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A B S T R A C T

The proof-of-concept study presents, for the first time, the results of integrated numerical hydrological simula
tions at kilometer resolution on a global scale. Using available datasets and applying significant simplifications to 
the real terrestrial system, the model was informed with hydrofacies, soil texture and topographic slopes, and 
effective recharge at the upper boundary. A steady-state spin-up was performed, resulting in a 3D pressure head 
distribution of the water continuum from 60 m deep variably saturated groundwater to surface water. Relative 
saturation and diagnostic water table depth were examined, resolving variability over several orders of 
magnitude. In our opinion, the added value of the partial differential equation (PDE) based simulations out
weighs the computational resources required, which are considerable. These simulations are possible, because of 
the advent of massively parallel, accelerator based supercomputer architectures and performance portable sci
entific software. While the current simulation results may not be reliable from the perspective of stakeholders at 
this stage of model development, the study demonstrates the feasibility of prognostic groundwater simulation at 
the global scale, and will stimulate future model improvements, including the quantification of uncertainties. 
Simultaneously, the study opens new avenues for future research in the context of hyper-resolution global Earth 
system modelling.

1. Main

1.1. Background

The term Global Water Modeling (GWM) is being coined in the hy
drologic and land surface modeling communities encompassing global 
models simulating the water cycle on the continent. GWMs parameterize 
the water cycle at and below the land surface in different ways, also 
connecting to the energy and biogeochemical cycles and human in
terventions (Telteu et al., 2021). GWMs are generally applied in offline 
mode, that is they are driven by atmospheric forcing without two-way 
coupling with an atmospheric model. This, and simplifications with 
respect to groundwater flow and interactions with the vadose zone and 
surface water, means that dynamic closure of the water cycle is often not 
considered. With such simplifications, the water continuum is essen
tially split up into the different compartments and then again coupled, 

often via an operator splitting approach (Kavetski and Clark, 2011). 
Compartmentalization, however is problematic, because previous 
studies showed that non-linear feedbacks in the water continuum are 
important and need to be included in an accurate representation of 
hillslope processes across scales (Clark et al., 2015; Condon et al., 2021; 
Fan et al., 2019).

The origin and conceptual starting point of GWMs is diverse, but 
perhaps can be put into three major strands, modified from (Fisher and 
Koven, 2020). In the first strand, while GWMs run offline, many of these 
models can be traced back to climate models, which led the early 
development at the global scale and also at the regional (continental) 
scale due to the need for land surface boundary conditions for atmo
spheric simulations. To solve the boundary value problem, these GWMs 
focused originally on the connection of the terrestrial energy and water 
balance mainly via evaporation and transpiration, and the basic parti
tioning of precipitation (rain, snow, ice) on the land surface into storage, 
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infiltration and runoff. Examples include CLM (Lawrence et al., 2019), 
Noah-MP (Niu et al., 2011), and Orchidee (Krinner et al., 2005). The 
second strand includes hydrologic models (conceptual, distributed, 
physics based, parsimonious), which focused the closure of the water 
balance with bulk energy parameterizations of evapotranspiration (e.g., 
Penman) and precipitation as sink and source terms, respectively. Ex
amples include mHM (Samaniego et al., 2010), HBV (Lindström et al., 
1997), and LISFLOOD (Knijff et al., 2010). In the third strand, GWMs 
focused on human water usages using allocations and storage-release 
parameterizations of the bucket type in conjunction with statistical, 
economic information. Examples include WaterGAP (Müller Schmied 
et al., 2021) and PCR-GLOBWB (Sutanudjaja et al., 2018). In recent 
years, the overlap of the different strands has been increasing consid
erably pushing towards a unifying Earth System Modeling (ESM) 
approach including prognostic modeling of all natural processes across 
relevant space and time scales including two-way feedbacks and human 
interventions (Pan et al., 2025).

GWMs have an intuitive appeal reflected in studies that have been 
published in high-impact international scientific journals and (social) 
media (De Graaf et al., 2015; Fan et al., 2013; Reinecke et al., 2019; 
Verkaik et al., 2024). In our opinion, the appeal stems from information 
on the global water cycle everywhere that is consistent internal to the 
model. This information is usually not available in space and time. 
However, there has been anecdotal and documented (Gnann et al., 
2023) resentments towards GWM results for multiple reasons. One of the 
most prominent reasons is uncertainty in the simulation results, which 
has not been adequately taken into account. Sources of uncertainty 
include, e.g., conceptual and mathematical model formulation at scale, 
as well as data uncertainty and scarcity for model setup and evaluation 
alike. For example, De Graaf et al. (2019) show results at roughly 10 km 
lateral spatial resolution on environmental flow limits influenced by 
groundwater abstraction, where hydraulic head differences on the order 
of 10− 2 to 10− 1 m are relevant. They conclude that by 2050, environ
mental flow limits will be reached for some 42 to 79 per cent of the 
global watersheds. This accuracy in head difference and flow limit cal
culations is in stark contrast to uncertainties in depth to groundwater 
estimates recently presented by Reinecke et al. (2024), which are on the 
order of 10− 2 to 10− 1 m. Thus, before policy relevant results can be 
communicated, more work is required to improve the representation of 
groundwater and interactions with surface water in large scale models.

Another major reason for continuing skepticism from the hydro
geologic community (Andréassian, 2023; Gleeson et al., 2021) towards 
GWMs is the local to regional nature of groundwater and also surface 
water flow systems. There is no global groundwater-surface water cir
culation. The largest relevant spatial scale is the continental watershed 
and aquifer scale. Below that scale, water systems are commonly treated 
individually reflected also in conceptual model construction based, e.g., 
on the Hydrologic Unit Codes (HUCs) (Hydrologic unit maps, 1987). 
Ultimately, however, global scale connections of the water cycle are 
made through atmospheric circulations. Conversely, groundwater- 
surface water interactions are often oversimplified in GWMs, with 
groundwater frequently omitted or only weakly coupled to subsurface 
flow and surface water, effectively fragmenting the water continuum. 
Thus, the impression persists that GWMs ultimately deal with local to 
regional water processes, which they are not able to address adequately 
because of the lack of physical process representation and missing local 
information.

The current lack of physics-based, prognostic modeling of ground
water surface water flow and, in GWMs, the usual compartmentalization 
into saturated zone (often termed groundwater), unsaturated zone, and 
surface water has thereby far-reaching consequences. While the contri
butions of groundwater to the global water cycle appear to be indirect 
and local, they are of major importance. Groundwater sustains evapo
transpiration and closes the continental water balances from source (e. 
g., mountains) to sink (oceans) areas everywhere. In fact, groundwater 

maintains continental discharge via baseflow and, through many feed
backs and interactions, keeps the continents in a delicate, life sustaining 
dynamic water equilibrium (Famiglietti, 2014; Sophocleous, 2002). This 
equilibrium is coming under pressure and is shifting due to global 
change at different space and time scales in an unknown fashion. Since 
the continents constitute a sink to atmospheric water (Keune et al., 
2018), where precipitation (P) exceeds evapotranspiration (ET), P-ET >
0, the moisture state, in fact the chemical potential, of the continents 
will influence the continental water sink and, thus, the continental water 
balance, and potentially also meso- and global scale atmospheric cir
culations. Thus, after all, variably saturated groundwater flow and in
teractions with surface water and land surface happen in a non-linear 
continuum, they are relevant from the local to the global scale and 
potentially also for global moisture redistribution (Yang et al., 2025).

Thus, variably saturated subsurface water, groundwater, and surface 
water needs to be included in large-scale ESMs as a nonlinear continuum 
in order to have prognostic modeling capabilities from bedrock to the 
top-of-the atmosphere. Currently, there is a push for seamless (weather 
to climate) simulations on the order of km-scale spatial resolution 
(Bauer et al., 2021; Stevens et al., 2024), which also considerably alters 
the physics representation in the models (Prein et al., 2015). The 
expectation is that major prognostic biases related to, e.g., global tem
perature and precipitation distributions, including extremes, can be 
resolved this way at the climate time scale (Stevens et al., 2024). At this 
resolution, individual river corridors become visible in, e.g., remote 
sensing data, however, not in ESMs, because groundwater convergence 
and baseflow is not simulated. Coupling ESMs with the aforementioned 
GWMs is not an option either, because they do not provide groundwater 
modeling capacities in a continuum approach across the variably satu
rated soil zone and an integration with surface flow. Here, physics-based 
Integrated Hydrologic Models (IHMs), where 2D/3D surface and sub
surface hydrodynamics are treated in continuum approach are an 
alternative (Brookfield et al., 2023; Clark et al., 2017).

IHMs are Partial Differential Equation (PDE)-based and numerically 
implement a combination of conservation and movement equations. The 
mathematical problem is closed via boundary and initial conditions and 
solved numerically on a grid. IHMs need information on hydraulic pa
rameters at the grid level, which introduces uncertainty because of 
heterogeneity at the subgrid scale and data scarcity. In this study, we 
present a 3D continuum approach for groundwater-surface water flow 
modeling at km-scale resolution using the IHM ParFlow (PF) (Kuffour 
et al., 2020 for an overview), which lends itself for an implementation in 
ESMs, as has been demonstrated in regional climate simulations 
(Furusho-Percot et al., 2019; Poshyvailo-Strube et al., 2024) and is 
currently scaled up to the globe. Results from proof-of-concept simula
tions are provided that show the potential for consistent prognostic 
groundwater-surface water flow modeling everywhere, i.e., globally, at 
high resolution, following the motivation by (Bierkens et al., 2015; 
Wood et al., 2011). The role of compute resources and different sources 
of uncertainty are discussed including the steps forward for imple
menting prognostic water models into ESMs.

1.2. Terminology and approach

In this study, we simulate variably saturated groundwater flow in the 
subsurface at the global scale in a proof-of-concept approach. We refer to 
variably saturated groundwater flow as the movement of water in the 
porous medium of the subsurface. Thus, we do not distinguish between 
the unsaturated or vadose zone (also often referred to as the soil zone) 
and the saturated zone and mathematically treat groundwater flow with 
a combination of a continuity and movement equation (Darcy’s law) 
that can also include confined and unconfined aquifers. In fact, such 
integrated hydrologic models do not exhibit strong structural differences 
amongst each other, which has been shown in intercomparison studies 
(Kollet et al., 2017; Maxwell et al., 2014).

The key challenge of groundwater flow modeling is the 
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representation of subsurface heterogeneity. In the groundwater flow 
modeling, the heterogeneity of the subsurface is expressed via the spatial 
distribution of so-called hydrofacies. The definition of the term 
hydrofacies has been established in the groundwater flow and transport 
community and refers to a “homogeneous sedimentological unit or a 
homogeneous but not necessarily isotropic hydrogeological unit 
(Anderson, 1989), formed under characteristic conditions, which lead to 
characteristic hydraulic properties” (Klingbeil et al., 1999). In ground
water flow modeling, the hydrofacies distribution in space can be 
delineated based on geologic knowledge, maps, models of the subsur
face, and geostatistical methods, which are used to apply knowledge on 
the spatial structure and continuity of geologic units often derived from 
geologic and sedimentologic data. In many cases, the model of spatial 
hydrofacies distribution can be conditioned on observations from 
boreholes (e.g., drilling logs) and geophysical surveys. While complex 
(un-)confined aquifer architectures and tectonic structures across spatial 
scales pose a major challenge, because they are difficult to characterize 
in the field and to represent in hydrofacies models over large regions, 
they can be efficiently implemented in IHMs (Tijerina-Kreuzer et al., 
2024). This study constitutes a first step and does not take into account 
these structures, in addition to Karst and permafrost systems. Therefore, 
the simulation results (shown below) for these regions must be treated 
with caution.

For groundwater flow modeling, the hydrofacies distribution is 
translated into hydraulic properties by applying hydraulic knowledge on 
the associated lithofacies (hard rock, soft rock, soil) from literature or 
hydraulic and hydrogeophysical testing. If the hydrofacies information 
is derived from soil maps, pedotransfer functions are used in the 
translation.

We applied the variably saturated groundwater-surface water flow 
code ParFlow (Jones and Woodward, 2001; Kollet and Maxwell, 2006; 
Maxwell, 2013). In ParFlow, flow in the porous medium of the subsur
face is treated as a continuum using the 3D mixed-form of Richards 
equation, which is valid everywhere under the assumption of, e.g., an 
infinitely mobile air phase and equilibrium of pressure and saturation. 
This means that, e.g., a free water table and its nonlinear movement and 
interactions with partially saturated porous media above toward the 
land surface are implicit in the governing equation. Because ParFlow’s 
solution is expressed in pressure (and saturation), diagnostic variables 
such as water table depth and groundwater recharge in transient sim
ulations must be estimated in a postprocessing step (or online during the 
simulation).

Because ParFlow applies a free surface overland flow boundary 
condition to close the mathematical problem of variably saturated 
groundwater flow, surface water flow is intrinsically part of the solution. 
Thus, processes representation includes, e.g., the intersection of 
(perched) groundwater with the land surface (excess saturation) and 
resulting overland flow, and Hortonian runoff (excess infiltration). 
Discharge at every grid point of surface water ponding at the surface can 
be calculated using the Saint Venant equation with the kinematic wave 
approximation. Again, key non-linear processes are simulated this way 
avoiding coupling of different models and linearization via, e.g., oper
ator splitting. Illustrative examples are provided in Kollet and Maxwell 
(2006), refer to (Kuffour et al., 2020) for an overview.

The boundary value problem is implemented on a structured grid 
using a finite difference/control volume discretization approach, in this 
study’s setup with a constant discretization of 1 km in the x − and y −
directions and variable discretization in the z-direction down to 60 m 
depth. The number of grid cells in the x − , y − , z-direction is 43200, 
17400, and 15, respectively, resulting in a total of 1.1x1010 grid cells. 
Note, this includes the ocean areas (see Methods). The resulting system 
of equations is solved using advanced solver and preconditioner tech
nologies based on Newton-Krylov and multigrid approaches, respec
tively. ParFlow has been implemented from the single column scale to 
continental scale. Here, we present the first application of ParFlow at the 

global scale, and the first application of a continuum model of 3D var
iably saturated groundwater surface water flow at the global scale.

The global model was constructed based on the workflow by Belle
flamme et al. (2023) for generating ParFlow input data. The workflow is 
efficient, transferable to any region/watershed in the world and publi
cally available. The input data consists of topographic slopes, and 
hydrofacies information, which is transferred to hydraulic parameters 
and values via an indicator approach. The indicators are integers 
distributed in 3D over the computational grid, each indicator repre
senting an individual hydrofacies (Fig. 1).

The construction of the 3D hydrofacies distribution in the ParFlow 
IHM is based on SoilGrids v2017 (Hengl et al., 2017) and below the 
depth-to-bedrock variable of SoilGrids soil hydraulic are used from the 
Gleeson et al. (2014) GLHYMPS subsurface dataset based on global li
thology maps. In addition to Fig. 1, which illustrates the distribution of 
ParFlow hydrofacies from the GLHYMPS dataset, Fig. 5 shows areas of 
the global model domain with permafrost, glaciated regions (e.g. 
mountain glaciers and ice sheets), and karst and karstic systems with 
complex physics leading to highly heterogeneous permeability distri
butions including non-Darcian flow phenomena. Note that these map 
layers (Methods section) are also plotted on Fig. 3 and Fig. 4 to indicate 
simulation results, which may be considered less reliable or unreliable.

In the spinup simulation, at the land surface, the model was forced 
with climatologic monthly mean values of effective recharge that is the 
difference between precipitation and evaporation, Reff = P − ET (Fig. 2). 
While surface water is included in the continuum via the overland flow 
boundary condition allowing water to pond with a free surface due to e. 
g. exfiltration along river corridors, lateral routing is not performed in 
order to simplify the Jacoby matrix. Instead, excess water is removed to 
accelerate the initial spinup phase. When excess water is removed and 
the dynamic equilibrium is approached, lateral overland flow is acti
vated including reinfiltration based on the approach of Kollet and 
Maxwell (2006).

In Methods, more details are provided on the generation of the 
hydrofacies and indicator distribution, hydrologic consistent topo
graphic slopes, monthly effective infiltration fields, and implementation 
of boundary conditions.

To efficiently perform global 1 km-resolution continuum simulations 
of a highly-nonlinear physical problem, i.e. variably saturated ground
water surface water flow, massively parallel software is required beyond 
the state-of-the-art MPI distributed memory parallelism. ParFlow has 
been built from the ground up for massively parallel High Performance 
Computing (HPC) environments, which has been demonstrated in a 
number of studies (Burstedde et al., 2018). Going beyond the state-of- 
the-art of current integrated hydrologic modeling tools, ParFlow has 
been made performance portable (Hokkanen et al., 2021). In the 
development an existing macro based code interface in ParFlow has 
been exploited in order to abstract the parallelism and also memory 
management from the domain specific scientist in a performance 
portability layer. This layer serves as a front end to the domain scientist 
programming in ParFlow. As backends, via the portability layer, Par
Flow supports well-known distributed memory parallelism with MPI, 
OpenMP parallelism, and accelerator parallelism with CUDA and a 
Kokkos, which also supports AMD GPUs. The accelerator backends can 
also be combined with MPI for efficient heterogeneous computing on the 
most modern HPC systems. In more idealized scaling experiments, 
ParFlow shows excellent performance on the order of 103 GPUs 
(Hokkanen et al., 2021), which affords the type of large scale simula
tions presented here. Here, we applied the MPI-CUDA backend in the 
HPC environment JUWELS of the Jülich Supercomputing Centre, Ger
many (Alvarez, 2021). JUWELS consists of different modules, where the 
so-called Booster module was used in the simulations. The Booster en
compasses 936 compute nodes (2 x AMD EPYC Rome with 2 x 24 cores, 
512 GB RAM), each connected to 4 GPUs. The interconnect is Infiniband 
HDR. We utilized a total of 80 nodes and 320 GPUs in the simulations. 
This resulted in an optimal loading of the GPUs following different trials 
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and a runtime of less than two hours wall-clock per simulated month 
near the completion of the spinup, when especially the number of non- 
linear iterations has decreased considerably.

In our proof-of-concept study, the spinup was performed by repeat
edly forcing ParFlow with the global climatologic mean (P-ET) data set 
until a dynamic equilibrium was achieved (Methods section). This was 
checked by comparing pressure head distributions at the beginning and 
end of the simulated year and evaluating the temporal evolution of 
global and regional total storage. The result is a steady state image of 
global 1 km resolution pressure head distributions, which is in dynam
ical equilibrium with the Reff forcing. The pressure head values can be 
used to calculate different diagnostic variables such as water table 
depth, saturation, water storages, etc. Note, while at this stage of the 
spinup process regional and local steady-state convergence has not been 
obtained everywhere, the simulation results are useful in showing the 
feasibility of kilometer-scale simulations and act as proof-of-concept at 
the global scale. The robustness with respect to hydraulic head, relative 
saturation and diagnostic variables such as groundwater table location 
and stream discharge will be evaluated in ensuing studies.

2. Results and discussion

The steady state simulation resulted in spatial patterns in soil mois
ture and pressure head, which reflect the physically-based 3D variably 
saturated flow determined by the 3D hydrofacies distribution, topog
raphy and Reff forcing at the top (Fig. 2). Groundwater convergence 
happens along the river corridors resulting in continental drainage 
sustained by baseflow to lower and higher order streams. Note, rivers 
are not prescribed in the simulations but evolve from 3D groundwater 
flow, physically-based on the topographic representation in the model. 
From the simulation results all hydrologic variables of interest can be 
derived for the subsurface, because the full 3D pressure head distribu
tion is available everywhere. For example, in Fig. 4 groundwater table 
depth was estimated from the vertical pressure head distribution at each 
individual pixel. While spinup is not complete regionally, it appears that 
generally shallower water tables are simulated in comparison to other 
global water models (Reinecke et al., 2024).

At 1 km resolution, hydrologic variables and variances are resolved 
over more than three orders of magnitude, which affords unprecedented 

Fig. 1. ParFlow integer indicator distribution of the applied hydrofacies distribution in one model layer.

Fig. 2. Decadal average distribution of effective recharge Reff = P − ET [mm/year].
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scaling analyses at the global scale. Fig. 4 shows water table depth 
globally and at an intermediate zoom level over parts of the southern 
hemisphere showing resolved river corridors from order six to one 
streams produced by 3D groundwater convergence along river corridors. 
Clearly, water table depth and relative saturation are inversely corre
lated, which is intuitive since shallow groundwater leads to moister 
conditions at near the land surface. The strength of this correlation de
pends on the local hydraulic properties and vertical hydrogeologic 
heterogeneity.

In the spinup simulations, the spatial distribution of the hydrologic 
variables depends mainly on the 3D hydrofacies distribution and 2D 
distribution of Reff . In fact, the groundwater table distribution is mainly 
determined by the ratio of Reff with some effective hydraulic conduc
tivity. Therefore, the representation of hydrogeologic heterogeneity and 
hydrologic forcing at the land surface is key. Figs. 3 and 4, thus, exhibit a 
number of artifacts that are a direct result of the quality and resolution of 
the input information with respect to soil, hydrogeology and Reff . For 
example, there are stripe-like and checkerboard patterns in the Arctic 
and regions in a.g. North America around the Great Lakes, respectively. 
Note, however, that karst and karstic systems, glaciated, and permafrost 
regions, such as the Arctic, are generally not simulated with the 
appropriate physics. Therefore, for transparency, we overlaid the 
simulation results in Figs. 3 and 4 with a unified map of glaciated and 
permafrost regions, and karst and karstic rocks. The map overlay based 
on Fig. 5 (Methods section) shows that variably saturated groundwater 
flow is an inherently complex, multi-physics problem, which will 
require considerable model development in future.

In hydrogeology, there will arguably never be enough data to inform 
a global hydrogeologic model at hyperresolution in 3D including tec
tonic structures and fault systems in the deep and the shallow subsur
face. The same can be said for validation data especially in-situ water 
table depth and piezometric head observations. While there are data sets 
with good temporal and spatial coverage, large regions remain data-free 
or data-poor, which is not expected to change in future (Jasechko et al., 
2024). Remote sensing information in combination with groundwater 
flow models, in-situ observations and artificial intelligence (AI) tech
nologies will help in filling data gaps and generating time series of im
ages at the global scale (Adams et al., 2022; Ibrahim et al., 2024). In 
these approaches, results from 3D physics based models, as presented in 
this study, will play a major role in training various machine lear
ning/deep learning (ML/DL) models.

This study constitutes the advent of hyperresolution 3D prognostic, 
PDE-based groundwater modeling at the global scale solving variably 

saturated groundwater and surface water in a continuum approach, i.e., 
with one set of equations without compartmentalization of the saturated 
and vadose zone and surface flow. Additional model physics will be 
needed to simulate e.g. permafrost and karst regions appropriately. This 
physics-based approach comes at the expense of long compute times and 
large input and output data sets. The simulations were performed on 80 
compute nodes of the JUWELS (JUlich Wizard for European Leadership 
Science) high-performance computing system of the Juelich Super
computing Centre, Juelich, Germany. On each compute node, four CPUs 
each connected to one NVIDIA A100 GPU was used resulting in a total of 
320 GPUs to perform the simulations efficiently. This was made possible 
by advancing ParFlow into a performance portable, exascale-ready sci
entific software (Hokkanen et al., 2021). Efficient application of the 
compute resources achieved one year simulation time in about 1.5 days 
wall-clock time given the climatologic Reff forcing and hydrofacies 
distribution.

The question remains whether the added value of hyperresolution 
prognostic PDE-based groundwater-surface water modeling at the 
global scale is commensurate with the large computational and associ
ated energy expense. Clearly, prognostic modelling is not warranted in 
all cases. While cases depend on the questions that need to be answered, 
some general rationale can be made for physics based modeling. For 
example, we argue that if a pure forecasting task needs to be solved and 
observational data is available for training or calibration, parameterized 
models may suffice. This is especially valid for regional studies that deal 
with very applied and engineering challenges. This is less so at the large 
scale, where most regions are ungauged. This is especially true in the 
comparison of the Global North and South. Thus, in the intermediate 
future, prognostic groundwater-surface modeling may contribute to 
information equity similar to global atmospheric reanalysis products. In 
our opinion, global scale modeling is less about solving pure forecasting 
tasks, which are mainly confined to local aspects of water resources 
planning etc. Global prognostic models provide a physics based image of 
the state and fluxes of the subsurface that is consistent everywhere 
similar to global atmospheric models applied in climate studies. Our 
expectation is that we can gain general understanding and, thus, achieve 
transferability of findings that are supported by universally valid phys
ical principles. In addition, we are interested in closure of the water and 
also energy cycles from groundwater across the land surface to the top of 
atmosphere by coupling to land surface and atmospheric models. In 
other words, we want to inject groundwater into Earth system models 
for feedback simulations similar to previous studies at the continental or 
regional climate modeling scale (Furusho-Percot et al., 2019; 

Fig. 3. Global distribution of simulated relative saturation in the top model layer (top 2 cm).
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Poshyvailo-Strube et al., 2024; Yang et al., 2023). Applying physics- 
based variably saturated groundwater flow models such as ParFlow al
lows testing of simplifying assumptions related to e.g. hydrogeologic 
complexity and 3D flow representation, which can not be done with 
existing approaches in ESMs. These models will be extremely useful in 
climate studies, story line simulations and counterfactuals, including 
human interventions and transferability of the results. Ultimately, 
global, prognostic model based data sets will be available, which are 
continuous in space and time for training large scale machine learning 

and deep learning models, something that is common place in the at
mospheric domain, yet prominently missing in the groundwater domain 
at the global scale, because of lack of prognostic modelling approaches.

In global scale models, assessing uncertainty due to large data gaps 
with respect to the hydrofacies distribution, large scale tectonics and in- 
situ and remotely sensed observations will remain one of the largest 
challenges in future. Uncertainty analyses with respect to, e.g., hydrof
acies distribution often require simulations of multiple realizations. 
Done right, each realization would require a full spinup toward dynamic 

Fig. 4. a) Global distribution of groundwater table depth calculated from the vertical pressure head distribution at each individual pixel; b) zoom over parts of the 
southern hemisphere.
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equilibrium conditions, which quickly becomes computationally pro
hibitive at scale. In fact, any changes in hydraulic properties, boundary 
conditions, or forcings necessitate a new spinup, which also holds in case 
of calibration and data assimilation Ultimately, AI technologies are a 
promising alternative to physics-based simulation (Bennett et al., 2024) 
to achieve an approximate spinup fast (Ajami et al., 2014), which can be 
used as an initial condition for further fine tuning. However, in case of 
applied prediction tasks, training AI on simulation results based on 
simplified and uncertain hydrogeologic heterogeneity representations 
limits their utility.

Currently, exascale HPC environments become more common place. 
In natural science, to fully grasp the potential of these resources is 
difficult for simulation research. For example, loading one tenth of the 
new and upcoming JUPITER modular exascale machine (Herten et al., 
2024) with the current configuration of the global model would allow a 
lateral spatial resolution of 100 m. These types of resources open 
entirely new avenues of research also with respect to uncertainty 
quantification, which have been unthinkable before.

In the context of the presented proof-of-concept study and future 
exascale applications, the big data analytics challenge is obvious. 
Common I/O is not feasible during runtime and also in postprocessing 
and analyzing the results. For example, the current configuration results 
in output of, e.g., 3D pressure head distribution in single or double 
precision without compression on the order of 101 GB for a single time 
step. Going toward science cases at the exascale will result in single file 
sizes of 103 GB, which is not tractable. Thus, in-situ technologies, 
working on the data during the simulations at run-time are essential 
(Childs et al., 2019; Do et al., 2022).

The technologies needed to address these technical challenges 
already exist and are widely used in other scientific and industrial fields. 
In hydrogeology and groundwater modeling, the community must keep 
pace with the rapid advancements in these technologies. Challenging 
questions about the past, present, and future state of the terrestrial water 
continuum on a global scale—where insights can be learned, general
ized, and transferred across regions—may serve as the catalyst needed to 
drive technological and scientific progress within our field.

3. Methods

3.1. ParFlow model

ParFlow is a 3D variably saturated groundwater surface water flow 
model, which also integrates the land surface model CLM (not applied in 
this study). For variably saturated groundwater flow, Richards equation 
has been implemented based on finite differences. The overland flow 
boundary condition has been implemented using finite volumes with 
options for kinematic or diffusive waves. In the second step of the 
spinup, when lateral routing is activated, the kinematic wave approxi
mation is used in the simulations.

The model was constructed with a resolution Δx = Δy = 1km. 
Because ParFlow currently still works on a structured grid in Cartesian 
corrdinates, the error in the cell areas increases from the equator to the 
poles. The vertical discretization Δz increases vertically from 0.02 to 18 
m across 15 layers resulting in a total depth of the subsurface 
compartment of 60 m. In the current model setup, this depth is constant 
globally and chosen rather arbitrary to focus on shallow aquifer systems 
connected to the land surface relevant in ESM at time scales up to de
cades. In future, variable depth will be implemented based on more 
detailed hydrogeologic and depth-to-bedrock information.

3.2. Hydrofacies and indicator distribution

The procedure to build the indicator file largely follows the meth
odology proposed by Belleflamme et al. (2023). For the upper soil 
characteristics, above the depth-to-bedrock, we use the soil texture 
(sand, silt, and clay fraction) from the global dataset SoilGrids250m 
v2017 (Hengl et al., 2017). The data is first bilinearly regridded to our 
regular lat/lon grid. Then, the seven SoilGrids layers, which cover the 
upper 2 m, are linearly interpolated to match the depth layers of our 
grid. Between 2 m depth and the depth-to-bedrock, the soil texture is 
considered constant. After the interpolation, the texture fractions are 
rescaled to sum up to 100 % at each grid point. Missing data are inter
polated with the nearest neighbor method. Then, the soil texture is 
classified into the 12 USDA texture classes, so that the soil hydraulic 
properties from the Rosetta framework (Zhang and Schaap, 2017) can be 
assigned to each grid point. The depth-to-bedrock is also taken from 
SoilGrids250m v2017 and bilinearly interpolated in the same way as the 
soil texture. Below the depth-to-bedrock, we have rasterized the 

Fig. 5. Global distribution of glaciers and ice sheets, permafrost, and karst and karstic systems as a supplementary information on potential uncertainties in hy
drologic model process representation and subsurface parameter estimation. The same map layers are also plotted in Figs. 3, 4a, and 4b on top of Sr and WTD. Data 
sources: ESA Permafrost CCI (processed), GLIMS glacier database (aggregated), WOKAM karst and karstic systems map.
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geometries of the nine geological types from the GLHYMPS dataset 
(Global HYdrogeology MaPS, Gleeson et al., 2014) to our regular grid, 
using the nearest neighbor method. The lowest layer is defined to have 
the GLHYMPS types everywhere. Seas and oceans are masked out as a 
separate type using the land-sea mask.

3.3. Effective recharge fields

We applied potential recharge (precipitation minus evapotranspira
tion) as a forcing across the top layer of our modeling setup to achieve a 
steady-state configuration. Effective recharge, Reff, was calculated using 
ISIMIP2b global water outputs, which are based on simulations from 
global water models following the ISIMIP2b protocol (Gosling et al., 
2025). Specifically, we used precipitation and actual evapotranspiration 
values from the CLM4.5 model (Lawrence et al., 2011) at a 0.5◦ reso
lution. Monthly average Reff was first calculated using multi-year 
monthly data from 1861 to 2005. These multi-year monthly averages 
were then used to calculate and effective yearly Reff and interpolated 
using the first-order conservative interpolation method (Jones, 1999) to 
match our model grid at 1 km resolution.

3.4. Topographic slopes

In ParFlow the topographic slopes represent the orography and thus 
determine the shape of the terrain following grid and the overland flow 
routing, which leads to the development of the river network. Slopes are 
defined such that there is a D4 flow direction per grid cell; the flow is 
directed either towards the North, South, East, or West. The slopes are 
calculated based on the ASTER global digital elevation model (GDEM) 
(Abrams et al., 2020). The preprocessing avoids local depressions that 
would lead to unrealistic surface water ponding heights. In order to 
ensure a terrain-determined realistic river network (in ParFlow the 
water flows towards the convergence zones, i.e., river valleys, through 
gravity or overland flow), the hydrologically adjusted MERIT GDEM 
(Yamazaki et al., 2019) is used to correct the direction of the slopes 
wherever needed to ensure each grid cell is drained.

3.5. Boundary conditions

The treatment of the lateral boundary conditions and, in this context, 
the oceans requires special discussion. In our global setup, the oceans 
are part of the computational domain with some default hydraulic 
parameter values assigned to ocean grid cells constituting a brute-force 
approach. While this appears to be inefficient, and indeed is to a certain 
degree, the approach bears a major advantage. While coastlines and 
continental shelf regions are not realistically represented in the model in 
general, by including the oceans in the computational domain, we do not 
need to define arbitrary boundary conditions along the continental 
margins. Thus, groundwater head and fluxes are allowed to dynamically 
adjust. Arbitrary boundary conditions (in our case no-flow) applied 
around the rectangular global domain do not influence the solution on 
the continents. The major disadvantage is that each iterative solution 
includes ocean grid cells, increasing the condition number of the pres
sure matrix, compute and storage. Preconditioning, accelerator 
computing and postprocessing mitigate these disadvantages to a large 
degree. For completeness, the lower boundary condition at a depth of 60 
m was arbitrarily defined as no-flow. Interactions with deeper aquifers 
and flow paths can not be accounted for in the current implementation.

3.6. Glacier, ice sheet, karst and karstic systems map

The construction of the 3D hydrofacies distribution in the ParFlow 
IHM is based on SoilGrids v2017 (Hengl et al., 2017) and below the 
depth-to-bedrock variable of SoilGrids soil hydraulic are used from the 
Gleeson et al. (2014) GLHYMPS subsurface dataset based on global li
thology maps. In addition to Fig. 1, which exemplifies the ParFlow 

hydrofacies distribution from the GLHYMPS dataset, Fig. 5 contains 
areas of the global ParFlow model domain that are either difficult to 
simulate due to process representation, such as permafrost soils (Obu, 
2021) and glaciated regions (mountain glaciers and ice sheets), and/or 
where a complex hydrogeological situation due to karst or karstic sys
tems rock formations (Chen et al., 2017) may lead to or is associated 
with a lithology with high and highly heterogeneous permeabilities and 
hydraulic conductivities that are difficult to account for in the static 
subsurface parameters of any model system. The additional state-of-the- 
art data for glaciers and ice sheets has been derived and generalized 
from the Global Land Ice Measurements from Space glacier database 
(GLIMS) (GLIMS and NSIDC, 2005, updated 2018). The continuous and 
discontinuous permafrost is a spatially aggregated long-term mean 
(1997 to 2023) binary mask based on the ESA Permafrost Climate 
Change Initiative dataset permafrost fraction per area (Westermann 
et al., 2025). The karst and karstic systems overview in Fig. 5 is from the 
World Karst Aquifer Map (WOKAM) (Chen et al., 2017). Note that these 
map layers are also plotted onto Fig. 3, and Fig. 4a and 4b to indicate 
simulation results, which may be considered less reliable.
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Palmer, T., Posey, S., Prein, A., Primus, O., Pritchard, M., Pullen, J., Putrasahan, D., 
Quaas, J., Raghavan, K., Ramaswamy, V., Rapp, M., Rauser, F., Reichstein, M., 
Revi, A., Saluja, S., Satoh, M., Schemann, V., Schemm, S., Schnadt Poberaj, C., 
Schulthess, T., Senior, C., Shukla, J., Singh, M., Slingo, J., Sobel, A., Solman, S., 
Spitzer, J., Stier, P., Stocker, T., Strock, S., Su, H., Taalas, P., Taylor, J., Tegtmeier, S., 
Teutsch, G., Tompkins, A., Ulbrich, U., Vidale, P.-L., Wu, C.-M., Xu, H., Zaki, N., 
Zanna, L., Zhou, T., Ziemen, F., 2024. Earth virtualization engines (EVE). Earth Syst. 
Sci. Data 16, 2113–2122. https://doi.org/10.5194/essd-16-2113-2024.

Sutanudjaja, E.H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J.H.C., Drost, N., van 
der Ent, R.J., de Graaf, I.E.M., Hoch, J.M., de Jong, K., Karssenberg, D., López 
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