nature computational science

Article

https://doi.org/10.1038/s43588-025-00854-1

Analogin-memory computing attention
mechanismforfast and energy-efficient

largelanguage models

Received: 15 November 2024

Accepted: 22 July 2025

Nathan Leroux®"*
Jan Finkbeiner ®'3, Sebastian Siegel? John Paul Strachan?® & Emre Neftci®'?

, Paul-Philipp Manea®?%*# -7, Chirag Sudarshan?,

Published online: 8 September 2025

W Check for updates

Transformer networks, driven by self-attention, are central to large language
models. In generative transformers, self-attention uses cache memory

to store token projections, avoiding recomputation at each time step.
However, graphics processing unit (GPU)-stored projections must be loaded
into static random-access memory for each new generation step, causing
latency and energy bottlenecks. Here we present a custom self-attention
in-memory computing architecture based on emerging charge-based
memories called gain cells, which can be efficiently written to store new
tokens during sequence generation and enable parallel analog dot-product
computation required for self-attention. However, the analog gain-cell
circuits introduce non-idealities and constraints preventing the direct
mapping of pre-trained models. To circumvent this problem, we design an
initialization algorithm achieving text-processing performance comparable
to GPT-2 without training from scratch. Our architecture reduces attention
latency and energy consumption by up to two and four orders of magnitude,
respectively, compared with GPUs, marking a substantial step toward
ultrafast, low-power generative transformers.

Transformers' are central to modernartificial intelligence (Al), power-
ing advances in language models, image processing and beyond.
However, their high computational demands lead to substantial energy
consumption. Enhancingtheir efficiency is essential to reduce environ-
mentalimpact and to keep pace with the exponentially growing size of
Almodels. The success of transformers as state of the artin sequence
processing and generation is enabled by their attention mechanism?.
To capture dependencies across sequences, the attention mechanism
performs dot products between different projections of multiple
sequence elements, known as tokens. For generative tasks, the best
performance is achieved by autoregressive, decoder-only transfor-
mers’. Ateachinference step, the decoder generates a token, whichis
then appended to the input sequence, forming the input for the sub-
sequent step. To avoid recomputing the keys and values (KV cache)

projections of the previously generated tokens, the so-called
KV-caching method stores the projections from previous tokens in
memory and updates the KV cache with the new projections®*.
Inagraphics processing unit (GPU), for each token, the entire KV
cache must be transferred from main high-bandwidthmemorytocache
memory (static random-access memory (SRAM)). In addition, the KV
cacheis often muchlarger than the available SRAM memory owing to
the dimensions of the stored projections and the sequence length®. For
instance, the entire KV cache of the model Mistral 7B° requires 8 Gb
for a batch size of 1, as necessary for inference workloads. In recent
technologies, the energy for data access exceeds the energy required
for computations’. Loading the KV cache for the attention mechanism
isthusamajor bottleneck, causingincreased energy consumption and
latency in large language models (LLMs)®. To mitigate this bottleneck,

'PGI-15, Forschungszentrum Jiilich, Jilich, Germany. ?PGI-14, Forschungszentrum Jiilich, Jilich, Germany. *Faculty of Electrical Engineering,

RWTH Aachen, Aachen, Germany. “These authors contributed equally: Nathan Leroux, Paul-Philipp Manea.

p.manea@fz-juelich.de

e-mail: n.leroux@fz-juelich.de;

Nature Computational Science | Volume 5 | September 2025 | 813-824

813

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-025-00854-1
http://orcid.org/0000-0003-3672-0870
http://orcid.org/0000-0001-6998-3066
http://orcid.org/0000-0003-4556-3758
http://orcid.org/0000-0002-0332-3273
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-025-00854-1&domain=pdf
mailto:n.leroux@fz-juelich.de
mailto:p.manea@fz-juelich.de

Article

https://doi.org/10.1038/s43588-025-00854-1

awidebody ofliterature explores resource-efficient algorithms’. Alter-
native architectures to transformers with linear time complexity are
developed to improve long-sequence processing efficiency'*". How-
ever, transformers continue to exhibit more stable training at scale
thanalternatives such as Mamba", which contributes to their ongoing
dominance despite the efficiency of state-space models. Alternatively,
different methods have been developed to reduce the memory require-
ments of KV caching through token pruning?, latent KV-cache compres-
sion” or low-rank approximations', or by reusing the same KV-cache
pairs across multiple heads (grouped-query attention)®.

While these algorithmic strategies reduce computational and
memory overhead, achieving further energy efficiency increasingly
dependsonhardware innovation. Hardware systems dedicated to spe-
cific neural architectures can substantially outperform conventional
central processing units and GPUs in terms of energy efficiency™. In
particular, to mitigate data-transfer overhead of weights loading,
several approaches leverage either near-memory orin-memory com-
puting (IMC)”?". IMC is particularly beneficial when using non-volatile
memories to store stationary weightsin linear layers?. However, a full
optimization of transformers’ inference also requires addressing the
attention mechanism, which contributes substantially to the overall
computational cost®’®, Current IMC solutions do not yet meet all the
requirements for efficient hardware implementation of attention.
Specifically, KV cache demands fast and energy-efficient memory
writing asitisinput dependent and must be updated at every genera-
tion step. In addition, high parallelism is crucial for low-latency infer-
ence, while high memory density is needed for scaling to large models.
Finally, long retention time is essential to avoid frequent memory
refresh operations. KV cache has beenimplemented either by dynamic
random-access memories (DRAMs)?**, which have limited parallelism
requiring many digital sequential adders, or by SRAMs™**, which are
limited by their volatility and relatively low density*. Non-volatile
memories can be used for linear layers of transformers”, but are too
slow, energy expensive and are not endurant enough for dynamical
KV-cache writing'®*,

In this work, we propose an IMC hardware architecture based on
emerging charge-based memory devices, known as gain cells**%, to
store token projections and compute dot products for the attention
mechanism. Asaresult, gain-cell crossbar arrays simultaneously serve
to store the KV cache and to perform attention computation. Gain
cellsstoreinformationina capacitor, with adedicated read transistor
generating current based on the capacitor’s voltage. Unlike DRAM,
this enables non-destructive read operations, supporting highly
parallel IMC computations. Gain cells have high endurance, fast write
speeds and low write energy, and are multi-level. Oxide semiconductor
field effect transistor (OSFET)-based gain cells (for example, indium
gallium zinc oxide (IGZO) or indium tin oxide (ITO)) are capable of
retaining their state for several seconds without a power supply®™°,
can be manufactured with very small feature sizes, achieving higher
density than SRAM, and also support three-dimensional (3D) integra-
tion, which can further reduce effective area requirements for IMC
applications®*,

The analog-to-digital conversion required for analog IMC often
hinders the advantages this approach offers, as analog-t-digital con-
verters (ADCs) are power and area intensive**. To mitigate this issue,
charge-based integration is an energy-efficient alternative®?°. Here,
we choose to perform the core of the attention mechanism—two
dot products, scaling and activation function—fully in the analog
domains, using charge-to-pulse circuits for activationand inter-module
communication, combined with pulse counters for final readout.

Practical applications of LLMs often rely on pre-trained models
to reduce training costs. However, our co-optimization approach
introduces specific hardware constraints to enhance architectural
performance, which leads to a divergence from standard pre-trained
models. The multiplications operated with gain cells are non-ideal.

In addition, the normalization in softmax requires summing across
all input elements, requiring global connections with an increased
hardware complexity scaling with the sequence length®”*%, In our
system, the activation functionisinstead operated element-wise with
charge-to-pulse circuits implementing HardSigmoid functions.

To overcome this discrepancy, we introduce an algorithm that
adapts a pre-trained language model to our architecture by scaling
each layer according to its statistics and hardware characteristics.
With our adaptation algorithm, our model achieves accuracy similar
to a pre-trained GPT-2 model without having to train the model from
scratch. Overall, the contributions of this study are:

« An in-memory, mixed analog-digital computing design to
store token projections and compute attention dot products
with gain-cell arrays at high energy efficiency.

» Anend-to-end attention mechanismbased on analog signals lever-
aging charge-to-pulse circuits to avoid power- and area-intensive
ADCs.

« Quantitative performance analysis of a scalable architecture
with area floorplan including analog circuits and digital
peripheries.

« Asoftware-to-hardware methodology to map pre-trained (ideal)
modelstonon-traditional hardware reaching an accuracy equiva-
lent to GPT-2.

« Ourarchitecture achieves up to five and two orders of magnitude
lower energy consumption and latency, respectively, compared
with GPUs.

After detailing the attention mechanism algorithm, we demon-
strate its implementation using gain cells and charge-to-pulse
circuits. We then show how our approach maps a pre-trained model
to our hardware while maintaining high accuracy on common natural
language processing (NLP) benchmarks. Finally, we evaluate the
architecture’s performance in terms of energy consumption, latency
and area footprint.

Results

Attention mechanism

Figurelashows the attention mechanismalgorithm. In autoregressive
transformers, new token projections called queries (Q), keys (K) and
values (V) are created for each inference step from the weights
Woxv € R>@and aninput token x; € R’ as:

Q.. K, Vi = WokvXi, ey

where i is the token index, D is the token dimension and d is the
embedding dimension. The keysand values K; € R and V; € R are
stored as part of the full KV cache with K € R and V € R™¢, where
Tis the sequence length. The query Q; € R is not stored but used
forinference as

S:
S, =0Q;-K'; Ai=¢<_’).v. @
Vd

The dot product between the queries and keys produces an attention
score matrix S; € RV, In standard transformers, the activation func-
tion ¢ is typically a softmax function, but other nonlinear activation
functions canyield similar accuracy'®***°, In particular, sigmoid-based
attention has been shown to match softmax-based attention on
models up to 7-billion-parameters large*’. Recent studies show thatin
the case of sliding window attention*, the normalization of softmax
leads to vanishing memory while sigmoid-based attention canlead to
better information*>**, The output of the attention mechanism A4; is
thenobtained by the dot product between the activation ¢(S;) and the
values. Inthe transformer architecture, multiple attention ‘heads’ are

Nature Computational Science | Volume 5 | September 2025 | 813-824

814

http://www.nature.com/natcomputsci

Article

https://doi.org/10.1038/s43588-025-00854-1

a b
DAC @(S) vV
Linear p—)
 FFFF =
C"o'ncat Q *;{ xx x —
N FERFRF
#(S) =3
HardSigrpoid c w'r‘gt—turp,utse
X-n
s=ak" |3 (| /]
N AAAA
S A M A A
& If‘;f MM
<M>

e f 9
10 0.90 &
=z s =
= o ke
= s]
5

= o0 ol YL S ————— 3
- - =}
3 ey 2
5 © =
o i B3 g
-10 o0 =
T T T T O

0 0.45 0.90 0 10

Weight: Vg, (V) Time (ms)

Fig. 1| Building blocks of the analog hardware attention mechanism.

a, Multi-head attention architecture. The nonlinear activation is denoted by ¢.
Inputs Q, Kand Vare the token projections.S=Q - K" is the attention score

and A =@(S) - Vis the final attention output. b, Hardware implementation of the
attention mechanism. Red and green traces indicate analog input currents and
generated voltage pulses, respectively. Y/indicates current integration. Mand D
denote the sliding window and embedding dimensions. COUNT blocks are pulse
counters returning the digital attention result A. ¢, HardSigmoid charge-to-pulse
circuit: integrates bitline (BL) current and emits a pulse width proportional to
the accumulated charge during the discharge phase. The circuit is controlled by
the signals: sample (SAMP), reset (REST) and discharge (DCH) which control

the three states. Vj,,, the charge integrated by the charge-to-pulse circuits.

C
i h e-to e
Y &)
o8-
1
I
<t
int
% =T
>\ - J
d

S r

100 & 100 Voo
= o
R =3
3 °
o s

50 2 50 ®
g 9
3 =
5

0 3 o 0
0 50 -50 0 50

Input: XQ; -K; (HA) Input: Z(S)) -V; (HA)

d, Signed gain-cell-based multiplier: V. encodes the weight (K or V) and is set
via write transistors N, and P,. P, and N, modulate the output current based on
Viore» While P;and N; act as switches driven by the input query Q. The signals of the
cellinclude two complementary word line read (WLR) signals, which serve as the
inputs, aword line write (WLW) signal, acomplementary write enable (WE) signal
pair,and aBL that collects the output current. e, Simulated output current /.
versus stored voltage V.. for V,,= 0.9 V. Monte Carlo variation bounds are shown
ingreen.f, Simulated voltage decay of the storage capacitor over time due

to leakage from write transistors. g, Output pulse width of the HardSigmoid
charge-to-pulse block versus summed input current },Q; - K. h, Output pulse
width and sign from the signed charge-to-pulse block versus summed input
current Y (S, - V.. All simulations assume V;,, = 0.9 V.

computed in parallel, concatenated and provided to a subsequent
linear layer to produce the final multi-head attention result.

Indecoder-based transformers, causal attention allows the score
matrix S to compare the input token with all previous sequence ele-
ments. However, to prevent the physical memory size from scaling
with the entire sequence length, we employ a type of attention that
is both causal and local: sliding window attention*'. In this approach,
only a fixed number M of key and value projections are retained in
memory and attention scores for elements older than the last M are
masked (Fig. 2a). Although sliding window attention is local at each
layer, it canstill capture global information in deep networks because
the receptive field grows with the number of layers®.

End-to-end analog hardware attention

In this section, we first give an overview of how our architecture
performs operations on analog signals to compute attention. Then,
we detail how the different circuits operate. Keys K and values V
are stored in two gain-cell arrays. The query Q;is encoded as pulse-
width modulation (PWM) pulses and is theinput of the firstarray, per-
forming the dot product Q; - K. An intermediate charge-to-voltage
pulse block integrates the output currents from the first array and

outputs PWM voltage pulses for the second array, while applying a
HardSigmoid activation function (Fig. 1c). The second array, computing
¢(S) - Visread out using a signed charge-to-voltage pulse block, where
the resulting pulse widths are measured by a digital counter.

The proposed gain cell, shown in Fig. 1d, contains a write stage
for programming the capacitor C,and amultiplication stage approxi-
mating the product between the input and the capacitor voltage.

The storage capacitor is charged with a multi-level voltage pulse
emitted by a digital-to-analog converter (DAC). The voltage pulse
is gated to the designated capacitor by a write-enable transmission
gate. Due to leakage in the storage capacitors, the voltages gradually
decay over time. Figure 1f shows the simulated transient response
of the storage capacitor voltage V.., which corresponds to the
cell weight for both extreme values O V and 0.9 V. An exponential
decay fit of the gain cells leakage reveals that the time constant (that
is, retention time) of our silicon complementary metal-oxide-semi-
conductor (CMOS)-based gain cell is =5 ms. Note that an OSFET-
based gain cell can achieve multiple orders of magnitude longer
retention times®.

The multiplication stage generates an analog current viaa push-
pull transistor pair, with its amplitude set by the stored capacitor

Nature Computational Science | Volume 5 | September 2025 | 813-824

815

http://www.nature.com/natcomputsci

Article

https://doi.org/10.1038/s43588-025-00854-1

a Memory Memory Memory
Ko K K Ky Ky Kg Ko Ky Ky Ky Ko Ks Ko K Ky Kz Ky Kg
Qo Qo Qo
Q Q Q,
) Q, o Q o| @ .
£ £ E
=l Qs =l Qs =l Q,
Q Q Q
Qs Qs Qs
— — —
* Window size M * Window size M * Window size M
b Write voltages Write voltages Write voltages
Vo, Vi, V, 4
Vo,0 9 Vio 9 Voo g
T @ Ao 8 s A 1;3: F— A 2
°] T
7Aoo £ T o S P A0 S
® ® 2
L Y=\ ¢ L Y= ¢ L Y=
3 So0| Soi | Soa 3 Sio | S | Siz 3 Ss0| Sa1 | Sz
(2]
= Qo A % Qs ¥ A % Qa4 A
a a a
3 Qoo T s 3 Qo ! T = 3 Qo A A
c [c P
= Ko = K, = K,
0,0 KW 0 KL 0
Write voltages Write voltages Write voltages
c 65 ns
: 15 ns
i MAC Q;-K" COUNTER DIGITALADD
{RSTK RSTV : : t
T T T T T T T T T T T T T T
b “Tom — Vi
Vit — Pulse
— Pulse —— S
an
d 0.90 | € 590 | Fe==m=s=s=== -
| ! |
| |
= = | I
[(0] I
9 045 g o5 :
< : |
RSTK MAC Q;- K" MAC ¢(S) -V | RSTV l| MAC ¢(S) - V COUNTER
|
0 o] | I
T T T T T T T T T T T T
t, +0 5 10 15 20 25 30 35 t, +15 20 25 30 35 40 45 50
Time (ns) Time (ns)

Fig. 2| Analog hardware attention pipeline. a, Three inference steps of adot
productbetween Q and K'in sliding window attention. The gray boxes represent
tokens that are attended to and the blank boxes represent the masked tokens.
b, Equivalent gain-cell-array implementations for an entire attention head. In
every inference step, anew column (pointed by red arrows) of K and Vis written
before the queries Q are applied at the input. S are the currents summed at the
bitlines, Y/represents current integration in charge-to-pulse circuits,and A are
the outputs. ¢, Proposed temporal pipeline. The process begins by resetting
the charge-to-pulse readout capacitors for the K array (RSTK). While Q pulses

are applied tocompute S =Q - K7, the Vvalues for the current token are written

in parallel to the Varray. After the write, the Vreadoutis reset (RSTV), and the
resulting ¢(S) pulses from the charge-to-pulse circuits are applied to the Varray
to compute ¢(S) - V. COUNTER digitizes the final pulse width and sign, and a
digital adder combines results from multiple sub-tiles to produce the attention
outputA. d,e, Transient simulation of the ¢(Q - K") multiply-accumulate (MAC)
operation (d) and the ¢(S) - VMAC operationincluding temporal location (e).
Vi isthe charge integrated by the charge-to-pulse circuits, ‘Pulse’is their output
signal and ‘Sign’ is the signal current for the counter within the pipeline.

voltage (V,.), asshown in Fig. 1e. This current is enabled only during
theinput pulse, which gatesit onto the shared bitline, where currents
from multiple cells are summed according to Kirchhoff’s law.

In each inference step, both arrays are updated with one
column from the key and value matrices, as we will show in more
detail in the section ‘Analog hardware sliding window attention data-
flow”. The M columns of each array represent the K and V of the
previous M tokens, while the rows correspond to the d distinct
embedding elements.

Due to temporal input encoding, gain-cell outputs also vary
over time and must be integrated to compute the dot product.

This is performed by charge-to-pulse circuits (Fig. 1c), which emit
PWM voltage pulses. The pulses’ width increase linearly with accu-
mulated charge, up to a saturation threshold S, as shown in Fig. 1g.
The circuit emit pulses only for positive charge, implementing a
HardSigmoid activation. Further circuit details are provided in Sup-
plementary Fig. 2.

The pulsesrepresenting ¢ (S) € RM arefed asinputs to the second
gain-cell array to perform the dot product ¢(S) - V. A different type
of charge-to-pulse circuit integrates the output currents of the
second array. Unlike the first one, this signed charge-to-pulse circuit
is capable of generating pulses for both positive and negative input

Nature Computational Science | Volume 5 | September 2025 | 813-824

816

http://www.nature.com/natcomputsci

Article

https://doi.org/10.1038/s43588-025-00854-1

a Sub-tile 16
Gain-cell : Gain cell / 8
array —>| HardSigm array —> b %
64 x 64 “| 64 x 64 “| _.—‘
: 2> : > J !
* loac] : It [pac] A
: Sub-tile 2 ol
~ r - ~ - N e
Gain-cell Ve Gain ce[l / o
array | [—>| HardSigm |+ array | || > S P® c
64x64 [64x64] Z
L) L 2> > J
DAC Il DAC
Sub-tile 1
Gain-celll \ Gain cell / o
array | [—§>| HardSigm | array | > = g %)
64x64 [64x64 [z
) L 2> 2> ;
DAC| | o L1 [pac] |~
< b=
= =
14 4
Q |k |8 vl (8
< <
n —>A
[Write address controller]
— 64,40 l‘?
I\ 1 <64,4b> f
<64,1b> PWM <64,4b> Q
Signal types: —— Digital —— PWM Analog

Fig. 3| Multi-tile design and layout for multi-head attention. a, High-level
architectural diagram of a hardware unitimplementing 1 attention head,
supporting asequence length (M) of 1,024 and embedding dimension (d) of 64.
Labels of the form ‘<d,pb>" denote a d-element vector with p-bit digital precision.
The design is partitioned into 16 identical sub-tiles, each integrating two 64 x

64 gain-cellmemory arrays to store the Kand V projections and perform dot
products. Input queries Q are encoded using PWM, while K and Vare converted
into analog voltages via DACs. A write address controller selects the active
memory row for Kand Vusing ADDRW(K) and ADDRW(V). The result passes
through a nonlinear activation function (HardSigm), and is re-encoded into
PWM and routed to the next array within the sub-tile. The final PWM output is
digitized using a counter (COUNT) block. Outputs from all sub-tiles are summed
by adigital adder to yield the attention result A. Digital logic is shown in yellow,
PWM ssignals in green and intermediate analog voltages in red. b, Physical layout

b

E 1
3 = = 0 : ——— ;“,-,,‘
O

N

1,200 pm

Sign Y1 > Pulse

V row address

240 pm

K row address

corresponding to a, showing 16 sub-tiles in the middle with shared digital logic
atthe top and bottom. Memory arrays are based on compact 6-transistor gain
cells, each occupying approximately 1 um?2. The layout is synthesized, placed
and routed using Synopsys tools and shown withits default color scheme. c,
Zoomed-in floorplan of asub-tile, showing vertically stacked memory arrays,
activation blocks and DACs. Blue and green lines indicate input and output
signal paths, respectively. d, Routing scheme for converting signal orientation
between vertical and horizontal. Write DAC signals arrive vertically and connect
to vertically oriented word lines (WL_R, blue) in the Q - K" array. The array’s output
BLs (greenin the bottom array) are routed horizontally. To feed these signals

to the vertically stacked HardSigmoid activation block, diagonal wire tapping
redirects the horizontal bitlines upward and reorients them for vertical input.
The same scheme applies to the ¢(S) - Varray. Write enable (WE, pink) and write
word lines (WL_W, orange) indicate programmable rows.

charges, while a D flip-flop stores the result’s sign. The behavior of this
circuit for different inputs is highlighted in Fig. 1h. A 16-level digital
counter measures the generated pulse widths and multiplies the result
by the retrieved sign bit, resulting in a total precision of 32 levels.

Analog hardware sliding window attention data-flow

Having described how inference is performed for one token, we now
describe how the architecture processes multiple tokens sequentially.
In sliding window attention, the input query is multiplied only with
the M most recent keys and values, corresponding to the window
size M (Fig. 2a). At each time step, the keys and values must be
updated with the most recent token and the oldest one must be
forgotten. All other projections remain stationary until they are
updated after M cycles. In our implementation, we write the array
that encodes the keys and values at inference time in a column-wise
manner (Fig. 2b).

Figure 2c illustrates the sequential execution of inference steps
inthe hardware performing sliding window attention. Read and write
operations areinterleaved for efficiency, as further detailed in ‘Analog
sliding window attention timing and execution’in Methods. To perform
attention on sliding window sizes and embedding dimensions larger
than a single array can support, sub-tiling is used to stack multiple
arrays, as shownin Fig. 3, and detailed in ‘Sub-tiling to scale attention
dimensions’in Methods.

Pre-trained model hardware-aware mapping and fine-tuning
Using weights from pre-trained models is challenging because
our attention mechanism differs from the conventional ones (Fig. 4a).
The main differences are:

« HardSigmoid activation used instead of softmax (Fig. 1b).

« Slidingwindow attentionisimplemented instead of causal atten-
tion (Fig. 2a).

« Input, stored projections and output are quantized in four, three
and five bits, respectively, by digital PWMs, DACs and pulse coun-
ters (Fig.1b).

« Gain-cell arrays are split into sub-tiles before final result summa-
tion (Fig. 3a).

« Therelation between gain-cell input and stored voltages is non-
linear (Fig. 1e).

« Capacitor leakage causes stored value decay (Fig. 1f).

The implementation of these hardware constraints in our simula-
tions is explained in ‘Hardware-based neural network simulations’ in
Methods. As the nonlinear relation between input voltage and stored
voltage in gain cells is described by a third-order polynomial func-
tion, this substantially increases the computational complexity and
memory requirements to train our gain-cell-based model. Therefore, to
adapt the pre-trained public GPT-2model to our hardware constraints,

Nature Computational Science | Volume 5 | September 2025 | 813-824

817

http://www.nature.com/natcomputsci

Article

https://doi.org/10.1038/s43588-025-00854-1

a Linear hardware model Nonlinear hardware model b
Output
Linear hardware model
Quantize Quantize I clip |
Pre-trained Clipl1, 1] — Clipl1. 1] — - I
software model allliil,
ML - o b
]’ 00.51.0 00.510
- - L X y
Linear Linear -Set St Nonlinear “Seat Seat
dot product 7| dot product 7| dot product Nonlinear hardware model
— — before adaptation
%
B
. / L[] ‘.T.T —
Linear ~~.[Linear Seat [Nonlinear Sent 00510 00510

dot product dot product

Weight transfer +

: . (a, b) adaptation
fine-tuning

d

—e— Nonlinear model

Perplexity

8 16 24
Adaptation iterations

Fig. 4| Hardware model adaptation and training. a, Pre-trained model
mapping. Q,Kand Vare the input projections. d is the embedding dimension,
S, is the charge-to-pulse threshold, and @ and b are trained scaling parameters.
From asoftware pre-trained model, we fine-tune an intermediate model that
integrates all hardware constraints except dot-product nonlinearity. Then,

we use a custom adaptation algorithm to map the intermediate model to the
gain cell’s nonlinearity. Finally, we fine-tune the nonlinear model. b, Sketch
ofthe adaptation algorithm for scaling factors. Scaling factors re-scales the
input before clipping and quantization. The nonlinear model leads to different

Weight transfer +

X y

Nonlinear hardware model
after adaptation

00510
+

Software model trained from scratch

Nonlinear model trained from scratch

Linear model fine-tuned from GPT-2

Nonlinear model fine-tuned from linear model
40

Perplexity
w
o
Il

20 L L I
4,000 8,000 12,000
Backpropagation iterations

statistics (red histogram) than the linear model (green histogram). The
adaptation algorithm modifies the scaling factors to match the statistics of the
nonlinear model to the statistics of the linear one. ¢, Evolution of perplexity
(lower the better) during the adaptation algorithm. d, Training curves for the
different models. The software model is GPT-2, the nonlinear model is the model
with the proposed hardware attention, and the linear model is the hardware
attention with ideal linear gain cells. The inset provides a magnified view of the
main training curves to emphasize finer differences in model convergence.

we first fine-tune it using an intermediate model. The intermediate
model employs ideal linear dot products, but integrates all the other
mentioned hardware constraints. The modelis trained on predicting the
nextwords of the open-source text collection OpenWebText"*, and the
metric used for evaluationis perplexity, which measures the uncertainty
ofthe prediction. InFig.4d, we seethat our linear intermediate model
(blue curve) achieves results equivalent to a public GPT-2modelinless
than 3,000 iterations, whereas it takes more than 13,000 iterations for
the model trained fromscratch (magenta curve). This result shows that
performing weight transfer is efficient even though the twomodels are
different (in particular, HardSigmoid activation instead of softmax).
After fine-tuning the intermediate linear model, we transfer the
weights to the final hardware model including the gain cell’s non-
linearity. This mapping is non-trivial, as all the layers have different
statistics, making it difficult to apply a single fit to capture the gain
cells’ nonlinearity. To circumvent this issue, we introduce scaling
operationsand an adaptationalgorithm described in ‘Nonlinear model
adaptationalgorithm’inMethods. InFig. 4c, we show how the perplexity
ofthe nonlinear gain-cellmodelis reduced from1,757 to 21 during this
adaptionstage.In Supplementary Fig. 5, we show that this adaptation

algorithm can generalize to other multiplication nonlinearities.
After the adaptationalgorithm, we can fine-tune the nonlinear model
using backpropagation (Fig. 4d, green curve) to further improve the
results. The entire process is described in Fig. 4a.

Downstream task benchmarks

To evaluate the proposed hardware attention mechanism, in Table 1,
we benchmark two software baselines and three hardware models
on standard language modeling tasks (see details in ‘Downstream
tasks set-up’ in Methods). Our nonlinear hardware model, adapted
from alinear baseline and fine-tuned, achieves accuracy compara-
ble to the public GPT-2 model, and equal or better performance than
asoftware model trained from scratch under the same conditions.
We further observe that omitting nonlinearity-specific fine-tuning
yields near-identical results on most tasks, except LAMBADA and
WikiText-2. To test scalability, we apply the same training set-up
as GPT-2-XL (1.5 billion parameters). While the hardware version
falls slightly short of the public checkpoint, it clearly outperforms
the smaller GPT-2 baseline and matches the from-scratch software
GPT-2-XL. This indicates that remaining performance gaps are due to

Nature Computational Science | Volume 5 | September 2025 | 813-824

818

http://www.nature.com/natcomputsci

Article

https://doi.org/10.1038/s43588-025-00854-1

Table 1| Downstream task results

ARC-E ARC-C WinoGrande HellaSwag LAMBADA LAMBADA PIQA WikiText-2 Average Average

acc acct acct acc ppl ¥ acct acct ppl ¥ acc ppl ¥
Public software 43.81 2270 51.62 3114 3515 45.96 62.89 37.37 43.02 36.26
model
Software model 42.34 23.46 50.20 29.73 46.39 41.56 61.48 41.25 41.46 43.82
trained from
scratch
Linear hardware 42.80 23.46 52.41 30.31 51.69 3810 61.21 39.79 1.38 4574
model
Nonlinear 42.09 22.87 50.51 30.10 76.59 31.61 61.53 42.34 39.79 59.47
hardware model
with adaptation
Nonlinear 43.94 2278 5114 3018 43.08 40.16 62.62 39.97 41.80 41.52
hardware model
with adaptation
and fine-tuning
Public software 58.29 (+14.48) 2850 (+5.80) 58.33 (+6.71) 50.89 (+19.75) 9.68(-25.47) 63.87 (+17.91) 70.84 (+7.95) 20.38(-16.99) 55.12(+1210) 15.03(-21.23)
model-XL
Software model 53.82(+11.48) 25.76 (+2.30) 53.75 (+3.55) 42.54 (+12.81) 14.82(-31.57) 56.33 (+14.77) 68.71(+7.23) 24.98 (-16.27) 50.15 (+8.69) 19.90 (-23.92)
trained from
scratch-XL
Linear hardware 54.08 (+11.28) 27.47 (+4.01) 57.93 (+5.52) 45.51(+15.20) 12.32(-39.37) 58.54(+20.44) 68.01(+6.80) 23.26 (-16.53) 51.92 (+10.54) 17.79 (-27.95)
model-XL
Nonlinear 53.79 (+9.85) 27.30(+4.52) 54.70(+3.56) 46.70 (+16.52) 1217 (-30.91) 59.48(+19.32) 68.17 (+5.55) 22.29(-17.68) 51.69(+9.89) 17.23(-24.29)
hardware
model-XL

The metrics are the percentage of accurate word predictions (acc), and the perplexity (ppl), a measure of prediction uncertainty. The last two columns average the accuracy results and the
perplexity results for each model, respectively. Values in parentheses (+x) indicate the improvement of XL models relative to their smaller counterparts (GPT-2-XL results-GPT-2 results). Rows

in bold correspond to our results.

training iteration differences (the number of iterations for the public
modelis undisclosed), not hardware limitations.

Circuit computing accuracy

The accuracy of our circuits for attention computation is highlighted
inFig. 5a,b. For each of the two dot products, we simulate one 64 x 64
array and the corresponding 64 charge-to-pulse circuits. The results of
thefirst dot product, which areshowninFig. 5a, arefed asinput to the
second dot productand areshowninFig.5b. For each plot, we compare
the simulations performed with SPICE (a circuit simulation software)
with the model used for neural network simulations.

Energy consumption and latency

The circuit’s operational speed and timing, on which the energy
assumptionsarebased, are showninFig. 2d. The total latency of atten-
tion can be estimated to 65 ns.

Thegain-cell arrays and charge-to-pulse circuits consume 1,120 pJ
per token computation for the first dot product, and 700 pJ for the
second dot product. The lower energy consumption in the second
dot-product arrays is attributed to the sparser activation of its input
@(S), leading to less current in the second gain-cell array. The digital
control and routing block consumes atotal power of113.7 mW, or 4 nJ per
token, whilethe DACsrequire 330 pJ. Overall, we can estimate the power
consumption of processing 1token for 1 attention head to 6.1 nJ. A pie
chartofthe power compositionattributed to each unitisshowninFig. Se.

Theenergy and latency of our architecture, compared with three
different GPUs, are showninFig. 5c,d. Focusing on the attention mecha-
nismalone, our architecture canlead toaspeed-up of x7,000 compared
with Nvidia Jetson Nano, X300 compared with Nvidia RTX 4090 and
x100 compared with Nvidia H100, as well as an energy reduction of
x40,000 compared with Jetson Nano, x90,000 compared with RTX
4090 and x70,000 compared with H100.

Area and floorplan
On the basis of our assumptions, described in ‘Area estimation’ in
Methods, for the worst-case scenario, the area of the proposed gain cell

is 1 um?. Figure 3c shows the floorplan of a single tile, which includes
64 shared DACs for writing the weights, 2-row address decoders and
charge-to-pulse circuitry. The total area of 1 head, shown in the floor-
planinFig. 3b, is 500 x 107> mm?including digital control circuitry.

However, other studies have demonstrated substantially smaller
gain-cell dimensions*. On the basis of this, and following the methodol-
ogyoutlinedin ‘Area estimation’in Methods, we estimate that the area
ofthe gain-cell crossbars required for the entire GPT-2 attention-head
KV cache is approximately 15.7 x 107> mm?, excluding digital control
circuitry.

In Supplementary Fig. 7, we show that multiple attention heads
can be executed using parallel tiles on-chip and stacked in 3D with
multiple layers, sharing peripheral and digital logic. As discussed in
‘Area estimation’ in Methods, 3D stacking can further improve area
efficiency. On the basis of ref. 45, we estimate the total area required
for a GPT attention-head KV cache, excluding digital control, to
be 27 % 103 mm?, where N denotes the number of vertical stacks.
Thellyesulting areais:

36.7 x10° mm*forN=1
« 92x10°mm?*forN=4
+ 4.6x10°mm*forN=8
« 31x10°mm?forN=12

Discussion

In this work, we proposed an analog IMC architecture addressing the
energy consumption and latency bottlenecks of the attention compu-
tations at the core of generative Al models.

Our design leverages capacitor-based gain cells, offering an
efficient solution for both memory storage and computation,
substantially improving energy efficiency and speed. To avoid
power-intensive ADCs, we perform the attention computation in the
analog domain, using charge-to-pulse circuits to transmit analog sig-
nals between computation stages. Thisapproachintroduces non-ideal
operations compared with digital attention computations, but with
substantial efficiency gains. Another contribution is ahardware-aware

Nature Computational Science | Volume 5 | September 2025 | 813-824

819

http://www.nature.com/natcomputsci

Article

https://doi.org/10.1038/s43588-025-00854-1

o

08
[g
@ ’
S 061 s
3 <
5 L
S 0.4
£ o
» ®
w .
O 02 'i
o ® -
» r./
oKX ‘ ‘ ‘
0 02 04 06 08
Model ¢(S)
c d o2
@ = -4 |
g \; 10
g o
& 2
3 w 107 |
O o
& °
N
& ©
- & N
K N\ N
< & &°

Fig. 5| Analog hardware attention mechanism accuracy and performances.
a, Comparison of expected results model versus SPICE simulation results for the
charge-to-pulse circuit output ¢(S) with S= Q- K the results of the first crossbar
array and ¢ the transfer function of the charge-to-pulse circuit. b, Comparison
of PyTorch model versus SPICE simulation results for the second crossbar

array output A = ¢(S) - V. c,d, Latency and energy consumption per token of the

0.6 :
<
Rel A ad
2 02+
=]
£
w
& -02-
o
*»
-0.6 T T
-0.6 -0.2 0.2 0.6
Model A
e
$(Q-KT) DAC
¢SV [1020%
- >
/ o
P 58.4%
o &
N R\
= \(;‘\o Digital and routing

attention mechanism for 1 processed token (c) and energy consumption for a
12-head attention mechanism implemented by aconsumer GPU, aserver GPU, an
embedded application-specific GPU and our hardware architecture (d). e, Energy
consumption ratio for the different modules of our hardware architecture,
including analog and digital signals.

training methodology compensating for the circuit non-idealities.
Nonetheless, future circuit optimizations could further reduce any
discrepancies.

Our neural network simulations confirm that an LLM imple-
mented with our hardware attention achieves results comparable to
software-based networks, even on complex NLP tasks. Nonetheless,
our larger network slightly underperforms the baseline, and therefore
deeper neural network training will require further methods to mitigate
the vanishing gradientissue due to clamping values. This slight perfor-
mance gap should still be put in perspective with the reduced energy
consumption. While our study uses device-level simulations to evaluate
design performance, our adaptation algorithm demonstrates potential
for measured deviceimplementations, as it allows most of the training
process to proceed without requiring precise device-specific models
of nonlinear behavior, making the approach generically applicable and
computationally efficient.

Our architecture can benefit from OSFET transistors that enable
dense 3D integration*>*¢, Moreover, the KV-cache size grows modestly
compared withthe overallmodels’ parameters count*>*, Our system
could therefore be applied to larger networks with a moderate area
footprint. Latency is reduced by up to two orders of magnitude, and
energy consumption by up to four orders for attention computations
alone compared with GPUs. While we focus on the attention mechanism,
amajor bottleneck in generative transformers’ inference, substantial
reductionsinoverall energy consumption require optimizingall com-
ponents. Inthe future, our hardware attention mechanism canbeinte-
grated with other IMC techniques toimplement low-power linear layers.

In conclusion, this work demonstrates hardware-algorithm
co-optimization achieving low latency and energy consumption while
maintaining high modelaccuracy. Inaddition, it highlights the promise
of IMC with volatile, low-power memory for attention-based neural
networks, marking animportant step toward ultrafast, energy-efficient
generative Al

Methods

Hardware-based neural network simulations

Weimplement the sliding window attention by masking the elements
of S outside the sliding window (blank spaces in the example Fig. 1).
The HardSigmoid charge-to-pulse circuit is modeled by the equation

ifS > Seu

Tmax

oS =

%s ifO<S < S ,

s:

©)
0 ifS<0

where T, =15 ns is the maximum pulse length for the input pulse
generators. The input queries Q are quantized in 16 levels between O
and1,thestored Kand Vprojections are quantized in 8 levels between
0and 0.9, and the outputs of the second dot product are quantized in
32 levels between -1and 1. The quantized models (linear intermedi-
ate hardware model and nonlinear hardware model) are trained with
quantization aware training*®: quantization is done only in the forward
pass and the backward passis done in full precision.
For the nonlinear model of the gain cell, the third-order
polynomials
3 3-i P
S= Zz: - Q- (KT - Koffset)’ Vijnci,j

4)

3 3-i P
A= 3(S)- (V= Vomed) Vi, iy

L

areused withSand A as the outputs, Q and ¢(S) the input pulse width,
Kand Vthe stored voltage, the constant V;, = 0.9 Vis the input voltage
of the cell applied at the word line read (WLR) ports, the constant
Yortser = 0.45 V corresponds to half the supply voltage (V;,p/2), and C;;
as fit parameters from the curve Fig. 1e. To speed-up computation

Nature Computational Science | Volume 5 | September 2025 | 813-824

820

http://www.nature.com/natcomputsci

Article

https://doi.org/10.1038/s43588-025-00854-1

during training, we compute all the tokens in parallel with Q € R,
KT e RPT, Ve R™ and ¢ (S) e R7 (the batch dimension and the
head dimension are omitted for simplicity).

The capacitor leakage leads to an exponential decay inthe stored
value. After discretization, the exponential decay is formulated as

A
Ye=Ye1€ 75 A =L6, ()]

where 7is the time constant of the capacitors, A, is the time elapses
between two inference steps, &, is the latency caused by each neural
network layer, and L is the number of layers. To model the decay of all
capacitors at all time steps in parallel, we introduce a decay mask
a € R defined as

A
a=e Mt

myy =max(0,t—t), (6)
where mistherelative tokens’ position. To optimize computation, the

decay maskis directly integrated in the dot-product computation as

3 3-i T i X
S= Z Z ((K - Koffset) VinCi,j) a
iJ
@)

w
I

3 i .
A=T Y (@S a)- (V= Vorre) Vi, Cij

\M

In our simulation, we chose atime constant 7= 5 ms to be consist-
ent with the data from Fig. 1h. We chose §, = 65 ns to be equal to
the latency of our full hardware attention mechanism (Fig. 2c). Our

decay factor is therefore % = % ~1.6x10~*. In a full trans-

former implementation, the latency per layer 6, = will be higher
than 65 ns as it will also include latency from other modules, such as
feedforward neural networks. However, time constant 7 of three
orders of magnitude larger were reported in OSFET-based gain-
cellmemories®*?’, and therefore we conclude that the choice of decay
factor of 1.6 x 107 is very conservative. In Supplementary Fig. 6, we
study empirically the effect of the decay constant over language pro-
cessing accuracy. It is noteworthy that the decay of stored keys and
values may not necessarily hinder network performance: several
approaches in deep learning leverage exponential decay masks to
enhance memory structure®*’, InSupplementary Information section
‘Effect of capacitor’s leakage’, we study the connection between the
KV pairs decay and the relative positional embedding called AliBi*.

To speed up our training process, we used the library Triton*°
to incorporate our simulations into an adapted version of the flash
attention algorithm®, which optimizes the GPU resources. This method
led to afactor of five latency reduction during training.

For the adaptation, the algorithm was repeated until the mean
and standard deviation of the output of the scaling functions of the
nonlinear model matches the mean and standard deviation of the
linear model within a tolerance ratio: |oy, — 0, | < 0.0001 and |uy, — 1 |
< 0.0001.

Nonlinear model adaptation algorithm

y=ax+b (8)
with distinct scalars a and b for each of the Q, K'and V projections, as
well as for the output of the attention, with separate factors applied
across different attention heads and layers.

Tochoosethe scaling parameters aand b, we develop an algorithm
inspired by ref. 52, detailed in Supplementary Algorithm 1. Given a set
ofinputsamples, we use aniterative loop that updates the scaling para-
meters so that the output of the scaling function of the nonlinear model
matches the statistics of the linear model (as sketched in Fig. 4b).First,
we measure the standard deviation g, and the mean g, of the output

of every scaling stage (see equation (8)) of the linear modelon alarge
set of samples. Then, at each iteration, we measure the standard
deviation oy, and the mean p,, for the scaling stage of the nonlinear
model. For eachiteration, the scaling parameters are updated as

oL
a<—a—
OnL

. 9
be<b+(p —pn)

Analog sliding window attention timing and execution
Tosupportefficient sequential inference, our architectureimplements
sliding window attention using a pipelined read-write mechanism
across analog gain-cell arrays. At each inference step, new (K, V) pairs
arewritteninto the arrays while the current query (Q) isapplied, ensur-
ing that memory access and computation overlap.

Each attention step begins with a 5 ns discharge phase to reset
the storage capacitors of the gain cells. New K and V vectors are
written to a column of the respective arrays using 10 ns multi-level
voltage pulses generated by 3-bit DACs. In parallel, the input query Q
is encoded as PWM voltage pulses with durations between 0 ns and
Tmax = 15 ns, generated by 4-bit (16 levels) voltage pulse generators
operating at1 GHz.

This parallelizationis possible because the Varray isnot required
during the Q - K" computation phase and can therefore be updated
while thefirst dot productis processed. Once the write is complete, the
charge-to-pulse circuit for the Varray is reset, and the resulting ¢(S)
pulses fromthe Karray’sreadoutare applied to the Varray tocompute
the second dot product ¢(S) - V.

After Mtime steps, whenall columnsinthe Kand Varrays have been
populated, the first columnis overwritten, preserving asliding atten-
tion window of fixed size M. The succession of write and read phases
implements a sequential sliding window attention mechanism, with
minimal idle time and continuous throughput. This pipelined execu-
tionschemeis visualized in Fig. 2c, and forms the basis for the latency
and energy analysis presented in later sections.

Sub-tiling to scale attention dimensions

IRdrop, caused by resistive lossesininterconnects, resultsinreduced
accuracy in large-scale analog crossbar arrays®’. To mitigate IR drop
issues, we limit the size of our gain-cell arrays to 64 x 64. However, most
NLP applications require larger either a larger window dimension M
(columns) or alarger embedding dimensiond (rows). Toaccommodate
larger dimensions, we perform inference across multiple sub-tiles, as
showninFig. 3a.

In this paper, we implement a GPT-2 model with an embedding
dimension d = 64 and a sliding window size M =1,024. Therefore, the
entire KV cache of the window size Mis divided into 16 sub-tiles, each
having its charge-to-pulse blocks and storing a fraction of the K and
Vintwo 64 x 64 arrays. A write address controller keeps track of the
current writeindex. All tiles receive the same input Qgenerated by the
digital blockin parallel, are measured by pulse counters and summed
by 64 digital adders, each with 16 inputs (Fig. 3b,c). In sliding window
attention, the maximum attention spanisequaltoL(M—1) +1(ref.43).
Therefore, inthe presented architecture, the maximum attention span
canbeincreased by increasing the number of sub-tiles. However, this
leads to additional area footprint scaling linearly with the sliding win-
dow dimension, and additional latency as each digital adder requires
oneclockcycle.

Hardware-based neural network training

To evaluate our training algorithm and the inference accuracy of
our architecture, we implement the analog gain-cell-based atten-
tion mechanism on the GPT-2 architecture®*. GPT-2 is a transformer
neural network with 124 million parameters, 12 layers, an attention
mechanism input dimension of 768, 12 heads per attention block

Nature Computational Science | Volume 5 | September 2025 | 813-824

821

http://www.nature.com/natcomputsci

Article

https://doi.org/10.1038/s43588-025-00854-1

and a head dimension of 64. We used the open-source text collec-
tion OpenWebText** split between training and testing samples, and
the pre-trained GPT-2 tokenizer to encode the plain text into tokens
(vectors of size 50,304 each). Each training iteration had a batch size
0f 1,920, with sequences of length 1,024 per sample. We selected a
sliding window size of 1,024, which matches the number of gain-cell
rows in the memory. As the sequence length also equals 1,024, each
gain celliswrittenonly once per sequence, eliminating the need to over-
write cells during one sliding window iteration. For a larger sequence
length, the gain cells would be overwritten, as described in the section
‘Analog hardware sliding window attention data-flow’. To train the
network, the next token in the sequence is predicted for each input
token. Thus, the target sequences are the input sequences shifted
by one token. The cost function used was cross-entropy, calculated
between the predicted sequence and the target sequence. We used
backpropagation with the AdamW optimizer®, with alearning rate of
6 x10™* and a weight decay of 0.1. The results of each evaluation are
averaged over 4,000 samples.

Downstream tasks set-up

The datasets cover various types of problem. Our benchmarking
set-upisinspired byrefs. 11,56 in terms of evaluated tasks and metrics.
ARC-Easy and ARC-Challenge®” focus on question answering, with
ARC-Easy containing straightforward questions and ARC-Challenge
featuring more difficult ones. WinoGrande*® evaluates common-sense
reasoning and co-reference resolution by presenting minimal pairs
to resolve ambiguities. HellaSwag® tests common-sense inference,
requiring models to predict the most plausible continuation of agiven
context. LAMBADA® evaluates models’ text understanding through
aword prediction task that requires comprehension of broader dis-
course, notjust local context. PIQA® assesses physical common-sense
reasoning, testing a model’s understanding of physical scenarios.
WikiText-2% is a general text corpus derived from Wikipedia articles
to assess long-term dependencies processing, text prediction and
generation capabilities. For WikiText-2, we report perplexity scores
normalized by the word count in the original text. For fair compari-
sons, except for software public GPT-2, all the models were evaluated
after the same number of training iterations. The linear hardware
model was trained on 13,000 iterations, the nonlinear hardware
model was mapped from the 13,000 iterations linear model using
the adaptation algorithm but without fine-tuning, and the nonlinear
hardware model with adaptation and fine-tuning was adapted from
alinear model trained on 3,000 iterations, and then fine-tuned on
10,000 iterations.

Hardware SPICE simulations

To assess circuit performance accuracy, energy consumption and
speed, we conducted SPICE array simulations using the TSMC 28 nm
PDK within the Cadence Virtuoso environment. All simulations are
based ona 64 x 64 array, corresponding to the tile sizein our architec-
ture (Fig.3a). Toextrapolate the energy and latency for a full attention
head with a window size of 1,024, we multiply the per-sub-tile meas-
urements by 16, reflecting the total number of sub-tiles comprising 1
attention headin our architecture. Inthese simulations, a parasitic wire
capacitance of 0.8 fF and aseries resistance of 2 Q per array element are
included. Both arrays, one performing ¢(Q- K") and the other perform-
ing ¢(S) - V, are simulated separately, but always in combination with
their specific charge-to-pulse circuitry readout circuitry.

GPU attention latency and energy consumption
measurements

To measure the latency and energy on Nvidia RTX 4090, Nvidia HI00
and NvidiaJetson Nano, which are aconsumer GPU, a data-center GPU
and an embedded application GPU, respectively, we perform 10 runs
of 1,024 steps of autoregressive token generation with 12 attention

heads using the method FlashAttention-2*', which optimizes attention
computationin GPUs. The energy and latency consumption measure-
ment solely focus on attention computation, and for a fair compari-
son, the linear projections are notimplemented in this experiment as
they are also not implemented by our hardware architecture, and
the static power measured before inference is subtracted from the
power measured duringinference. For eachrun, we measure the latency
and the power using the Nvidia-SMI python API, and average them.

Areaestimation

Our floorplanisbased onITO gaincells, an emerging OSFET technology
that has enabled low-area gain-cell designs®. A two-transistor ITO gain
cell occupies an area of 0.14 pm? (approximately 370 nm x 370 nm)*,
allowing for denser memories than CMOS-based gain cells. On the
basis of the area results presented in these studies**, we estimate
the worst-case area of the proposed 6-transistor cell tobe 1 pm?, lead-
ing to a19x area reduction compared with gain cells based on CMOS
write transistors (our CMOS-based gain-cell layout is presented in
Supplementary Fig. 1). The total area of 1 attention head is derived
from this single-cell area estimation, as well as the charge-to-pulse
circuit layout and the total floorplan incorporating the 16 sub-tiles
and digital circuits, providing a precise representation of the space
requirements. This structure is designed to be repetitive (vertical
dimension in Fig. 3¢), allowing multiple attention heads to be effi-
ciently integrated onasingle chip. Each attention head receivesinputs
from the lower digital block, while its outputs are processed by the
upper digital block. To facilitate the connection of the bitline outputs
of one array (that is, vertical metal lines) to the wordline input of the
next array (thatis, horizontal metal line), we employ wire tapping, as
highlighted in Fig. 3d.

When considering 3D-stacked gain cells, the effective cell area
is reported in ref. 45 as 0.14/N um?, where N denotes the number of
parallel oxide layers. Consequently, a signed gain-cellimplementation
would occupy 0.28/N pm?, consisting of 2 gain cells, 1 for the positive
partand 1for the negative part.

Data availability

The data supporting the figures of this study are publicly available in
afigshare repository®. Source data for Figs. 1, 2, 4 and 5 are available
with this paper. Data for Figs. 1,2 and 5 were generated through simu-
lations using SPICE. Data for Fig. 4 were produced using evaluations
performed in the PyTorch framework. Data for Table 1 were obtained
using the Language Model Evaluation Harness toolkit®*.

Code availability

The Python scripts used for the experiments are available without
restriction at https://github.com/NathanLeroux-git/GainCellAtten-
tion/, and are archived with a DOl in the Zotero repository®.

References

1. Vaswani, A. et al. Attention is all you need. In Proc. 31st
International Conference on Neural Information Processing
Systems, NIPS’17 6000-6010 (Curran Associates, 2017).

2. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by
jointly learning to align and translate. Preprint at http://arxiv.org/
abs/1409.0473 (2016).

3. Lin, T., Wang, Y., Liu, X. & Qiu, X. A survey of transformers. Al Open
3,111-132 (2022).

4. Pope, R. et al. Efficiently scaling transformer inference.

Proc. Mach. Learn. Syst. 5, 606-624 (2023).

5. Liu, Z. et al. KIVI: a tuning-free asymmetric 2bit quantization for KV
cache. In Proc. 41st International Conference on Machine Learning,
ICML24 Vol. 235, 32332-32344 (JMLR.org, 2024).

6. Jiang, A.Q. et al. Mistral 7B. Preprint at http://arxiv.org/abs/
2310.06825 (2023).

Nature Computational Science | Volume 5 | September 2025 | 813-824

822

http://www.nature.com/natcomputsci
https://github.com/NathanLeroux-git/GainCellAttention/
https://github.com/NathanLeroux-git/GainCellAttention/
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825

Article

https://doi.org/10.1038/s43588-025-00854-1

10.

n

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Jouppi, N. P. et al. Ten lessons from three generations shaped
Google’s TPUv4i: industrial product. In Proc. 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA)
1-14 (IEEE, 2021); https://doi.org/10.1109/ISCA52012.2021.00010
Fu, Y. Challenges in deploying long-context transformers:

a theoretical peak performance analysis. Preprint at https://arxiv.
org/abs/2405.08944 (2024).

Xu, M. et al. Resource-efficient algorithms and systems of foundation
models: a survey. ACM Comput. Surv. 57, 110-111039 (2025).
Katharopoulos, A., Vyas, A., Pappas, N. & Fleuret, F. Transformers
are RNNs: fast autoregressive transformers with linear attention.
In Proc. 37th International Conference on Machine Learning,
ICML20 Vol. 119, 5156-5165 (JMLR.org, 2020); https://doi.org/
10.5555/3524938.3525416

Gu, A. & Dao, T. Mamba: linear-time sequence modeling with
selective state spaces. In Proc. Conference on Language Modeling
(2024); https://openreview.net/forum?id=tEYskw1VY2

Adnan, M. et al. Keyformer: KV cache reduction through key
tokens selection for efficient generative inference. Proc. Mach.
Learn. Syst. 6, 114-127 (2024).

DeepSeek-Al et al. Deepseek-v3 technical report. Preprint at
https://arxiv.org/abs/2412.19437 (2024)

Chang, C.-C. et al. Palu: KV-cache compression with

low-rank projection. In Proc. 13th International Conference

on Learning Representations (2025); https://openreview.net/
forum?id=LWMS4pk2vK

Ainslie, J. et al. GQA: training generalized multi-query transformer
models from multi-head checkpoints. In Proc. 2023 Conference
on Empirical Methods in Natural Language Processing

(eds Bouamor, H. et al.) 4895-4901 (Association for
Computational Linguistics, 2023); https://doi.org/10.18653/v1/
2023.emnlp-main.298

Vogginger, B. et al. Neuromorphic hardware for sustainable Al
data centers. Preprint at https://arxiv.org/abs/2402.02521(2024).
Yang, X., Yan, B., Li, H., Chen, Y. ReTransformer: ReRAM-based
processing-in-memory architecture for transformer acceleration.
In Proc. 39th International Conference on Computer-Aided Design,
ICCAD '20 92 (Association for Computing Machinery, 2020);
https://doi.org/10.1145/3400302.3415640

Laguna, A. F. Hardware-software co-design of an in-memory
transformer network accelerator. Front. Electron. 3, 847069 (2022).
Sridharan, S., Stevens, J. R., Roy, K. & Raghunathan, A. X-former:
in-memory acceleration of transformers. IEEE Trans. Very Large
Scale Integr. VLSI Syst. 31, 1223-1233 (2023).

Bhattacharjee, A., Moitra, A. & Panda, P. Clipformer: key-value
clipping of transformers on memristive crossbars for write noise
mitigation. IEEE Trans. Comput. Aided Design Integr. Circuits Syst.
44,592-601(2025).

Wu, Y., Wang, Z. & Lu, W. D. PIM GPT a hybrid process in memory
accelerator for autoregressive transformers. Npj Unconv. Comput.
1, 4 (2024).

Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E.
Memory devices and applications for in-memory computing.

Nat. Nanotechnol. 15, 529-544 (2020).

Zhou, M., Xu, W., Kang, J. & Rosing, T. TransPIM: a memory-based
acceleration via software-hardware co-design for transformer.

In Proc. 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA) 1071-1085 (IEEE, 2022);
https://doi.org/10.1109/HPCA53966.2022.00082

Liu, S. et al. HARDSEA: hybrid analog-ReRAM clustering and
digital-SRAM in-memory computing accelerator for dynamic
sparse self-attention in transformer. IEEE Trans. Very Large Scale
Integr. VLSI Syst. 32, 269-282 (2024).

Lepri, N. et al. In-memory computing for machine learning and
deep learning. IEEE J. Electron Devices Soc. 11, 587-601 (2023).

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

a1.

43.

44,

45,

Wang, Y. et al. An in-memory computing architecture based on two-
dimensional semiconductors for multiply-accumulate operations.
Nat. Commun. https://doi.org/10.1038/s41467-021-23719-3 (2021).
Gou, S. et al. 2T1C DRAM based on semiconducting MoS, and
semimetallic graphene for in-memory computing. Natl Sci. Open
2,20220071(2023).

Shi, M. et al. Counteractive coupling IGZO/CNT hybrid 2T0C
DRAM accelerating RRAM-based computing-in-memory via
monolithic 3D integration for edge Al. In Proc. 2023 International
Electron Devices Meeting (IEDM) 1-4 (IEEE, 2023); https://doi.org/
10.1109/IEDM45741.2023.10413876

Belmonte, A. et al. Lowest IOFF <3x10°2' A/um in capacitorless
DRAM achieved by reactive ion etch of IGZO-TFT. In Proc.

2023 IEEE Symposium on VLS| Technology and Circuits (VLSI
Technology and Circuits) 1-2 (IEEE, 2023); https://doi.org/
10.23919/VLSITechnologyandCir57934.2023.10185398

Ye, H. et al. Double-gate W-doped amorphous indium oxide
transistors for monolithic 3D capacitorless gain cell eDRAM. In Proc.
2020 IEEE International Electron Devices Meeting (IEDM) 28.3.-28.3.4
(IEEE, 2020); https://doi.org/101109/IEDM13553.2020.9371981
Raman, S.R. S., Xie, S. & Kulkarni, J. P. Compute-in-eDRAM

with backend integrated indium gallium zinc oxide transistors.

In Proc. 2021 IEEE International Symposium on Circuits and
Systems (ISCAS) 1-5 (IEEE, 2021); https://doi.org/10.1109/
ISCAS51556.2021.9401798

Tang, W. et al. Low-power and scalable BEOL-compatible IGZO
TFT eDRAM-based charge-domain computing. IEEE Trans. Circuits
Syst. 170, 5166-5179 (2023).

Lu, A. et al. High-speed emerging memories for Al hardware
accelerators. Nat. Rev. Electr. Eng. 1, 24-34 (2024).

Cai, F. et al. A fully integrated reprogrammable memristor-
CMOS system for efficient multiply-accumulate operations.

Nat. Electron. 2, 290-299 (2019).

Wan, W. et al. A compute-in-memory chip based on resistive
random-access memory. Nature 608, 504-512 (2022).
Ambrogio, S. et al. An analog-Al chip for energy-efficient speech
recognition and transcription. Nature 620, 768-775 (2023).
Vatalaro, M. et al. A low-voltage, low-power reconfigurable
current-mode softmax circuit for analog neural networks.
Electronics https://doi.org/10.3390/electronics10091004 (2021).
Dube, A., Manea, P., Gibertini, P., Covi, E. & Strachan, J. P. Analog
softmax with wide input current range for in-memory computing.
In Proc. IEEE International Symposium on Circuits and Systems
(ISCAS), paper 2530 (2025).

Ma, X. et al. Mega: moving average equipped gated attention.

In Proc. 11th International Conference on Learning Representations
(2023); https://openreview.net/forum?id=qNLe3ig2El
Ramapuram, J. et al. Theory, analysis, and best practices for
sigmoid self-attention. In Proc. 13th International Conference

on Learning Representations (2025); https://openreview.net/
forum?id=Zhdhg6n20G

Beltagy, I., Peters, M. E. & Cohan, A. Longformer: the long-
document transformer. Preprint at https://arxiv.org/abs/
2004.05150 (2020).

. Gu, X. et al. When attention sink emerges in language models:

an empirical view. In Proc. 13th International Conference on
Learning Representations (2025); https://openreview.net/
forum?id=78Nn4QJTEN

Fu, Z. et al. Sliding window attention training for efficient large
language models. Preprint at https://arxiv.org/abs/2502.18845 (2025).
Gokaslan, A. & Cohen, V. OpenWebText Corpus. GitHub
http://Skylion007.github.io/OpenWebTextCorpus (2019).

Liu, S. et al. Design guidelines for oxide semiconductor gain

cell memory on a logic platform. IEEE Trans. Electron Devices 71,
3329-3335 (2024).

Nature Computational Science | Volume 5 | September 2025 | 813-824

823

http://www.nature.com/natcomputsci
https://doi.org/10.1109/ISCA52012.2021.00010
https://arxiv.org/abs/2405.08944
https://arxiv.org/abs/2405.08944
https://doi.org/10.5555/3524938.3525416
https://doi.org/10.5555/3524938.3525416
https://openreview.net/forum?id=tEYskw1VY2
https://arxiv.org/abs/2412.19437
https://openreview.net/forum?id=LWMS4pk2vK
https://openreview.net/forum?id=LWMS4pk2vK
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://arxiv.org/abs/2402.02521
https://doi.org/10.1145/3400302.3415640
https://doi.org/10.1109/HPCA53966.2022.00082
https://doi.org/10.1038/s41467-021-23719-3
https://doi.org/10.1109/IEDM45741.2023.10413876
https://doi.org/10.1109/IEDM45741.2023.10413876
https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185398
https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185398
https://doi.org/10.1109/IEDM13553.2020.9371981
https://doi.org/10.1109/ISCAS51556.2021.9401798
https://doi.org/10.1109/ISCAS51556.2021.9401798
https://doi.org/10.3390/electronics10091004
https://openreview.net/forum?id=qNLe3iq2El
https://openreview.net/forum?id=Zhdhg6n2OG
https://openreview.net/forum?id=Zhdhg6n2OG
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://openreview.net/forum?id=78Nn4QJTEN
https://openreview.net/forum?id=78Nn4QJTEN
https://arxiv.org/abs/2502.18845
http://Skylion007.github.io/OpenWebTextCorpus

Article

https://doi.org/10.1038/s43588-025-00854-1

46. Subhechha, S. et al. Demonstration of multilevel multiply
accumulate operations for AiMC using engineered a-IGZO
transistors-based 2T1C gain cell arrays. In Proc. 2023 IEEE
International Memory Workshop (IMW) 1-4 (IEEE, 2023);
https://doi.org/10.1109/IMW56887.2023.10145946

Brown, T. et al. Language models are few-shot learners.

AdVv. Neural Inf. Process. Syst. 33, 1877-1901 (2020).

Jacob, B. et al. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition
2704-2713 (IEEE, 2018).

Press, O., Smith, N. A. & Lewis, M. Train short, test long: attention
with linear biases enables input length extrapolation. In Proc.
International Conference on Learning Representations (2022);
https://openreview.net/forum?id=R8sQPpGCvO

Tillet, P., Kung, H. T. & Cox, D. Triton: an intermediate language
and compiler for tiled neural network computations. In Proc.
3rd ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages, MAPL 2019 10-19 (Association for
Computing, 2019); https://doi.org/10.1145/3315508.3329973

51. Dao, T. FlashAttention-2: faster attention with better parallelism
and work partitioning. In Proc. 12th International Conference

on Learning Representations (2024); https://openreview.net/
forum?id=mzZn2Xyh9Ec

Mishkin, D. & Matas, J. All you need is a good init. Preprint at
https://arxiv.org/abs/1511.06422 (2015).

Lepri, N., Glukhov, A., Mannocci, P., Porzani, M. & lelmini, D.
Compact modeling and mitigation of parasitics in crosspoint
accelerators of neural networks. IEEE Trans, Electron Devices 71,
1900-1906 (2024).

Radford, A. et al. Language models are unsupervised

multitask learners. OpenAl https://cdn.openai.com/
better-language-models/language_models_are_unsupervised_
multitask_learners.pdf (2019).

Loshchilov, I. & Hutter, F. Decoupled weight decay regularization.
In Proc. International Conference on Learning Representations
(2019); https://openreview.net/forum?id=Bkg6RiCqY7

Beck, M. et al. XLSTM: extended long short-term memory. In
Proc. 38th Annual Conference on Neural Information Processing
Systems (2024); https://openreview.net/forum?id=ARAXPPIAhqg
Clark, P. et al. Think you have solved question answering? Try
ARC, the Al2 reasoning challenge. Preprint at https://arxiv.org/
abs/1803.05457 (2018).

Sakaguchi, K., Bras, R. L., Bhagavatula, C. & Choi, Y. WinoGrande:
an adversarial winograd schema challenge at scale. Commun.
ACM 64, 99-106 (2021).

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A. & Choi, Y. HellaSwag:
can a machine really finish your sentence? In Proc. 57th Annual
Meeting of the Association for Computational Linguistics,
4791-4800 (ACL, 2019).

Paperno, D. et al. The LAMBADA dataset: word prediction requiring
a broad discourse context. In Proc. 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers)
(eds Erk, K. & Smith, N. A.) 1525-1534 (Association for Computational
Linguistics, 2016); https://doi.org/10.18653/v1/P16-1144

61. Bisk, Y., Zellers, R., Bras, R. L., Gao, J. & Choi, Y. PIQA: reasoning
about physical commonsense in natural language. In Proc. 34th
AAAI Conference on Atrtificial Intelligence, 7432-7439 (AAAI, 2020).
Merity, S., Xiong, C., Bradbury, J. & Socher, R. Pointer sentinel
mixture models. In Proc. International Conference on Learning
Representations (2017); https://openreview.net/forum?id=
Byj72udxe

Leroux, N. et al. Analog in-memory computing attention mechanism
for fast and energy-efficient large language models source data.
figshare https://doi.org/10.6084/m9.figshare.27763548 (2025).

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64. Gao, L. et al. A framework for few-shot language model evaluation.
Zenodo https://doi.org/10.5281/zenodo0.5371628 (2025).
Leroux, N. et al. GainCellAttention. Zenodo https://doi.org/

10.5281/zenodo.15856645 (2025).

65.

Acknowledgements

This work was supported in part by the Federal Ministry of Education
and Research (BMBF, Germany) in the project NEUROTEC Il (project
number 16MEQ398K). We gratefully acknowledge the Gauss Centre
for Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time through the John von Neumann
Institute for Computing (NIC) on the GCS Supercomputer JUWELS at
Julich Supercomputing Centre (JSC).

Author contributions

The study was designed by N.L. and P.-P.M., and supervised by J.P.S.
and E.N. The analog circuit system schematic design and electrical
simulations were carried out by P.-P.M. C.S. was responsible for the
design and layout of all digital blocks, as well as the overall chip
floorplanning. S.S. completed the layout of the analog components.
Hardware parameter extraction was performed by P.-P.M. Neural
network training was conducted by N.L. and neural network evaluation
was conducted by N.L. and J.F. All authors contributed to the analysis
of the results and writing of the paper.

Funding

Open access funding provided by Forschungszentrum Jilich GmbH.

Competinginterests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s43588-025-00854-1.

Correspondence and requests for materials should be addressed to
Nathan Leroux or Paul-Philipp Manea.

Peer review information Nature Computational Science thanks Jianshi
Tang, Yonghong Tian and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Peer reviewer reports are
available. Primary Handling Editor: Jie Pan, in collaboration with the
Nature Computational Science team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2025

Nature Computational Science | Volume 5 | September 2025 | 813-824

824

http://www.nature.com/natcomputsci
https://doi.org/10.1109/IMW56887.2023.10145946
https://openreview.net/forum?id=R8sQPpGCv0
https://doi.org/10.1145/3315508.3329973
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://arxiv.org/abs/1511.06422
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=ARAxPPIAhq
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://doi.org/10.18653/v1/P16-1144
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.6084/m9.figshare.27763548
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.15856645
https://doi.org/10.5281/zenodo.15856645
http://www.gauss-centre.eu
https://doi.org/10.1038/s43588-025-00854-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Analog in-memory computing attention mechanism for fast and energy-efficient large language models

	Results

	Attention mechanism

	End-to-end analog hardware attention

	Analog hardware sliding window attention data-flow

	Pre-trained model hardware-aware mapping and fine-tuning

	Downstream task benchmarks

	Circuit computing accuracy

	Energy consumption and latency

	Area and floorplan

	Discussion

	Methods

	Hardware-based neural network simulations

	Nonlinear model adaptation algorithm

	Analog sliding window attention timing and execution

	Sub-tiling to scale attention dimensions

	Hardware-based neural network training

	Downstream tasks set-up

	Hardware SPICE simulations

	GPU attention latency and energy consumption measurements

	Area estimation

	Acknowledgements

	Fig. 1 Building blocks of the analog hardware attention mechanism.
	Fig. 2 Analog hardware attention pipeline.
	Fig. 3 Multi-tile design and layout for multi-head attention.
	Fig. 4 Hardware model adaptation and training.
	Fig. 5 Analog hardware attention mechanism accuracy and performances.
	Table 1 Downstream task results.

