust detection using UAV-based hyperspectral technology. Remote Sens. 13:123.
https://doi.org/10.3390/rs13010123.

Guzman Q., J. A., Pinto-Ledezma, J. N., Frantz, D., Townsend, P. A., Juzwik, J., and Cavender-Bares, J. 2023.
Mapping oak wilt disease from space using land surface phenology. Remote Sens. Environ. 298:113794.
https://doi.org/10.1016/j.rse.2023.113794

Gomez-Reyes, J. K., Benitez-Rangel, J. P., Morales-Hernandez, L. A., Resendiz-Ochoa, E., and Camarillo-
Gomez, K. A. 2022. Image Mosaicing Applied on UAVs Survey. Appl. Sci. 12: 2729.
https://doi.org/10.3390/app12052729

Gorlich, F., Marks, E., Mahlein, A., Kbnig, K., Lottes, P., and Stachniss, C. 2021. UAV-based classification of
Cercospora leaf spot using RGB images. Drones 5:1-15. https://doi.org/10.3390/drones5020034.

Gunder, M., Ispizua Yamati, F. R., Kierdorf, J., Roscher, R., Mahlein, A.-K., and Bauckhage, C. 2022. Agricultural
plant cataloging and establishment of a data framework from UAV-based crop images by computer vision.
GigaScience 11:giac054. https://doi.org/10.1093/gigascience/giac054

Hamelin, F. M., Allen, L. J. S., Bokil, V. A, Gross, L. J., Hilker, F. M., Jeger, M. J., Manore, C. A., Power, A. G.,
Rua, M. A., and Cunniffe, N. J. 2019. Coinfections by noninteracting pathogens are not independent and require
new tests of interaction. PLoS Biol. 17:€300551. https://doi.org/10.1371/journal.pbio.3000551

Hamer, W. B., Birr, T., Verrett, J. A., Duttmann, R., and Klink, H. 2020. Spatio-temporal prediction of the epidemic
spread of dangerous pathogens using machine learning methods. ISPRS Int. J. Geo-Inf. 9:44-62.
https://doi.org/10.3390/ijgi9010044

He, L., Qi, S. L., Duan, J. Z., Guo, T. C., Feng, W., and He, D. X. 2021. Monitoring of Wheat Powdery Mildew
Disease Severity Using Multiangle Hyperspectral Remote Sensing. IEEE Trans. Geosci. Remote Sens. 59:979—
990. https://doi.org/10.1109/TGRS.2020.3000992

Heim, R. H. J., Carnegie, A. J., and Zarco-Tejada, P. J. 2019. Breaking down barriers between remote sensing
and plant pathology. Trop. Plant Pathol. https://doi.org/10.1007/s40858-019-00300-4

Hellebrand, H. J., Herppich, W. B., Beuche, H., Dammer, K.-H., Linke, M., and Flath, K. 2006. Investigations of
plant infections by thermal vision and NIR imaging. Int. Agrophys. 20:1-10.

Herrmann, |., Vosberg, S. K., Ravindran, P., Singh, A., Chang, H.-X., Chilvers, M. |, Conley, S. P., and
Townsend, P. A. 2018. Leaf and canopy level detection of Fusarium virguliforme (Sudden Death Syndrome) in
soybean. Remote Sens. 10:426. https://doi.org/10.3390/rs10030426

Hilker, F. M., Kolb, L.-D., and Hamelin, F. M. 2024. Selfish grower behavior can group-optimally eradicate plant
diseases caused by coinfection. Int. Game Theory Rev. 26:2440006.
https://doi.org/10.1142/S0219198924400061.

Hilker, F., Allen, A., Bokil, V., Briggs, C., Feng, Z., Garrett, K. A., Gross, L., Hamelin, F., Jeger, M. J., Manore, C.,
Power, A., Redinbaugh, M., Rua, M., and Cunniffe, N. J. 2017. Modelling virus coinfection to inform management
of maize lethal necrosis in Kenya. Phytopathology 107:1095-1108. https://doi.org/10.1094/PHYTO-03-17-0080-FI

Hillnhltter, C., Mahlein, A.-K., Sikora, R. A., and Oerke, E.-C. 2011. Remote sensing to detect plant stress
induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crops Res. 122:70-77.
https://doi.org/10.1016/j.fcr.2011.02.007



Hobbs, S., Lambert, A., Ryan, M. J., and Paull, D. J. 2023. Preparing for space: Increasing technical readiness of
low-cost high-performance remote sensing using high-altitude ballooning. Adv. Space Res. 71:1034-1044.
https://doi.org/10.1016/j.asr.2022.09.055

Horler, D. N. H., Dockray, M., and Barber, J. 1983. The red edge of plant leaf reflectance. Int. J. Remote Sens.
4:273-288. https://doi.org/10.1080/01431168308948546

Hornero, A., Hernandez-Clemente, R., North, P. R. J., Beck, P. S. A., Boscia, D., Navas-Cortes, J. A., and Zarco-
Tejada, P. J. 2020. Monitoring the incidence of Xylella fastidiosa infection in olive orchards using ground-based
evaluations, airborne imaging spectroscopy and Sentinel-2 time series through 3-D radiative transfer modelling.
Remote Sens. Environ. 236:111480. https://doi.org/10.1016/j.rse.2019.111480

Hornero, A., Zarco-Tejada, P. J., Quero, J. L., North, P. R. J., Ruiz-Gémez, F. J., Sdnchez-Cuesta, R., and
Hernandez-Clemente, R. 2021. Modelling hyperspectral- and thermal-based plant traits for the early detection of
Phytophthora-induced symptoms in oak decline. Remote Sens. Environ. 263:112570.
https://doi.org/10.1016/j.rse.2021.112570

Hughes, G. 2017. The evidential basis of decision making in plant disease management. Annu. Rev.
Phytopathol. 55:41-59. https://doi.org/10.1146/annurev.phyt0.43.113004.133839

Husin, N.A., Khairunniza-Bejo, S., and Abdullah, A.F. 2020. Application of ground-based LiDAR for analysing oil
palm canopy properties on the occurrence of basal stem rot (BSR) disease. Sci. Rep. 10:
https://doi.org/10.1038/s41598-020-62275-6.

Hyatt-Twynam, S. R., Parnell, S., Stutt, R. O. J. H., Gottwald, T. R., Gilligan, C. A., and Cunniffe, N. J. 2017.
Risk-based management of invading plant disease. New Phytol. 214:1317-1329.
https://doi.org/10.1111/nph.14488.

Ispizua Yamati, F. R., Barreto, A., Giinder, M., Bauckhage, C., and Mahlein, A.-K. 2022. Sensing the occurrence
and dynamics of Cercospora leaf spot disease using UAV-supported image data and deep learning.
Zuckerindustrie 79-86. https://doi.org/10.36961/si28345

Ispizua Yamati, F. R., Ginder, M., Barreto, A., Bomer, J., Laufer, D., Bauckhage, C., and Mahlein, A.-K. 2024.
Automatic scoring of Rhizoctonia crown and root rot affected sugar beet fields from orthorectified UAV images
using machine learning. Plant Dis. 108:711-724. https://doi.org/10.1094/pdis-04-23-0779-re

Jackson, R. D., ldso, S. B., Reginato, R. J., and Pinter, P. J. 1981. Canopy temperature as a crop water stress
indicator. Water Resour. Res. 17:1133-1138. https://doi.org/10.1029/WR017i004p01133

Janji¢, T., Bormann, N., Bocquet, M., Carton, J. A., Cohn, S. E., Dance, S. L., Losa, S. N., Nichols, N. K.,
Potthast, R., Waller, J. A., and Weston, P. 2018. On the representation error in data assimilation. Q. J. R.
Meteorol. Soc. 144:1257-1278. https://doi.org/10.1002/qj.3130

Jansen, R. M. C., Wildt, J., Kappers, I. F., Bouwmeester, H. J., Hofstee, J. W., and van Henten, E. J. 2011.
Detection of diseased plants by analysis of volatile organic compound emission. Annu. Rev. Phytopathol. 49:157-
174. https://doi.org/10.1146/annurev-phyto-072910-095227.

Jeger, M. J., Fielder, H., Beale, T., Szyniszewska, A. M., Parnell, S., and Cunniffe, N. J. 2023. What can be
learned by a synoptic review of plant disease epidemics and outbreaks published in 2021? Phytopathology
113:1141-1158. https://doi.org/10.1094/PHYTO-02-23-0069-1A

Jeger, M. J., Jeffries, P., Elad, Y., and Xu, X.-M. 2009. A generic theoretical model for biological control of foliar
plant diseases. J. Theor. Biol. 256:201-214. https://doi.org/10.1016/j.jtbi.2008.09.036.

Jeger, M. J., Pautasso, M., Holdenrieder, O., and Shaw, M. W. 2007. Modelling disease spread and control in
networks: implications for plant sciences. New Phytol. 174:279-297. https://doi.org/10.1111/j.1469-
8137.2007.02028.x

Page 40 of 66



Page 41 of 66

Jin, X., Zarco-Tejada, P. J., Schmidhalter, U., Reynolds, M. P., Hawkesford, M. J., Varshney, R. K., Yang, T.,
Nie, C., Li, Z., Ming, B., Xiao, Y., Xie, Y., and Li, S. 2021a. High-throughput estimation of crop traits: A review of
ground and aerial phenotyping platforms. IEEE Geosci. Remote Sens. Mag. 9:200-231.
https://doi.org/10.1109/MGRS.2020.2998816

Jin, S., Sun, X., Wu, F.,, Su, Y., Li, Y., Song, S., Xu, K., Ma, Q., Baret, F., Jiang, D., Ding, Y., and Guo, Q. 2021b.
Lidar sheds new light on plant phenomics for plant breeding and management: Recent advances and future
prospects. ISPRS J. Photogramm. Remote Sens. https://doi.org/10.1016/j.isprsjprs.2020.11.006

Jiranek, J., Miller, 1. F., An, R., Bruns, E., and Metcalf, C. J. E. 2023. Mechanistic models to meet the challenge of
climate change in plant-pathogen systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 378:20220017.
https://doi.org/10.1098/rstb.2022.0017

Joly, A., Bonnet, P., Goéau, H., Barbe, J., Selmi, S., Champ, J., and Barthélémy, D. 2016. A look inside the
Pl@ntNet experience: The good, the bias, and the hope. Multimed. Syst. 22:751-766.
https://doi.org/10.1007/s00530-015-0462-9

Jones, G., Johnson, W. O., Hanson, T. E., and Christensen, R. 2010. Identifiability of models for multiple
diagnostic testing in the absence of a gold standard. Biometrics 66:855-863. https://doi.org/10.1111/j.1541-
0420.2009.01330.x

Jones, H. G. 1999. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to
irrigation scheduling. Agric. For. Meteorol. 95:139-149. https://doi.org/10.1016/S0168-1923(99)00030-1

Kader, K.A., Hunger, R.M., Sreedhara, A., and Marek, S.M. 2022. Races, disease symptoms and genetic
variability in Pyrenophora tritici-repentis isolates from Oklahoma that cause tan spot of winter wheat. Cereal Res.
Comms. 50: 273-280. https://doi.org/10.1007/s42976-021-00175-9

Kampe, T. U., Johnson, B. R., Kuester, M. A., and Keller, M. 2010. NEON: the first continental-scale ecological
observatory with airborne remote sensing of vegetation canopy biochemistry and structure. J. Appl. Remote
Sens. 4:043510. https://doi.org/10.1117/1.3361375

Kanaley, K., Combs, D. B., Paul, A., Jiang, Y., Bates, T., & Gold, K. M. 2024. Assessing the capacity of high-
resolution commercial satellite imagery for grapevine downy mildew detection and surveillance in New York state.
Phytopathology. https://doi.org/10.1094/PHYTO-11-23-0432-R

Karisto, P., Dora, S., and Mikaberidze, A. 2019. Measurement of infection efficiency of a major wheat pathogen
using time resolved imaging of disease progress. Plant Pathol. 60:163-172. https://doi.org/10.1111/ppa.12932

Karisto, P., Suffert, F., and Mikaberidze, A. 2022. Measuring splash-dispersal of a major wheat pathogen in the
field. Phytofrontiers 2:30-40. https://doi.org/10.1094/PHYTOFR-05-21-0039-R.

Karisto, P., Suffert, F., and Mikaberidze, A. 2023. Spatially explicit ecological modeling improves empirical
characterization of plant pathogen dispersal. Plant Environ. Interact. 4:86-96. https://doi.org/10.1002/pei3.10104

Kattenborn, T., and Schmidtlein, S. 2019. Radiative transfer modelling reveals why canopy reflectance follows
function. Sci. Rep. 9:6541. https://doi.org/10.1038/s41598-019-43011-1

Kaur, J., Hazrati Fard, S. M., Amiri-Zarandi, M., and Dara, R. 2022. Protecting farmers’ data privacy and
confidentiality: Recommendations and considerations. Front. Sustain. Food Syst. 6.
https://www.frontiersin.org/articles/10.3389/fsufs.2022.90323

Keeling, M., and Rohani, P. 2008. Modeling Infectious Disease in Humans and Animals. Princeton University
Press.

Khakpour, A., and Colomo-Palacios, R. 2021. Convergence of gamification and machine learning: a systematic
literature review. Tech. Knowl. Learn. 26:597-636. https://doi.org/10.1007/s10758-020-09456-4



Page 42 of 66

Kim, J., Kim, S., Ju, C., and Son, H. I. 2019. Unmanned aerial vehicles in agriculture: A review of perspective of
platform, control, and applications. IEEE Access 7:105100-105115.
https://doi.org/10.1109/ACCESS.2019.2932119.

Kirchgessner, N., Liebisch, F., Yu, K., Pfeifer, J., Friedli, M., Hund, A., and Walter, A. 2016. The ETH field
phenotyping platform FIP: a cable-suspended multi-sensor system. Funct. Plant Biol. 44:154-168.
https://doi.org/10.1071/FP16165

Konanz, S., Kocsanyi, L., and Buschmann, C. 2014. Advanced multi-color fluorescence imaging system for
detection of biotic and abiotic stresses in leaves. Agric. 4:79-95. https://doi.org/10.3390/agriculture4020079

Kos, K., and Kloppenburg, S. 2019. Digital technologies, hyper-transparency and smallholder farmer inclusion in
global value chains. Current Opinion in Environmental Sustainability. 41:56-63.
https://doi.org/10.1016/j.cosust.2019.10.011

Kostandova, N., Schluth, C., Arambepola, R., Atuhaire, F., Bérubé, S., Chin, T., Cleary, E., Cortes-Azuero, O.,
Garcia-Carreras, B., Grantz, K. H., Hitchings, M. D. T., Huang, A. T., Kishore, N., Lai, S., Larsen, S. L., Loisate,
S., Martinez, P., Meredith, H. R., Purbey, R., Ramiadantsoa, T., Read, J., Rice, B. L., Rosman, L., Ruktanonchai,
N., Salje, H., Schaber, K. L., Tatem, A. J., Wang, J., Cummings, D. A. T., and Wesolowski, A. 2024. A systematic
review of using population-level human mobility data to understand SARS-CoV-2 transmission. Nat. Commun.
15:10504. https://doi.org/10.1038/s41467-024-54895-7

Kouadio, L., El Jarroudi, M., Belabess, Z., Laasli, S.-E., Roni, M. Z. K., Amine, |. D. |., Mokhtari, N., Mokrini, F.,
Junk, J., and Lahlali, R. 2023. A review on UAV-based applications for plant disease detection and monitoring.
Remote Sensing 15:4273. https://doi.org/10.3390/rs15174273

Kumar, P., Hendriks, T., Panoutsopoulos, H., and Brewster, C. 2024. Investigating FAIR data principles
compliance in Horizon 2020 funded agri-food and rural development multi-actor projects. Agric. Syst.
214:103822. https://doi.org/10.1016/j.agsy.2023.103822

Kuparinen, A., Snall, T., Vanska, S., and O’Hara, R. B. 2007. The role of model selection in describing stochastic
ecological processes. Oikos 116:966—974. https://doi.org/10.1111/j.0030-1299.2007.15563.x

Kuska, M. T., Heim, R. H. J., Geedicke, I., Gold, K. M., Brugger, A., and Paulus, S. 2022. Digital plant pathology:
a foundation and guide to modern agriculture. J. Plant Dis. Prot. 129:457-468. https://doi.org/10.1007/s41348-
022-00600-z

Kuvaspace. 2024. Hyperfield-1 Technical Specifications. Available at: https://hyperfield.kuvaspace.com/#specs
[Accessed November 1, 2024].

Lalli, K., Soenen, S., Fisher, J., McGlinchy, J., Kleynhans, T., Eon, R., and Moreau, L. M. 2022. VanZzZyl-1:
demonstrating SmallSat measurement capabilities for land surface temperature and evapotranspiration. Proc.
SPIE 12236: 1223608. https://doi.org/10.1117/12.2632565

Leclerc, M., Jumel, S., Hamelin, F. M., Treilhaud, R., Parisey, N., and Mammeri, Y. 2023. Imaging with spatio-
temporal modelling to characterize the dynamics of plant-pathogen lesions. PLoS Comput. Biol. 19:e1011627.
https://doi.org/10.1371/journal.pcbi.1011627.

Lee, D-Y., Na, D-Y., Gongora-Canul, C., Jimenez-Beitia, F., Goodwin, S., Cruz-Sancén, A., Delp, E., Acosta, A.,
Lee, J-S., Falconi, C., and Cruz, C. D. 2025. Optimizing Corn Tar Spot Measurement: A Deep Learning
Approach Using Red-Green-Blue (RGB) Imaging and the Stromata Contour Detection Algorithm for Leaf-Level
Disease Severity Analysis. Plant Dis. https://doi.org/10.1094/PDIS-12-23-2702-RE

Lee, D. Y., Na, D. Y., Gongora-Canul, C., Baireddy, S., Lane, B., Cruz, A. P., and Cruz, C. D. 2021. Contour-
based detection and quantification of tar spot stromata using red-green-blue (RGB) imagery. Front. Plant Sci.
12:675975. https://doi.org/10.3389/fpls.2021.675975



Page 43 of 66

Lee, S. H., Goéau, H., Bonnet, P., and Joly, A. 2020. New perspectives on plant disease characterization based
on deep learning. Comput. Electron. Agric. 170:105220. https://doi.org/10.1016/j.compag.2020.105220

Leucker, M., Mahlein, A.-K., Steiner, U., and Oerke, E.-C. 2016. Improvement of lesion phenotyping in
Cercospora beticola—sugar beet interaction by hyperspectral imaging. Phytopathology 106:177-184.
https://doi.org/10.1094/phyto-04-15-0100-r

Leucker, M., Wahabzada, M., Kersting, K., Peter, M., Beyer, W., Steiner, U., Mahlein, A. K., and Oerke, E. C.
2017. Hyperspectral imaging reveals the effect of sugar beet quantitative trait loci on Cercospora leaf spot
resistance. Funct. Plant Biol. 44:1-9. https://doi.org/10.1071/fp16121

Levionnois, S., Pradal, C., Fournier, C., Sanner, J., and Robert, C. 2023. Modeling the impact of proportion,
sowing date, and architectural traits of a companion crop on foliar fungal pathogens of wheat in crop mixtures.
Phytopathology 113:1876-1889. https://doi.org/10.1094/PHYTO-06-22-0197-R

Li, L., and Revesz, P. 2004. Interpolation methods for spatio-temporal geographic data. Comput. Environ. Urban
Syst. 28:201-227. https://doi.org/10.1016/S0198-9715(03)00018-8

Li, S.-L., Bjornstad, O. N., Ferrari, M. J., Mummah, R., Runge, N. C., Fonnesbeck, C. J., Tildesley, M. J., Probert,
W. J. M., and Shea, K. 2017. Essential information: uncertainty and optimal control of Ebola outbreaks. Proc.
Natl. Acad. Sci. USA 114:5659-5664. https://doi.org/10.1073/pnas.1617482114

Li, X., Lee, W. S., Li, M., Ehsani, R., Mishra, A. R., Yang, C., and Mangan, R. L. 2015. Feasibility study on
Huanglongbing (citrus greening) detection based on WorldView-2 satellite imagery. Biosyst. Eng. 132:28-38.
https://doi.org/10.1016/j.biosystemseng.2015.01.009

Li, D., Cheng, T., Zhou, K., Zheng, H., Yao, X., Tian, Y., Zhu, Y., Cao, W., and Cheng, Y. 2017. WREP: A
wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and
canopy chlorophyll contents of cereal crops. ISPRS J. Photogramm. Remote Sens. 129:103-117.
https://doi.org/10.1016/j.isprsjprs.2017.04.024

Liu, P. 2015. A survey of remote-sensing big data. Front. Environ. Sci. 3:45.
https://doi.org/10.3389/fenvs.2015.00045

Liu, E., Gold, K. M., Combs, D., Cadle-Davidson, L., and Jiang, Y. 2022a. Deep semantic segmentation for the
guantification of grape foliar diseases in the vineyard. Front. Plant Sci. 13.
https://doi.org/10.3389/fpls.2022.978761

Liu, E., Gold, K.M., Combs, D., Cadle-Davidson, L., and Jiang, Y. 2022b. Near real time detection and
quantification of grape disease using edge computing. 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems. https://doi.org/10.1109/IROS47612.2022.9981404

Liu, E., Kanaley, K., Romero Galvan, F.E., Combs, D., Gold, K.M., Pavlick, R.P., and Jiang, Y. 2023.
Autonomous Detection and Severity Estimation of Grapevine Leafroll Disease in the Vineyard. In 2023 ASABE
Annual International Meeting American Society of Agricultural and Biological Engineers.
https://doi.org/10.13031/aim.202301109

Livens, S., Nuyts, D., Dries, J., Collaud, X., Di Paola, R., Bastin, C., Moreau, V., Callut, E., and Habay, G. 2024.
A small hyperspectral satellite mission designed for improved image quality. Proc. 4S Symp., Palma Di Mallorca,
Spain.

Loladze, A., Rodrigues, F. A., Jr., Toledo, F., San Vicente, F., Gérard, B., and Boddupalli, M. P. 2019. Application
of remote sensing for phenotyping tar spot complex resistance in maize. Front. Plant Sci. 10:552.
https://doi.org/10.3389/fpls.2019.00552

Longbotham, N., Pacifici, F., Malitz, S., Baugh, W., and Camps-Valls, G. 2015. Measuring the Spatial and
Spectral Performance of WorldView-3. In Fourier Transform Spectroscopy and Hyperspectral Imaging and



Page 44 of 66

Sounding of the Environment, OSA Technical Digest (online), paper HW3B.2. Optica Publishing Group.
https://doi.org/10.1364/HISE.2015.HW3B.2

Lovell-Read, F. A., Parnell, S., Cunniffe, N. J., and Thompson, R. N. 2023. Using ‘sentinel’ plants to improve
early detection of invasive plant pathogen. PLoS Comput. Biol. 19:€1010884.
https://doi.org/10.1371/journal.pcbi.1010884

Luan, H., Geczy, P., Lai, H., Gobert, J., Yang, S. J. H., Ogata, H., Baltes, J., Guerra, R., Li, P., and Tsai, C.-C.
2020. Challenges and future directions of big data and artificial intelligence in education. Front. Psychol.
11:580820. https://doi.org/10.3389/fpsyg.2020.580820

Lupton, F. G. H. 1972. Further experiments on photosynthesis and translocation in wheat. Ann. Appl. Biol. 71:69-
79. https://doi.org/10.1111/j.1744-7348.1972.tb04717 .x

Lyu, X., Du, W., Zhang, H., Ge, W., Chen, Z., and Wang, S. 2024. Classification of different winter wheat cultivars
on hyperspectral UAV imagery. Appl. Sci. 14:250. https://doi.org/10.3390/app14010250

Madden, L. V. 2006. Botanical epidemiology. Some key advances and its continuing role in disease
management. Eur. J. Plant Pathol. 115:3-23. https://doi.org/10.1007/s10658-005-1229-5

Madden, L. V., Hughes, G., Moraes, W. B., Xu, X.-M., and Turechek, W. W. 2018. Twenty-five years of the binary
power law for characterizing heterogeneity of disease incidence. Phytopathology 108:656-680.
https://doi.org/10.1094/phyto-07-17-0234-rvw

Madden, L. V., Hughes, G., and van den Bosch, F. 2007. The Study of Plant Disease Epidemics. APS Press.
421pp. https://doi.org/10.1094/9780890545058

Mabhlein, A. K. 2016. Plant disease detection by imaging sensors—parallels and specific demands for precision
agriculture and plant phenotyping. Plant Dis. 100:241-251. https://doi.org/10.1094/PDIS-03-15-0340-FE

Mahlein, A. K., Alisaac, E., Al Masri, A., Behmann, J., Dehne, H. W., and Oerke, E. C. 2019. Comparison and
combination of thermal, fluorescence, and hyperspectral imaging for monitoring Fusarium head blight of wheat on
spikelet scale. Sensors 19:2281. https://doi.org/10.3390/s19102281

Mabhlein, A. K., Steiner, U., Dehne, H. W., and Oerke, E. C. 2010. Spectral signatures of sugar beet leaves for the
detection and differentiation of diseases. Precis. Agric. 11:413-431. https://doi.org/10.1007/s11119-010-9180-7

Mahlein, A. K., Steiner, U., Hillnhitter, C., Dehne, H. W., and Oerke, E. C. 2012. Hyperspectral imaging for small-
scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 8:1-13.
https://doi.org/10.1186/1746-4811-8-3

Mahlein, A.-K., Barbedo, J. G. A., Chiang, K.-S., Del Ponte, E. M., and Bock, C. H. 2024. From detection to
protection: The role of optical sensors, robots, and artificial intelligence in modern plant disease management.
Phytopathology 114:1733-1741. https://doi.org/10.1094/phyto-01-24-0009-per

Mabhlein, A.-K., Oerke, E.-C., Steiner, U., and Dehne, H.-W. 2012. Recent advances in sensing plant diseases for
precision crop protection. Eur. J. Plant Pathol. 133:197-209. https://doi.org/10.1007/s10658-011-9878-z

Mabhlein, A.-K., Rumpf, T., Welke, P., Dehne, H.-W., Plumer, L., Steiner, U., and Oerke, E.-C. 2013. Development
of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 128:21-30.
https://doi.org/10.1016/j.rse.2012.09.019

Mang, A., Bakas, S., Subramanian, S., Davatzikos, C., and Biros, G. 2020. Integrated biophysical modeling and
image analysis: application to neuro-oncology. Annu. Rev. Biomed. Eng. 22:309-341.
https://doi.org/10.1146/annurev.bioeng.22.081219.040055.

Maniadaki, M., Papathanasopoulos, A., Mitrou, L., and Maria, E. A. 2021. Reconciling remote sensing
technologies with personal data and privacy protection in the European Union: Recent developments in Greek



Page 45 of 66

legislation and application perspectives in environmental law. Laws. 10: 33.
https://doi.org/10.3390/laws10020033

Martelli, G. P., Boscia, D., Porcelli, F., and Saponari, M. 2016. The olive quick decline syndrome in south-east
Italy: a threatening phytosanitary emergency. Eur. J. Plant Pathol. 144:235-243. https://doi.org/10.1007/s10658-
015-0784-7

Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M.,
Goulart, L. R., Davis, C. E., and Dandekar, A. M. 2015. Advanced methods of plant disease detection. A review.
Agron. Sustain. Dev. 35:1-25.

Martinetti, D., and Soubeyrand, S. 2019. Identifying lookouts for epidemio-surveillance: application to the
emergence of Xylella fastidiosa in France. Phytopathology 109:265-276. https://doi.org/10.1094/PHYTO-07-18-
0237-FI

Mason, W., and Suri, S. 2012. Conducting behavioral research on Amazon’s Mechanical Turk. Behav. Res.
Methods 44:1-23. https://doi.org/10.3758/s13428-011-0124-6

Mastin, A. J., Gottwald, T. R., van den Bosch, F., Cunniffe, N. J., and Parnell, S. R. 2020. Optimising risk-based
surveillance for early detection of invasive plant pathogens. PLOS Biol. 18:e3000863.
https://doi.org/10.1371/journal.pbio.3000863

Mateu, J., and Miiller, W. G., eds. 2012. Spatio-temporal design: Advances in efficient data acquisition. 1st ed.
John Wiley & Sons, Ltd. 384 pp.

Meentemeyer, R. K., Cunniffe, N. J., Cook, A. J., Filipe, J. A. N., Hunter, R. D., Rizzo, D., and Gilligan, C. A.
2011. Epidemiological modeling of invasion in heterogeneous landscapes: Spread of sudden oak death in
California (1990-2030). Ecosphere 2:art17.https://doi.org/10.1890/ES10-00192.1

Meireles, J. E., Cavender-Bares, J., Townsend, P. A, Ustin, S., Gamon, J. A., Schweiger, A. K., Schaepman, M.
E., Asner, G. P., Martin, R. E., Singh, A., Schrodt, F., Chlus, A., and O’'Meara, B. C. 2020. Leaf reflectance
spectra capture the evolutionary history of seed plants. New Phytol. 228:485-493.
https://doi.org/10.1111/nph.16771

Messina, G., and Modica, G. 2020. Applications of UAV thermal imagery in precision agriculture: State of the art
and future research outlook. Remote Sens. 12:1491. https://doi.org/10.3390/rs12091491

Mikaberidze, A., Gokhale, C. S., Bargues-Ribera, M., and Verma, P. 2023. Economic analysis of disease and
control of multi-field epidemics in agriculture. bioRxiv. https://doi.org/10.1101/2023.09.05.556392

Mikaberidze, A., McDonald, B. A., and Bonhoeffer, S. 2014. Can high risk fungicides be used in mixtures without
selecting for fungicide resistance? Phytopathology 104:324-331. https://doi.org/10.1094/phyto-07-13-0204-R

Mikaberidze, A., McDonald, B. A., and Bonhoeffer, S. 2015. Developing smarter host mixtures to control plant
disease. Plant Pathol. 64:996-1004. https://doi.org/10.1111/ppa.12321

Mikaberidze, A., Mundt, C., and Bonhoeffer, S. 2016. Invasiveness of plant pathogens depends on the spatial
scale of host distribution. Ecol. Appl. 26:1238-1248. https://doi.org/10.1890/15-0807

Mikaberidze, A., Paveley, N., Bonhoeffer, S., and van den Bosch, F. 2017. Emergence of fungicide resistance:
The role of fungicide dose. Phytopathology 107:1-16. https://doi.org/10.1094/phyto-08-16-0297-r.

Minter, A., and R. Retkute. 2019. Approximate Bayesian Computation for infectious disease modelling.
Epidemics 29:100368. https://doi.org/10.1016/j.epidem.2019.100368.

Mishra, P., Asaari, M. S. M., Herrero-Langreo, A., Lohumi, S., Diezma, B., and Scheunders, P. 2017. Close
range hyperspectral imaging of plants: A review. Biosyst. Eng. 164:49-67.
https://doi.org/10.1016/j.biosystemseng.2017.09.009



Page 46 of 66

Mittaz, J., Merchant, C. J., and Woolliams, E. R. 2019. Applying principles of metrology to historical Earth
observations from satellites. Metrologia 56:032002. https://doi.org/10.1088/1681-7575/ab1705

Mohammed, G. H., Colombo, R., Middleton, E. M., Rascher, U., van der Tol, C., Nedbal, L., Goulas, Y., Pérez-
Priego, O., Damm, A., Meroni, M., Joiner, J., Cogliati, S., Verhoef, W., Malenovsky, Z., Gastellu-Etchegorry, J.-
P., Miller, J. R., Guanter, L., Moreno, J., Moya, |., Berry, J. A., Frankenberg, C., and Zarco-Tejada, P. J. 2019.
Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote
Sens. Environ. 231:111177. https://doi.org/10.1016/j.rse.2019.04.030.

Moor, M., Banerjee, O., Abad, Z. S. H., Krumholz, H. M., Leskovec, J., Topol, E. J., and Rajpurkar, P. 2023.
Foundation models for generalist medical artificial intelligence. Nature 616:259-265.
https://doi.org/10.1038/s41586-023-05881-4

Morris, C. E., Géniaux, G., Nédellec, C., Sauvion, N., and Soubeyrand, S. 2022. One Health concepts and
challenges for surveillance, forecasting, and mitigation of plant disease beyond the traditional scope of crop
production. Plant Pathol. 71:86-97. https://doi.org/10.1111/ppa.13446

Mulder, N., Schwartz, R., Brazas, M. D., Brooksbank, C., Gaeta, B., Morgan, S. L., Pauley, M. A., Rosenwald, A.,
Rustici, G., Sierk, M., Warnow, T., and Welch, L. 2018. The development and application of bioinformatics core
competencies to improve bioinformatics training and education. PLoS Comput. Biol. 14:e1005772.
https://doi.org/10.1371/journal.pcbi.1005772

Munir, A., Blasch, E., Kwon, J., Kong, J., and Aved, A. 2021. Atrtificial intelligence and data fusion at the edge.
IEEE Aerosp. Electron. Syst. Mag. 36:62-78. https://doi.org/10.1109/MAES.2020.3043072

Murray-Watson, R. E., Hamelin, F. M., and Cunniffe, N. J. 2022. How growers make decisions impacts plant
disease control. PLoS Comput. Biol. 18:1010309. https://doi.org/10.1371/journal.pcbi.1010309

Murray-Watson, R. E., and Cunniffe, N. J. 2022. How the epidemiology of disease-resistant and disease-tolerant
varieties affects grower behaviour. J. R. Soc. Interface 19:20220517. https://doi.org/10.1098/rsif.2022.0517

Murray-Watson, R. E., and Cunniffe, N. J. 2023. Expanding growers' choice of plant disease management
options can promote suboptimal social outcomes. Plant Pathol. 72:933-950. https://doi.org/10.1111/ppa.13705.

Nathan, R., Klein, E., Robledo-Arnuncio, J. J., and Revilla, E. 2012. Dispersal kernels: review. In Dispersal
Ecology and Evolution, eds., Clobert J, Baguette M, Benton TG and Bullock JM.,186-210. UK: Oxford University
Press. https://doi.org/10.1093/acprof:0s0/9780199608898.003.0015

Neri, F. M., Cook, A. R., Gibson, G. J., Gottwald, T. R., and Gilligan, C. A. 2014. Bayesian analysis for inference
of an emerging epidemic: citrus canker in urban landscapes. PLoS Comput. Biol. 10:e1003587.
https://doi.org/10.1371/journal.pcbi.1003587.

Nguyen, V.-A., Bartels, D.W., and Gilligan, C.A. 2023. Modelling the spread and mitigation of an emerging vector-
borne pathogen: citrus greening in the US. PLOS Comput. Biol. 19:e1010156.
https://doi.org/10.1371/journal.pcbi.1010156

Nita, M., Ellis, M. A., and Madden, L. V. 2003. Reliability and accuracy of visual estimation of Phomopsis leaf
blight of strawberry. Phytopathology 93:995-1005. https://doi.org/10.1094/PHYTO.2003.93.8.995

Oberti, R., Marchi. M., Tirelli, P. Calcante, A., Iriti, M., Tona, E., Hacevar, M., Baur, J., Pfaff, J., Schutz C., and
Ulbrich, H. 2016. Selective spraying of grapevines for disease control using a modular agricultural robot.
Biosystems Engineering.146: 203:215. https://doi.org/10.1016/j.biosystemseng.2015.12.004

Oerke, E.-C. 2006. Crop losses to pests. J. Agric. Sci. 144:31-43. https://doi.org/10.1017/S0021859605005708

Oerke, E. C. 2020. Remote sensing of diseases. Annu. Rev. Phytopathol. 58:225-252.
https://doi.org/10.1146/annurev-phyto-010820-012832



Page 47 of 66

Oerke, E. C., Frohling, P., and Steiner, U. 2011. Thermographic assessment of scab disease on apple leaves.
Precis. Agric. 12:699-715. https://doi.org/10.1007/s11119-010-9212-3.

Oerke, E. C., Mahlein, A. K., and Steiner, U. 2014. Proximal sensing of plant diseases. In Detection and
Diagnostics of Plant Pathogens, eds., Gullino, M. L., and Bonants, P., 55-68. Plant Pathology in the 21st
Century, vol. 5. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9020-8_4

Oerke, E. C., Steiner, U., Dehne, H. W., and Lindenthal, M. 2006. Thermal imaging of cucumber leaves affected
by downy mildew and environmental conditions. J. Exp. Bot. 57:2121-2132. https://doi.org/10.1093/jxb/erj170

Oh, S., Lee, D-Y.P, Gongora-Canul, P. C., Ashapure, A., Carpenter, J., Cruz, A. P.T, Fernandez-Campos, M.,
Lane, B.Z., Telenko, D.E.P., Jung, J.C, Cruz, C.D. 2021. Tar Spot disease quantification using Unmanned
Aircraft Systems (UAS) data. Remote Sens. 13(13):2567. https://doi.org/10.3390/rs13132567

Omasa, K., Hosoi, F., and Konishi, A. 2007. 3D lidar imaging for detecting and understanding plant responses
and canopy structure. J. Exp. Bot. 58:881-898. https://doi.org/10.1093/jxb/erl142

Osco, L. P., Marcato Junior, J., Ramos, A. P. M., Jorge, L. A. C., Fatholahi, S. N, Silva, J. A., Matsubara, E. T.,
Pistori, H., Gongalves, W. N., and Li, J. 2021. A review on deep learning in UAV remote sensing. Int. J. Appl.
Earth Obs. Geoinf. 102:102456. https://doi.org/10.1016/j.jag.2021.102456

Paek, S. W., Balasubramanian, S., Kim, S., and de Weck, O. 2020. Small-satellite synthetic aperture radar for
continuous global biospheric monitoring: A review. Remote Sens. 12:2546. https://doi.org/10.3390/rs12162546.

Pandya, D., Vachharajani, B., and Srivastava, R. 2022. A review of data assimilation techniques: Applications in
engineering and agriculture. Proceeding 13 62: 7048-7052. https://doi.org/10.1016/j.matpr.2022.01.122.

Papadakis, N., and Mémin, E. 2008. Variational assimilation of fluid motion from image sequence. SIAM J.
Imaging Sci. 1:343-363. https://doi.org/10.1137/080713896

Papaix, J., Soubeyrand, S., Bonnefon, O., Walker, E., Louvrier, J., Klein, E., and Roques, L. 2022. Inferring
mechanistic models in spatial ecology using a mechanistic-statistical approach. In Statistical Approaches for
Hidden Variables in Ecology, eds., N. Peyrard and O. Gimenez, 69-95. Wiley.
https://doi.org/10.1002/9781119902799.ch4.

Parisey, N., Leclerc, M., and Adamczyk-Chauvat, K. 2022. Optimal spatial monitoring of populations described by
reaction—diffusion models. J. Theor. Biol. 534:110976. https://doi.org/10.1016/j.jtbi.2021.110976

Parlevliet, J. E. 1979. Components of resistance that reduce the rate of epidemic development. Annu. Rev.
Phytopathol. 17:203-222. https://doi.org/10.1146/annurev.py.17.090179.001223

Parmentier, F.-J. W., Nilsen, L., Tammervik, H., and Cooper, E. J. 2021. A distributed time-lapse camera network
to track vegetation phenology with high temporal detail and at varying scales. Earth Syst. Sci. Data 13:3593—
3606. https://doi.org/10.5194/essd-13-3593-2021.

Parnell, S., Gottwald, T. R, Irey, M. S., Luo, W., and van den Bosch, F. 2011. A stochastic optimization method
to estimate the spatial distribution of a pathogen from a sample. Phytopathology 101:1184-1190.
https://doi.org/10.1094/PHYTO-11-10-0311

Parnell, S., van den Bosch, F., Gottwald, T., and Gilligan, C. A. 2017. Surveillance to inform control of emerging
plant diseases: an epidemiological perspective. Annu. Rev. Phytopathol. 55:591-610.
https://doi.org/10.1146/annurev-phyto-080516-035334

Parry, M. F., Gibson, G. J., Parnell, S., Gottwald, T. R., Irey, M. S., Gast, T. C., and Gilligan, C. A. 2014.
Bayesian inference for an emerging arboreal epidemic in the presence of control. Proc. Natl. Acad. Sci. U. S. A.
117:6258-6262. https://doi.org/10.1073/pnas.1310997111



Page 48 of 66

Paulus, S., and A.-K. Mahlein. 2020. Technical workflows for hyperspectral plant image assessment and
processing on the greenhouse and laboratory scale. GigaScience 9:giaa090.
https://doi.org/10.1093/gigascience/giaa090

Pearson, S., Camacho-Villa, T. C., Valluru, R., Gaju, O., Rai, M. C., Gould, I., Brewer, S., and Sklar, E. 2022.
Robotics and autonomous systems for net zero agriculture. Curr. Robot. Rep. 3: 57-64.
https://doi.org/10.1007/s43154-022-00077-6

Petropoulos, G. P., Detsikas, S. E., Lemesios, |., and Raj, R. 2024. Obtaining LULC distribution at 30-m
resolution from Pixxel’s first technology demonstrator hyperspectral imagery. Int. J. Remote Sens. 45:4883-4896.
https://doi.org/10.1080/01431161.2024.2370504.

Pfender, W. F. 1982. Monocyclic and polycyclic root disease: distinguishing between the nature of the disease
cycle and the shape of the disease progress. Phytopathology 72:31-32. https://doi.org/10.1094/Phyto-72-31

Pineda, M., Barén, M., and Pérez-Bueno, M.-L. 2021. Thermal imaging for plant stress detection and
phenotyping. Remote Sens. 13:68. https://doi.org/10.3390/rs13010068

Planet. 2023. Planet Imagery Product Specifications. Available at:
https://assets.planet.com/docs/Planet_Combined_Imagery Product_Specs_letter_screen.pdf?_gl=1*m631iy*_gcl
_aw*RONMLJE20TQxMTc1IMDQuUQ2p3SONBanc2ZVduQmhBS0VpdOFEcG530W10Z0VybOXRZTQtQTZzOTE4
NIBfSGhySUo01VjJTcHFqOUo0zVzVLdkNYbUdkRnhxcHALWnpShONjYmdRQXZEX0J3RQ..*_gcl_au*MTIwMzYO
MDc4NS4xNjKOMTE3NTAO [Accessed November 1, 2024].

Planet. 2024. Tanager, Planet’s visionary hyperspectral mission. Available at:
https://pal.planet.com/assets/share/asset/gorfetyvoz?_gl=1*d509g4*_up*MQ..*_gcl_aw*RONMLE3Mjk1Mjl1Nzcu
Q20wSONRanc50WU0QMhEaUFSSXNBSVNFN1BfTUpBTHZIUEIXTHFXxZmRCdjlrUDA1IRXQOU2IkRGC5YXNR
UW9JTC1VZmZPc3k4c05HcTZUc2FBcmNIRUFMd193YO0L.*_gcl_au*MTEYNzQ1Mjl4MC4xNzISNTIyNTc3&gclid
=CjOKCQjw99e4BhDIARISAISE7P_MJALVbPIWLqqfdBvOkPO5E4SidDg9asQQolL -
UffOsy8sNGq6TsaArcbhEALwW_wcB [Accessed November 1, 2024].

Plantegenest, M., Le May, C., and Fabre, F. 2007. Landscape epidemiology of plant diseases. J. R. Soc.
Interface 4:963-972. https://doi.org/10.1098/rsif.2007.1114.

Pleydell, D. R. J., Soubeyrand, S., Dallot, S., Labonne, G., Chadoeuf, J., Jacquot, E., and Thébaud, G. 2018.
Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape. PLoS Comput. Biol.
14(4):e1006085. https://doi.org/10.1371/journal.pcbi.1006085.

Poblete, T., Arenas, M., Estrada, C., Hernando, C., Alvarez, C., and Jiménez-Berni, J. A. 2020. Detection of
Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset
reduction performance from hyperspectral analysis. ISPRS J. Photogramm. Remote Sens. 162:27-40.
https://doi.org/10.1016/j.isprsjprs.2020.02.010

Poblete, T., Navas-Cortes, J. A., Camino, C., Calderon, R., Hornero, A., Gonzalez-Dugo, V., Landa, B. B., and
Zarco-Tejada, P. J. 2021. Discriminating Xylella fastidiosa from Verticillium dahliae infections in olive trees using
thermal- and hyperspectral-based plant traits. ISPRS J. Photogramm. Remote Sens. 179:133-144.
https://doi.org/10.1016/j.isprsjprs.2021.07.014

Poblete, T., Navas-Cortes, J. A., Hornero, A., Camino, C., Calderon, R., Hernandez-Clemente, R., Landa, B. B.,
Zarco-Tejada, P. J. 2023. Detection of symptoms induced by vascular plant pathogens in tree crops using high-
resolution satellite data: Modelling and assessment with airborne hyperspectral imagery. Remote Sens. Environ.
295:113698. https://doi.org/10.1016/j.rse.2023.113698

Porcar-Castell, A., Malenovsky, Z., Magney, T., Van Wittenberghe, S., Fernandez-Marin, B., Maignan, F., Zhang,
Y., Maseyk, K., Atherton, J., Albert, L. P., Robson, T. M., Zhao, F., Garcia-Plazaola, J.-l., Ensminger, I.,
Rajewicz, P. A., Grebe, S., Tikkanen, M., Kellner, J. R., Ihalainen, J. A., Rascher, U., and Logan, B. 2021.
Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nature
Plants 7:998-1009. https://doi.org/10.1038/s41477-021-00980-4.



Page 49 of 66

Pryzant, R., Ermon, S., and Lobell, D. 2017. Monitoring Ethiopian wheat fungus with satellite imagery and deep
feature learning. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops 1524-1532.
https://doi.org/10.1109/CVPRW.2017.196

Précigout, P. A., Claessen, D., Makowski, D., and Robert, C. 2020. Does the latent period of leaf fungal
pathogens reflect their trophic type? A meta-analysis of biotrophs, hemibiotrophs, and necrotrophs.
Phytopathology 110:345-361. https://doi.org/10.1094/PHYTO-04-19-0144-R

Précigout, P.-A., Claessen, D., and Robert, C. 2017. Crop fertilization impacts epidemics and optimal latent
period of biotrophic fungal pathogens. Phytopathology 107:1256-1267. https://doi.org/10.1094/PHYTO-01-17-
0019-R

Purdy, R. 2011. Attitudes of UK and Australian farmers towards monitoring activity with satellite technologies:
Lessons to be learnt. Space Policy. 27: 202-212. https://doi.org/10.1016/j.spacepol.2011.09.011

Pybus, O., and Rambaut, A. 2009. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev.
Genet. 10:540-550. https://doi.org/10.1038/nrg2583

Qi, B., Zhang, H., and Qin, K. 2021. Multi-scale stacking attention pooling for remote sensing scene classification.
Neurocomputing 436:147-161. https://doi.org/10.1016/j.neucom.2021.01.038

Qian, Y. 2021. Hyperspectral Satellites, Evolution, and Development History. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 14:7032-7056. https://doi.org/10.1109/JSTARS.2021.3090256

Qin, R., and Liu, T. 2022. A review of landcover classification with very-high resolution remotely sensed optical
images—analysis unit, model scalability and transferability. Remote Sens. 14:646.
https://doi.org/10.3390/rs14030646

Queally, N., Ye, Z., Zheng, T., Chlus, A., Schneider, F., Pavlick, R. P., and Townsend, P. A. 2022. FlexBRDF: A
flexible BRDF correction for grouped processing of airborne imaging spectroscopy flightlines. JGR Biogeosci.
127:20213JG006622. https://doi.org/10.1029/2021JG006622

Rangel, L. I., Spanner, R. E., Ebert, M. K., Pethybridge, S. J., Stukenbrock, E. H., de Jonge, R., Secor, G. A, and
Bolton, M. D. 2020. Cercospora beticola: The intoxicating lifestyle of the leaf spot pathogen of sugar beet. Mol.
Plant Pathol. 21:1020-1041. https://doi.org/10.1111/mpp.12962

Rast, M., and Painter, T. H. 2019. Earth observation imaging spectroscopy for terrestrial systems: An overview of
its history, techniques, and applications of its missions. Surv. Geophys. 40:303-331.
https://doi.org/10.1007/s10712-019-09517-z

Rauf, U., Qureshi, W. S., Jabbar, H., Zeb, A., Mirza, A., Alanazi, E., Khan, U. S., and Rashid, N. 2022. A new
method for pixel classification for rice variety identification using spectral and time series data from Sentinel-2
satellite imagery. Comput. Electron. Agric. 193:106731. https://doi.org/10.1016/j.compag.2022.106731

Rayhana, R., Ma, Z., Liu, Z., Xiao, G., Ruan, Y., and Sangha, J. S. 2023. A review on plant disease detection
using hyperspectral imaging. IEEE Trans. AgriFood Electron. 1:108-134.
https://doi.org/10.1109/TAFE.2023.3329849

Raza Shah, N., Maud, A.R.M., Bhatti, F.A., Ali, M.K., Khurshid, K., Magsood, M., and Amin, M. 2022.
Hyperspectral anomaly detection: a performance comparison of existing techniques. Int. J. Digit. Earth 15:2078—
2125. https://doi.org/10.1080/17538947.2022.2146770

Raza, M. M., Harding, C., Liebman, M., and Leandro, L. F. 2020. Exploring the potential of high-resolution
satellite imagery for the detection of soybean sudden death syndrome. Remote Sens. 12:1213.
https://doi.org/10.3390/rs12071213



Page 50 of 66

Reichman, O. J., Jones, M. B., and Schildhauser, M. P. 2021. Challenges and opportunities of open data in
ecology. Science 331:703-705. https://doi.org/10.1126/science.1197962

Rieux, A., Soubeyrand, S., Bonnot, F., Klein, E. K., Ngando, J. E., Mehl, A., Ravigne, V., Carlier, J., and de
Lapeyre de Bellaire, L. 2014. Long-distance wind-dispersal of spores in a fungal plant pathogen: Estimation of
anisotropic dispersal kernels from an extensive field experiment. PLoS ONE 9(8): e103225.
https://doi.org/10.1371/journal.pone.0103225

Rimbaud, L., Fabre, F., Papaix, J., Moury, B., Lannou, C., Barrett, L. G., and Thrall, P. H. 2021. Models of plant
resistance deployment. Annu. Rev. Phytopathol. 59:125-152. https://doi.org/10.1146/annurev-phyto-020620-
122134

Ristaino, J. B., Anderson, P. K., Bebber, D. P., Brauman, K. A., Cunniffe, N. J., Fedoroff, N. V., Finegold, C.,
Garrett, K. A., Gilligan, C. A., Jones, C. M., Martin, M. D., MacDonald, G. K., Neenan, P., Records, A., and
Bebber, N. P. 2021. The persistent threat of emerging plant disease pandemics to global food security. Proc.
Natl. Acad. Sci. U.S.A. 118:€2022239118. https://doi.org/10.1073/pnas.2022239118.

Rivera, G., Porras, R., Florencia, R., and Sanchez-Solis, J. P. 2023. LIiDAR applications in precision agriculture
for cultivating crops: A review of recent advances. Comput. Electron. Agric. 207:107737.
https://doi.org/10.1016/j.compag.2023.107737.

Rosace, M. C., Cendoya, M., Mattion, G., Vicent, A., Battisti, A., Cavaletto, G., Marini, L., and Rossi, V. 2023. A
spatio-temporal dataset of plant pests’ first introductions across the EU and potential entry pathways. Sci. Data
10:731. https://doi.org/10.1038/s41597-023-02643-9

Romero Galvan, F. E., Pavlick, R., Trolley, G., Aggarwal, S., Sousa, D., Starr, C., Forrestel, E., Bolton, S., Alsina,
M. M., Dokoozlian, N., and Gold, K. M. 2023. Scalable early detection of grapevine viral infection with airborne
imaging spectroscopy. Phytopathology 113:1439-1446. https://doi.org/10.1094/PHYTO-01-23-0030-R

Rumpf, T., Mahlein, A. K., Steiner, U., Oerke, E. C., Dehne, H. W., and Plimer, L. 2010. Early detection and
classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput.
Electron. Agric. 74:91-99. https://doi.org/10.1016/j.compag.2010.06.009

Run, Y., Luo, Y., Zhou, Q., Zhang, X., Wu, D., and Ren, L. 2021. A machine learning algorithm to detect pine wilt
disease using UAV-based hyperspectral imagery and LiDAR data at the tree level. Int. J. Appl. Earth Obs.
Geoinf. 101:102363. https://doi.org/10.1016/j.jag.2021.102363.

Russell, R., and Cunniffe, N. J. 2024. Optimal control prevents itself from eradicating stochastic disease
epidemics. PLoS Comput. Biol. 21:€1012781. https://doi.org/10.1371/journal.pcbi.1012781

Ruwona, J., and Scherm, H. 2022. Sensing and imaging of plant disease through the lens of science mapping.
Trop. Plant Pathol. 47:74-84. https://doi.org/10.1007/s40858-021-00478-6.

Sanders, L., Randolph, M., Bangalore, K., and Spivey, A. 2024. Orbital Sidekick Global Hyperspectral
Observation Satellite (GHOSt) payload: calibration and characterization. Proc. SPIE 13144:1314408.
https://doi.org/10.1117/12.3028489.

Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., Miklas, P. N.,
Carter, A. H., Pumphrey, M. O., Knowles, N. R., and Pavek, M. J. 2015. Low-altitude, high-resolution aerial
imaging systems for row and field crop phenotyping: A review. Eur. J. Agron. 70:112-123.
https://doi.org/10.1016/j.eja.2015.07.004.

Sapes, G., Lapadat, C., Schweiger, A. K., Juzwik, J., Montgomery, R., Gholizadeh, H., Townsend, P. A., Gamon,
J. A., and Cavender-Bares, J. 2022. Canopy spectral reflectance detects oak wilt at the landscape scale using
phylogenetic discrimination. Remote Sens. Environ. 273:112961. https://doi.org/10.1016/j.rse.2022.112961



Page 51 of 66

Sari¢, R., Nguyen, V. D., Burge, T., Berkowitz, O., Trtilek, M., Whelan, J., Lewsey, M. G., and Custovi¢, E. 2022.
Applications of hyperspectral imaging in plant phenotyping. Trends Plant Sci. 27:301-315.
https://doi.org/10.1016/j.tplants.2021.12.003

Saubin, M., Coville, J., Xhaard, C., Frey, P., Soubeyrand, S., Halkett, F., and Fabre, F. 2024. A mechanistic-
statistical approach to infer dispersal and demography from invasion dynamics, applied to a plant pathogen. Peer
Community J. 4:€9. https://doi.org/10.24072/pcjournal.356

Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A. 2019. The global burden
of pathogens and pests on major food crops. Nat. Ecol. Evol. 3:430-439. https://doi.org/10.1038/s41559-018-
0793-y

Savary, S., and Willocquet, L. 2014. Simulation modelling in botanical epidemiology and crop loss analysis. Plant
Health Instr. https://doi.org/10.1094/PHI-A-2014-0314-01

Scheffler, D., Hollstein, A., Diedrich, H., Segl, K., and Hostert, P. 2017. AROSICS: An automated and robust
open-source image co-registration software for multi-sensor satellite data. Remote Sens. 9:676.
https://doi.org/10.3390/rs9070676

Schmale, D. G. lll., and Ross, S. D. 2015. Highways in the sky: scales of atmospheric transport of plant
pathogens. Annu. Rev. Phytopathol. 53:591-611. https://doi.org/10.1146/annurev-phyto-080614-115942.

Schoofs, H., Delalieux, S., Deckers, T., and Bylemans, D. 2020. Fire blight monitoring in pear orchards by
Unmanned Airborne Vehicles (UAV) systems carrying spectral sensors. Agronomy 10:615.
https://doi.org/10.3390/agronomy10050615

Schramm, M., Pebesma, E., Milenkovi¢, M., Foresta, L., Dries, J., Jacob, A., Wagner, W., Mohr, M., Neteler, M.,
Kadunc, M., Miksa, T., Kempeneers, P., Verbesselt, J., GoRwein, B., Navacchi, C., Lippens, S., and Reiche, J.
2021. The openEO API-harmonising the use of Earth observation cCloud services using virtual data cube
functionalities. Remote Sens. 13:1125. https://doi.org/10.3390/rs13061125

Segarra, J., Jeger, M. J., and van den Bosch, F. 2001. Epidemic dynamics and patterns of plant diseases.
Phytopathology 91:1001-1010. https://doi.org/10.1094/PHYTO.2001.91.10.1001

Serbin, S. P., and Townsend, P. A. 2020. Scaling functional traits from leaves to canopies. In Remote Sensing of
Plant Biodiversity, eds., J. Cavender-Bares, J. A. Gamon, and P. A. Townsend, 43-82. Springer International
Publishing. https://doi.org/10.1007/978-3-030-33157-3_3.

Shah, D. A., De Wolf, E. D., Paul, P. A., and Madden, L. V. 2014. Predicting fusarium head blight epidemics with
boosted regression trees. Phytopathology 104:702-714. http://dx.doi.org/10.1094/PHYTO-10-13-0273-R

Shah, D. A., Paul, P. A, de Wolf, E. D., and Madden, L. V. 2019. Predicting plant disease epidemics from
functionally represented weather series. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374:20180273.
https://doi.org/10.1098/rstb.2018.0273

Shah, D. A., de Wolf, E. D., Paul, P. A., and Madden, L. V. 2021. Accuracy in the prediction of disease epidemics
when ensembling simple but highly correlated models. PLoS Comput. Biol. 17:e1008831.
https://doi.org/10.1371/journal.pchi.1008831

Shane, W., and Teng, P. 1992. Impact of Cercospora leaf spot on root weight, sugar yield, and purity of Beta
vulgari. Plant Dis. 76:812-820. https://doi.org/10.1094/pd-76-0812

Shaw, M. W., and Pautasso, M. 2014. Networks and plant disease management: concepts and applications.
Annu. Rev. Phytopathol. 52:477-493. https://doi.org/10.1146/annurev.phyto.43.113004.133839.

Shi, Y., Han, L. X., Kleerekoper, A., Chang, S., and Hu, T. L. 2022. Novel CropdocNet model for automated
potato late blight disease detection from unmanned aerial vehicle-based hyperspectral imagery. Remote Sens.
14:396. https://doi.org/10.3390/rs14020396



Shtienberg, D. 2013. Will decision-support systems be widely used for the management of plant diseases? Annu.

Rev. Phytopathol. 51:1-16. https://doi.org/10.1146/annurev-phyto-082712-102244

Singh, B. K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J. E., Liu, H., and Trivedi, P. 2023. Climate
change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21:640—-656.
https://doi.org/10.1038/s41579-023-00900-7

Skelsey, P. 2021. Forecasting risk of crop disease with anomaly detection algorithms. Phytopathology 111:321-
332. https://doi.org/10.1094/PHYTO-05-20-0185-R

Smigaj, M., Gaulton, R., Suarez, J. C., and Barr, S. L. 2019. Canopy temperature from an unmanned aerial
vehicle as an indicator of tree stress associated with red band needle blight severity. For. Ecol. Manage.
433:699-708. https://doi.org/10.1016/j.foreco.2018.11.032

Smith, J. W., Faisal, A. A., Hodson, D., Baidya, S., Bhatta, M., Thapa, D., Basnet, R., Thurston, W., Krupnik, T.
J., and Gilligan, C. A. 2024. Advancing crop disease early warning in South Asia by complementing expert
surveys with internet media scraping. Clim. Resil. Sustain. 3:e78. https://doi.org/10.1002/cli2.78

Smith, R. C. G., Heritage, A. D., Stapper, M., and Barrs, H. D. 1986. Effect of stripe rust (Puccinia striiformis
West.) and irrigation on the yield and foliage temperature of wheat. Field Crops Res. 14:39-51.
https://doi.org/10.1016/0378-4290(86)90045-6

Soenen, S. A., Peddle, D. R., and Coburn, C. A. 2005. SCS+C: A modified sun-canopy-sensor topographic
correction in forested terrain. IEEE Trans. Geosci. Remote Sens. 43:2148-2159.
https://doi.org/10.1109/TGRS.2005.852480.

Solberg, A. H. S., Jain, A. K., and Taxt, T. 1994. Multisource classification of remotely sensed data: fusion of
Landsat TM and SAR images. |IEEE Trans. Geosci. Remote Sens. 32:768-778.

Somers, B., Cools, K., Delalieux, S., Stuckens, J., Van Der Zande, D., Verstraeten, W., and Coppin, P. 2009.
Nonlinear hyperspectral mixture analysis for tree cover estimates in orchards. Remote Sens. Environ. 113:1183-
1193.

Soubeyrand, S., Enjalbert, J., Sanchez, A., and Sache, |. 2007. Anisotropy, in density and in distance, of the
dispersal of yellow rust of wheat: Experiments in large field plots and estimation. Phytopathology 97:1315-1324.
https://doi.org/10.1094/PHYTO-97-10-1315

Soubeyrand, S., Held, L., Hohle, M., and Sache, I. 2008. Modelling the spread in space and time of an airborne
plant disease. J. R. Stat. Soc. C 57:253-272. https://doi.org/10.1111/j.1467-9876.2007.00612.x

Soubeyrand, S., Laine, A. L., Hanski, I., and Penttinen, A. 2009. Spatio-temporal structure of host-pathogen
interactions in a metapopulation. Am. Nat. 174:308-320. https://doi.org/10.1086/603624

Soubeyrand, S., and Roques, L. 2014. Parameter estimation for reaction-diffusion models of biological invasions.

Popul. Ecol. 56:427-434.

Sparks, A. H., Del Ponte, E. M., Alves, K. S., Foster, Z. S. L., and Gruenwald, N. J. 2023. Openness and
computational reproducibility in plant pathology: where we stand and a way forward. Phytopathology 113:1159-
1170. https://doi.org/10.1094/phyto-10-21-0430-per

Sterckx, S., Brown, |., Kaab, A., Krol, M., Morrow, R., Veefkind, P., Boersma, F., De Maziére, M., Nigel, F., and

Thorne, P. 2020. Towards a European Cal/Val service for Earth observation. Int. J. Remote Sens. 41:4496-4511.

https://doi.org/10.1080/01431161.2020.1718240

Sterckx, S., Vreys, K., Biesemans, J., lordache, M., and Meuleman, K. 2016. Atmospheric correction of APEX
hyperspectral data. Misc. Geogr. Reg. Stud. Dev. 20:16-20.https://doi.org/10.1515/mgrsd-2015-0022

Page 52 of 66



Page 53 of 66

Sterckx, S., and Wolters, E. 2019. Radiometric top-of-atmosphere reflectance consistency assessment for
Landsat 8/0OLI, Sentinel-2/MSI, PROBA-V, and DEIMOS-1 over Libya-4 and RadCalNet calibration sites. Remote
Sens. 11:2253. https://www.mdpi.com/2072-4292/11/19/2253

Still, C., Powell, R., Aubrecht, D., Kim, Y., Helliker, B., Roberts, D., Richardson, A. D., and Goulden, M. 2019.
Thermal imaging in plant and ecosystem ecology: applications and challenges. Ecosphere 10(6):e02768.
https://doi.org/10.1002/ecs2.2768

Storch, T., Honold, H.-P., Chabrillat, S., Habermeyer, M., Tucker, P., Brell, M., Ohndorf, A., Wirth, K., Betz, M.,
Kuchler, M., Miihle, H., Carmona, E., Baur, S., Micke, M., Léw, S., Schulze, D., Zimmermann, S., Lenzen, C.,
Wiesner, S., Aida, S., Kahle, R., Willburger, P., Hartung, S., Dietrich, D., Plesia, N., Tegler, M., Schork, K.,
Alonso, K., Marshall, D., Gerasch, B., Schwind, P., Pato, M., Schneider, M., de los Reyes, R., Langheinrich, M.,
Wenzel, J., Bachmann, M., Holzwarth, S., Pinnel, N., Guanter, L., Segl, K., Scheffler, D., Foerster, S., Bohn, N.,
Bracher, A., Soppa, M. A., Gascon, F., Green, R., Kokaly, R., Moreno, J., Ong, C., Sornig, M., Wernitz, R.,
Bagschik, K., Reintsema, D., La Porta, L., Schickling, A., and Fischer, S. 2023. The EnMAP imaging
spectroscopy mission towards operations. Remote Sens. Environ. 294:113632.
https://doi.org/10.1016/j.rse.2023.113632

Strange, R. N., and Scott, P. R. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol.
43:83-116. https://doi.org/10.1146/annurev.phyto.43.113004.133839.

Su, J. Y., Liu, C. J., Coombes, M., Hu, X. P., Wang, C. H., Xu, X. M., Li, Q. D., Guo, L., and Chen, W. H. 2018.
Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Comput. Electron. Agric.
155:157-166. https://doi.org/10.1016/j.compag.2018.10.017

Su, J. Y., Liu, C. J., Hu, X. P., Xu, X. M., Guo, L., and Chen, W. H. 2019. Spatio-temporal monitoring of wheat
yellow rust using UAV multispectral imagery. Comput. Electron. Agric. 167:105035.
https://doi.org/10.1016/j.compag.2019.105035

Sugiura, R., Tsuda, S., Tamiya, S., Itoh, A., Nishiwaki, K., Murakami, N., Shibuya, Y., Hirafuji, M., and Nuske, S.
2016. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an
unmanned aerial vehicle. Biosyst. Eng. 148:1-10. https://doi.org/10.1016/j.biosystemseng.2016.04.010

Surano, A., Abou Kubaa, R., Nigro, F., Altamura, G., Losciale, P., Saponari, M., and Saldarelli, P. 2022.
Susceptible and resistant olive cultivars show differential physiological response to Xylella fastidiosa infections.
Front. Plant Sci. 13:968934. https://doi.org/10.3389/fpls.2022.968934

Tagliabue, G., Boschetti, M., Bramati, G., Candiani, G., Colombo, R., Nutini, F., Pompilio, L., Rivera-Caicedo, J.
P., Rossi, M., Rossini, M., Verrelst, J., and Panigada, C. 2022. Hybrid retrieval of crop traits from multi-temporal
PRISMA hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 187:362-377.
https://doi.org/10.1016/j.isprsjprs.2022.03.014.

Tanner, F., Tonn, S., de Wit, J., Van den Ackerveken, G., Berger, B., and Plett, D. 2022. Sensor-based
phenotyping of above-ground plant-pathogen interactions. Plant Methods 18:1-18.
https://doi.org/10.1186/s13007-022-00853-7

Tateosian, G., Saffer, A., Walden-Schreiner, C., and Shukunobe, M. 2023. Plant pest invasions, as seen through
news and social media. Comput. Environ. Urban Syst. 100:101922.
https://doi.org/10.1016/j.compenvurbsys.2022.101922

Taylor, N. P., and Cunniffe, N. J. 2023a. Optimal resistance management for mixtures of high-risk fungicides:
Robustness to the initial frequency of resistance and pathogen sexual reproduction. Phytopathology 113:55-69.
https://doi.org/10.1094/PHYTO-02-22-0050-R

Taylor, N. P., and Cunniffe, N. J. 2023b. Modelling quantitative fungicide resistance and breakdown of resistant
cultivars: Designing integrated disease management strategies for Septoria of winter wheat. PLoS Comput. Biol.
19:1010969. https://doi.org/10.1371/journal.pchi.1010969



Terentev, A., Dolzhenko, V., Fedotov, A., and Eremenko, D. 2022. Current state of hyperspectral remote sensing
for early plant disease detection: A review. Sensors 22:1-31. https://doi.org/10.3390/s22030757

Thomas, S., Behmann, J., Rascher, U., and Mahlein, A.-K. 2022. Evaluation of the benefits of combined
reflection and transmission hyperspectral imaging data through disease detection and quantification in plant—
pathogen interactions. J. Plant Dis. Prot. 129:505-520. https://doi.org/10.1007/s41348-022-00570-2

Thompson, R. N., Gilligan, C. A., and Cunniffe, N. J. 2018. Control fast or control smart: When should invading
pathogens be controlled? PLoS Comput. Biol. 14:e1006014. https://doi.org/10.1371/journal.pcbi.1006014

Thompson, R. N., Gilligan, C. A., and Cunniffe, N. J. 2020. Will an outbreak exceed available resources for
control? Estimating the risk from invading pathogens using practical definitions of a severe epidemic. J. R. Soc.
Interface 17:20200690. https://doi.org/10.1098/rsif.2020.0690

Thuerey, N., Holl, P., Mueller, M., Schnell, P., Trost, F., and Um, K. 2021. Physics-based deep learning.
arXiv:2109.05237. https://doi.org/10.48550/arXiv.2109.05237

Tian, L., Wang, Z., Xue, B., Li, D., Zheng, H., Yao, X., Zhu, Y., Cao, W., and Cheng, T. 2023. A disease-specific
spectral index tracks Magnaporthe oryzae infection in paddy rice from ground to space. Remote Sens. Environ.
285:113384. https://doi.org/10.1016/j.rse.2022.113384

Tolan, J., Yang, H.-l., Nosarzewski, B., Couairon, G., Vo, H. V., Brandt, J., Spore, J., Majumdar, S., Haziza, D.,
Vamaraju, J., Moutakanni, T., Bojanowski, P., Johns, T., White, B., Tiecke, T., and Couprie, C. 2024. Very high
resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional

decoder trained on aerial Lidar. Remote Sens. Environ. 300:113943. https://doi.org/10.1016/j.rse.2023.113888

Tu, Y.-H., Johansen, K., Aragon, B., El Hajj, M. M., and McCabe, M. F. 2022. The radiometric accuracy of the 8-
band multi-spectral surface reflectance from the planet SuperDove constellation. Int. J. Appl. Earth Obs.
Geoinformation 114:103035. https://doi.org/10.1016/j.jag.2022.103035

Tuia, D., Verrelst, J., Alonso, L., Pérez-Cruz, F., and Camps-Valls, G. 2011. Multioutput support vector
regression for remote sensing biophysical parameter estimation. IEEE Geosci. Remote. Sens. Lett. 8:804-808.
https://doi.org/10.1109/LGRS.2011.2109934

Turner, D., Lucieer, A., and Wallace, L. 2014. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE
Transactions on Geoscience and Remote Sensing 52:2738-2745. https://doi.org/10.1109/TGRS.2013.2265295.

Turner, J. A., Chantry, T., Taylor, M. C., and Kennedy, M. C. 2021. Changes in agronomic practices and
incidence and severity of diseases in winter wheat in England and Wales between 1999 and 2019. Plant Pathol.
70:1759-1778. https://doi.org/10.1111/ppa.13433

Uhlir, P. F., Chen, R. S., Gabrynowicz, J. I., and Jansse, K. 2009. Towards implementation of the global Earth
observation system of systems data sharing principles. Data Sci. J. 8. https://doi.org/10.2481/dsj.35JSL201

Underwood, J., Wendel, A., Schofield, B., McMurray, L., and Kimber, R. 2017. Efficient in-field plant phenomics
for row-crops with an autonomous ground vehicle. J. Field Robot. 34:1061-1083.
https://doi.org/10.1002/rob.21728

Ustin, S. L., Roberts, D. A., Gamon, J. A., Asner, G. P., and Green, R. O. 2004. Using imaging spectroscopy to
study ecosystem processes and properties. BioScience 54:523-534. https://doi.org/10.1641/0006-
3568(2004)054[0523:UISTSE]2.0.CO;2

Ustin, S. L., and Jacquemoud, S. 2020. How the optical properties of leaves modify the absorption and scattering
of energy and enhance leaf functionality. In: Remote Sensing of Plant Biodiversity, eds.,Cavender-Bares, J.,
Gamon, J. A,, Townsend, P. A., 349-384.

Springer Open. https://doi.org/10.1007/978-3-030-33157-3_14

Page 54 of 66



Page 55 of 66

Vanbrabant, Y., Tits, L., Delalieux, S., Pauly, K., Verjans, W., and Somers, B. 2019. Multitemporal chlorophyll
mapping in pome fruit orchards from remotely piloted aircraft systems. Remote Sens. 11:1468.
https://doi.org/10.3390/rs11121468

van den Bosch, F., Helps, J., and Cunniffe, N. J. 2024. The basic-reproduction number of infectious diseases in
spatially structured host populations. Oikos 2024:e10616. https://doi.org/10.1111/0ik.10616.

van den Bosch, F., Lopez-Ruiz, F., Oliver, R., Paveley, N., Helps, J., and van den Berg, F. 2018. Identifying when
it is financially beneficial to increase or decrease fungicide dose as resistance develops. Plant Pathol. 67:549-
560. https://doi.org/10.1111/ppa.12787

van den Bosch, F., Oliver, R. P., van den Berg, F., and Paveley, N. D. 2014. Governing principles can guide
fungicide-resistance management tactics. Annu. Rev. Phytopathol. 52:175-195.
https://doi.org/10.1146/annurev.phyto0.43.113004.133839

van den Bosch, F., Zerihun, A., Poole, N., Thomas, G., and Lopez-Ruiz, F. 2023. Adjusting fungicide treatment
programmes when resistance is developing: The case of spot-form net-blotch in Western Australia. Plant Pathol.
72:1048-1058. https://doi.org/10.1111/ppa.13726

van Rees, C.B., Hand, B.K., Carter, S.C., Bargeron, C., Cline, T.J., Daniel, W., Ferrante, J.A., Gaddis, K., Hunter,
M.E., Jarnevich, C.S., McGeoch, M.A., Morisette, J.T., Neilson, M.E., Roy, H.E., Rozance, M.A., Sepulveda, A.,
Wallace, R.D., Whited, D., Wilcox, T., Kimball, J.S., and Luikart, G. 2022. A framework to integrate innovations in
invasion science for proactive management. Biological Reviews. 97: 1712-1735.
https://doi.org/10.1111/brv.12859

Verhoef, W., and Bach, H. 2003. Simulation of hyperspectral and directional radiance images using coupled
biophysical and atmospheric radiative transfer models. Remote Sens. Environ. 87:23-41.
https://doi.org/10.1016/S0034-4257(03)00143-3

Verrelst, J., Dethier, S., Rivera, J. P., Munoz-Mari, J., Camps-Valls, G., and Moreno, J. 2016. Active learning
methods for efficient hybrid biophysical variable retrieval. IEEE Geosci. Remote Sens. Lett. 13:1012-1016.
https://doi.org/10.1109/LGRS.2016.2560799

Verrelst, J., Malenovsky, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.-P., Lewis, P., North, P.,
and Moreno, J. 2019. Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on
retrieval methods. Surv. Geophys. 40:589-629. https://doi.org/10.1007/s10712-018-9478-y

Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., and Hawkesford, M. J. 2017. Field Scanalyzer: an automated
robotic field phenotyping platform for detailed crop monitoring. Funct. Plant Biol. 44:143-153.
https://doi.org/10.1071/fp16163

Vogelmann, T. C. 1989. Penetration of light into plants. Photochem. Photobiol. 50:895-902.
https://doi.org/10.1111/j.1751-1097.1989.tb02919.x

Vogelmann, T. C. 1993. Plant tissue optics. Annu. Rev. Plant Biol. 44:231-251.
https://doi.org/10.1146/annurev.pp.44.060193.001311

Vreys, K., lordache, M. D., Bomans, B., and Meuleman, K. 2016a. Data acquisition with the APEX hyperspectral
sensor. Misc. Geogr. 20:5-10. https://doi.org/10.1515/mgrsd-2016-0001

Vreys, K., lordache, M.-D., Biesemans, J., and Meuleman, K. 2016b. Geometric correction of apex hyperspectral
data. Misc. Geogr. 20:11-15. https://doi.org/10.1515/mgrsd-2016-0006

Wang, C., Puhan, M. A., Furrer, R., and the SNC Study Group. 2018. Generalized spatial fusion model
framework for joint analysis of point and areal data. Spatial Stat. 23:72-90.
https://doi.org/10.1016/j.spasta.2017.11.006



Wang, J., Lan, C., Liu, C., Ouyang, Y., Qin, T., Lu, W., and Philip, S. Y. 2022. Generalizing to unseen domains: A
survey on domain generalization. IEEE Trans. Knowl. Data Eng. 35:8052-8072.
https://doi.org/10.1109/TKDE.2022.3178128

Wang, P., Bayram, B., and Sertel, E. 2022. A comprehensive review on deep learning based remote sensing
image super-resolution methods. Earth Sci. Rev. 104110. https://doi.org/10.1016/j.earscirev.2022.104110

Wang, Y. M., Ostendorf, B., Gautam, D., Habili, N., and Pagay, V. 2022. Plant viral disease detection: From
molecular diagnosis to optical sensing technology -A multidisciplinary review. Remote Sens. 14:1542.
https://doi.org/10.3390/rs14071542

Wang, Y. M., Ostendorf, B., and Pagay, V. 2023. Detecting grapevine virus infections in red and white winegrape
canopies using proximal hyperspectral sensing. Sensors 23:2851. https://doi.org/10.3390/s23052851

Wang, Y., Albrecht, C. M., Braham, N. A. A., Mou, L., and Zhu, X. X. 2022. Self-supervised learning in remote
sensing: A review. IEEE Geosci. Remote Sens. Mag. 10(4):213-247.
https://doi.org/10.1109/MGRS.2022.3198244

Wang, Y., Zia-Khan, S., Owusu-Adu, S., Miedaner, T., and Miiller, J. 2019. Early detection of Zymoseptoria tritici
in winter wheat by infrared thermography. Agriculture 9:139. https://doi.org/10.3390/agriculture9070139.

Wang, Y., and Fang, H. 2020. Estimation of LAl with the LiDAR technology: A Review. Remote Sens. 12:3457.
https://doi.org/10.3390/rs12203457.

Wang, Z., Chlus, A., Geygan, R., Ye, Z., Zheng, T., Singh, A., Couture, J. J., Cavender-Bares, J., Kruger, E. L.,
and Townsend, P. A. 2020. Foliar functional traits from imaging spectroscopy across biomes in eastern North
America. New Phytol. 228:494-511. https://doi.org/10.1111/nph.16711

Wang, Z., and Menenti, M. 2021. Challenges and opportunities in Lidar remote sensing. Front. Remote Sens. 2.
https://doi.org/10.3389/frsen.2021.641723

Watkinson-Powell, B. M., Gilligan, C. A., and Cunniffe, N. J. 2020. When does spatial diversification usefully
maximise the durability of crop disease resistance? Phytopathology 110:1808-1820.
https://doi.org/10.1094/PHYTO-07-19-0261-R

Watt, M. S., Holdaway, A., Watt, P., Pearse, G. D., Palmer, M. E., Steer, B. S. C., Camatrretta, N., McLay, E., and
Fraser, S. 2024. Early prediction of regional red needle cast outbreaks using climatic data trends and satellite-
derived observations. Remote Sens. 16:1401. https://doi.org/10.3390/rs16081401

Watt, M.S., Poblete, T., de Silva, D., Estarija, H.J.C., Hartley, R.J.L., Leonardo, E.M., Massam, P., Buddenbaum,
H., Zarco-Tejada, P.J. 2023. Prediction of the severity of Dothistroma needle blight in radiata pine using plant-
based traits and narrow band indices derived from UAV hyperspectral imagery. Agric. For. Meteorol. 330:109294.
https://doi.org/10.1016/j.agrformet.2022.109294.

Wazny, K. 2017. "Crowdsourcing" ten years in: A review. J. Glob. Health 7:020602.
https://doi.org/10.7189/jogh.07.020602

Weiland, J., and Koch, G. 2004. Sugarbeet leaf spot disease (Cercospora beticola Sacc.). Mol. Plant Pathol.
5:157-166. https://doi.org/10.1111/j.1364-3703.2004.00218.x

Weiss, M., Jacob, F., and Duveiller, G. 2020. Remote sensing for agricultural applications: A meta-review.
Remote Sens. Environ. 236:111402. https://doi.org/10.1016/j.rse.2019.111402

Weng, Q. 2009. Thermal infrared remote sensing for urban climate and environmental studies: Methods,
applications, and trends. ISPRS J. Photogramm. Remote Sens. 64:335-344.
https://doi.org/10.1016/j.isprsjprs.2009.03.007

Page 56 of 66



Page 57 of 66

Wiesner-Hanks, T., Wu, H., Stewart, E., DeChant, C., Kaczmar, N., Lipson, H., Gore, M. A, and Nelson, R. J.
2019. Millimeter-level plant disease detection from aerial photographs via deep learning and crowdsourced data.
Front. Plant Sci. 10:1550. https://doi.org/10.3389/fpls.2019.01550.

Willocquet, L., Savary, S., McDonald, B. A., and Mikaberidze, A. 2020. A polyetic modelling framework for plant
disease emergence. Plant Pathol. 69:1630-1643. https://doi.org/10.1111/ppa.13249.

Wolf, P. F. J., and Verreet, J. A. 2002. An integrated pest management system in Germany for the control of
fungal leaf diseases in sugar beet: The IPM sugar beet model. Plant Dis. 86:336-344.
https://doi.org/10.1094/PDIS.2002.86.4.336.

Wolfert, S., Ge, L., Verdouw, C., and Bogaardt, M. J. 2017. Big data in smart farming—a review. Agricultural
systems. 153: 69-80. https://doi.org/10.1016/j.agsy.2017.01.023

Wright, 1. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T.,
Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B.,
Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot,
P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and Villar, R. 2004.
The worldwide leaf economics spectrum. Nature 428:821-827. https://doi.org/10.1038/nature02403

Xiao, Y., Dong, Y., Huang, W., and Liu, L. 2022. Regional prediction of Fusarium head blight occurrence in wheat
with remote sensing based Susceptible-Exposed-Infectious-Removed model. Int. J. Appl. Earth Obs. Geoinf.
114:103043. https://doi.org/10.1016/j.jag.2022.103043

Xie, Y., Sha, Z., and Yu, M. 2008. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 1:9-
23. https://doi.org/10.1093/jpe/rtm005

Xie, Y., Plett, D., and Liu, H. 2022. Detecting crown rot disease in wheat in controlled environment conditions
using digital color imaging and machine learning. AgriEngineering 4:141-155.
https://doi.org/10.3390/agriengineering4010010

Xu, H., Qi, S, Li, X., Gao, C., Wei, Y., and Liu, C. 2021. Monitoring three-decade dynamics of citrus planting in
Southeastern China using dense Landsat records. Int. J. Appl. Earth Obs. Geoinf. 103:102518.
https://doi.org/10.1016/j.jag.2021.102518

Xu, W., Wang, Q., and Chen, R. 2018. Spatio-temporal prediction of crop disease severity for agricultural
emergency management based on recurrent neural networks. Geolnformatica 22:363-
381.https://doi.org/10.1007/s10707-017-0314-1

Yang, C. 2020. Remote sensing and precision agriculture technologies for crop disease detection and
management with a practical application example. Engineering 6:528-532.
https://doi.org/10.1016/j.eng.2019.10.015.

Yang, J., and Hu, M. 2018. Filling the missing data gaps of daily MODIS AOD using spatiotemporal interpolation.
Sci. Total Environ. 633:677-683. https://doi.org/10.1016/j.scitotenv.2018.03.202

Yates, K. L., Bouchet, P. J., Caley, M. J., Mengersen, K., Randin, C. F., Parnell, S., Fielding, A. H., Bamford, A.
J., Ban, S., Barbosa, A. M., Dormann, C. F., Elith, J., Embling, C. B., Ervin, G. N., Fisher, R., Gould, S., Graf, R.
F., Gregr, E. J., Halpin, P. N., Heikkinen, R. K., Heindnen, S., Jones, A. R., Krishnakumar, P. K., Lauria, V.,
Lozano-Montes, H., Mannocci, L., Mellin, C., Mesgaran, M. B., Moreno-Amat, E., Mormede, S., Novaczek, E.,
Oppel, S., Ortufio Crespo, G., Peterson, A. T., Rapacciuolo, G., Roberts, J. J., Ross, R. E., Scales, K. L.,
Schoeman, D., Snelgrove, P., Sundblad, G., Thuiller, W., Torres, L. G., Verbruggen, H., Wang, L., Wenger, S.,
Whittingham, M. J., Zharikov, Y., Zurell, D., and Sequeira, A. M. M. 2018. Outstanding challenges in the
transferability of ecological models. Trends Ecol. Evol. 33:790-802. https://doi.org/10.1016/j.tree.2018.08.001.

Ye, Y., Pandey, A., Bawden, C., Sumsuzzman, D. M., Rajput, R., Shoukat, A., Singer, B. H., Moghadas, S. M.,
and Galvani, A. P. 2025. Integrating artificial intelligence with mechanistic epidemiological modeling: A scoping
review of opportunities and challenges. Nat. Commun. 16:1-18. https://doi.org/10.1038/s41467-024-55461-x



Page 58 of 66

Yoshida, S. 1972. Physiological aspects of grain yield. Annu. Rev. Plant Physiol. 23:437-464.
https://doi.org/10.1146/annurev.pp.23.060172.002253

You, L., Wood-Sichra, U., Fritz, S., Guo, Z., See, L., and Koo, J. 2014. MAPSPAM - Spatial Production Allocation
Model 2005. Available at: http://mapspam.info/global-data/#sort/harvested_area/total.

Yu, K., Anderegg, J., Mikaberidze, A., Karisto, P., Mascher, F., McDonald, B. A., Walter, A., and Hund, A. 2018.
Hyperspectral canopy sensing of wheat Septoria tritici blotch disease. Front. Plant Sci. 9:1195.
https://doi.org/10.3389/fpls.2018.01195.

Yuan, L., Pu, R., Zhang, J., Wang, J., and Yang, H. 2016. Using high spatial resolution satellite imagery for
mapping powdery mildew at a regional scale. Precis. Agric. 17:332-348. https://doi.org/10.1007/s11119-015-
9421-x

Yuan, Q., Shen, H., Li, T, Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., Wang, J., Gao, J., and Zhang, L.
2020. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ.
241:111716. https://doi.org/10.1016/j.rse.2020.111716.

Zaffaroni, M., Papaix, J., Geffersa, A. G., Rey, J. F., Rimbaud, L., and Fabre, F. 2024b. Combining single-gene-
resistant and pyramided cultivars of perennial crops in agricultural landscapes compromises pyramiding benefits
in most production situations. Phytopathology 114:2310-2321. https://doi.org/10.1094/PHYTO-02-24-0075-R.

Zaffaroni, M., Rimbaud, L., Rey, J.-F., Papaix, J., and Fabre, F. 2024a. Effects of pathogen reproduction system
on the evolutionary and epidemiological control provided by deployment strategies for two major resistance
genes in agricultural landscapes. Evol. Appl. 17:€13627. https://doi.org/10.1111/eva.13627

Zandalinas, S. I., Fritschi, F. B., and Mittler, R. 2021. Global warming, climate change, and environmental
pollution: recipe for a multifactorial stress combination disaster. Trends Plant Sci. 26:588-599.
https://doi.org/10.1016/j.tplants.2021.02.011

Zarco-Tejada, P. J., Camino, C., Beck, P. S. A, Calderon, R., Hornero, A., Hernandez-Clemente, R., Kattenborn,
T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez-Dugo, V., North, P. R. J., Landa, B. B., Boscia, D.,
Saponari, M., and Navas-Cortes, J. A. 2018. Previsual symptoms of Xylella fastidiosa infection revealed in
spectral plant-trait alterations. Nat. Plants 4:432—439. https://doi.org/10.1038/s41477-018-0189-7

Zarco-Tejada, P. J., Poblete, T., Camino, C., Gonzalez-Dugo, V., Calderon, R., Hornero, A., Hernandez-
Clemente, R., Roman-Ecija, M., Velasco-Amo, M. P., Landa, B. B., Beck, P. S. A., Saponari, M., Boscia, D., and
Navas-Cortes, J. A. 2021. Divergent abiotic spectral pathways unravel pathogen stress signals across species.
Nat. Commun. 12:6088. https://doi.org/10.1038/s41467-021-26335-3

Zenkl, R., McDonald, B. A., Walter, A., and Anderegg, J. Towards high throughput in-field detection and
quantification of wheat foliar diseases with deep learning. bioRxiv 2024.05.10.593608.
https://doi.org/10.1101/2024.05.10.593608.

Zhang, C., Lane, B., Fernandez-Campos, M., Cruz-Sancan, A., Lee, D.-Y., Gongora-Canul, C., Ross, T. J., Da
Silva, C. R., Telenko, D. E. P., Goodwin, S. B., Scofield, S. R., Oh, S., Jung, J., and Cruz, C. D. 2023. Monitoring
tar spot disease in corn at different canopy and temporal levels using aerial multispectral imaging and machine
learning. Front. Plant Sci. 13:5549. https://doi.org/10.3389/fpls.2022.1077403.

Zhang, J., Pu, R., Huang, W., Yuan, L., Luo, J., and Wang, J. 2012. Using in-situ hyperspectral data for detecting
and discriminating yellow rust disease from nutrient stresses. Field Crop. Res. 134:165-174.

Zhang, W., Miao, Z., Li, N., He, C., and Sun, T. 2022. Review of current robotic approaches for precision weed
management. Curr. Robot. Rep. 3:139-151. https://doi.org/10.1007/s43154-022-00086-5.

Zhang, Y., Migliavacca, M., Penuelas, J., and Ju, W. 2021. Advances in hyperspectral remote sensing of
vegetation traits and functions. Remote Sens. Environ. 252: 112121. https://doi.org/10.1016/j.rse.2020.112121



Page 59 of 66

Zhao, C., Gao, X., Emery, W. J., Wang, Y., and Li, J. 2018. An integrated spatio-spectral-temporal sparse
representation method for fusing remote-sensing images with different resolutions. IEEE Trans. Geosci. Remote
Sens. 56:3358-3370. https://doi.org/10.1109/TGRS.2018.2798663

Zhao, R., Zhu, Y., and Li, Y. 2023. CLA: A self-supervised contrastive learning method for leaf disease
identification with domain adaptation. Comput. Electron. Agric. 211:107967.
https://doi.org/10.1016/j.compag.2023.107967

Zhu, F., Su, Z., Sanaeifar, A., Perumal, A. B., Gouda, M., Zhou, R., Li, X., and He, Y. 2023. Fingerprint spectral
signatures revealing the spatiotemporal dynamics of Bipolaris spot blotch progression for presymptomatic
diagnosis. Engineering 22:171-184. https://doi.org/10.1016/j.eng.2022.10.006



Table 1. List of acronyms.

Acronym Full Form

uv Ultraviolet

IR Infrared

UAVs Uncrewed Aerial Vehicles

RGB Red-green-blue

CIR Colour-Infrared

HSI Hyperspectral Imaging

NIR Near-Infrared

SWIR Shortwave Infrared

TIR Thermal Infrared

LiDAR Light Detection and Ranging

VNIR Visible and Near-Infrared

SWIR Shortwave Infrared

MSI Multispectral Imaging

BRDF Bidirectional Reflectance Distribution
Function

RTM Radiative Transfer Models

ML Machine Learning

0oQDS Olive Quick Decline Syndrome

CLS Cercospora Leaf Spot

CNN Convolutional Neural Networks

PLSR Partial Least Squares Regression

SSL Self-Supervised Learning

DA Data Assimilation

PPV

Positive Predictive Value
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Table 2. Plant traits and features that, once estimated via optical sensing, could aid in
epidemiological modelling, and vice versa.

Plant trait/feature (estimated via
optical sensing)

How optical sensing aids
epidemiological modelling

How epidemiological modelling aids
optical sensing

Disease onset, incidence, and
severity

Improves model parameterisation
and validation with objective,
standardised, high-resolution data

Improves classification by
incorporating risk estimates derived
from models

Spatio-temporal patterns of
infection

Enhances understanding of disease
dynamics and spread (i.e., data for
model fitting)

Informs contextual interpretation based
on expected and/or modelled spatial
clustering

Pathogen dispersal gradients

Improves estimation of dispersal
kernels by providing additional data

Helps validate sensing-derived
assessment of pathogen dispersal with
models accounting for underpinning
mechanism of pathogen spread

Real-time infection status or
anomalies

Triggers surveillance or action based
on spectral anomalies (underpinned
by tests in models)

Optimises sensor deployment (e.g.,
UAV routes) to maximise information
content in data

Host plant identity (species,
cultivar)

Increases biological realism in host
maps used in models

Informs whether there is a need for
species-level resolution in host plant
sensing

Host density and spatial
distribution

Enables dynamic modelling of
disease risk based on real host
distributions in space

Focuses sensing efforts where areas
of higher host density are expected to
be most epidemiologically relevant

Host phenology and growth stage

Allows time-sensitive modelling of
host susceptibility and epidemic
timing

Highlights critical phenological
windows (and spatial locations) for
data collection using optical-sensing

Environmental conditions (e.g.,
topography, water availability)

Adds environmental realism to
models, potentially improving
predictive accuracy

Identifies which environmental
variables are most relevant to measure
(i.e., have the largest effects on
disease risk)

Presence of inoculum reservoirs
or alternative hosts

Informs model structure by allowing
models to account for hidden
reservoirs

Suggests where to search for
reservoirs based on
persistence/spillover inferred with
models

Confirmation of control
implementation (e.g., host
removal)

Improves tracking and evaluation of
management interventions, then
informing models

Targets verification efforts on areas of
predicted but uncertain control (e.g.,
due to lack of stakeholder compliance)




Supplementary Material S1
Glossary

Abiotic stress: Non-living environmental factors such as drought, temperature, and salinity
that can cause stress to plants, and which can be distinguished from biotic stress caused by
living organisms.

Anomaly detection: In the context of optical sensing, a method used to identify spectral
signatures associated with healthy plants, where deviations from typical signatures can
indicate the presence of disease.

Bayesian analysis: A statistical method that incorporates prior knowledge or beliefs, along
with new evidence and a probabilistic model of a process, to update a probability or
probability distribution.

Bidirectional reflectance: The reflection of light from a surface that can vary depending on
the angle of illumination and observation.

Biotic stress: Stress caused by living organisms such as pathogens, pests or weeds.

Chlorophyll fluorescence: A technique that measures the re-emission of absorbed light by
chlorophyll molecules in plants, used as an indicator of a pathogen’s effect on
photosynthesis.

Compartmental models: A modelling approach in epidemiology that divides a host
population into distinct groups (compartments) based on disease status, such as
susceptible, exposed, infected, and recovered (SEIR).

Data assimilation: The process of integrating observational data with model predictions to
improve the accuracy of forecasts.

Data fusion: The process of integrating information from various sources to achieve results
that are unattainable from a single source alone, such as combining imagery and weather
data for disease detection and quantification.

Disease incidence: A metric indicating the intensity of disease within a plant population,
usually represented as the proportion of diseased specimens to the total number of
specimens evaluated, regardless of the assessment method.

Disease severity: A metric indicating the degree to which a plant, plant part, or defined area
of land is affected by a disease, often measured by metrics such as the percentage or
proportion of area diseased (0-100%), the number (N) and density or size of lesions, or other
symptom descriptions using ordinal scales.

Dispersal kernel: A description of the probability of dispersal events as a function of
distance, important for modelling the spread of plant diseases.

Epidemiology: The study of changes in disease intensity in a plant host population over
time and space.

Epidemiological models: Mathematical representations of how diseases spread within
populations.
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Feature extraction: The process of identifying and isolating relevant information or patterns
from sensor data, whether remote or proximal sensing, for further analysis or modelling.

Foliar scale: Pertaining to leaves or the individual leaf level.

Foundation models: Large-scale machine learning models trained on diverse data to
capture general patterns, allowing them to be fine-tuned for various tasks without retraining
from scratch. Unlike self-supervised models, they are built for broad adaptability across
tasks.

Functional plant traits: Characteristics of plants (e.g., leaf mass per area, chlorophylls,
lignins, carotenoids) that reflect overall plant health and can hint at diseases.

Generalisability: Property or ability of a model or its predictions/outputs to be applicable
across different host genotypes, locations, and time periods beyond the specific setting
where it was developed or validated.

Hierarchical Bayesian model (HBM): A framework used for model inference where the full
model is made up of a series of sub-models organised in different layers. The HBM links the
sub-models together, correctly propagating uncertainties in each sub-model from one level to
the next and estimates posterior distributions using the Bayesian framework.

Hyperspectral sensing: Technology that captures and analyses a wide spectrum of light
across many contiguous spectral bands.

Hyperspectral imaging (HSI): Remote sensing technique that captures and processes
information across a wide range of the electromagnetic spectrum with a high spectral
resolution, allowing detailed analysis of specific spectral bands.

Integrated pest management (IPM): A decision-making process for managing pests (often
understood here to include pathogens) using a combination of management interventions in
an effective, economical, and environmentally sound way, often utilising data from various
sources.

LiDAR (light detection and ranging): A remote sensing method that uses light in the form
of a pulsed laser to measure distances.

Machine learning (ML): A subset of artificial intelligence that involves training algorithms to
recognise patterns in data.

Machine learning classification (ML classification): The process of using algorithms to
automatically classify data into predefined categories.

Mechanistic-statistical model: A modelling approach that combines (i) a mathematical
(deterministic or stochastic) model describing the main mechanisms governing the dynamics
of the system of interest (e.g., an SEIR model) with (ii) a statistical model connecting the
state variables of the mechanistic model with a probabilistic model describing the
observation process. Inference of this class of model is most easily achieved using
hierarchical Bayesian models.

Monocyclic epidemic: An epidemic caused by a pathogen that completes only one infection
cycle per host cycle.



Multimodal sensing: The integration of multiple sensing methods to improve detection and
characterisation of plant health and diseases.

Multispectral imaging: Remote sensing that captures data in specific wavelength bands of
the electromagnetic spectrum.

Nadir view: A view directly downward from a satellite to the surface of the Earth.

Novelty detection classification techniques: Methods used in remote sensing to identify
unusual or emerging diseases by detecting abnormal changes in plant traits.

Overfitting: A situation in which the parameters of a model become too closely aligned to
the training data, resulting in poor performance on new, unseen data.

Pathosystem: The complex interactions between a host, a pathogen, and the environment.

Plant canopy: A multi-layered assembly of leaves, branches, and stems in areas like forests
or agricultural fields, crucial for ecological functions. Its structure and microclimate can affect
pathogen development and spread.

Polycyclic epidemic: An epidemic caused by a pathogen that completes multiple infection
cycles per host cycle.

Proximal sensing: Measurement techniques conducted close to the plant, such as using
handheld devices or sensors placed close to or in direct contact with crops to gather detailed
data on plant health and disease characteristics.

Radiative transfer approaches: Methods used to model the transfer of radiation through a
medium, such as the atmosphere or a plant canopy, accounting for absorption, scattering,
and emission processes.

Radiative transfer modelling (RTM): A framework for simulating the propagation of
electromagnetic radiation through a medium.

Radiometric calibration: The process of adjusting a sensor to ensure its output accurately
reflects true radiance, typically done before data collection. This involves comparing sensor
measurements against known reference standards to maintain measurement accuracy over
time.

Radiometric correction: Adjustments made to image data acquired via optical sensing to
correct for sensor errors and environmental factors, such as lighting and atmospheric
conditions, ensuring the data accurately reflect the true surface radiance.

Remote Sensing (RS): The use of satellite or aerial imagery to monitor and assess
conditions from a distance.

Reference data: A set of data used as a standard or benchmark to calibrate and validate
data gathered from remote or proximal sensing technologies (“ground truth”), or for the
development and training of algorithms or models (annotated or labelled).

Robustness: Ability of a model to maintain accurate predictions despite inconsistencies in
the input data, including changes in data quality, environmental variability, and the presence
of noise or uncertainty.
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Self-supervised learning (SSL): A type of machine learning where the model learns to
generate labels from the input data itself, often used when labelled data is scarce.

Shortwave infrared (SWIR): A specific range of wavelengths in the infrared spectrum used
in remote sensing.

Simulation models: Models that use computer simulations to predict the behaviour of
complex systems over time.

Spatio-temporal dynamics: The study of how patterns change over space and time.

Species-specific spectral signature: Unique spectral characteristics that can be used to
identify and monitor the health of specific plant species.

Spectral libraries: Collections of spectral signatures used for comparison and identification
purposes.

Spectral reflectance: The proportion of light that a surface reflects at different wavelengths,
used in remote sensing to detect plant health and disease.

Spectral responses: The specific reactions or changes in spectral signatures due to
different conditions, such as disease or stress.

Spectral signature: The specific pattern of reflectance intensities across the
electromagnetic spectrum that is unique to a particular disease or stage of disease
development.

Spectral unmixing: A technique used to decompose pixel-level reflectance into its
constituent components, particularly in mixed pixels that contain multiple materials or land
cover types.

Spectral vegetation index: A numerical indicator calculated from the spectral reflectance
values of a surface at specific wavelengths in the electromagnetic spectrum. These indices
are designed to quantify various vegetation characteristics, such as density, health, and
photosynthetic activity. The most widely used and well-known spectral vegetation index is
the Normalised Difference Vegetation Index (NDVI).

Spectral resolution: The ability of a sensor to distinguish between different wavelengths of
light. Higher spectral resolution allows for finer differentiation of materials based on their
spectral characteristics.

Spatial resolution: The detail with which a map depicts the location and shape of physical
features, i.e., the smallest object that can be resolved by a remote sensing system.

State variables: Variables representing the current state of a system of interest at a specific
time and location (e.g., the number of plants in different compartments in epidemiological
models). In hierarchical Bayesian models, state variables are often considered as latent or
hidden (i.e., not directly observable) components of the system of interest, with a dedicated
part of these models connecting these latent state variables to the observed variables which
are considered indirect manifestations of the underlying processes of interest.

Temporal resolution: The frequency at which data is collected.



Thermal infrared imaging (TIR): Detection of infrared radiation emitted by objects, enabling
the assessment of plant stress or disease based on temperature variations.

Transfer learning: A machine learning technique where a model developed for one task is
reused as the starting point for another task, common in using pre-trained models for
specific agricultural or disease detection tasks.

Uncrewed Aerial Vehicle (UAV): An aircraft that operates without a pilot on board and
which allows the attachment and integration of sensors for monitoring plant health and
detecting diseases.

Validation dataset: In the context of remote sensing and epidemiological modelling, a
validation dataset refers to a set of real-world, ground-truth data used to assess and confirm
the accuracy of models or remote sensing outputs.

Vector-borne pathogen: A disease-causing organism (often viral or bacterial) transmitted by
a different vector organism, very often an insect.
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