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Abstract 

Plant diseases impair yield and quality of crops and threaten the health of natural plant 
communities. Epidemiological models can predict disease and inform management. 
However, data are scarce, since traditional methods to measure plant diseases are resource 
intensive and this often limits model performance. Optical sensing offers a methodology to 
acquire detailed data on plant diseases across various spatial and temporal scales. Key 
technologies include multispectral, hyperspectral and thermal imaging, and light detection 
and ranging; the associated sensors can be installed on ground-based platforms, uncrewed 
aerial vehicles, aeroplanes and satellites. However, despite enormous potential for synergy, 
optical sensing and epidemiological modelling have rarely been integrated. To address this 
gap, we first review the state-of-the-art to develop a common language accessible to both 
research communities. We then explore the opportunities and challenges in combining 
optical sensing with epidemiological modelling. We discuss how optical sensing can inform 
epidemiological modelling by improving model selection and parameterisation and providing 
accurate maps of host plants. Epidemiological modelling can inform optical sensing by 
boosting measurement accuracy, improving data interpretation and optimising sensor 
deployment. We consider outstanding challenges in: A) identifying particular diseases; B) 
data availability, quality and resolution; C) linking optical sensing and epidemiological 
modelling; and D) emerging diseases. We conclude with recommendations to motivate and 
shape research and practice in both fields. Among other suggestions, we propose to 
standardise methods and protocols for optical sensing of plant health and develop open 
access databases including both optical sensing data and epidemiological models to foster 
cross-disciplinary work. 

Introduction 

Plant diseases affect yield, quality and profitability of crops and forestry products. Estimated 
impacts vary, making it difficult to unambiguously quantify losses (Oerke, 2006; Savary et al, 
2019; Savary et al, 2023). However, consequences of disease can be substantial and can 
even impact food security (Strange and Scott, 2005). Analogous impacts upon ecosystem 
services are caused by pathogens of natural vegetation (Boyd et al, 2013). Some pathogens 
are endemic, routinely causing disease in locations within which they are well-established, at 
least in the absence of management. Other pathogens are emerging, i.e., increasing in 
incidence, or geographic range, or host range (Ristaino et al, 2021). Outbreaks of emerging 
pathogens are increasingly well documented (Rosace et al, 2023; Jeger et al, 2023; Fielder 
et al, 2024), and rates of invasion are escalating (Ristaino et al, 2021). 

Plant disease epidemics develop across multiple spatial and temporal scales. Models 
tracking the dynamics of disease in time and space, and the epidemiological mechanisms 
causing these dynamics, have been improved and have become increasingly popular over 
the past few decades (Madden et al., 2007; Gilligan 2008). The current state-of-the-art (see 
below) often involves complex spatiotemporal epidemic models fitted using advanced 
Bayesian techniques (e.g., Soubeyrand et al., 2009; Pleydell et al., 2018; Godding et al., 
2023). Modelling provides a rational basis to integrate what is known with what is unknown, 
but can reasonably be inferred, to predict the future epidemic dynamics. Predictions from 
such models can then be used to design surveillance and control strategies (Parnell et al., 
2017; Cunniffe and Gilligan, 2020). However, to make concrete predictions for a specific 
pathosystem, models must be fitted to and validated using experimental or observational 
data, and lack of suitable data is often a significant limiting factor. 

In part, this data limitation is because traditional methods for the detection and quantification 
of plant diseases are time and resource intensive, largely since they involve human 
observers (Bock et al. 2020). Proximal and remote sensing - which can be distinguished 
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from each other in terms of distances separating sensor and target (Oerke, 2020) - have 
great potential in this context. Many pathogens cause changes in plant health that can be 
detected not only in the visible spectral range but also beyond that range (Mahlein et al., 
2024). Among many examples are tan spot on wheat leaves (caused by the fungus 
Drechslera tritici-repentis) that results in a characteristic reduction in reflectance in the near-
infrared plateau (Bohnenkamp et al., 2021) and latent infections by Venturia inaequalis 
(apple scab) that were detected as spots of lower temperature by capturing light in the 
thermal infrared range (Oerke et al., 2011). Use of optical sensing to measure these signals 
is thus particularly attractive. Here we use “optical sensing” as a common term to describe a 
range of proximal and remote sensing techniques making use of electro-magnetic radiation 
across a potentially wide spectral domain, including ultraviolet (UV; a list of acronyms used 
is given in Table 1), visible and infrared (IR). 

Optical sensing technologies and platforms have advanced in the past decades, meaning 
that cheap uncrewed aerial vehicles (UAVs), standard piloted aircraft carrying affordable 
imaging sensors, and spaceborne systems collecting ever higher-resolution (spatial and 
spectral) imagery have become available (Jin et al., 2021a).  As a result, a portfolio of digital 
systems can now deliver optical sensing data at unprecedented spatial, spectral and 
temporal resolutions and scales. Optical sensing of vegetation is now a leading focus in 
remote sensing science, allowing us to use nested data that span a wide range of spatial 
scales (Gamon et al., 2019). Further developments, including hyperspectral satellite imagery 
at high temporal and spatial resolutions, will accelerate use of remote sensing data to detect 
and map disease and inform epidemiological modelling.  

In plant disease research, there is a significant focus on epidemiology and modelling. 
However, it is hitherto uncommon for modellers to use optical sensing derived 
measurements of plant diseases. Although there are some exceptions in which optical 
sensing is used to inform summaries such as logistic or Gompertz disease progress curves 
(e.g., Gongora-Canul et al., 2020; Zhang et al., 2023), only few papers make meaningful 
links between optical sensing and the state-of-the-art approaches in epidemiological 
modelling (e.g., Camino et al., 2021, Leclerc et al., 2023). Indeed, in part due to deficiencies 
in current training programmes and a lack of training focusing on applied data science, most 
individuals interested in sensing technologies for plant disease do not have a background in 
epidemiological modelling. On the other hand, disease modellers, who can often be skilled 
data scientists, generally lack understanding of the opportunities and challenges involved in 
processing and interpreting remotely sensed information. Significant links between the 
optical sensing community and disease modellers remain absent, despite the logical benefits 
of such collaboration (Heim et al., 2019).  

Excited by the possibilities of building such links, a subset of the authors of this paper 
organised a Satellite Meeting of the 2023 International Congress of Plant Pathology in Lyon: 
“How to combine remote sensing with epidemiological modelling to improve plant disease 
management?”. By assigning all attendees preparatory work focusing on identifying 
challenges in linking the fields, and by making time for didactic talks in the meeting’s 
programme (archive:  https://reseau-modstatsap.mathnum.inrae.fr/episense), attendees from 
backgrounds predominantly in remote sensing or epidemiological modelling were able to 
engage and to discuss. By working collaboratively, we came to a consensus view on the 
opportunities - and challenges - in linking the two fields and allowing epidemiological 
modelling to inform work in optical sensing, and vice versa.  

This paper is the output of this work. We review the opportunities and challenges in 
combining optical sensing with epidemiological modelling. We start by describing the state-
of-the-art in each field. Although thorough reviews of both fields are available (e.g., Oerke, 
2020; Bock et al. 2020; Gilligan and van den Bosch, 2008; Cunniffe and Gilligan, 2020; 
Fabre et al., 2021; Mahlein et al., 2024), in part we wanted to use this paper to develop a 
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common language accessible to both research communities. This requires a more detailed 
explanation. To illustrate what might be possible, we highlight opportunities for optical 
sensing to contribute to epidemiological modelling, and vice versa. We then review the 
outstanding challenges and categorise them into those associated with: A) identifying 
particular diseases; B) data availability, quality and resolution; C) linking optical sensing and 
epidemiological models; D) emerging diseases. We conclude with a set of 
recommendations, to provide a road map to motivate and shape future research and 
practice in both fields. 

Current state of the art  

Optical sensing of plant diseases 
 
Sensors 

The most commonly used sensors are standard red-green-blue (RGB) and colour-infrared 
(CIR) cameras. These are affordable and portable, and capable of millimeter-scale spatial 
resolution when used in proximal sensing settings (Barbedo 2016; Bock et al., 2020; 
Anderegg et al., 2024). However, such sensors only capture images in three spectral bands, 
reducing the number of spectral characteristics that can be monitored. Despite their fine 
spatial resolution and low prices, RGB and CIR cameras are optimised to reflect human 
vision and thus do not provide quantitative measurements of light reflection and absorption.  

Multispectral imaging systems, in contrast, operate across multiple discrete spectral bands, 
and are often designed to quantitatively measure the intensity of electromagnetic radiation. 
Since the spectral bands tend to be narrower than those used in RGB and CIR sensors, this 
enables more precise estimation of changes in specific absorption features. They also often 
cover spectral regions beyond the visible, enabling characterisation of pigments or structural 
plant traits (Xie et al., 2008; Blasch et al., 2023). Hyperspectral imaging (aka HSI or imaging 
spectroscopy) captures light across a much wider spectral range in narrow contiguous 
bands, including ultra-violet (UV; 250-400 nm wavelength), visible (400-700 nm), near-
infrared (NIR; 700-1300 nm) and shortwave infrared (SWIR; 1300-2500 nm), and has a high 
spectral resolution (Fiorani et al. 2012; Mishra et al., 2017; Mahlein et al., 2019; Sarić et al., 
2022; Rayhana et al., 2023; Brugger et al., 2023).  

Very generally, plant and fungal pigments (e.g., chlorophyll, anthocyanins, carotenoids, 
melanins) affect reflectance spectra in the UV and visible ranges (Gay et al., 2008; 
Bohnenkamp et al., 2019b; Brugger et al., 2023). Reflectance in the visible and NIR/SWIR 
ranges carries information about foliar plant traits relevant to disease, including nutrient and 
water content, photosynthetic capacity, pigment and phenolic compound concentration, as 
well as other physiological and morphological properties of plants including leaf area index 
(Delalieux et al., 2008; Singh et al., 2015; Mishra et al., 2017; Mahlein et al., 2019; 
Vanbrabant et al., 2019; Gold et al. 2019a,b; Garrett et al., 2022). Reflectance in the red 
edge area (680-750 nm) is sensitive to plant stress, because it is affected by chlorophyll 
absorption (Horler et al., 1982). HSI has been extended to retrieve passive solar-induced 
fluorescence (SIF) in the field and with airborne hyperspectral sensors (Mohammed et al., 
2019), in contrast to classical chlorophyll fluorescence that is mainly limited to controlled 
environments. This makes HSI more useful for disease measurement (Calderón et al. 2013; 
Mahlein et. al. 2018; Zarco-Tejada et al. 2018) and monitoring (Porcar-Castell et al. 2021). 
HSI can quantify subtle changes in plant constituents and the rich information content of 
hyperspectral data is promising for disease detection and quantification.  

Recent publications have established scalable detection of multiple economically important 
diseases caused by bacterial (Zarco-Tejada et al., 2018; Schoofs et al., 2020), fungal 
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(Sapes et al., 2022), oomycete (Hornero et al., 2021), and viral (Romero Galvan et al., 2023) 
pathogens asymptomatically with visible-SWIR hyperspectral imagery collected via aircraft. 
Once the most discriminatory wavelengths are identified, hyperspectral sensors may be 
replaced with cheaper multispectral sensors which capture fewer spectral bands located at 
the most informative spectral regions sensitive to the biotic-induced physiological changes 
(Bohnenkamp et al., 2019b; Poblete et al., 2020). 

Thermal infrared (TIR) imaging (aka thermography) captures radiation in the long-infrared, 
thermal range (8–14 μm wavelength), providing information complementary to HSI. Typical 
outputs include maps of canopy or leaf temperature normalised by air temperature (Still et 
al., 2019), thermal-based indices such as the crop water stress index (CWSI; Jackson et al., 
1981) and the index of stomatal conductance (Jones 1999). For foliar diseases, plant-
pathogen interactions can disrupt stomatal function, leading to changes in temperature 
within affected leaf areas (e.g. Bassanezi et al., 2002; Hellebrand et al., 2006; Smith et al., 
1986). Vascular pathogens can block plant vessels, which reduces transpiration rates, and 
this can also be quantified by TIR imaging (e.g., Calderon et al., 2015; Zarco-Tejada et al., 
2018). TIR imaging in controlled environments has achieved pre-symptomatic detection in 
several pathosystems (e.g., Chaerle et al., 2004; Oerke et al., 2011), although reliable 
signals of pre-symptomatic disease appear absent for others (Pineda et al., 2021). In the 
field, higher severities of Dothistroma needle blight in pine trees and septoria tritici blotch in 
wheat have been associated with increased canopy temperatures via TIR imaging (Smigaj et 
al., 2019; Wang et al., 2019). TIR imaging is potentially a powerful tool for detecting plant 
stress (Messina and Modica, 2020). However, its outputs are not pathosystem specific and 
can be confounded with abiotic stress (Pineda et al., 2021; Kuska et al., 2022), and even 
without stress, temperature distributions in field canopies vary in space and time. Hence, TIR 
imaging is expected to be most useful in combination with other sensing technologies 
(Berger et al., 2022).  

Light detection and ranging (LiDAR) is an optical sensing technology that uses reflected 
laser pulses to measure distances (Wang and Menenti, 2021), generating dense 3D point 
clouds to map an environment. The technology is increasingly used to measure structural 
characteristics of plants (Omasa et al., 2007), especially crops (Jin et al., 2021b; Rivera et 
al., 2023). Applications include detecting individual plants, classifying them according to 
species (Fassnacht et al., 2016), and estimating plant height, leaf area index (Wang and 
Fang, 2020), canopy density and volume, dry matter and yield. Since structural and 
geometric plant traits captured by LiDAR can be affected by pathogens, in principle LiDAR 
can also be used to measure plant diseases, although examples are rare (see, for example, 
Husin et al., 2020). More often LiDAR has been used in conjunction with other sensing 
techniques, e.g., for Dothistroma needle blight (Smigaj et al., 2019) or wilt disease (Yu et al., 
2021), and for vascular wilt  (‘Blackleg’) disease in potato (Franceschini et al., 2024), since 
LiDAR provides information complementary to other sensing methods.  

Platforms and spatiotemporal scales 

Several platforms have been developed to gather proximal and remote sensing 
measurements (Jin et al., 2021a). Some platforms are stationary, fixed in place by poles 
(Parmentier et al., 2021), cable suspension (Kirchgessner et al., 2017), or rails (Virlet et al., 
2017). Others are mobile, ranging from hand-held (Cerovic et al., 2012; Behmann et al., 
2018), to those mounted on human-driven (Buelvas et al., 2023) and/or robotic vehicles 
(Underwood et al., 2017; Cubero et al., 2020; Pearson et al., 2022), to uncrewed aerial 
vehicles (UAVs) (Sankaran et al., 2015; Aasen et al., 2018; Kim et al., 2019; Kouadio et al., 
2023), to piloted aircrafts (Kampe et al., 2010; Wang et al., 2020), to high altitude balloons 
(Hobbs et al., 2023), and satellites (Rast and Painter, 2019; Paek et al., 2020; Qian, 2021). 
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The features of the sensor-platform combination determine the spectral, temporal and spatial 
characteristics of the observations and typically trade off detail (resolution), scale (extent), 
and fidelity (precision and accuracy) (we discuss these tradeoffs in more detail in Challenge 
Biii). We note that, because the sensors and platforms are undergoing rapid development, 
these trade-offs are continuously changing. Mass production of UAV components makes it 
now possible to relatively cheaply and regularly collect spatially detailed plot or landscape-
scale images that until recently required piloted aircrafts. Thanks to the miniaturisation of 
sensors, both piloted aircrafts and UAVs can carry sensors chosen for their sensitivity to 
specific vegetation traits of interest to an epidemiological problem (Jin et al., 2021a). 

New and forthcoming imaging spectroscopy satellites include the German Aerospace 
Center’s Environmental Mapping and Analysis Program (EnMAP) (Storch et al. 2023; 
Chabrillat et al., 2024), NASA’s Surface Biology and Geology (SBG) (Cawse-Nicholson et al. 
2021), Italian Space Agency’s PRecursore IperSpettrale della Missione Applicativa 
(PRISMA) (Tagliabue et al., 2022) and ESA’s Copernicus Hyperspectral Imaging Mission for 
the Environment (CHIME) (Celesti et al., 2022). These will provide vast open datasets which 
can be used for plant disease measurement, with smaller missions like CSIMBA-IPERLITE 
(a non-commercial in-orbit demonstration mission of the EU) adding hyperspectral capacity 
at higher spatial resolution (≈20 m) (Livens et al., 2024). These systems provide high 
spectral and temporal resolutions (sub-monthly), but intermediate spatial resolutions (≈30 
m). Current thermal imaging satellites, such as NASA's ECOSTRESS, have insufficient 
spatial resolution for effective plant disease monitoring (>100 m). However, upcoming high-
resolution TIR satellite sensors, such as NASA's Landsat Next and ESA's Land Surface 
Temperature Monitoring (LSTM), will offer improved revisit intervals (3-6 days) and spatial 
resolutions (50-60 m). 

These advances promise to improve characterisation of plant diseases, but the relatively 
coarse spatial resolution remains a challenge. The commercial satellite industry has sought 
to fill this gap. Recent developments in satellite design have improved the spatial-temporal 
resolution and scalability of spaceborne sensing platforms, making them more suitable for 
disease detection (Kanaley et al., 2024; Poblete et al., 2023; Raza et al., 2020). Largely, this 
has become possible thanks to developing satellite constellations, groups of satellites 
working together, often designed to complement each other in terms of coverage, revisit 
time, or other functions. For example, Planet Lab’s cube multispectral satellite constellations 
provide global imagery with high spatial resolution and frequent revisit times. Planet’s 
SuperDoves collect eight-band images at 3 m resolution with a 24-hour revisit time (Tu et al., 
2022), while the SkySat C constellation captures four-band images with 0.5 m resolution at 
revisit intervals set by tasking contracts (Planet, 2023). In contrast, MAXAR’s 16+ band 
Worldview-3 has a more traditional satellite design that offers spatial resolution of 0.3 m for 
panchromatic imagery, 1.24 m for visible and near-infrared (VNIR) imagery, and 3.7 m for 
shortwave infrared (SWIR) imagery (Longbotham et al., 2015). Other emerging systems 
offer moderate spatial resolution, but in the hyperspectral domain, including Planet Tanager 
(30 m, 420 bands; Planet, 2024), Kuvaspace Hyperfield-1 (25 m, 150 bands; Kuvaspace, 
2024), PIXXEL (5-10 m, 250 bands; Petropoulos et al., 2024), Orbital Sidekick GHOSt (8 m, 
500 bands; Sanders et al., 2024). In the thermal domain, Hydrosat’s 16 constellation 
promises thermal infrared imagery targeted for agricultural use at 30 m spatial resolution 
(Lalli et al., 2022).  

Data pre-processing and analysis 

To measure plant diseases using optical sensing, the data requires pre-processing (Bioucas-
Dias et al., 2013; Aasen et al., 2018) and extraction of disease measures (Behmann et al., 
2015; Verrelst et al., 2019). The raw signal acquired by a sensor must be converted to a 
meaningful biophysical quantity, e.g., surface reflectance (for multispectral imaging [MSI] 
and HSI; Daniels et al., 2023) or temperature (for TIR; Messina and Modica, 2020), via 
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radiometric calibration (Sterckx et al., 2019, 2020). To convert hyperspectral imagery into 
surface reflectance, it is essential to measure irradiance (the amount of incoming sunlight) at 
the time of image capture. To achieve this, irradiance should be recorded simultaneously 
with the imagery. This signal conversion should incorporate corrections for both the sensor 
and the local environmental conditions. Further, plant canopies can have different patterns of 
sunlit versus shaded, depending on solar and view geometries. This can confound analyses 
when multiple images captured at different times are stitched together (mosaicking; Ghosh 
and Kaabouch, 2016; Gómez-Reyes et al., 2022) or compared, although bidirectional 
reflectance distribution function (BRDF) approaches can correct for these effects (Collings et 
al., 2010; Queally et al., 2022). Terrain slopes may also distort the images, in which case 
topographic corrections are needed (Soenen et al., 2005; Vreys et al., 2016a, 2016b). Open-
source packages are available which implement BRDF and topographic corrections (e.g., 
Chlus et al., 2023). For high-altitude platforms, light travels large distances, making 
atmospheric correction essential (Bioucas-Dias et al., 2013; Sterckx et al., 2016). This can 
be done by inverting radiative transfer models (RTM; Verhoef and Bach, 2003). In HSI, 
single pixels can contain spectra from different “pure materials”, or endmembers (e.g., soil, 
vegetation and shadow; Galvan et al., 2023), and spectral unmixing can tease out the 
spectra of individual endmembers for each pixel (Bioucas-Dias et al., 2012; Gu et al., 2023). 
Each pixel also needs to be attributed to a spatial location by georeferencing (Aasen et al., 
2018), which may require ground control points (GCP), inertial measurement units, global 
positioning systems (GPS) or a combination of these (Bryson et al., 2010; Turner et al., 
2014). When multiple sensors are used, their spatial co-registration is desirable (Scheffler et 
al., 2017). Several studies offer examples of standardisation and assessment of reliability of 
the data acquired using multispectral and hyperspectral sensors in controlled environments 
(Paulus and Mahlein, 2020), via ground-based measurements (Detring et al., 2024) and on-
board UAV platforms (Aasen et al., 2018). 

After data pre-processing, meaningful disease measures must be extracted, such as disease 
presence/absence, incidence or severity. To capture disease presence/absence or distinct 
qualitative classes of disease intensity (nominal scales; Bock et al., 2020), classification 
methods need to be used, whereas to capture quantitative measures of disease (e.g., 
incidence or severity), regression methods are more suitable. This can be done using 
parametric regression, machine learning (ML), RTM (see Challenge Ai below), or a 
combination of these methods (Verrelst et al., 2019). A range of ML approaches have gained 
particular prominence because of their capacity to handle complex, high-dimensional 
datasets (Behmann et al., 2015), including penalised linear regression (e.g., partial least 
squares regression; Geladi and Kowalski, 1986), kernel-based methods (e.g., support vector 
machine; Tuia et al., 2011), decision trees (e.g., random forest; Belgiu and Drăguţ, 2016), 
and artificial neural networks (especially, deep learning; Yuan et al., 2020; Osco et al., 2021, 
Ispizua et al., 2024). Each of the ML approaches mentioned above can be formulated as a 
classification or a regression method. Further, in ML-based image analysis, we can train ML 
models to detect objects of certain types within images (e.g., diseased plants or fungal 
fruiting bodies), or perform image segmentation, where we subdivide an image into multiple 
regions, according to certain criteria (e.g., to separate diseased leaf areas from healthy leaf 
areas). We mainly focus on supervised ML that requires reference measurements of disease 
to be used as training and testing datasets but consider self-supervised ML that requires 
minimal reference measurements in Challenge Bi below. 

Current state-of-the-art in optical sensing of plant diseases 

Several studies have reported plant disease measurements using various combinations of 
platforms and sensors across a range of spatial and temporal scales. For example, ground-
based hyperspectral radiometers were used to detect and quantify septoria tritici blotch in 
diverse wheat cultivars (Yu et al., 2018; Anderegg et al., 2019). Further examples include 
detection and quantification of yellow (stripe) rust in wheat using UAV-based multispectral 
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(Su et al., 2018, 2019) and hyperspectral imaging (Guo et al., 2021), and hyperspectral 
imaging using both a ground-based vehicle and UAVs (Bohnenkamp et al., 2019a). Wheat 
blast has been quantified using UAV-based multispectral imaging (Gongora-Canul et al., 
2020). Several UAV-based studies reported quantification of potato late blight using RGB 
imaging (Sugiura et al., 2016), multispectral imaging focusing on quantifying low severities 
(Franceschini et al., 2019), and detection of the disease using hyperspectral imaging (Shi et 
al., 2022). Tar spot disease in corn has been quantified with the help of ground-based RGB 
imaging (Lee et al., 2021; Lee et al, 2025), UAV multispectral imaging (Oh et al., 2021; 
Zhang et al., 2023) and a combination of multispectral and thermal imaging (Loladze et al., 
2019). Ground robotics and rovers that automate side and lower canopy disease data 
acquisition offer a promising complement to aerial imaging (Liu et al. 2022a, 2022b, 2023). 

Box 1. Aerial avengers: remote sensing of Xylella fastidiosa on olives 

 
The vector-borne, xylem-limited bacterium Xylella fastidiosa causes serious diseases in a range 
of cultivated and wild plants, including Pierce’s disease in grapevines and variegated chlorosis in 
citrus (EFSA, 2021). In 2013, the first report of X. fastidiosa in the European Union came from 
Italy (EFSA, 2013), where the pathogen was recognized to cause olive quick decline syndrome 
(OQDS, Martelli et al., 2016). OQDS has subsequently killed millions of olive trees in southern 
Europe (Bajocco et al., 2023), with reports now coming from several EU countries. Nevertheless, 
remote sensing of OQDS represents an inspiring success. 
 
Substantial reference datasets have been collected for OQDS by quantitative polymerase chain 
reaction (qPCR; Harper et al., 2010) assays and in situ inspections, and linked to aircraft (Zarco-
Tejada et al., 2018; 2021) and satellite (Hornero et al., 2020) remote sensing measurements. 
Combining results from visible to near-infrared HSI and TIR imaging sensors onboard piloted 
aircraft, Zarco-Tejada et al. (2018) detected OQDS symptoms in individual olive trees, often 
before they were visible to the naked eye. Camino et al. (2021) extended this approach with 
images in the shortwave infrared region, and showed how linking to dispersal processes from an 
epidemiological model could improve detection accuracy of X. fastidiosa in almonds at a pre-
visual stage. Nevertheless, the confounding physiological effects caused by vascular pathogens 
and water stress in olive and almond required further work to reduce the detection of false 
positives. The evaluation of a wide range of spectral plant traits quantified from airborne 
hyperspectral and thermal images across host species (olive vs. almond) and across vascular 
plant pathogens (X. fastidiosa vs. Verticillium dahliae, a soil-borne pathogen that causes 
analogous symptoms) demonstrated that there are specific spectral-based traits for each plant 
species and pathogen (Zarco-Tejada et al., 2021; Poblete et al., 2021). Accounting for distinct 
spectral plant traits associated with the dynamics of water-induced stress improved early and 
pre-symptomatic disease detection (Zarco-Tejada et al., 2021). While detection of middle and 
advanced stages of OQDS development was reasonably successful using high-resolution 
multispectral satellite imagery, a critical conclusion is that the early (i.e., pre-visual) detection of 
X. fastidiosa- and V. dahliae-induced symptoms required a combination of HSI and TIR imaging 
from aircraft or UAV at high spatial resolutions (40-60 cm) to capture pure tree crowns (Poblete 
et al., 2023).  
 
However, transferability of spectral signatures of OQDS to other olive-growing regions, and to 
other host species (e.g., coffee, citrus, grapevines) is an outstanding challenge. Remote sensing 
may be particularly suited to the slower dynamics of vascular wilt disease progression in trees 
compared to annual crops. Trees are larger and persist for longer than annual crop plants in a 
fixed spatial location, making the multitemporal monitoring of orchards at the required resolution 
and frequency technologically and operationally feasible. This means higher temporal resolutions 
and quicker turn-around processing times are required to achieve similar success in optical 
sensing measurements of annual crop diseases. 

For some pathogens at certain spatial scales, it is now firmly established that visible to 
shortwave infrared (VSWIR) imaging spectrometers mounted on piloted aircraft (e.g. 
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AVIRIS-NG; Chapman et al., 2019) are capable of pre- and post-symptomatic disease 
detection (Zarco-Tejada et al., 2018, 2022; Hornero et al., 2021; Sapes et al., 2022; Romero 
Galvan et al., 2023). Satellite data have been used to map and monitor host plants across 
large areas (e.g., citrus in China; Xu et al., 2021), and to detect both systemic (e.g., 
Huanglongbing in citrus; Li et al., 2015) and localised (e.g., foliar grapevine downy mildew; 
Kanaley et al. 2024) diseases. More recently, optical satellite data have been used to track 
the spread of rice blast, and ground-based hyperspectral reflectance used to verify the 
satellite-derived predictions (Tian et al., 2023).  

We highlight two research programmes that have achieved encouraging success in sensor-
based disease detection and/or measurements in two contrasting pathosystems (systemic 
vs. localised): Xylella fastidiosa in olives (Box 1; a xylem-limited bacterial pathogen of a 
woody perennial crop) and Cercospora beticola in sugar beet (Box 2; a foliar fungal 
pathogen of an annual field crop). We note that the set of examples we have identified 
above is far from being complete. Many studies have achieved high accuracies of disease 
detection/quantification. However, with a few exceptions (e.g., Box 1), investigations have 
been conducted for a single disease in the absence of abiotic stress, and often in a single 
location. It is not clear whether the sensing signatures derived from these studies would be 
robust with respect to presence of other biotic and/or abiotic stresses (Challenge Aii), and to 
what extent the outcomes would be transferable to other host genotypes or other geographic 
locations (Challenge Aiii). 

Box 2. Fifteen years of optical sensing of Cercospora leaf spot in sugar beet 

Cercospora leaf spot (CLS), caused by the ascomycete Cercospora beticola (Sacc.), is a serious 
threat to sugar beet production worldwide (Weiland and Koch, 2004; Rangel et al., 2020). This 
hemibiotrophic pathogen causes characteristic leaf spots with a reddish-brown border and a 
necrotic centre. Under favourable conditions, entire leaves become necrotic, causing reductions 
in the photosynthetically active canopy. Yield losses can reach 50% in regions with high disease 
pressure (Shane and Teng, 1992). 

Thanks to intensive research during the last 15 years, clearly defined symptoms and the 
dicotyledonous growth with flat leaves of the host plant, C. beticola is now established as a 
model organism for plant disease detection using spectral sensors (Ruwona and Scherm, 2022). 
Diverse studies have characterised and detected CLS at different scales, from the microscopic 
(Leucker et al., 2016; 2017), to the tissue scale (Mahlein et al., 2012; Arens et al., 2016), to the 
leaf (Mahlein et al., 2010) and single plant scale (Günder et al., 2022). HSI with high spectral and 
spatial resolution in the visible, NIR and SWIR ranges provided high-quality data sets of 
reflectance and transmittance complemented with reference data from visual monitoring or 
analytics. Studies under controlled conditions provide basic knowledge on spectral 
characteristics of the disease (Mahlein et al., 2010), insights into sporulation and lesion 
phenotyping (Leucker et al., 2016; 2017), have linked disease aetiology to biochemical and 
structural processes (Arens et al., 2016; Mahlein et al., 2012) and permitted early detection 
before visible symptoms (Arens et al., 2016; Rumpf et al., 2010). Early studies addressed the 
differentiation of CLS from other foliar diseases such as sugar beet rust or powdery mildew and 
for the first time, disease specific spectral vegetation indices were developed (Mahlein et al., 
2013). Due to recent innovations in robotics and the increasing availability of UAVs and spatially 
highly resolved RGB or multispectral cameras, these studies are now complemented by field 
scale studies on monitoring and detection of CLS (Barreto et al., 2023; Ispizua et al., 2022). 
Remote sensing using UAVs was successfully used for phenotyping of tolerant and resistant 
varieties (Görlich et al., 2021; Ispizua et al., 2022) and for extracting disease incidence and 
severity for decision making in integrated pest management.  

The progress and knowledge gained in detecting CLS are likely to be useful for other host 
pathogen systems, because similar experimental approaches and data analysis pipelines are 
expected to work for a range of foliar fungal pathogens of field crops. 
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Epidemiological modelling 
 
Data- versus process-based models 
 
In categorising model structure, a key distinction is between data- and process-based 
models (Madden, 2006). Data-based models (aka empirical or correlative or statistical 
models; Gonzalez-Dominguez et al., 2023) are driven entirely by data, and do not attempt to 
capture or track biological mechanisms underpinning disease or disease risk. This class of 
model has a long history, with mathematical and statistical methods becoming increasingly 
complex. Current work often emphasises models including complex non-linear responses 
and/or multiple predictor variables (Shah et al., 2019), as well as statistically sound 
treatments of different types of measurements and their associated error structures (Garrett 
et al., 2004; Madden et al., 2007). Promising recent developments echo trends in 
epidemiology more broadly (Li et al., 2017) to develop techniques for combining multiple 
predictions from ensembles of models (Shah et al., 2021), and to account for and weigh 
different sources of evidence using Bayesian analysis and decision theory (Hughes, 2017).  
 
Data availability is often a limiting factor for data-based models (Madden, 2006). This makes 
linking with optical sensing attractive, as it increases the volume, range and scope of data 
available for model parameterisation and validation. In turn, these expanded datasets enable 
the direct application of recent developments in machine learning to disease prediction. 
Although some recent studies have shown the potential of machine learning for plant 
disease prediction (e.g., Skelsey, 2021; Xu et al., 2018; Hamer et al., 2020; Martinetti and 
Soubeyrand, 2019), applications have so far been predominantly focused on data analysis 
for disease detection (Gobalakrishnan et al., 2020; Xie et al., 2022) and/or quantification 
(Anderegg et al., 2019; Oh et al., 2021; Barreto et al., 2023; Leclerc et al., 2023; Zhang et 
al., 2023; Lee et al., 2025). 
 
Process-based models 
 
Process-based (or mechanistic) models instead aim to represent the biological basis of 
disease epidemics, focusing on the dynamics of disease in time and perhaps space 
(Madden, 2006). The dominant paradigm is compartmental modelling, an approach also 
widely adopted for diseases of animals and humans (Keeling and Rohani, 2008). 
Compartmental models divide a host population into mutually exclusive classes based on 
disease status. Levels of complexity vary, but the most common formulation distinguishes 
healthy and infected tissue, with a further partitioning of infected tissue into pre-infectious, 
infectious and post-infectious. In plant disease modelling this is often referred to as the H-L-
I-R (Healthy-Latent-Infected-Removed) model (Madden et al., 2007), which - perhaps 
unhelpfully - obscures links with work on S-E-I-R (Susceptible-Exposed-Infected-Removed) 
models for pathogens of other host taxa (Keeling and Rohani, 2008). For plant diseases, the 
unit of interest tracked by a compartmental model is often the individual host plant, although 
host tissue can be tracked at smaller (e.g., organs such as roots or leaves, or infectible sites) 
or larger scales (e.g., entire fields or farms, or even counties/states), depending on the scale 
at which predictions are required. 
  
Much work using compartmental models is theoretical, aiming to develop strategic 
understanding, and therefore not explicitly tied to a single system. The focus is on 
understanding broad principles relevant to a class of pathosystems without detailed 
reference to any single pathosystem. Often the key output is an improved understanding of 
epidemiological factors promoting invasion and persistence of pathogens (Gilligan and van 
den Bosch, 2008). Much work has also focused on how crop diversification affects disease 
dynamics, particularly for cultivar mixtures (e.g., Mikaberidze et al., 2015; Clin et al., 2022) 
and intercropping (Allen-Perkins and Estrada, 2019; Levionnois et al., 2023). Other 
theoretical work focuses on evolution and/or dynamics of adapted pathogen strains, for 
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fungicide resistance (van den Bosch et al., 2013; Mikaberidze et al., 2014; Mikaberidze et 
al., 2017; Taylor and Cunniffe, 2023a, 2023b; Corkley et al., 2025a, 2025b), resistance-
breaking pathogens (Watkinson-Powell et al., 2020; Rimbaud et al., 2021; Zaffaroni et al., 
2024a, 2024b), or both simultaneously (Carolan et al., 2017; Taylor and Cunniffe, 2023b). 
Yet other work has concentrated on complex interactions, e.g., in the context of climate 
change (e.g., Jiranek et al., 2023), interactions between different pathogens (e.g., Allen et 
al., 2019; Hamelin et al., 2019), between pathogens and their biological control agents (e.g., 
Jeger et al., 2009; Cunniffe and Gilligan, 2011), and between pathogens and their vectors 
(e.g., Donnelly et al., 2019; Falla and Cunniffe, 2024). Socio-economic implications of 
epidemics are explored by linking economic analyses or game theory with simpler models of 
exponential growth of disease (van den Bosch et al., 2018; van den Bosch et al., 2023) or 
with full compartmental models (Murray-Watson et al, 2022; Murray-Watson and Cunniffe, 
2022, 2023; Mikaberidze et al., 2023; Hilker et al., 2024). Several studies have incorporated 
plant physiological processes into epidemiological models (e.g., Précigout et al., 2017). A 
final theme is the use of compartmental models to understand factors promoting disease 
detection (e.g., Parnell et al, 2015; Parnell et al., 2017; Lovell-Read et al., 2022) and control 
(e.g., Bussell et al., 2018; Russell and Cunniffe, 2025). Since underpinning compartmental 
models can easily be cast in stochastic as well as deterministic forms, work of this type often 
now also explicitly considers the risk of disease outbreaks (or, equivalently, the risk of failure 
of control) (Thompson et al., 2020).  
 
Using process-based models to make predictions and/or assess disease management 
 
Process-based models can also be used to make predictions - in time and in space - for a 
given disease (Cunniffe and Gilligan, 2020). Similarly to data-based models, many process-
based models target a single location - or set of distinct locations, with no consideration of 
the flow of inoculum between them - focusing on how aspects of the abiotic environment 
drive rates of epidemiological processes (see Gonzalez-Dominguez et al. (2023) for a recent 
review). Note that, despite the commonality of approach with compartmental models, in plant 
pathology such models are - arguably unhelpfully - often framed as “simulation models” 
(Savary and Willocquet, 2014) and presented in terms of visual systems dynamics modelling 
languages (Costanza and Voinov, 2001), although we should note these models can be 
readily translated into differential equations or discrete maps (Willocquet et al., 2020). Other 
process-based models, particularly when applied to emerging or invading pathogens, make 
predictions of spatial spread of a particular named pathogen across a region through a 
landscape of hosts susceptible to disease, considering the effects of particular disease 
detection and control strategies (see Cunniffe and Gilligan (2020) for a review).  
 
For applications to spatial spread, underpinning models must consider flow of inoculum and 
so disease transmission between locations. Although network approaches have been 
promoted (Jeger et al, 2007; Shaw and Pautasso, 2014; Garrett et al., 2018), the large 
number of parameters that would need to be fitted, mean that full network-based models of 
dispersal tend not to be explicitly linked to data. Detailed spatial predictions instead tend to 
use the abstraction of the dispersal kernel, an idea used very widely in ecology more broadly 
(Nathan et al., 2012), to capture spatial dependencies via a parameterised functional form 
(reviewed in the context of plant disease epidemiology by Fabre et al. (2021)). The challenge 
is then to parameterise dispersal kernels and infection rates from (often very restricted) 
disease spread data at different spatial scales. Broadly speaking, three distinct approaches 
are used to characterise dispersal kernels: i) measurements of empirical disease gradients 
(Madden et al., 2007) in an experimental setting, using fungicide or other treatment to 
ensure there is only a single round of dispersal; ii) using a separate detailed model of 
dispersal parameterised to capture the underlying mechanism of spread; or iii) inferring the 
likely dispersal kernel from within a range of possibilities in process-based models using 
statistical approaches based on successive spatial snapshots of the pattern of disease 
(Cunniffe and Gilligan, 2020). Several studies have estimated dispersal kernels from disease 
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gradients, but only at distinct geographic locations and often within individual crop fields 
(e.g., Rieux et al., 2014; Mikaberidze et al., 2016; Karisto et al., 2022; Karisto et al., 2023). 
Explicit models of the dispersal process tend to be applied over large spatial scales, most 
often via computationally demanding spore trajectory simulations for wind-borne spread 
(Schmale and Ross, 2015; Meyer et al., 2017; Gilligan, 2024). Process-based models can 
be fitted using various statistical methodologies, ranging from simple least-squares or 
maximum likelihood techniques (Cunniffe and Gilligan, 2020) to more complex Bayesian 
methodologies based on likelihood functions and data augmentation (Gibson and Austin, 
1996; Papaïx et al., 2022). For successful examples of doing so, see e.g., Soubeyrand et al. 
(2008), Cunniffe et al. (2014), Neri et al. (2014), Parry et al. (2014), Adrakey et al. (2017, 
2023) or Nyugen et al. (2023). Some studies explicitly couple process-based and data-based 
approaches in the framework of state-space modelling or mechanistic-statistical modelling 
by defining a model of the observation process conditional on the model of the 
epidemiological dynamics and deducing from this construction a Bayesian inference scheme 
(Soubeyrand et al., 2009; Pleydell et al., 2018; Papaïx et al., 2022; Abboud et al., 2023; 
Saubin et al., 2024). When likelihoods are intractable or very complex, as can often be the 
case when fitting stochastic models at the landscape scale, the current vogue relies on 
Approximate Bayesian Computation via repeated simulation and the use of a distance 
between summary statistics computed from the observed and simulated data sets as a proxy 
for a formal likelihood function (Minter and Retkute, 2019; Godding et al., 2023).  
 
The current state-of-the-art in epidemiological modelling often involves use of parameterised 
stochastic compartmental models to predict how epidemics will spread in time and space. 
While some work focuses on spread within fields (e.g., Mikaberidze et al., 2016; Karisto et 
al., 2022; Karisto et al., 2023) or relatively small production sites (e.g., Cunniffe et al., 2014; 
Parry et al., 2015; Craig et al., 2018), recent applications of these models tend to focus on 
large spatial scales and link spread modelling to optimisation of disease detection (e.g., 
Mastin et al. (2020) for citrus greening and Martinetti and Soubeyrand (2018) for Xylella 
fastidiosa) or disease control (e.g., Cunniffe et al. (2016) for sudden oak death in California, 
Ellis et al. (2025) and Nyugen et al. (2023) for citrus greening, Godding et al. (2023) for 
cassava viruses in sub Saharan Africa). The huge increase in availability of spatial data on 
sets of locations infected over time promised by optical sensing is incredibly attractive for 
predictive use of process-based models. 
 

Opportunities in linking epidemiological modelling and optical 
sensing for plant disease 

How can optical sensing inform epidemiological modelling? 
 
Oi) The vast amounts of data generated by optical sensing will greatly benefit the 
development of epidemiological models. 

The predictive power of any epidemiological model is limited by the amount and quality of 
data used for parameterisation. Similarly, our confidence in model robustness depends on 
the range of data used for validation (Challenges Bi-Biii). Traditional methods to acquire 
plant disease data, whether in controlled environments or under field conditions, can be 
costly and often require expert assessors. Optical sensing promises to generate disease 
data at hitherto impossible spatio-temporal scales and resolutions, while allowing a much 
wider range of environmental conditions and locations to be sampled, including locations 
that are inaccessible from the ground. Increased data availability enhances the reliability and 
usefulness of any data-based disease model, meaning less extrapolation is required for 
model use in real-world settings (Madden, 2006). 
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Optical sensing also has the potential to improve parameterisation of process-based models. 
More finely resolved spatio-temporal data then leads to more accurate parameter estimation 
and/or better prospects for (practical) identifiability of parameters (Cunniffe et al., 2024). 
Similarly, model selection (and model averaging) is often expected to become more powerful 
with an increased amount of data (Kuparinen, et al., 2007). High revisit frequencies allow the 
amount or spatial pattern of disease to be assessed repeatedly, leading to an improved 
understanding of disease dynamics over time. Focusing on spatial dynamics in particular, 
optical sensing would enable disease measurements over much denser and larger grids of 
locations (e.g., as disease gradients) with higher numbers of treatments and replicate 
experimental plots than is feasible by conventional visual assessments (e.g., Sackett and 
Mundt, 2005). This would dramatically improve our capacity to quantify pathogen dispersal 
and reproduction via estimation of dispersal kernels (Soubeyrand et al., 2007; Farber et al., 
2019; Karisto et al., 2022, 2023) together with strengths of infected source areas producing 
spores or other infectious propagules (Bousset et al., 2015), and basic reproduction 
numbers (Segarra et al., 2001; Mikaberidze et al., 2016; van den Bosch et al., 2024). 
Conducting such experiments characterising disease gradients across diverse geographic 
locations would provide (in conjunction with weather data) detailed knowledge of how 
pathogen dispersal and reproduction depend on the three aspects of the disease triangle 
(i.e., the genotypes of the host and the pathogen as controlled by the experimental design, 
and the environmental variables; Madden et al., 2007). This improved knowledge concerning 
dispersal and reproduction can then feed into spatially explicit process-based models, 
increasing their power to predict epidemics and evaluate disease management approaches. 
 
Oii) Non-destructive and objective disease quantification by optical sensing will 
overcome difficulties and bias in human scouting and rating 
 
However, optical sensing can do more than simply increase the volume of data. Certain 
diseases have symptoms that are difficult to recognise or distinguish from other diseases, or 
from more general signs of abiotic/biotic stress (Challenges Ai and Aii). It can also be quite 
difficult and time consuming even for trained assessors to unambiguously assess severity, 
i.e., to measure the level of infection within a single host or group of hosts. These factors 
introduce subjectivity and bias into human scouting and rating (Nita et al., 2003; Nutter et al., 
2006; Bock et al., 2020), in turn affecting the reliability of epidemiological models using these 
types of data for their parameterisation, albeit in a way that is seldom, if ever accounted for 
in the analysis (Challenge Ciii). Although lab-based molecular diagnosis is recognised for its 
sensitivity, accuracy, and reliability (Venbruz et al., 2023), it is typically destructive, requiring 
plant tissue to be removed for assessment, and may not be cost-effective (Mastin et al., 
2019). Non-destructive, objective disease quantification - as would be generated by methods 
based on optical sensing - is therefore very valuable, even when sensors are not deployed 
over large spatio-temporal scales and resolutions, provided that the sensing and analytical 
approaches allow for correct disease diagnosis and quantification (Oh, et al., 2021; Zhang et 
l., 2023). 
 
Oiii) Host maps and comprehensive environmental characterization provided by 
optical sensing will improve landscape-scale models 
 
For landscape-scale spatial process-based models (Cunniffe & Gilligan, 2020; Fabre et al., 
2021), remote sensing also offers various classes of data that might be used directly as a 
model input, rather than as a source of data for model fitting. An important example is 
information on the location of susceptible hosts. Although maps have been produced for 
certain major crops (You et al., 2014), location data are often either unavailable or are only 
available at low spatial resolution, or perhaps even for other host species entirely. In such 
cases, host maps used as model inputs tend to be based on statistical inference (e.g., 
Meentemeyer et al., 2011; Ellis et al., 2025), losing small-grained but relevant features such 
as sizes and relative locations of individual fields or orchards. Since remote sensing can now 
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reliably distinguish between different plant species (Fassnacht et al., 2016; Kordi and 
Yousefi, 2022; Ashourloo et al. 2022) and in some cases even between different sub-
species/varieties/cultivars (Rauf et al., 2022; Lyu et al., 2024; Bégué et al., 2024), the level 
of biological realism in host maps could be increased. In the context of landscape 
epidemiology, locations of potential inoculum reservoirs might be particularly important 
(Plantegenest et al., 2007), both populations of the same host species and/or of 
cultivated/wild alternative hosts (Emery et al., 2021; Morris et al., 2022), or crop residues 
from previous growing seasons (e.g., piles of potentially infectious tubers for potato late 
blight, or pathogen-harbouring standing stubble from previous host crops). Such reservoirs 
force epidemics, as well as potentially providing refugia for pathogens to persist between 
growing seasons/years. However, the potential for proliferation of species-specific 
parameters in epidemiological models would need to be carefully considered (Cunniffe et al, 
2015). Models could also better reflect spatial variation in host plant density for a given 
growing season if they used real-time information from optical sensing, rather than - as 
present - resorting to use of historical data or simple functions to parameterise growth over 
time. This would also allow time-dependent ecophysiological information on plant status to 
inform epidemiological models.  
 
Other biotic/abiotic factors affecting disease can be characterised by optical sensing 
(Dlamini et al., 2019), and so in turn could be included in disease models. This includes 
information on landscape topography, soil structure and water availability, as well as the 
phenology of the host crop. An example of integrating phenological information with 
modelling is a regional-scale Susceptible-Exposed-Infected-Removed model of Fusarium 
head blight (Xiao et al., 2022). There is also real-time information that can be remotely 
sensed and contribute to prediction when epidemiological models are used predictively for 
short-term forecasting (Gilligan, 2024). Exciting examples include sets of currently infected 
locations (e.g., Allen-Sader et al., 2019), definitive confirmation of whether previously 
scheduled control by host removal has in fact occurred (Carnegie et al., 2023), and real time 
information on meteorological driving variables as sensed by Global Navigation Satellite 
Systems (Bianchi et al., 2016). 
 
How can epidemiological modelling inform optical sensing? 
 
Oiv) Model outputs will help to improve disease classification and interpretation of 
optical sensing data 
 
Arguably most importantly, epidemiological modelling offers a mechanism to improve the 
accuracy of disease measurement via optical sensing. Optical sensing of plant disease often 
has a classification task at its core, in which a binary decision is made about whether a given 
location (i.e., a position in an image) is diseased or not. Outputs of epidemiological models 
could improve this classification by providing the classifier with additional relevant 
information. For example, positive confirmation from simple weather data-based models to 
estimate the risk of disease at a given location could provide greater confidence that an 
ambiguous signal from optical sensing in fact corresponds to disease.  
  
There is also useful information in the spatial and spatio-temporal pattern of disease that can 
be used in interpreting optical sensing data. It is well known that plant diseases are clustered 
at a range of scales: accordingly, much statistical modelling work in plant disease 
epidemiology concentrates on quantifying these relationships (Madden et al., 2007; Madden 
et al., 2018). The corollary is that any location is more likely to be infected if its neighbours 
are also infected. This idea is at the core of the methodology used by Camino et al. (2021) 
for X. fastidiosa in almond orchards (Box 1) in which predictions from a static probabilistic 
model of disease risk (Parnell et al., 2011) were used to ascribe a probability of infection to 
different trees via a model based on an exponential dispersal kernel. These predictions were 
then combined with remote sensing results to come to an overall prediction of infection 
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status on a tree-by-tree basis. Also more complex, dynamic epidemiological models could be 
used in this framework, closely coupling interpretation of optical sensing data to the explicitly 
probabilistic predictions in space and time made by a process-based epidemic model. 
Similar improvement may be achieved by using convolutional neural networks (CNN) to 
extract disease information from optical sensing data: CNNs use convolutional kernels with 
combination pooling to extract local features, potentially allowing the spatial topology and 
geometry of optical sensing data to be incorporated into predictions. However, in contrast to 
process-based models, the parameters of CNN lack biological interpretation and hence this 
approach would not provide as much insight into the processes driving epidemics. 
 
Ov) Models will help to decide where, when and how to deploy sensors, including 
guiding flight routes in near real-time for surveillance 
 
The other way in which epidemiological modelling might be useful for optical sensing is in 
setting where, when and how sensors should be deployed (Mahlein et al., 2024). Optical 
sensing is particularly promising for early detection, a key constraint in the “controllability” of 
an infectious disease outbreak (Fraser et al., 2004). The possibilities here range from being 
able to detect pathogens in near real-time over hitherto unimaginable spatial scales 
(Challenge Aiii), to “anomaly detection”, i.e., characterising spectral signatures associated 
with healthy plants and using any deviation from this to trigger ground scouting or other 
disease management (Challenge D). Real-time information could also be used to better 
guide disease surveillance, e.g., incorporating epidemiological models into automated flight 
route planning for UAVs or planning satellite surveillance patterns. In principle, each 
successive sample could then be taken from areas in which knowledge is weakest, and so 
from which confirmation of disease positives (or negatives) would be most useful (see Cook 
et al., 2008 and Parisey et al., 2022 for examples of this broad idea). Of course, reliably 
detecting disease is only the first step in disease management, and many disease controls 
are applied reactively in response to detections of disease. Much modelling work focuses on 
how optimal patterns of reactive control can be identified based on observation patterns of 
disease until a given time (Hyatt-Twynam et al., 2017; Bussell et al., 2018). This raises the 
possibility of a moveable platform that combines optical sensing with disease control, such 
as a robotic ground-based vehicle that operates within a greenhouse or in the field (e.g. 
Oberti et al. 2016). This has obvious applications in precision agriculture (Yang, 2020) and 
would echo well-publicised parallel developments for automatic weed detection and 
destruction mounted on tractors and other cultivation equipment (Zhang et al., 2022). 
 
We summarise the opportunities presented above in Table 2. There, we list the relevant 
plant traits and features that could be estimated via optical sensing and indicate how this 
estimation could aid epidemiological modelling, and how epidemiological modelling could aid 
the estimation. 
 

A) Challenges in identifying a particular disease from optical 
sensing data 

Ai) Immature understanding of disease mechanisms underpinning spectral responses 
 
Understanding spectral plant traits associated with disease is clearly important (Mahlein et 
al., 2012; Zhang et al., 2012; Zarco-Tejada et al., 2018; 2021). However, and with some 
exceptions, we lack knowledge of mechanisms by which disease-induced alterations in 
plant physiology and biochemistry translate into detectable variations in spectral signatures 
(Oerke, 2020). Additionally, the degree of conservation of spectral responses across plant 
genotypes and/or environments is unclear (Terentev et al., 2022). Other domains of spectral 
biology suggest the more highly conserved the underlying processes, the more likely their 
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associated spectral features will be too, as shown for hyperspectral reflectance of healthy 
leaves across 544 plant species (Meireles et al., 2020). Divergent spectral pathways 
associated with shared physiological symptoms have been disentangled recently between 
major fungal foliar diseases of wheat (Bohnenkamp et al., 2021) and sugar beet (Mahlein et 
al., 2012; Brugger et al., 2023) in controlled environments, and in other pathosystems in the 
field (Fallon et al., 2020; Gold et al., 2019a; 2019b; 2020; Zarco-Tejada et al., 2021). Studying 
differences and similarities in spectral responses for pathogens affecting plant health via 
different underlying mechanisms is therefore essential. 
 
 

 
Fig. 1. Summary of opportunities and challenges in integrating optical sensing and 
epidemiological modelling. 

 
A promising methodology to distinguish plant disease from other stress responses is based 
on plant functional traits, which has emerged as a unifying framework to understand natural 
and stress-induced variation in vegetation (Wright et al., 2004; Ustin et al., 2004). Plant 
pathogens damage, impair and/or alter plant function, and their impacts on plant traits can 
be sensed both before and after disease symptoms appear. Methods to quantify functional 
traits from optical sensing data can be based on either statistical modelling (e.g., partial 
least squares regression [PLSR], random forests or Gaussian process regression) or 
radiative transfer modelling (RTM). RTM allows leaf and canopy traits linked to plant 
physiological processes to be retrieved from spectra (Essery et al., 2008; Kattenborn and 

Schmidtlein, 2019), whereas PLSR iteratively transforms predictor (spectra) and response 
variables (traits) to create predictive models (Serbin and Townsend, 2020). Compared to 
empirical approaches based on single-band or vegetation indices, quantifying spectral traits 
linked to stress-induced biological mechanisms improves model accuracy and 
transferability (Camino et al., 2021; Hornero et al., 2021; Poblete et al., 2021; Zarco-Tejada et 
al., 2018). Machine learning further allows robust extraction of these traits from complex 
spectral data even under diverse conditions (Verrelst et al., 2019; Serbin and Townsend, 
2020). Combining PLSR/RTM and machine learning should improve our ability to scale from 

controlled studies to the field (Challenge Aiii) and from foliar to spaceborne scales (Poblete 
et al., 2023; Zarco-Tejada et al., 2021). 
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Aii) Spectral signatures are inherently variable and unknown for some pathogens 
 
Many spectral signatures of plant diseases have been reported. However, a given plant 
pathogen in an identical environment can very often show different symptoms. For instance, 
symptoms of Phytophthora spp. on citrus depend on the tissue affected (i.e., root rot, fruit 
brown rot, gummosis of bark or twig desiccation) (Cacciola et al., 2007). Identifying specific 
signatures of pre-symptomatic infection remains particularly challenging (Gold et al., 2019b; 
Rumpf et al., 2010), requiring deep knowledge of the plant-pathogen interaction to determine 
physiological parameters that could be affected early in disease development. Diseases can 
also manifest differently depending on location (Calderón et al., 2014), pathovar (Gold et al., 
2019b) and host genotype (Gold et al., 2019a; Surano et al., 2022), or depending on 
interactions between pathogen isolates and host genotypes (Kader et al. 2022), as well as 
when plant hosts experience abiotic stresses, such as nutrient deficiencies (Abdulridha et 
al., 2019) and water stress (Zarco-Tejada et al., 2021). Biotic stresses can also be 
confounding factors (Gold et al., 2020; Poblete et al., 2021), particularly in cases of co-
infection by distinct pathogen species (Bohnenkamp et al., 2019b). Differentiating between 
above-ground symptoms of abiotic stresses and diseases is particularly challenging for soil-
borne pathogens (Hillnhütter et al., 2011). Ontogenic resistance, as well as other effects of 
leaf age on spectral responses, may also play confounding roles (Chavana-Bryant et al., 
2019). Anthropomorphic factors, e.g., mechanical damage and pesticides/fertilisers, may 
further mask spectral responses (Gambhir et al., 2024, Wang et al., 2022). Additional 
variation stems from interactions between these factors, as well as simply from the natural 
variability of agro- and natural ecosystems (Oerke, 2020). 
 
Even setting aside significant but unavoidable complications caused by variability, optical 
spectral signatures of many pathosystems remain to be characterised. Of course, finding 
signatures may be intrinsically challenging for certain pathosystems. For example, shorter 
plant and pathogen life cycles may allow less time to characterise disease-associated 
signatures than for diseases in longer lived pathosystems, although in some pathogens with 
fast life cycles this might be easier due to a lack of significant asymptomatic infection. Other 
aspects of any given pathosystem - e.g., whether symptoms are exhibited on foliar or woody 
tissue, as well as the size/pigmentation of affected plant organs - also clearly play a role.  
 
Spectral libraries cataloguing signatures across scales, diverse environments, conditions, 
host ages and species, stages of infection, and damage mechanisms (Boote et al., 1983) 
are sorely needed (Bohnenkamp et al., 2021; Zhu et al., 2023). This would allow us to 
investigate the transferability of spectral signatures given these potentially confounding 
factors. 
 
Aiii) Scaling from controlled to field conditions and from proximal to remote sensing 
 
Spectral signatures also depend on choices of sensors, platforms and spatial/spectral 
resolutions, as well as lighting and exposure times, even under controlled conditions (see 
‘Current state-of-the-art’). Scaling to field conditions is therefore expected to be challenging. 
Additionally, signatures that are specific at the foliar scale are not necessarily most useful at 
the canopy scale (Calderón et al., 2013; 2014; 2015; Herrmann et al., 2018, Bohnenkamp et 
al. 2019b, 2021). If effective detection depends on expensive sensors, e.g., with high 
detection sensitivity across narrow bands in the SWIR, lack of access to such sensors may 
hinder scaling to the field. Using openly available earth observations from space agencies is 
appealing, with particular success for detecting defoliating insects (Dalponte et al., 2022), 
but other applications may be hindered by limited spectral and/or spatial resolution of the 
currently available satellite data. 
 
In low to medium spatial resolution imagery (where the pixel size exceeds the size of the 
plant or plant unit of interest), it can be difficult to separate vegetation spectra from mixed 
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signals of soil background, shadows and understory vegetation (Hornero et al., 2020), 
although spectral unmixing techniques can disentangle spectral diversity at sub-pixel levels 
(Galván et al., 2023). Nadir (straight-down) view systems are valuable for capturing visible 
symptoms on upper canopies but are less useful for diseases developing primarily in the 
lower canopy (Abdulridha et al., 2020; Carlier et al., 2023, Kanaley et al., 2024). Spectral 
signatures can become distorted when scaling the measurements from the leaf scale to the 
canopy scale and systematic investigation of these changes is challenging (e.g., comparison 
of leaf versus canopy reflectance for cereals in the red edge region; Li et al., 2017). Although 
high-spatial resolution and multiangular remote sensing enhance disease detection across 
canopy layers, operational challenges arise for regional-scale monitoring (He et al., 2021; 
Zhang et al., 2023). Various factors can introduce uncertainties, including canopy 
complexity, atmospheric conditions, sensor calibration inaccuracies, and radiometric 
correction (Daniels et al., 2023; Delalieux et al., 2009; Tanner et al., 2022). In particular, 
bidirectional reflectance effects, influenced by solar illumination and viewing geometry 
changes, pose difficulties with data collected at different times of day, under varying lighting 
conditions, and across different canopy structures. However, as described above, BRDF 
(Collings et al., 2010; Queally et al., 2022) and RTM approaches (Hornero et al., 2021; 
Zarco-Tejada et al., 2018) may be able to correct for these effects.  
 

B) Challenges associated with data availability, quality and 
resolution in optical sensing of plant diseases 

Bi) Insufficient reference data 
 
Optical sensing requires accurate reference measurements of disease for training, testing 
and validation (depending on the field, reference measurements are sometimes called 
“annotated data”, “labelled data” or “ground truth”). But as described in Opportunities above, 
such data are scarce, because they tend to be time- and resource-consuming to acquire. 
Visual assessments in the field can be cost-effective and under certain conditions can have 
high throughput, but yet require skilled evaluators and can also be prone to error, most often 
due to inherent variability (Nutter et al., 2017; Bock et al., 2021). Attention needs to be paid 
to training of assessors, standardisation of measurement protocols, data verification, 
normalization and calibration, and assessment of measurement uncertainties (Bock et al., 
2021).  

Crowd source annotation (e.g., like Pl@ntNet; Joly et al., 2016), in which data labelling or 
classification is outsourced to a large group of people, could become a valuable additional 
source of reference data, but also requires careful validation. Even with enhancements, 
visual assessment may overlook indicators not immediately apparent to the naked eye. 
Ideally, visual assessment should be confirmed by molecular laboratory analyses (Martinelli 
et al., 2015; Donoso and Valenzuela, 2018). This can be especially important for pathogens 
not easily recognised in the field, or when multiple pathogens cause similar symptoms 
(Abdullah et al., 2018) (Challenges Ai and Aii). 

RGB imaging provides a potential source of reference measurements (Anderegg et al., 
2019). The methodology has been developed to measure foliar diseases in major crops, 
e.g., septoria tritici blotch on wheat (Stewart et al., 2016; Karisto et al., 2018), tar spot on 
corn (Lee et al., 2021; Lee et al., 2025), as well as bean angular leaf spot, rice brown spot, 
wheat tan spot and soybean rust (Olivoto et al., 2022). However, with some exceptions, such 
as a recent study on red needle cast of pine (Fraser et al., 2022), acquiring RGB images of 
sufficient quality has thus far required destructive sampling and manual processing (e.g., 
Karisto et al., 2018; Lee et al., 2021; Zenkl et al., 2024) or non-invasive in-field imaging 
(Anderegg et al., 2024; Lee et al., 2025) of individual diseased leaves. This tends to be more 
resource consuming than visual assessments. A higher throughput will be achieved by 
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capturing close-range images from within entire canopies, but several challenges need to be 
overcome, including variable lighting, blur due to canopy movement for example from wind 
or UAV downdraft, and extraction of relevant image parts (Zenkl et al., 2024). Most existing 
RGB imaging methods are yet to be used to produce reference data for optical sensing. 
Calibration and optimisation for this specific purpose are therefore required.  

Self-supervised learning (SSL) or foundation models may overcome insufficient labelled data 
in a different way (Wang et al., 2022; Moor et al., 2023; Culman et al., 2023). SSL models 
can be formulated as convolution neural networks or vision transformers (Han et al., 2023). 
First, an SSL model is “pre-trained” on a large, unlabelled dataset, ideally, capturing a wide 
range of conditions, according to automatically generated objectives rather than annotated 
data as in conventional ML (Zhao et al., 2023). In this way, SSL models can extract useful, 
abstract and generic high-level representations from unlabelled data (e.g., visual 
representations; Doersch et al., 2015). Next, the SSL models are trained for a specific task 
(i.e., “fine-tuned”) using a limited amount of labelled data (Bengar et al., 2021). Similarly, 
foundation models can be trained on broad sets of unlabelled data and apply information 
about one situation to another (Moor et al., 2023). Both approaches can therefore learn from 
large volumes of unlabelled data and this promises to improve model generalisability to 
unseen domains (Wang et al., 2022, Lan et al., 2022). However, it will be important to 
evaluate the outcomes to ensure accuracy. 

Bii) Repurposing data originally collected for other purposes 

Data potentially valuable as reference data could be sourced from growers, agronomists or 
diagnostic clinics. However, disease severity is often not available, and geolocation is often 
absent. There can also be questions around reliability, as well as the willingness of 
stakeholders to engage and share data in a standardised format (Buhrdel et al., 2020). As 
described in Challenge Bi, above, severity is difficult to assess even for experts (Bock et al., 
2022), and certain diseases can be challenging to distinguish from each other (Barbedo, 
2016; Abdullah et al., 2018), as well as from other stressors, especially when they occur 
together. However, apps for disease identification/detection (e.g., Siddiqua et al., 2022) – 
deployed on smartphones and so automatically geolocated – are promising, as are phone 
surveys (Allen-Sadler et al., 2019). But the potential for bias in citizen science observations 
where public volunteers help to collect data (e.g. Baker et al., 2019) cannot be ignored. 
Another ever-growing source of data is social media/online news (Tateosian et al., 2023), 
the potential of which is highlighted by a system integrating internet media scraping into a 
predictive early warning system for wheat stem rust in South Asia (Smith et al., 2024). 

At larger scales, global searchable repositories including CABI (2023) and EPPO (2023) 
collate presence-absence data for plant diseases. However, spatial scales are far too 
coarse, and temporal resolutions too low, for epidemiological modelling applications. Despite 
this, large-scale crop health assessments have been used with earth observation data, e.g., 
CIMMYT's multi-seasonal survey of wheat rusts (Pryzant et al., 2017). Data from long-term 
forest biosecurity and health surveys have also been used to validate identifying 
Phytophthora pluvialis from satellite imagery in New Zealand forests (Watt et al., 2024). For 
pathogens of crops, data from regulatory surveys of disease are sometimes becoming 
available (e.g., Turner et al., 2021 for cereal diseases in the UK), and large-scale 
participatory surveillance efforts involving growers/agronomists are also appearing (e.g., 
Bregaglio et al., 2022 for grapevine downy mildew in Italy). However, potentially highly 
valuable field trial data collected by breeding/agrochemical companies tends to remain 
siloed for commercial reasons. Other potentially useful regional-scale data sources include 
daily disease risk maps (e.g., Shah et al., 2014), particularly when informed by real-time 
spore trapping data (e.g., Fall et al., 2015), although methods to integrate probabilistic 
disease predictions with optical sensing are needed (as discussed in Opportunities above).  
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Biii) Resolution and scales in time and space 

Clearly, measurements should capture relevant scales in time and space to quantify traits of 
interest, which informs the choice of sensor-platform setups. As part of this decision-making 
process, host units of infection (e.g., individual plant organs such as leaves or 
inflorescences, or individual plants, or groups of plants) must be identified based on the 
pathosystem in question. However, this raises trade-offs. Ground-based platforms and UAVs 
can capture images down to millimeter-scale resolutions (e.g., Bohnenkamp et al., 2019), 
but only across a limited area. In contrast, measurements via aircraft and satellite platforms 
capture scales up to entire regions (e.g., Poblete et al., 2023; Galvan et al., 2023) or even 
continents (Kampe et al., 2010), but with lower resolution. A similar trade-off affects temporal 
resolution. With a fixed budget, any sensing platform can only be deployed a fixed number of 
times, requiring decisions over whether to sample densely over a limited time interval or 

more sparsely over a longer time (Mateu & Müller, 2012). Commercial satellites now capture 

near-daily images of the entire globe with spatial resolution of ≈3 m (e.g., Planet; Liu et al., 

2012). Governmental satellites Landsat-8, Sentinel-2A, and Sentinel-2B together provide a 
global median average revisit time of 2.9 days (Li and Roy, 2017), with a spatial resolution of 
10 to 30 m for the multispectral sensors. On the other hand, currently operational 
hyperspectral satellites (e.g., EnMAP) can provide high spectral resolution (224 contiguous 
narrow bands) over a wider spectral range (420-2450 nm) with a spatial resolution similar to 
Landsat-8 although revisit time is coarser at 4 days for off-nadir capture, and longer in nadir 
view mode (Chabrillat et al., 2024). Plant disease measurement projects need to adapt to 
these specific revisit times and other parameters of satellite imagery. Yet, the long-term, 
large-extent sets of satellite images will allow modelling of long-term trends in disease 
dynamics, which would simply not be available from other data collection methods.  

Combining datasets acquired using different sensing platforms and technologies can help to 
overcome these limitations and tradeoffs in scales and resolutions (Berger et al., 2022), for 
example, via spectral and spatial unmixing (Delalieux et al., 2014). Multiple hyperspectral 
reflectance datasets acquired via both remote and proximal sensing have been merged to 
improve characterisation of uncertainties and transferability of estimates of functional plant 
traits (Singh et al., 2015; Cherif et al., 2023; Challenge Ai). Also, results of small-scale 
proximal sensing confirmed via collection of reference data at a small number of tightly 
monitored sites could be combined with large-scale remote sensing, for example satellite 
imagery, to lead to more expansive inferences (Camarretta et al., 2024).  

However, integrating data from different sources can be complex (Wang et al., 2023; 
Sisodiya et al., 2023), particularly if some data are missing (Ekue-wei and Blackburn, 2018; 
Zhao et al., 2018). Different datasets might not be aligned in space and/or time and might 
use different formats. Data fusion, defined as “the process of combining data from multiple 
sources to produce more accurate, consistent, and concise information than that provided by 
any individual data source” (Munir et al., 2021), is a potential solution (Barbedo 2022; 
Ouhami et al., 2021). Data fusion techniques, some applied to agricultural problems for 
almost three decades (Solberg et al., 1994), include regression methods, spatial and 
temporal adaptive reflectance fusion model (STARFM)-like statistical methods, geostatistical 
tools, principal component analysis (PCA), Kalman filters and machine learning (Barbedo, 
2022). However, persistent challenges hinder the widespread adoption of data fusion. These 
include data variability and representativeness, integration complexity, overfitting, unrealistic 
assumptions, demand for high-performance computing, economic and technological 
constraints, and socio-political factors (Barbedo, 2022). Data fusion should be used in 
conjunction with comprehensive model-data integration approaches to address the 
complexities and uncertainties inherent in plant systems data (Cui et al., 2024; Kofidou et al., 
2023). In this context, data fusion might be developed in the framework of Bayesian 
hierarchical modelling (Bourgeois et al., 2012; Wang et al., 2018), allowing us to couple 
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multiple observation models - corresponding to different types of optical sensing data - 
defined conditionally on a particular epidemic model. 

Biv) Socio-economic constraints including regulatory barriers and privacy concerns 

A lack of access to data may drive new power relations around data (Kos and Kloppenburg, 
2019). Growers may lack the basic infrastructure required for measurements (Garske et al., 
2021), may perceive the monitoring of their fields as revealing commercially sensitive data, 
or perhaps experience it as invasive in other ways (European Court of Auditors, 2020), or 
may not trust the interpretation of the data (Purdy, 2011). In some contexts, there are also 
concerns that data may be used for purposes other than those intended (Gardner et al., 
2019; Kos and Kloppenburg, 2019). Privacy legislation varies by country (Maniadaki et al., 
2021) further challenging the application of the technologies. To address these concerns, 
governments and international organisations should focus on improving data regulation and 
legislation, as well as digital literacy (Kos and Kloppenburg, 2019). Support by growers and 
other stakeholders might increase if efforts were made to communicate, to develop data 
sharing agreements, and to promote co-production approaches with them (Purdy, 2011; van 
Rees et al., 2022). Thanks to technological developments in sensors and platforms, optical 
sensing data relevant to plant diseases can now be acquired at a much lower cost than 
before. Also, data storage and computing facilities for data processing have become more 
affordable. All these factors promise to make commercial deployment of optical sensing 
more profitable (Weiss et al., 2020; Wolfert et al., 2017). 

C) Challenges in linking optical sensing and epidemiological 
modelling 

Ci) Compatibility between optical sensing data and epidemiological models 
 
Optical sensing data may inform state variables of epidemiological models (e.g., susceptible, 
infected or symptomatic states), particularly when models are spatially explicit. But the 
spatial and temporal resolutions of the data must then match the spatial and temporal 
resolutions tracked by the model. Super-resolution methods can improve the spatial 
resolution of sensing data, at least to some extent (Wang et al., 2022), and signal processing 
methods (Li and Revesz, 2004; Yang and Hu, 2018) can be used to interpolate sensing data 
to achieve desired resolutions in space and time. However, handling high-resolution data 
may become computationally demanding. Statistical downsampling can be used if coarser 
resolution is needed (Atkinson, 2013). Optical sensors can be used to characterise aspects 
of plant physiology (e.g., photosynthesis or water relations) (Zhang et al., 2021), while these 

aspects are omitted by most current epidemiological models. However, integrating plant 
physiological processes into epidemiological models is an active area of research (e.g., 
Precigout et al., 2017), suggesting physiologically designed sensors will likely inform future 
epidemiological models.  In general, statistical methods for spatio-temporal designs (Mateu 
and Müller, 2012) could be used to efficiently design plant disease monitoring via optical 

sensing for compatibility with epidemiological models, but these may require heterogeneous 
data acquisition across different spatial scales, meaning data fusion becomes challenging 
(see also Challenge Biii; Berger et al., 2022; Barbedo, 2022). 
 
Cii) Using data assimilation methods for model fitting 

A major opportunity for combining epidemiological models and optical sensing data is to 
obtain estimates of epidemiological parameters. This problem is referred to as parameter 
estimation or identification, or in some cases as inverse problems. Several methods are 
available. As epidemiologists often already must tackle sparse and noisy data, they routinely 
formulate suitable observation processes (e.g., zero-inflated) and methods (e.g. Markov 

Page 21 of 66



chain Monte Carlo [MCMC], likelihood, or nonlinear least-squares optimization) for inferring 
parameters when potentially useful information is unavailable (Gibson, 1997, Soubeyrand et 
al., 2014), in both frequentist and Bayesian statistical frameworks. Alternatively, model 
parameters or states can be estimated using data assimilation (DA) (Asch et al., 2016; 
Pandya et al., 2022). These methods may prove particularly suitable for fitting 
epidemiological models to optical sensing data, because they have been adapted to handle 
image data (Papadakis et al., 2008; Mang et al., 2020). DA is broader than parameter 
estimation and is well-suited for sequential data acquisition, meaning model parameters and 
predictions could be automatically updated as new image data are acquired. Finally, we can 
draw inspiration from recent machine learning methods developed to solve DA problems in 
physics (physics-based deep learning; Cheng et al., 2023; Thuerey et al., 2021), that are 
increasingly used in epidemiology (Ye et al., 2025), to fit mechanistic epidemiological models 
to optical sensing data. 

Ciii) Accounting for data uncertainty in epidemiological models 

While optical sensing data offers new opportunities for epidemiological modelling, additional 
uncertainties and errors will also be introduced. For example, environmental conditions (e.g., 
cloud cover, aerosol loading), can influence sensor measurements (Daniels et al., 2023). 
The frequency of data acquisition can also vary (Challenge Biii), meaning sensors may fail to 
capture important events such as early infections (Gold et al., 2019b; Rumpf et al., 2010). 
Similarly, spatial heterogeneity in host topology and species/cultivar can only ever be 
partially captured by optical sensing. Pre-processing techniques applied to raw data from 
optical sensors (as described above in current state-of-the-art) may introduce further 
uncertainties.  

Following pre-processing and analysis, it is now established that optical sensing data can be 
used to obtain point estimates of the spatial distribution of infections (e.g., Boxes 1 and 2). 
However, predictions have two main sources of uncertainties. Firstly, prediction of disease 
occurrence and severity from remote sensed data is subject to several, known and unknown, 
potential confusions between biotic and abiotic causes (Challenge Aii). We note the types of 
errors in optical sensing data may be different from those in reference measurements (e.g., 
human observations of symptoms, molecular detection) and this will require specific 
treatment. Secondly, ML algorithms used for processing optical sensing data themselves 
make errors. This may make epidemiological parameters as inferred from optical sensing 
data either potentially unreliable or difficult to interpret (Leclerc et al., 2023). Furthermore, 
there are challenges associated with intra-class variability (where it can be difficult to 
establish a boundary between classes) and inter-class similarity (where the inherent 
similarity between certain classes means that the class of an individual pixel can be difficult 
to determine unambiguously) (Qin and Liu, 2022; Bi et al., 2021). 

Both types of error should be considered for forward predictions from epidemiological 
models. Promising methods have been developed in the environmental sciences, where 
spatial models are fitted to remote sensing data (Chabot et al., 2015; Janjić et al., 2018), and 
these could be co-opted to this use case. In principle, the Bayesian statistical framework 
used in parameter inference in plant disease epidemiology also provides a mechanism by 
which these types of uncertainty can be propagated. However, despite some promising 
successes in related fields (e.g., Bauer-Marschallinger et al., 2022), methods to do this 
specifically for optical sensing data and plant disease will require more research. 
 

D) Particular challenges associated with emerging diseases 

Reacting rapidly to invasion of a region hitherto unaffected by a plant pathogen is important 
to give disease management the best possible chance of success (Epanchin-Niell, 2010; 
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Fraser, 2004). However, since spread data only become available as any outbreak unfolds 
(Thompson et al., 2018), pathogen biology and transmission become more precisely 
characterised the longer any epidemic has been spreading in the region of interest (Neri et 
al., 2014). This unavoidable tension between when models are most useful and when the 
data to drive them become available leads to challenges characteristic of emerging plant 
disease epidemics, affecting both optical sensing and epidemiological modelling. 
 
A challenge is that reference data are almost always more limited for emerging than for 
established diseases. The probability a disease will truly be present if detected - the “positive 
predictive value”, PPV (Bours et al., 2021) - is likely to be low.  Indeed, the PPV depends on 
the prevalence of the disease (a priori low for an emerging disease) and the sensitivity and 
specificity of the detection method. With sensitivity and specificity of 90%, the PPV is 0.083 
for a prevalence of 1%, meaning that the disease is truly present in only 8.3% of detections. 
This value drops to 0.89% for a prevalence of 0.1%. Nearly perfect sensors with 99% 
sensitivity/specificity are necessary to reach PPV of 50% (at prevalence 1%) and 9% (at 
prevalence 0.1%). The levels of sensitivity and specificity of optical sensing in the field 
depend on many factors, but values higher than 90-95% are currently unlikely (Terentev et 
al., 2022). 
 
Arguably the larger challenge for optical sensing of emerging pathogens is that spectral 
signatures are often not characterised. It would, of course, be plausible to use signatures 
from geographic regions where the pathogen of interest is well-established and well-
characterised (Negrisoli et al., 2022; Gongora-Canul et al., 2020; Zhang et al., 2023). But 
this raises challenges around the robustness/transferability of the signatures from different 
geographic areas. A second approach could be to use proximal sensing and reference 
disease intensity data from controlled environment experiments. However, here the related 
challenge is the robustness/transferability between controlled environments and epidemics 
in the field (see Challenge Aiii). 
 
An approach which simultaneously targets a range of potential invading pathogens while 
sidestepping the need to obtain disease-specific spectral signatures in a novel environment 
is “anomaly detection”. Spectral signatures associated with healthy plants are characterised 
and deviation from typical signatures then acts as a trigger to initiate ground scouting or 
other efforts (Kanaley et al., 2024). It may be possible to derive robust and species specific 
spectral signatures of plant health based on foliar functional plant traits (Reich et al., 1997; 
Wright et al., 2004). Some of these traits (e.g., leaf mass per area, chlorophylls) may reflect 
overall plant health, while others (e.g., lignins, carotenoids) hint at diseases. Robust 
estimation of many of these traits via optical sensing has been achieved (Singh et al., 2015; 
Wang et al., 2019, 2020; Zhang et al., 2021; Cherif et al., 2023). Measuring abnormal plant 
mortality (Wegmueller et al., 2024) and detecting abnormal changes in plant traits (Fekete 
and Cserep, 2021) via optical sensing combined with novelty detection classification 
techniques (AlSuwaidi et al., 2018) may provide valuable information about emerging 
diseases. These approaches may become especially effective in nursery and greenhouse 
production: a relatively small footprint and controlled growth conditions makes it easier to 
characterise and monitor spectral signatures of healthy plants. However, going from 
characterisation of functional plant traits to a robust assessment of plant health requires a 
nontrivial synthesis of existing knowledge/data and dedicated new datasets. 
 
Parameterised mathematical models will also tend not to be available when a pathogen is 
emerging and spreading in a new region. Indeed, fully parameterised predictive models have 
often only become available after control has ceased to be a viable proposition (e.g., sudden 
oak death in California (Meentemeyer et al., 2011; Cunniffe et al., 2016)). Similarly to the 
trade-offs for optical sensing above, options for making models available before or during 
outbreaks tend to require either significant assumptions on pathogen spread (e.g., Hilker et 
al., 2017) or direct transfer of models originally parameterised for spread in other locations 
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(e.g., Ellis et al., 2025). Both options introduce uncertainties and potentially inaccuracies in 
spread predictions. Predictive models of emerging pathogens are therefore particularly 
challenging to develop (Cunniffe et al 2015; Cunniffe & Gilligan, 2020), and links with optical 
sensing must be alert to this. Where possible, a combination approach - use of predictive 
models along with anomaly detection, described above - may help to improve timely 
detection of emerging diseases.    
 
Finally, ethical considerations, including privacy and data sharing concerns, can pose 
particular challenges for emerging diseases (Challenge Biv). Emerging diseases tend to 
require interdisciplinary collaboration between remote sensing specialists, epidemiologists, 
and plant pathologists, sometimes under significant time pressure, and this may not be easy. 
In many developing countries, limited infrastructure and resources, a lack of experts in 
relevant fields, or limited funding might reasonably be expected to lead to particularly 
extreme challenges in this regard. 
 
We summarise the opportunities and challenges presented above in Figure 1. 
 
 
 

 
Fig. 2. Summary of recommendations to support integration of optical sensing and 
epidemiological modelling. 

 

Recommendations 

1. Establish standards  

There is a critical need to standardise methods for optical sensing in plant health monitoring, 
to acquire data comparable across sensors, sites and dates. This includes developing 
common protocols for data acquisition, processing, and interpretation; ideally this should be 
led by experts in these fields. Assuming they are widely adopted, consistent, reproducible 
and reliable practices will help minimise bias, improve accuracy, and enable comparability 
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across studies. This is critical for hyperspectral imaging due to the complexity of the sensors’ 
operation, data acquisition and processing (Aasen et al., 2018). To convert hyperspectral 
imagery into surface reflectance (the proportion of incoming light reflected by a surface), it is 
essential to measure irradiance (the amount of incoming sunlight) at the time of image 
capture. This requires recording irradiance data simultaneously with the other imagery 
captured by measurement platforms. Radiometric calibration of the sensors and standard 
models (such as RTM; Verhoef and Bach, 2003) need to be optimised for local conditions to 
enable atmospheric correction of the imagery. For UAV platforms, Chakhvashvili et al. 
(2024) propose a structured approach to multi-sensor campaigns encompassing mission 
planning, calibration and spatial referencing and using additional sensors to assess ambient 
environmental conditions (e.g., weather stations, Internet of Things environmental sensors). 
A recent positive development is the publication of a European and Mediterranean Plant 
Protection Organization (EPPO) standard on “Adoption of digital technology for data 
generation for the efficacy evaluation of plant protection products” (Anonymous, 2024). 

2. Develop, maintain and use open access databases  

Open access, standardised databases including optical sensing data, epidemiological 
models, and reference data, would foster cross-disciplinary work (Sparks et al., 2023). 
However, data privacy and intellectual property implications would need attention (Kaur et 
al., 2022), as would long-term funding to maintain such a system. To achieve this, we can 
draw inspiration from genomics, where open access data repositories are well established 
(e.g., GenBank of the National Center for Biotechnology Information). Using openEO 
(https://dataspace.copernicus.eu/analyse/apis/openeo-api) in remote sensing of plant 
diseases would provide a standardised, scalable, and interoperable platform that simplifies 
access to diverse Earth observation datasets (Schramm et al., 2021). 

3. Develop awareness by working with stakeholders  

To address socio-economic constraints, governments and international organisations should 
improve data regulation, legislation and digital literacy (Kos and Kloppenburg, 2019). Our 
research communities need to work with social scientists and stakeholders to find ways to 
reconcile data availability with respecting data privacy and intellectual property (Everts et al., 
2012; Kaur et al., 2022). 

4. Routinely capture a range of conditions to improve generalisability & transferability  

Many studies report disease measurement via optical sensing, but the outcomes may not be 
robust with respect to other biotic or abiotic stresses and may not be transferable to other 
host genotypes or geographic locations. To address these challenges, comprehensive 
ranges of conditions (related to host plant, pathogen and the environment) need to be 
captured in both reference and optical sensing measurements, which need to be 
georeferenced. Possible abiotic and biotic confounding factors also need to be assessed in 
the field. 

5. Use crowdsourcing and gamification to improve annotation of data when possible 

Annotated reference data for model training is a key limiting factor, and crowdsourcing may 
help to overcome this (Wazny, 2017). However, despite the emergence of various paid for 
platforms, e.g., Amazon’s Mechanical Turk (Mason & Suri, 2012), and the possibility to use 
gamification to reduce costs (Khakpour & Colomo-Palacios, 2020), the necessary specialist 
knowledge required to annotate plant diseases might make this challenging (Bock et al, 
2020). Yet, these efforts would be of great educational value and help to promote plant 
health to wider audiences. 
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6. Optimise optical sensing data collection both for use with models and by using 
models 

Spatial and temporal scales and resolutions and trade-offs between them need to be 
considered when combining optical sensing and epidemiological modelling. Acquisition of 
optical sensing data can be optimised using epidemiological modelling, but model 
development needs to be informed by the characteristics of the available optical sensing 
data. 

7. Identify signatures of plant health beyond the one host-one pathogen paradigm 

Linking epidemiological models and optical sensing data is difficult because it is hard to 
identify a given disease, particularly given the range of biotic and abiotic conditions that must 
be handled (Challenges A). Focusing on anomaly detection is therefore very attractive, 
although it requires us to overcome the significant challenge of robustly assessing plant 
health from measured traits (while accounting for multiple pathogens). 

8. Ensure uncertainties are captured and propagated through analyses 

Uncertainty can be introduced at various stages in analytic pipelines, from uncertainty in 
measurements (e.g., due to cloud cover), to confusions caused by interactions with biotic 
and/or abiotic factors (Challenge Aii), to errors or imprecision in machine learning methods 
for processing data (Qin and Liu, 2022), to uncertainties in model parameters as fitted to 
data (Minter and Retkute, 2019), to sampling effects when using stochastic models 
predictively (Cunniffe and Gilligan, 2020). Sorely needed are methods to capture and 
propagate these uncertainties forward, building on promising methods from related fields 
(Charbot et al., 2015).  

9. Establish multidisciplinary collaborations 

We need to foster multidisciplinary and interdisciplinary collaborations, bringing together 
optical sensing experts, computer scientists, plant pathologists, plant physiologists, crop 
modellers and epidemiological modellers (Camino et al., 2021). Encouragingly, a growing 
body of work in phytopathometry (Gongora-Canul et al., 2020; Kanaley et al., 2024; Lee et 
al., 2021; Lee et al., 2025; Oh et al., 2021; Zhang et al., 2023) exemplifies this, and shows 
how integrated methodologies can enhance the reliability and scalability of plant disease 
detection, quantification, and assessment under field conditions. In going further and linking 
optical sensing with epidemiological modelling, we should not reinvent the wheel but instead 
draw inspiration from disciplines such as environmental sciences (Liu, 2015; Weng, 2009) 
and meteorology (Bevis et al., 1992; Mittaz et al., 2019), which have long coupled optical 
data with mathematical modelling. We can also reflect on other uses of new sources of data 
in epidemiological modelling. Notable examples include phylogenetic data (Pybus and 
Rambaut, 2009; Gougherty and Davies, 2021), and human mobility data from mobile phones 
and social media (Grantz et al., 2020; Kostandova et al., 2024). 
 

10. Teach basic sciences and modern data analysis in plant pathology training 

A major obstacle to integrating optical sensing and epidemiological modelling is the 
inconsistent and often insufficient training in basic sciences and modern data analysis at the 
bachelors and masters levels in agricultural and biological sciences. While addressing this 
requires systemic changes and broader discussions across the academic community, there 
are practical steps we can take to train the next generation of plant health researchers. 
These include: (i) designing and teaching courses on digital plant health, incorporating 
necessary elements of basic sciences (mathematics, physics, chemistry, and biology), 
programming, data sciences and mathematical modelling; (ii) organising summer schools on 
interdisciplinary approaches to plant health; (iii) organising informal study groups and other 
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communities that bring together students and researchers from different disciplines, perhaps 
leveraging internet technologies to do so. Ensuring accessibility to these opportunities — 
particularly for researchers from the Global South and underrepresented communities — 
should be a key priority. In doing this, we can draw inspiration from similar discussions in 
related multidisciplinary fields such as bioinformatics (Mulder et al., 2018) and big 
data/artificial intelligence (Luan et al., 2020).  

11. Promote opportunities to funding agencies, governments, plant protection 
organisations and technology companies 

Interdisciplinary and transdisciplinary research in digital plant health must be supported more 
strongly by funding agencies. Traditional three-year funding periods are often too short to 
perform the necessary field trials or observational studies, collect and analyse data, and 
publish the outcomes. More comprehensive support, longer term funding and 
interdisciplinary projects are needed to collect these datasets, transform them into 
meaningful interpretations and publish them open access in accordance with the findable, 
accessible, interoperable, and reusable (FAIR) data principles (Kumar et al. 2024). This 
approach is data intensive, and therefore we need to establish the necessary infrastructure 
to develop sophisticated artificial intelligence models (e.g., self-supervised learning or 
foundation models) in cooperation with machine learning experts. Further, we need to 
collaborate with plant protection companies and technology companies to make the 
applications rapidly accessible and to foster their adoption by growers. A particular challenge 
is to communicate with political decision-makers and convince them of the many possibilities 
and necessary steps, as well as the commensurate need for investment. 

We summarise the recommendations presented above in Figure 2. 
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Table 1. List of acronyms. 
 

 

  

Acronym Full Form 

UV Ultraviolet 

IR Infrared 

UAVs Uncrewed Aerial Vehicles 

RGB Red-green-blue 

CIR Colour-Infrared 

HSI Hyperspectral Imaging 

NIR Near-Infrared 

SWIR Shortwave Infrared 

TIR Thermal Infrared  

LiDAR Light Detection and Ranging 

VNIR Visible and Near-Infrared 

SWIR Shortwave Infrared 

MSI Multispectral Imaging 

BRDF Bidirectional Reflectance Distribution 
Function 

RTM Radiative Transfer Models 

ML Machine Learning 

OQDS Olive Quick Decline Syndrome 

CLS Cercospora Leaf Spot 

CNN Convolutional Neural Networks 

PLSR Partial Least Squares Regression 

SSL Self-Supervised Learning 

DA Data Assimilation 

PPV Positive Predictive Value 
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Table 2. Plant traits and features that, once estimated via optical sensing, could aid in 

epidemiological modelling, and vice versa. 

Plant trait/feature (estimated via 

optical sensing) 

How optical sensing aids 

epidemiological modelling 

How epidemiological modelling aids 

optical sensing 

Disease onset, incidence, and 

severity 

Improves model parameterisation 

and validation with objective, 

standardised, high-resolution data 

Improves classification by 

incorporating risk estimates derived 

from models 

Spatio-temporal patterns of 

infection 

Enhances understanding of disease 

dynamics and spread (i.e., data for 

model fitting) 

Informs contextual interpretation based 

on expected and/or modelled spatial 

clustering 

Pathogen dispersal gradients Improves estimation of dispersal 

kernels by providing additional data 

Helps validate sensing-derived 

assessment of pathogen dispersal with 

models accounting for underpinning 

mechanism of pathogen spread 

Real-time infection status or 

anomalies 

Triggers surveillance or action based 

on spectral anomalies (underpinned 

by tests in models) 

Optimises sensor deployment (e.g., 

UAV routes) to maximise information 

content in data  

Host plant identity (species, 

cultivar) 

Increases biological realism in host 

maps used in models 

Informs whether there is a  need for 

species-level resolution in host plant 

sensing 

Host density and spatial 

distribution 

Enables dynamic modelling of 

disease risk based on real host 

distributions in space 

Focuses sensing efforts where areas 

of higher host density are expected to 

be most epidemiologically relevant  

Host phenology and growth stage Allows time-sensitive modelling of 

host susceptibility and epidemic 

timing 

Highlights critical phenological 

windows (and spatial locations) for 

data collection using optical-sensing 

Environmental conditions (e.g., 

topography, water availability) 

Adds environmental realism to 

models, potentially improving 

predictive accuracy 

Identifies which environmental 

variables are most relevant to measure 

(i.e., have the largest effects on 

disease risk) 

Presence of inoculum reservoirs 

or alternative hosts 

Informs model structure by allowing 

models to account for hidden 

reservoirs 

Suggests where to search for 

reservoirs based on 

persistence/spillover inferred with 

models 

Confirmation of control 

implementation (e.g., host 

removal) 

Improves tracking and evaluation of 

management interventions, then 

informing models 

Targets verification efforts on areas of 

predicted but uncertain control (e.g., 

due to lack of stakeholder compliance) 
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Supplementary Material S1 

Glossary 

Abiotic stress: Non-living environmental factors such as drought, temperature, and salinity 

that can cause stress to plants, and which can be distinguished from biotic stress caused by 

living organisms. 

Anomaly detection: In the context of optical sensing, a method used to identify spectral 

signatures associated with healthy plants, where deviations from typical signatures can 

indicate the presence of disease. 

Bayesian analysis: A statistical method that incorporates prior knowledge or beliefs, along 

with new evidence and a probabilistic model of a process, to update a probability or 

probability distribution. 

Bidirectional reflectance: The reflection of light from a surface that can vary depending on 

the angle of illumination and observation. 

Biotic stress: Stress caused by living organisms such as pathogens, pests or weeds. 

Chlorophyll fluorescence: A technique that measures the re-emission of absorbed light by 

chlorophyll molecules in plants, used as an indicator of a pathogen’s effect on 

photosynthesis. 

Compartmental models: A modelling approach in epidemiology that divides a host 

population into distinct groups (compartments) based on disease status, such as 

susceptible, exposed, infected, and recovered (SEIR). 

Data assimilation: The process of integrating observational data with model predictions to 

improve the accuracy of forecasts. 

Data fusion: The process of integrating information from various sources to achieve results 

that are unattainable from a single source alone, such as combining imagery and weather 

data for disease detection and quantification. 

Disease incidence: A metric indicating the intensity of disease within a plant population, 

usually represented as the proportion of diseased specimens to the total number of 

specimens evaluated, regardless of the assessment method. 

Disease severity: A metric indicating the degree to which a plant, plant part, or defined area 

of land is affected by a disease, often measured by metrics such as the percentage or 

proportion of area diseased (0-100%), the number (N) and density or size of lesions, or other 

symptom descriptions using ordinal scales. 

Dispersal kernel: A description of the probability of dispersal events as a function of 

distance, important for modelling the spread of plant diseases. 

Epidemiology: The study of changes in disease intensity in a plant host population over 

time and space. 

Epidemiological models: Mathematical representations of how diseases spread within 

populations. 
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Feature extraction: The process of identifying and isolating relevant information or patterns 

from sensor data, whether remote or proximal sensing, for further analysis or modelling. 

Foliar scale: Pertaining to leaves or the individual leaf level. 

Foundation models: Large-scale machine learning models trained on diverse data to 

capture general patterns, allowing them to be fine-tuned for various tasks without retraining 

from scratch. Unlike self-supervised models, they are built for broad adaptability across 

tasks. 

Functional plant traits: Characteristics of plants (e.g., leaf mass per area, chlorophylls, 

lignins, carotenoids) that reflect overall plant health and can hint at diseases. 

Generalisability: Property or ability of a model or its predictions/outputs to be applicable 

across different host genotypes, locations, and time periods beyond the specific setting 

where it was developed or validated. 

Hierarchical Bayesian model (HBM): A framework used for model inference where the full 

model is made up of a series of sub-models organised in different layers. The HBM links the 

sub-models together, correctly propagating uncertainties in each sub-model from one level to 

the next and estimates posterior distributions using the Bayesian framework. 

Hyperspectral sensing: Technology that captures and analyses a wide spectrum of light 

across many contiguous spectral bands. 

Hyperspectral imaging (HSI): Remote sensing technique that captures and processes 

information across a wide range of the electromagnetic spectrum with a high spectral 

resolution, allowing detailed analysis of specific spectral bands. 

Integrated pest management (IPM): A decision-making process for managing pests (often 

understood here to include pathogens) using a combination of management interventions in 

an effective, economical, and environmentally sound way, often utilising data from various 

sources. 

LiDAR (light detection and ranging): A remote sensing method that uses light in the form 

of a pulsed laser to measure distances. 

Machine learning (ML): A subset of artificial intelligence that involves training algorithms to 

recognise patterns in data. 

Machine learning classification (ML classification): The process of using algorithms to 

automatically classify data into predefined categories. 

Mechanistic-statistical model: A modelling approach that combines (i) a mathematical 

(deterministic or stochastic) model describing the main mechanisms governing the dynamics 

of the system of interest (e.g., an SEIR model) with (ii) a statistical model connecting the 

state variables of the mechanistic model with a probabilistic model describing the 

observation process. Inference of this class of model is most easily achieved using 

hierarchical Bayesian models. 

Monocyclic epidemic: An epidemic caused by a pathogen that completes only one infection 

cycle per host cycle.  
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Multimodal sensing: The integration of multiple sensing methods to improve detection and 

characterisation of plant health and diseases. 

Multispectral imaging: Remote sensing that captures data in specific wavelength bands of 

the electromagnetic spectrum. 

Nadir view: A view directly downward from a satellite to the surface of the Earth. 

Novelty detection classification techniques: Methods used in remote sensing to identify 

unusual or emerging diseases by detecting abnormal changes in plant traits. 

Overfitting: A situation in which the parameters of a model become too closely aligned to 

the training data, resulting in poor performance on new, unseen data. 

Pathosystem: The complex interactions between a host, a pathogen, and the environment. 

Plant canopy: A multi-layered assembly of leaves, branches, and stems in areas like forests 

or agricultural fields, crucial for ecological functions. Its structure and microclimate can affect 

pathogen development and spread. 

Polycyclic epidemic: An epidemic caused by a pathogen that completes multiple infection 

cycles per host cycle.  

Proximal sensing: Measurement techniques conducted close to the plant, such as using 

handheld devices or sensors placed close to or in direct contact with crops to gather detailed 

data on plant health and disease characteristics.  

Radiative transfer approaches: Methods used to model the transfer of radiation through a 

medium, such as the atmosphere or a plant canopy, accounting for absorption, scattering, 

and emission processes. 

Radiative transfer modelling (RTM): A framework for simulating the propagation of 

electromagnetic radiation through a medium. 

Radiometric calibration: The process of adjusting a sensor to ensure its output accurately 

reflects true radiance, typically done before data collection. This involves comparing sensor 

measurements against known reference standards to maintain measurement accuracy over 

time. 

Radiometric correction: Adjustments made to image data acquired via optical sensing to 

correct for sensor errors and environmental factors, such as lighting and atmospheric 

conditions, ensuring the data accurately reflect the true surface radiance. 

Remote Sensing (RS): The use of satellite or aerial imagery to monitor and assess 

conditions from a distance. 

Reference data: A set of data used as a standard or benchmark to calibrate and validate 

data gathered from remote or proximal sensing technologies (“ground truth”), or for the 

development and training of algorithms or models (annotated or labelled). 

Robustness: Ability of a model to maintain accurate predictions despite inconsistencies in 

the input data, including changes in data quality, environmental variability, and the presence 

of noise or uncertainty. 
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Self-supervised learning (SSL): A type of machine learning where the model learns to 

generate labels from the input data itself, often used when labelled data is scarce. 

Shortwave infrared (SWIR): A specific range of wavelengths in the infrared spectrum used 

in remote sensing. 

Simulation models: Models that use computer simulations to predict the behaviour of 

complex systems over time. 

Spatio-temporal dynamics: The study of how patterns change over space and time. 

Species-specific spectral signature: Unique spectral characteristics that can be used to 

identify and monitor the health of specific plant species. 

Spectral libraries: Collections of spectral signatures used for comparison and identification 

purposes. 

Spectral reflectance: The proportion of light that a surface reflects at different wavelengths, 

used in remote sensing to detect plant health and disease. 

Spectral responses: The specific reactions or changes in spectral signatures due to 

different conditions, such as disease or stress. 

Spectral signature: The specific pattern of reflectance intensities across the 

electromagnetic spectrum that is unique to a particular disease or stage of disease 

development. 

Spectral unmixing: A technique used to decompose pixel-level reflectance into its 

constituent components, particularly in mixed pixels that contain multiple materials or land 

cover types. 

Spectral vegetation index: A numerical indicator calculated from the spectral reflectance 

values of a surface at specific wavelengths in the electromagnetic spectrum. These indices 

are designed to quantify various vegetation characteristics, such as density, health, and 

photosynthetic activity. The most widely used and well-known spectral vegetation index is 

the Normalised Difference Vegetation Index (NDVI). 

Spectral resolution: The ability of a sensor to distinguish between different wavelengths of 

light. Higher spectral resolution allows for finer differentiation of materials based on their 

spectral characteristics. 

Spatial resolution: The detail with which a map depicts the location and shape of physical 

features, i.e., the smallest object that can be resolved by a remote sensing system. 

State variables: Variables representing the current state of a system of interest at a specific 

time and location (e.g., the number of plants in different compartments in epidemiological 

models). In hierarchical Bayesian models, state variables are often considered as latent or 

hidden (i.e., not directly observable) components of the system of interest, with a dedicated 

part of these models connecting these latent state variables to the observed variables which 

are considered indirect manifestations of the underlying processes of interest. 

Temporal resolution: The frequency at which data is collected. 
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Thermal infrared imaging (TIR): Detection of infrared radiation emitted by objects, enabling 

the assessment of plant stress or disease based on temperature variations. 

Transfer learning: A machine learning technique where a model developed for one task is 

reused as the starting point for another task, common in using pre-trained models for 

specific agricultural or disease detection tasks. 

Uncrewed Aerial Vehicle (UAV): An aircraft that operates without a pilot on board and 

which allows the attachment and integration of sensors for monitoring plant health and 

detecting diseases. 

Validation dataset: In the context of remote sensing and epidemiological modelling, a 

validation dataset refers to a set of real-world, ground-truth data used to assess and confirm 

the accuracy of models or remote sensing outputs.  

Vector-borne pathogen: A disease-causing organism (often viral or bacterial) transmitted by 

a different vector organism, very often an insect. 
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