001050415 001__ 1050415
001050415 005__ 20260113204523.0
001050415 0247_ $$2doi$$a10.1016/j.rse.2025.115203
001050415 0247_ $$2ISSN$$a0034-4257
001050415 0247_ $$2ISSN$$a1879-0704
001050415 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00185
001050415 037__ $$aFZJ-2026-00185
001050415 082__ $$a550
001050415 1001_ $$0P:(DE-Juel1)188104$$aBuffat, Jim$$b0$$eCorresponding author
001050415 245__ $$aEmulation-based self-supervised SIF retrieval in the O$_2$-A absorption band with HyPlant
001050415 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2026
001050415 3367_ $$2DRIVER$$aarticle
001050415 3367_ $$2DataCite$$aOutput Types/Journal article
001050415 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768291362_9546
001050415 3367_ $$2BibTeX$$aARTICLE
001050415 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050415 3367_ $$00$$2EndNote$$aJournal Article
001050415 520__ $$aThe retrieval of sun-induced fluorescence (SIF) from hyperspectral imagery requires accurate atmospheric compensation to correctly disentangle its small contribution to the at-sensor radiance from other confounding factors. In spectral fitting SIF retrieval approaches this compensation is estimated in a joint optimization of free variables when fitting the measured at-sensor signal. Due to the computational complexity of Radiative Transfer Models (RTMs) that satisfy the level of precision required for accurate SIF retrieval, fully joint estimations are practically unachievable with exact physical simulation. We present in this contribution an emulator-based spectral fitting method neural network (EmSFMNN) approach integrating RTM emulation and self-supervised training for computationally efficient and accurate SIF retrieval in the O$_2$-A absorption band of HyPlant imagery. In a validation study with in-situ top-of-canopy SIF measurements we find improved performance over traditional retrieval methods. Furthermore, we show that the model predicts plausible SIF emission in topographically variable terrain without scene-specific adaptations. Since EmSFMNN can be adapted to hyperspectral imaging sensors in a straightforward fashion, it may prove to be an interesting SIF retrieval method for other sensors on airborne and spaceborne platforms.
001050415 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001050415 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001050415 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050415 7001_ $$00000-0003-0111-0861$$aPato, Miguel$$b1
001050415 7001_ $$00000-0003-2469-8290$$aAlonso, Kevin$$b2
001050415 7001_ $$0P:(DE-HGF)0$$aAuer, Stefan$$b3
001050415 7001_ $$0P:(DE-HGF)0$$aCarmona, Emiliano$$b4
001050415 7001_ $$0P:(DE-HGF)0$$aMaier, Stefan$$b5
001050415 7001_ $$0P:(DE-HGF)0$$aMüller, Rupert$$b6
001050415 7001_ $$0P:(DE-Juel1)162306$$aRademske, Patrick$$b7$$ufzj
001050415 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b8
001050415 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b9$$ufzj
001050415 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2025.115203$$gVol. 334, p. 115203 -$$p115203 -$$tRemote sensing of environment$$v334$$x0034-4257$$y2026
001050415 8564_ $$uhttps://juser.fz-juelich.de/record/1050415/files/Buffat%20et%20al.%20-%202026%20-%20Emulation-based%20self-supervised%20SIF%20retrieval%20in%20the%20O2-A%20absorption%20band%20with%20HyPlant.pdf$$yOpenAccess
001050415 909CO $$ooai:juser.fz-juelich.de:1050415$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001050415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188104$$aForschungszentrum Jülich$$b0$$kFZJ
001050415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162306$$aForschungszentrum Jülich$$b7$$kFZJ
001050415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b8$$kFZJ
001050415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b9$$kFZJ
001050415 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001050415 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001050415 9141_ $$y2026
001050415 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001050415 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001050415 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-09
001050415 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-09
001050415 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-09
001050415 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2022$$d2024-12-09
001050415 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001050415 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bREMOTE SENS ENVIRON : 2022$$d2024-12-09
001050415 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001050415 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050415 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-09
001050415 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001050415 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001050415 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001050415 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-09$$wger
001050415 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001050415 920__ $$lyes
001050415 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001050415 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
001050415 980__ $$ajournal
001050415 980__ $$aVDB
001050415 980__ $$aUNRESTRICTED
001050415 980__ $$aI:(DE-Juel1)IAS-8-20210421
001050415 980__ $$aI:(DE-Juel1)IBG-2-20101118
001050415 9801_ $$aFullTexts