| Hauptseite > Publikationsdatenbank > Emulation-based self-supervised SIF retrieval in the O$_2$-A absorption band with HyPlant > print |
| 001 | 1050415 | ||
| 005 | 20260113204523.0 | ||
| 024 | 7 | _ | |a 10.1016/j.rse.2025.115203 |2 doi |
| 024 | 7 | _ | |a 0034-4257 |2 ISSN |
| 024 | 7 | _ | |a 1879-0704 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2026-00185 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2026-00185 |
| 082 | _ | _ | |a 550 |
| 100 | 1 | _ | |a Buffat, Jim |0 P:(DE-Juel1)188104 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Emulation-based self-supervised SIF retrieval in the O$_2$-A absorption band with HyPlant |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2026 |b Elsevier Science |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1768291362_9546 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The retrieval of sun-induced fluorescence (SIF) from hyperspectral imagery requires accurate atmospheric compensation to correctly disentangle its small contribution to the at-sensor radiance from other confounding factors. In spectral fitting SIF retrieval approaches this compensation is estimated in a joint optimization of free variables when fitting the measured at-sensor signal. Due to the computational complexity of Radiative Transfer Models (RTMs) that satisfy the level of precision required for accurate SIF retrieval, fully joint estimations are practically unachievable with exact physical simulation. We present in this contribution an emulator-based spectral fitting method neural network (EmSFMNN) approach integrating RTM emulation and self-supervised training for computationally efficient and accurate SIF retrieval in the O$_2$-A absorption band of HyPlant imagery. In a validation study with in-situ top-of-canopy SIF measurements we find improved performance over traditional retrieval methods. Furthermore, we show that the model predicts plausible SIF emission in topographically variable terrain without scene-specific adaptations. Since EmSFMNN can be adapted to hyperspectral imaging sensors in a straightforward fashion, it may prove to be an interesting SIF retrieval method for other sensors on airborne and spaceborne platforms. |
| 536 | _ | _ | |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) |0 G:(DE-HGF)POF4-2173 |c POF4-217 |f POF IV |x 0 |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Pato, Miguel |0 0000-0003-0111-0861 |b 1 |
| 700 | 1 | _ | |a Alonso, Kevin |0 0000-0003-2469-8290 |b 2 |
| 700 | 1 | _ | |a Auer, Stefan |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Carmona, Emiliano |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Maier, Stefan |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Müller, Rupert |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Rademske, Patrick |0 P:(DE-Juel1)162306 |b 7 |u fzj |
| 700 | 1 | _ | |a Rascher, Uwe |0 P:(DE-Juel1)129388 |b 8 |
| 700 | 1 | _ | |a Scharr, Hanno |0 P:(DE-Juel1)129394 |b 9 |u fzj |
| 773 | _ | _ | |a 10.1016/j.rse.2025.115203 |g Vol. 334, p. 115203 - |0 PERI:(DE-600)1498713-2 |p 115203 - |t Remote sensing of environment |v 334 |y 2026 |x 0034-4257 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1050415/files/Buffat%20et%20al.%20-%202026%20-%20Emulation-based%20self-supervised%20SIF%20retrieval%20in%20the%20O2-A%20absorption%20band%20with%20HyPlant.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1050415 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)188104 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)162306 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)129388 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)129394 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2173 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 1 |
| 914 | 1 | _ | |y 2026 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-09 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b REMOTE SENS ENVIRON : 2022 |d 2024-12-09 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-09 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b REMOTE SENS ENVIRON : 2022 |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-09 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-09 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-09 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-09 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-8-20210421 |k IAS-8 |l Datenanalyse und Maschinenlernen |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-8-20210421 |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|