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Analog in-memory computing attention 
mechanism for fast and energy-efficient 
large language models
 

Nathan Leroux    1,4  , Paul-Philipp Manea    2,3,4  , Chirag Sudarshan2, 
Jan Finkbeiner    1,3, Sebastian Siegel2, John Paul Strachan2,3 & Emre Neftci    1,3

Transformer networks, driven by self-attention, are central to large language 
models. In generative transformers, self-attention uses cache memory 
to store token projections, avoiding recomputation at each time step. 
However, graphics processing unit (GPU)-stored projections must be loaded 
into static random-access memory for each new generation step, causing 
latency and energy bottlenecks. Here we present a custom self-attention 
in-memory computing architecture based on emerging charge-based 
memories called gain cells, which can be efficiently written to store new 
tokens during sequence generation and enable parallel analog dot-product 
computation required for self-attention. However, the analog gain-cell 
circuits introduce non-idealities and constraints preventing the direct 
mapping of pre-trained models. To circumvent this problem, we design an 
initialization algorithm achieving text-processing performance comparable 
to GPT-2 without training from scratch. Our architecture reduces attention 
latency and energy consumption by up to two and four orders of magnitude, 
respectively, compared with GPUs, marking a substantial step toward 
ultrafast, low-power generative transformers.

Transformers1 are central to modern artificial intelligence (AI), power
ing advances in language models, image processing and beyond.  
However, their high computational demands lead to substantial energy 
consumption. Enhancing their efficiency is essential to reduce environ-
mental impact and to keep pace with the exponentially growing size of 
AI models. The success of transformers as state of the art in sequence 
processing and generation is enabled by their attention mechanism2.  
To capture dependencies across sequences, the attention mechanism 
performs dot products between different projections of multiple 
sequence elements, known as tokens. For generative tasks, the best  
performance is achieved by autoregressive, decoder-only transfor
mers3. At each inference step, the decoder generates a token, which is  
then appended to the input sequence, forming the input for the sub-
sequent step. To avoid recomputing the keys and values (KV cache)  

projections of the previously generated tokens, the so-called 
KV-caching method stores the projections from previous tokens in 
memory and updates the KV cache with the new projections4.

In a graphics processing unit (GPU), for each token, the entire KV 
cache must be transferred from main high-bandwidth memory to cache 
memory (static random-access memory (SRAM)). In addition, the KV 
cache is often much larger than the available SRAM memory owing to 
the dimensions of the stored projections and the sequence length5. For 
instance, the entire KV cache of the model Mistral 7B6 requires 8 Gb 
for a batch size of 1, as necessary for inference workloads. In recent 
technologies, the energy for data access exceeds the energy required 
for computations7. Loading the KV cache for the attention mechanism 
is thus a major bottleneck, causing increased energy consumption and 
latency in large language models (LLMs)8. To mitigate this bottleneck, 
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In addition, the normalization in softmax requires summing across 
all input elements, requiring global connections with an increased 
hardware complexity scaling with the sequence length37,38. In our  
system, the activation function is instead operated element-wise with 
charge-to-pulse circuits implementing HardSigmoid functions.

To overcome this discrepancy, we introduce an algorithm that 
adapts a pre-trained language model to our architecture by scaling 
each layer according to its statistics and hardware characteristics. 
With our adaptation algorithm, our model achieves accuracy similar 
to a pre-trained GPT-2 model without having to train the model from 
scratch. Overall, the contributions of this study are:

•	 An in-memory, mixed analog–digital computing design to  
store token projections and compute attention dot products  
with gain-cell arrays at high energy efficiency.

•	 An end-to-end attention mechanism based on analog signals lever-
aging charge-to-pulse circuits to avoid power- and area-intensive 
ADCs.

•	 Quantitative performance analysis of a scalable architecture  
with area floorplan including analog circuits and digital 
peripheries.

•	 A software-to-hardware methodology to map pre-trained (ideal) 
models to non-traditional hardware reaching an accuracy equiva-
lent to GPT-2.

•	 Our architecture achieves up to five and two orders of magnitude 
lower energy consumption and latency, respectively, compared 
with GPUs.

After detailing the attention mechanism algorithm, we demon
strate its implementation using gain cells and charge-to-pulse  
circuits. We then show how our approach maps a pre-trained model 
to our hardware while maintaining high accuracy on common natural  
language processing (NLP) benchmarks. Finally, we evaluate the  
architecture’s performance in terms of energy consumption, latency 
and area footprint.

Results
Attention mechanism
Figure 1a shows the attention mechanism algorithm. In autoregressive 
transformers, new token projections called queries (Q), keys (K) and 
values (V) are created for each inference step from the weights 
WQ,K,V ∈ ℝD,d  and an input token xi ∈ ℝ1,D as:

Qi,Ki,Vi = WQ,K,Vxi, (1)

where i is the token index, D is the token dimension and d is the  
embedding dimension. The keys and values Ki ∈ ℝ1,d  and Vi ∈ ℝ1,d  are 
stored as part of the full KV cache with K ∈ ℝT,d  and V ∈ ℝT,d , where  
T is the sequence length. The query Qi ∈ ℝ1,d  is not stored but used  
for inference as

Si = Qi ⋅ KT; Ai = ϕ (
Si
√d

) ⋅ V. (2)

The dot product between the queries and keys produces an attention 
score matrix Si ∈ ℝ1,T . In standard transformers, the activation func-
tion ϕ is typically a softmax function, but other nonlinear activation 
functions can yield similar accuracy10,39,40. In particular, sigmoid-based 
attention has been shown to match softmax-based attention on  
models up to 7-billion-parameters large40. Recent studies show that in 
the case of sliding window attention41, the normalization of softmax 
leads to vanishing memory while sigmoid-based attention can lead to 
better information42,43. The output of the attention mechanism Ai is 
then obtained by the dot product between the activation ϕ(Si) and the 
values. In the transformer architecture, multiple attention ‘heads’ are 

a wide body of literature explores resource-efficient algorithms9. Alter-
native architectures to transformers with linear time complexity are 
developed to improve long-sequence processing efficiency10,11. How-
ever, transformers continue to exhibit more stable training at scale 
than alternatives such as Mamba11, which contributes to their ongoing 
dominance despite the efficiency of state-space models. Alternatively, 
different methods have been developed to reduce the memory require-
ments of KV caching through token pruning12, latent KV-cache compres-
sion13 or low-rank approximations14, or by reusing the same KV-cache 
pairs across multiple heads (grouped-query attention)15.

While these algorithmic strategies reduce computational and 
memory overhead, achieving further energy efficiency increasingly 
depends on hardware innovation. Hardware systems dedicated to spe-
cific neural architectures can substantially outperform conventional 
central processing units and GPUs in terms of energy efficiency16. In 
particular, to mitigate data-transfer overhead of weights loading, 
several approaches leverage either near-memory or in-memory com-
puting (IMC)17–21. IMC is particularly beneficial when using non-volatile 
memories to store stationary weights in linear layers22. However, a full 
optimization of transformers’ inference also requires addressing the 
attention mechanism, which contributes substantially to the overall 
computational cost9,18. Current IMC solutions do not yet meet all the 
requirements for efficient hardware implementation of attention. 
Specifically, KV cache demands fast and energy-efficient memory 
writing as it is input dependent and must be updated at every genera-
tion step. In addition, high parallelism is crucial for low-latency infer-
ence, while high memory density is needed for scaling to large models. 
Finally, long retention time is essential to avoid frequent memory 
refresh operations. KV cache has been implemented either by dynamic 
random-access memories (DRAMs)21,23, which have limited parallelism 
requiring many digital sequential adders, or by SRAMs19,24, which are 
limited by their volatility and relatively low density25. Non-volatile 
memories can be used for linear layers of transformers17, but are too 
slow, energy expensive and are not endurant enough for dynamical 
KV-cache writing18,22.

In this work, we propose an IMC hardware architecture based on 
emerging charge-based memory devices, known as gain cells26,27, to 
store token projections and compute dot products for the attention 
mechanism. As a result, gain-cell crossbar arrays simultaneously serve 
to store the KV cache and to perform attention computation. Gain 
cells store information in a capacitor, with a dedicated read transistor 
generating current based on the capacitor’s voltage. Unlike DRAM, 
this enables non-destructive read operations, supporting highly 
parallel IMC computations. Gain cells have high endurance, fast write 
speeds and low write energy, and are multi-level. Oxide semiconductor 
field effect transistor (OSFET)-based gain cells (for example, indium 
gallium zinc oxide (IGZO) or indium tin oxide (ITO)) are capable of 
retaining their state for several seconds without a power supply28–30, 
can be manufactured with very small feature sizes, achieving higher 
density than SRAM, and also support three-dimensional (3D) integra-
tion, which can further reduce effective area requirements for IMC 
applications28–33.

The analog-to-digital conversion required for analog IMC often 
hinders the advantages this approach offers, as analog-t-digital con-
verters (ADCs) are power and area intensive34. To mitigate this issue, 
charge-based integration is an energy-efficient alternative35,36. Here, 
we choose to perform the core of the attention mechanism—two 
dot products, scaling and activation function—fully in the analog 
domains, using charge-to-pulse circuits for activation and inter-module  
communication, combined with pulse counters for final readout.

Practical applications of LLMs often rely on pre-trained models 
to reduce training costs. However, our co-optimization approach 
introduces specific hardware constraints to enhance architectural 
performance, which leads to a divergence from standard pre-trained 
models. The multiplications operated with gain cells are non-ideal. 
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computed in parallel, concatenated and provided to a subsequent 
linear layer to produce the final multi-head attention result.

In decoder-based transformers, causal attention allows the score 
matrix S to compare the input token with all previous sequence ele-
ments. However, to prevent the physical memory size from scaling 
with the entire sequence length, we employ a type of attention that 
is both causal and local: sliding window attention41. In this approach, 
only a fixed number M of key and value projections are retained in 
memory and attention scores for elements older than the last M are 
masked (Fig. 2a). Although sliding window attention is local at each 
layer, it can still capture global information in deep networks because 
the receptive field grows with the number of layers6.

End-to-end analog hardware attention
In this section, we first give an overview of how our architecture  
performs operations on analog signals to compute attention. Then, 
we detail how the different circuits operate. Keys K and values V  
are stored in two gain-cell arrays. The query Qi is encoded as pulse- 
width modulation (PWM) pulses and is the input of the first array, per-
forming the dot product Qi ⋅ KT. An intermediate charge-to-voltage 
pulse block integrates the output currents from the first array and 

outputs PWM voltage pulses for the second array, while applying a 
HardSigmoid activation function (Fig. 1c). The second array, computing 
ϕ(S) ⋅ V is read out using a signed charge-to-voltage pulse block, where 
the resulting pulse widths are measured by a digital counter.

The proposed gain cell, shown in Fig. 1d, contains a write stage 
for programming the capacitor C1 and a multiplication stage approxi
mating the product between the input and the capacitor voltage.

The storage capacitor is charged with a multi-level voltage pulse 
emitted by a digital-to-analog converter (DAC). The voltage pulse 
is gated to the designated capacitor by a write-enable transmission  
gate. Due to leakage in the storage capacitors, the voltages gradually 
decay over time. Figure 1f shows the simulated transient response 
of the storage capacitor voltage Vstore, which corresponds to the  
cell weight for both extreme values 0 V and 0.9 V. An exponential  
decay fit of the gain cells leakage reveals that the time constant (that 
is, retention time) of our silicon complementary metal–oxide–semi-
conductor (CMOS)-based gain cell is τ = 5 ms. Note that an OSFET- 
based gain cell can achieve multiple orders of magnitude longer  
retention times29.

The multiplication stage generates an analog current via a push–
pull transistor pair, with its amplitude set by the stored capacitor  
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Fig. 1 | Building blocks of the analog hardware attention mechanism.  
a, Multi-head attention architecture. The nonlinear activation is denoted by ϕ. 
Inputs Q, K and V are the token projections. S = Q ⋅ KT is the attention score  
and A = ϕ(S) ⋅ V is the final attention output. b, Hardware implementation of the 
attention mechanism. Red and green traces indicate analog input currents and 
generated voltage pulses, respectively. ∑I indicates current integration. M and D 
denote the sliding window and embedding dimensions. COUNT blocks are pulse 
counters returning the digital attention result A. c, HardSigmoid charge-to-pulse 
circuit: integrates bitline (BL) current and emits a pulse width proportional to  
the accumulated charge during the discharge phase. The circuit is controlled by 
the signals: sample (SAMP), reset (REST) and discharge (DCH) which control  
the three states. Vint, the charge integrated by the charge-to-pulse circuits.  

d, Signed gain-cell-based multiplier: Vstore encodes the weight (K or V) and is set 
via write transistors N2 and P2. P1 and N1 modulate the output current based on 
Vstore, while P3 and N3 act as switches driven by the input query Q. The signals of the 
cell include two complementary word line read (WLR) signals, which serve as the 
inputs, a word line write (WLW) signal, a complementary write enable (WE) signal 
pair, and a BL that collects the output current. e, Simulated output current Icell 
versus stored voltage Vstore for Vin = 0.9 V. Monte Carlo variation bounds are shown 
in green. f, Simulated voltage decay of the storage capacitor over time due  
to leakage from write transistors. g, Output pulse width of the HardSigmoid 
charge-to-pulse block versus summed input current ∑iQi ⋅ Ki. h, Output pulse 
width and sign from the signed charge-to-pulse block versus summed input 
current ∑iϕ(Si) ⋅ Vi. All simulations assume VDD = 0.9 V.
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voltage (Vstore), as shown in Fig. 1e. This current is enabled only during 
the input pulse, which gates it onto the shared bitline, where currents 
from multiple cells are summed according to Kirchhoff’s law.

In each inference step, both arrays are updated with one  
column from the key and value matrices, as we will show in more  
detail in the section ‘Analog hardware sliding window attention data- 
flow’. The M columns of each array represent the K and V of the  
previous M tokens, while the rows correspond to the d distinct  
embedding elements.

Due to temporal input encoding, gain-cell outputs also vary 
over time and must be integrated to compute the dot product. 

This is performed by charge-to-pulse circuits (Fig. 1c), which emit  
PWM voltage pulses. The pulses’ width increase linearly with accu-
mulated charge, up to a saturation threshold Ssat, as shown in Fig. 1g.  
The circuit emit pulses only for positive charge, implementing a  
HardSigmoid activation. Further circuit details are provided in Sup-
plementary Fig. 2.

The pulses representing ϕ (S) ∈ ℝM  are fed as inputs to the second 
gain-cell array to perform the dot product ϕ(S) ⋅ V. A different type  
of charge-to-pulse circuit integrates the output currents of the  
second array. Unlike the first one, this signed charge-to-pulse circuit 
is capable of generating pulses for both positive and negative input 
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Fig. 2 | Analog hardware attention pipeline. a, Three inference steps of a dot 
product between Q and K in sliding window attention. The gray boxes represent 
tokens that are attended to and the blank boxes represent the masked tokens. 
b, Equivalent gain-cell-array implementations for an entire attention head. In 
every inference step, a new column (pointed by red arrows) of K and V is written 
before the queries Q are applied at the input. S are the currents summed at the 
bitlines, ∑I represents current integration in charge-to-pulse circuits, and A are 
the outputs. c, Proposed temporal pipeline. The process begins by resetting 
the charge-to-pulse readout capacitors for the K array (RSTK). While Q pulses 

are applied to compute S = Q ⋅ KT, the V values for the current token are written 
in parallel to the V array. After the write, the V readout is reset (RSTV), and the 
resulting ϕ(S) pulses from the charge-to-pulse circuits are applied to the V array 
to compute ϕ(S) ⋅ V. COUNTER digitizes the final pulse width and sign, and a 
digital adder combines results from multiple sub-tiles to produce the attention 
output A. d,e, Transient simulation of the ϕ(Q ⋅ KT) multiply–accumulate (MAC) 
operation (d) and the ϕ(S) ⋅ V MAC operation including temporal location (e). 
Vint is the charge integrated by the charge-to-pulse circuits, ‘Pulse’ is their output 
signal and ‘Sign’ is the signal current for the counter within the pipeline.
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charges, while a D flip-flop stores the result’s sign. The behavior of this 
circuit for different inputs is highlighted in Fig. 1h. A 16-level digital 
counter measures the generated pulse widths and multiplies the result 
by the retrieved sign bit, resulting in a total precision of 32 levels.

Analog hardware sliding window attention data-flow
Having described how inference is performed for one token, we now 
describe how the architecture processes multiple tokens sequentially. 
In sliding window attention, the input query is multiplied only with  
the M most recent keys and values, corresponding to the window  
size M (Fig. 2a). At each time step, the keys and values must be  
updated with the most recent token and the oldest one must be  
forgotten. All other projections remain stationary until they are 
updated after M cycles. In our implementation, we write the array 
that encodes the keys and values at inference time in a column-wise 
manner (Fig. 2b).

Figure 2c illustrates the sequential execution of inference steps 
in the hardware performing sliding window attention. Read and write 
operations are interleaved for efficiency, as further detailed in ‘Analog 
sliding window attention timing and execution’ in Methods. To perform 
attention on sliding window sizes and embedding dimensions larger 
than a single array can support, sub-tiling is used to stack multiple 
arrays, as shown in Fig. 3, and detailed in ‘Sub-tiling to scale attention 
dimensions’ in Methods.

Pre-trained model hardware-aware mapping and fine-tuning
Using weights from pre-trained models is challenging because  
our attention mechanism differs from the conventional ones (Fig. 4a). 
The main differences are:

•	 HardSigmoid activation used instead of softmax (Fig. 1b).
•	 Sliding window attention is implemented instead of causal atten-

tion (Fig. 2a).
•	 Input, stored projections and output are quantized in four, three 

and five bits, respectively, by digital PWMs, DACs and pulse coun-
ters (Fig. 1b).

•	 Gain-cell arrays are split into sub-tiles before final result summa-
tion (Fig. 3a).

•	 The relation between gain-cell input and stored voltages is non-
linear (Fig. 1e).

•	 Capacitor leakage causes stored value decay (Fig. 1f).

The implementation of these hardware constraints in our simula-
tions is explained in ‘Hardware-based neural network simulations’ in 
Methods. As the nonlinear relation between input voltage and stored 
voltage in gain cells is described by a third-order polynomial func-
tion, this substantially increases the computational complexity and 
memory requirements to train our gain-cell-based model. Therefore, to 
adapt the pre-trained public GPT-2 model to our hardware constraints,  
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Labels of the form ‘<d,pb>’ denote a d-element vector with p-bit digital precision. 
The design is partitioned into 16 identical sub-tiles, each integrating two 64 × 
64 gain-cell memory arrays to store the K and V projections and perform dot 
products. Input queries Q are encoded using PWM, while K and V are converted 
into analog voltages via DACs. A write address controller selects the active 
memory row for K and V using ADDRW(K) and ADDRW(V). The result passes 
through a nonlinear activation function (HardSigm), and is re-encoded into 
PWM and routed to the next array within the sub-tile. The final PWM output is 
digitized using a counter (COUNT) block. Outputs from all sub-tiles are summed 
by a digital adder to yield the attention result A. Digital logic is shown in yellow, 
PWM signals in green and intermediate analog voltages in red. b, Physical layout 

corresponding to a, showing 16 sub-tiles in the middle with shared digital logic 
at the top and bottom. Memory arrays are based on compact 6-transistor gain 
cells, each occupying approximately 1 μm2. The layout is synthesized, placed 
and routed using Synopsys tools and shown with its default color scheme. c, 
Zoomed-in floorplan of a sub-tile, showing vertically stacked memory arrays, 
activation blocks and DACs. Blue and green lines indicate input and output 
signal paths, respectively. d, Routing scheme for converting signal orientation 
between vertical and horizontal. Write DAC signals arrive vertically and connect 
to vertically oriented word lines (WL_R, blue) in the Q ⋅ KT array. The array’s output 
BLs (green in the bottom array) are routed horizontally. To feed these signals 
to the vertically stacked HardSigmoid activation block, diagonal wire tapping 
redirects the horizontal bitlines upward and reorients them for vertical input. 
The same scheme applies to the ϕ(S) ⋅ V array. Write enable (WE, pink) and write 
word lines (WL_W, orange) indicate programmable rows.
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we first fine-tune it using an intermediate model. The intermediate 
model employs ideal linear dot products, but integrates all the other 
mentioned hardware constraints. The model is trained on predicting the 
next words of the open-source text collection OpenWebText44, and the 
metric used for evaluation is perplexity, which measures the uncertainty 
of the prediction. In Fig. 4d, we see that our linear intermediate model 
(blue curve) achieves results equivalent to a public GPT-2 model in less 
than 3,000 iterations, whereas it takes more than 13,000 iterations for 
the model trained from scratch (magenta curve). This result shows that 
performing weight transfer is efficient even though the two models are 
different (in particular, HardSigmoid activation instead of softmax).

After fine-tuning the intermediate linear model, we transfer the 
weights to the final hardware model including the gain cell’s non
linearity. This mapping is non-trivial, as all the layers have different 
statistics, making it difficult to apply a single fit to capture the gain  
cells’ nonlinearity. To circumvent this issue, we introduce scaling  
operations and an adaptation algorithm described in ‘Nonlinear model 
adaptation algorithm’ in Methods. In Fig. 4c, we show how the perplexity  
of the nonlinear gain-cell model is reduced from 1,757 to 21 during this 
adaption stage. In Supplementary Fig. 5, we show that this adaptation 

algorithm can generalize to other multiplication nonlinearities.  
After the adaptation algorithm, we can fine-tune the nonlinear model 
using backpropagation (Fig. 4d, green curve) to further improve the 
results. The entire process is described in Fig. 4a.

Downstream task benchmarks
To evaluate the proposed hardware attention mechanism, in Table 1, 
we benchmark two software baselines and three hardware models 
on standard language modeling tasks (see details in ‘Downstream 
tasks set-up’ in Methods). Our nonlinear hardware model, adapted 
from a linear baseline and fine-tuned, achieves accuracy compara-
ble to the public GPT-2 model, and equal or better performance than 
a software model trained from scratch under the same conditions.  
We further observe that omitting nonlinearity-specific fine-tuning 
yields near-identical results on most tasks, except LAMBADA and 
WikiText-2. To test scalability, we apply the same training set-up 
as GPT-2-XL (1.5 billion parameters). While the hardware version 
falls slightly short of the public checkpoint, it clearly outperforms 
the smaller GPT-2 baseline and matches the from-scratch software 
GPT-2-XL. This indicates that remaining performance gaps are due to 
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Fig. 4 | Hardware model adaptation and training. a, Pre-trained model 
mapping. Q, K and V are the input projections. d is the embedding dimension, 
Ssat is the charge-to-pulse threshold, and a and b are trained scaling parameters. 
From a software pre-trained model, we fine-tune an intermediate model that 
integrates all hardware constraints except dot-product nonlinearity. Then, 
we use a custom adaptation algorithm to map the intermediate model to the 
gain cell’s nonlinearity. Finally, we fine-tune the nonlinear model. b, Sketch 
of the adaptation algorithm for scaling factors. Scaling factors re-scales the 
input before clipping and quantization. The nonlinear model leads to different 

statistics (red histogram) than the linear model (green histogram). The 
adaptation algorithm modifies the scaling factors to match the statistics of the 
nonlinear model to the statistics of the linear one. c, Evolution of perplexity 
(lower the better) during the adaptation algorithm. d, Training curves for the 
different models. The software model is GPT-2, the nonlinear model is the model 
with the proposed hardware attention, and the linear model is the hardware 
attention with ideal linear gain cells. The inset provides a magnified view of the 
main training curves to emphasize finer differences in model convergence.
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training iteration differences (the number of iterations for the public 
model is undisclosed), not hardware limitations.

Circuit computing accuracy
The accuracy of our circuits for attention computation is highlighted 
in Fig. 5a,b. For each of the two dot products, we simulate one 64 × 64 
array and the corresponding 64 charge-to-pulse circuits. The results of 
the first dot product, which are shown in Fig. 5a, are fed as input to the 
second dot product and are shown in Fig. 5b. For each plot, we compare 
the simulations performed with SPICE (a circuit simulation software) 
with the model used for neural network simulations.

Energy consumption and latency
The circuit’s operational speed and timing, on which the energy 
assumptions are based, are shown in Fig. 2d. The total latency of atten-
tion can be estimated to 65 ns.

The gain-cell arrays and charge-to-pulse circuits consume 1,120 pJ 
per token computation for the first dot product, and 700 pJ for the 
second dot product. The lower energy consumption in the second 
dot-product arrays is attributed to the sparser activation of its input 
ϕ(S), leading to less current in the second gain-cell array. The digital 
control and routing block consumes a total power of 113.7 mW, or 4 nJ per 
token, while the DACs require 330 pJ. Overall, we can estimate the power 
consumption of processing 1 token for 1 attention head to 6.1 nJ. A pie 
chart of the power composition attributed to each unit is shown in Fig. 5e.

The energy and latency of our architecture, compared with three 
different GPUs, are shown in Fig. 5c,d. Focusing on the attention mecha-
nism alone, our architecture can lead to a speed-up of ×7,000 compared 
with Nvidia Jetson Nano, ×300 compared with Nvidia RTX 4090 and 
×100 compared with Nvidia H100, as well as an energy reduction of 
×40,000 compared with Jetson Nano, ×90,000 compared with RTX 
4090 and ×70,000 compared with H100.

Area and floorplan
On the basis of our assumptions, described in ‘Area estimation’ in  
Methods, for the worst-case scenario, the area of the proposed gain cell 

is 1 μm2. Figure 3c shows the floorplan of a single tile, which includes 
64 shared DACs for writing the weights, 2-row address decoders and 
charge-to-pulse circuitry. The total area of 1 head, shown in the floor-
plan in Fig. 3b, is 500 × 10−3 mm2 including digital control circuitry.

However, other studies have demonstrated substantially smaller 
gain-cell dimensions45. On the basis of this, and following the methodol-
ogy outlined in ‘Area estimation’ in Methods, we estimate that the area 
of the gain-cell crossbars required for the entire GPT-2 attention-head 
KV cache is approximately 15.7 × 10−3 mm2, excluding digital control 
circuitry.

In Supplementary Fig. 7, we show that multiple attention heads 
can be executed using parallel tiles on-chip and stacked in 3D with 
multiple layers, sharing peripheral and digital logic. As discussed in 
‘Area estimation’ in Methods, 3D stacking can further improve area 
efficiency. On the basis of ref. 45, we estimate the total area required 
for a GPT attention-head KV cache, excluding digital control, to  
be 36.7

N
× 10−3 mm2 , where N denotes the number of vertical stacks.  

The resulting area is:

•	 36.7 × 10−3 mm2 for N = 1
•	 9.2 × 10−3 mm2 for N = 4
•	 4.6 × 10−3 mm2 for N = 8
•	 3.1 × 10−3 mm2 for N = 12

Discussion
In this work, we proposed an analog IMC architecture addressing the 
energy consumption and latency bottlenecks of the attention compu-
tations at the core of generative AI models.

Our design leverages capacitor-based gain cells, offering an  
efficient solution for both memory storage and computation, 
substantially improving energy efficiency and speed. To avoid 
power-intensive ADCs, we perform the attention computation in the 
analog domain, using charge-to-pulse circuits to transmit analog sig-
nals between computation stages. This approach introduces non-ideal 
operations compared with digital attention computations, but with 
substantial efficiency gains. Another contribution is a hardware-aware 

Table 1 | Downstream task results

ARC-E ARC-C WinoGrande HellaSwag LAMBADA LAMBADA PIQA WikiText-2 Average Average

acc ↑ acc ↑ acc ↑ acc ↑ ppl ↓ acc ↑ acc ↑ ppl ↓ acc ↑ ppl ↓

Public software 
model

43.81 22.70 51.62 31.14 35.15 45.96 62.89 37.37 43.02 36.26

Software model 
trained from 
scratch

42.34 23.46 50.20 29.73 46.39 41.56 61.48 41.25 41.46 43.82

Linear hardware 
model

42.80 23.46 52.41 30.31 51.69 38.10 61.21 39.79 41.38 45.74

Nonlinear 
hardware model 
with adaptation

42.09 22.87 50.51 30.10 76.59 31.61 61.53 42.34 39.79 59.47

Nonlinear 
hardware model 
with adaptation 
and fine-tuning

43.94 22.78 51.14 30.18 43.08 40.16 62.62 39.97 41.80 41.52

Public software 
model-XL

58.29 (+14.48) 28.50 (+5.80) 58.33 (+6.71) 50.89 (+19.75) 9.68 (−25.47) 63.87 (+17.91) 70.84 (+7.95) 20.38 (−16.99) 55.12 (+12.10) 15.03 (−21.23)

Software model 
trained from 
scratch-XL

53.82 (+11.48) 25.76 (+2.30) 53.75 (+3.55) 42.54 (+12.81) 14.82 (−31.57) 56.33 (+14.77) 68.71 (+7.23) 24.98 (−16.27) 50.15 (+8.69) 19.90 (−23.92)

Linear hardware 
model-XL

54.08 (+11.28) 27.47 (+4.01) 57.93 (+5.52) 45.51 (+15.20) 12.32 (−39.37) 58.54 (+20.44) 68.01 (+6.80) 23.26 (−16.53) 51.92 (+10.54) 17.79 (−27.95)

Nonlinear 
hardware 
model-XL

53.79 (+9.85) 27.30 (+4.52) 54.70 (+3.56) 46.70 (+16.52) 12.17 (−30.91) 59.48 (+19.32) 68.17 (+5.55) 22.29 (−17.68) 51.69 (+9.89) 17.23 (−24.29)

The metrics are the percentage of accurate word predictions (acc), and the perplexity (ppl), a measure of prediction uncertainty. The last two columns average the accuracy results and the 
perplexity results for each model, respectively. Values in parentheses (±x) indicate the improvement of XL models relative to their smaller counterparts (GPT-2-XL results − GPT-2 results). Rows 
in bold correspond to our results.
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training methodology compensating for the circuit non-idealities. 
Nonetheless, future circuit optimizations could further reduce any 
discrepancies.

Our neural network simulations confirm that an LLM imple-
mented with our hardware attention achieves results comparable to 
software-based networks, even on complex NLP tasks. Nonetheless, 
our larger network slightly underperforms the baseline, and therefore 
deeper neural network training will require further methods to mitigate 
the vanishing gradient issue due to clamping values. This slight perfor-
mance gap should still be put in perspective with the reduced energy 
consumption. While our study uses device-level simulations to evaluate 
design performance, our adaptation algorithm demonstrates potential 
for measured device implementations, as it allows most of the training 
process to proceed without requiring precise device-specific models 
of nonlinear behavior, making the approach generically applicable and 
computationally efficient.

Our architecture can benefit from OSFET transistors that enable 
dense 3D integration45,46. Moreover, the KV-cache size grows modestly 
compared with the overall models’ parameters count14,15,47. Our system 
could therefore be applied to larger networks with a moderate area 
footprint. Latency is reduced by up to two orders of magnitude, and 
energy consumption by up to four orders for attention computations 
alone compared with GPUs. While we focus on the attention mechanism, 
a major bottleneck in generative transformers’ inference, substantial 
reductions in overall energy consumption require optimizing all com-
ponents. In the future, our hardware attention mechanism can be inte-
grated with other IMC techniques to implement low-power linear layers.

In conclusion, this work demonstrates hardware-algorithm 
co-optimization achieving low latency and energy consumption while 
maintaining high model accuracy. In addition, it highlights the promise 
of IMC with volatile, low-power memory for attention-based neural 
networks, marking an important step toward ultrafast, energy-efficient 
generative AI.

Methods
Hardware-based neural network simulations
We implement the sliding window attention by masking the elements 
of S outside the sliding window (blank spaces in the example Fig. 1). 
The HardSigmoid charge-to-pulse circuit is modeled by the equation

ϕ(S) =
⎧⎪
⎨⎪
⎩

Tmax if S ≥ Ssat
Tmax

Ssat
S if 0 < S < Ssat

0 if S ≤ 0

, (3)

where Tmax = 15 ns is the maximum pulse length for the input pulse 
generators. The input queries Q are quantized in 16 levels between 0 
and 1, the stored K and V projections are quantized in 8 levels between 
0 and 0.9, and the outputs of the second dot product are quantized in 
32 levels between −1 and 1. The quantized models (linear intermedi-
ate hardware model and nonlinear hardware model) are trained with 
quantization aware training48: quantization is done only in the forward 
pass and the backward pass is done in full precision.

For the nonlinear model of the gain cell, the third-order 
polynomials

S =
3
∑
i

3−i
∑
j
Q ⋅ (KT − Koffset)

iV jinCi, j

A =
3
∑
i

3−i
∑
j
ϕ (S) ⋅ (V − Voffset)

iV jinCi, j

(4)

are used with S and A as the outputs, Q and ϕ(S) the input pulse width, 
K and V the stored voltage, the constant Vin = 0.9 V is the input voltage  
of the cell applied at the word line read (WLR) ports, the constant  
yoffset = 0.45 V corresponds to half the supply voltage (VDD/2), and Ci,j  
as fit parameters from the curve Fig. 1e. To speed-up computation 
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Fig. 5 | Analog hardware attention mechanism accuracy and performances. 
a, Comparison of expected results model versus SPICE simulation results for the 
charge-to-pulse circuit output ϕ(S) with S = Q ⋅ KT the results of the first crossbar 
array and ϕ the transfer function of the charge-to-pulse circuit. b, Comparison 
of PyTorch model versus SPICE simulation results for the second crossbar 
array output A = ϕ(S) · V. c,d, Latency and energy consumption per token of the 

attention mechanism for 1 processed token (c) and energy consumption for a 
12-head attention mechanism implemented by a consumer GPU, a server GPU, an 
embedded application-specific GPU and our hardware architecture (d). e, Energy 
consumption ratio for the different modules of our hardware architecture, 
including analog and digital signals.
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during training, we compute all the tokens in parallel with Q ∈ ℝT,D, 
KT ∈ ℝD,T , V ∈ ℝT,D  and ϕ (S) ∈ ℝT,T  (the batch dimension and the  
head dimension are omitted for simplicity).

The capacitor leakage leads to an exponential decay in the stored 
value. After discretization, the exponential decay is formulated as

yt = yt−1e−
Δt
τ ; Δt = Lδt, (5)

where τ is the time constant of the capacitors, Δt is the time elapses 
between two inference steps, δt is the latency caused by each neural 
network layer, and L is the number of layers. To model the decay of all 
capacitors at all time steps in parallel, we introduce a decay mask 
α ∈ ℝT,T  defined as

α = e−
Δt
τ
mt,t′ ; mt,t′ = max (0, t − t′) , (6)

where m is the relative tokens’ position. To optimize computation, the 
decay mask is directly integrated in the dot-product computation as

S =
3
∑
i

3−i
∑
j
(Q ⋅ (KT − Koffset)

iV jinCi, j)α
i

A =
3
∑
i

3−i
∑
j
(ϕ (S)αi) ⋅ (V − Voffset)

iV jinCi, j

(7)

In our simulation, we chose a time constant τ = 5 ms to be consist-
ent with the data from Fig. 1h. We chose δt = 65 ns to be equal to  
the latency of our full hardware attention mechanism (Fig. 2c). Our  
decay factor is therefore Δt

τ
= 12×65×10−9

5×10−3
≃ 1.6 × 10−4 . In a full trans

former implementation, the latency per layer δt = will be higher  
than 65 ns as it will also include latency from other modules, such as 
feedforward neural networks. However, time constant τ of three  
orders of magnitude larger were reported in OSFET-based gain- 
cell memories26,29, and therefore we conclude that the choice of decay 
factor of 1.6 × 10−4 is very conservative. In Supplementary Fig. 6, we 
study empirically the effect of the decay constant over language pro-
cessing accuracy. It is noteworthy that the decay of stored keys and 
values may not necessarily hinder network performance: several 
approaches in deep learning leverage exponential decay masks to 
enhance memory structure39,49. In Supplementary Information section 
‘Effect of capacitor’s leakage’, we study the connection between the  
KV pairs decay and the relative positional embedding called AliBi49.

To speed up our training process, we used the library Triton50 
to incorporate our simulations into an adapted version of the flash  
attention algorithm51, which optimizes the GPU resources. This method 
led to a factor of five latency reduction during training.

For the adaptation, the algorithm was repeated until the mean  
and standard deviation of the output of the scaling functions of the 
nonlinear model matches the mean and standard deviation of the  
linear model within a tolerance ratio: |σNL − σL| < 0.0001 and |μNL − μL|
< 0.0001.

Nonlinear model adaptation algorithm

y = ax + b (8)

with distinct scalars a and b for each of the Q, K and V projections, as 
well as for the output of the attention, with separate factors applied 
across different attention heads and layers.

To choose the scaling parameters a and b, we develop an algorithm 
inspired by ref. 52, detailed in Supplementary Algorithm 1. Given a set 
of input samples, we use an iterative loop that updates the scaling para
meters so that the output of the scaling function of the nonlinear model 
matches the statistics of the linear model (as sketched in Fig. 4b). First, 
we measure the standard deviation σL and the mean μL of the output 

of every scaling stage (see equation (8)) of the linear model on a large  
set of samples. Then, at each iteration, we measure the standard  
deviation σNL and the mean μNL for the scaling stage of the nonlinear 
model. For each iteration, the scaling parameters are updated as

a← a σL
σNL

b← b + ( μL − μNL)
. (9)

Analog sliding window attention timing and execution
To support efficient sequential inference, our architecture implements 
sliding window attention using a pipelined read–write mechanism 
across analog gain-cell arrays. At each inference step, new (K, V) pairs 
are written into the arrays while the current query (Q) is applied, ensur-
ing that memory access and computation overlap.

Each attention step begins with a 5 ns discharge phase to reset  
the storage capacitors of the gain cells. New K and V vectors are  
written to a column of the respective arrays using 10 ns multi-level 
voltage pulses generated by 3-bit DACs. In parallel, the input query Q 
is encoded as PWM voltage pulses with durations between 0 ns and 
Tmax = 15 ns, generated by 4-bit (16 levels) voltage pulse generators 
operating at 1 GHz.

This parallelization is possible because the V array is not required 
during the Q ⋅ KT computation phase and can therefore be updated 
while the first dot product is processed. Once the write is complete, the 
charge-to-pulse circuit for the V array is reset, and the resulting ϕ(S) 
pulses from the K array’s readout are applied to the V array to compute 
the second dot product ϕ(S) ⋅ V.

After M time steps, when all columns in the K and V arrays have been 
populated, the first column is overwritten, preserving a sliding atten-
tion window of fixed size M. The succession of write and read phases 
implements a sequential sliding window attention mechanism, with 
minimal idle time and continuous throughput. This pipelined execu-
tion scheme is visualized in Fig. 2c, and forms the basis for the latency 
and energy analysis presented in later sections.

Sub-tiling to scale attention dimensions
IR drop, caused by resistive losses in interconnects, results in reduced 
accuracy in large-scale analog crossbar arrays53. To mitigate IR drop 
issues, we limit the size of our gain-cell arrays to 64 × 64. However, most 
NLP applications require larger either a larger window dimension M 
(columns) or a larger embedding dimension d (rows). To accommodate 
larger dimensions, we perform inference across multiple sub-tiles, as 
shown in Fig. 3a.

In this paper, we implement a GPT-2 model with an embedding 
dimension d = 64 and a sliding window size M = 1,024. Therefore, the 
entire KV cache of the window size M is divided into 16 sub-tiles, each 
having its charge-to-pulse blocks and storing a fraction of the K and 
V in two 64 × 64 arrays. A write address controller keeps track of the 
current write index. All tiles receive the same input Q generated by the 
digital block in parallel, are measured by pulse counters and summed 
by 64 digital adders, each with 16 inputs (Fig. 3b,c). In sliding window 
attention, the maximum attention span is equal to L(M − 1) + 1 (ref. 43). 
Therefore, in the presented architecture, the maximum attention span 
can be increased by increasing the number of sub-tiles. However, this 
leads to additional area footprint scaling linearly with the sliding win-
dow dimension, and additional latency as each digital adder requires 
one clock cycle.

Hardware-based neural network training
To evaluate our training algorithm and the inference accuracy of  
our architecture, we implement the analog gain-cell-based atten-
tion mechanism on the GPT-2 architecture54. GPT-2 is a transformer  
neural network with 124 million parameters, 12 layers, an attention 
mechanism input dimension of 768, 12 heads per attention block 
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and a head dimension of 64. We used the open-source text collec-
tion OpenWebText44 split between training and testing samples, and  
the pre-trained GPT-2 tokenizer to encode the plain text into tokens 
(vectors of size 50,304 each). Each training iteration had a batch size  
of 1,920, with sequences of length 1,024 per sample. We selected a  
sliding window size of 1,024, which matches the number of gain-cell 
rows in the memory. As the sequence length also equals 1,024, each  
gain cell is written only once per sequence, eliminating the need to over-
write cells during one sliding window iteration. For a larger sequence 
length, the gain cells would be overwritten, as described in the section 
‘Analog hardware sliding window attention data-flow’. To train the 
network, the next token in the sequence is predicted for each input 
token. Thus, the target sequences are the input sequences shifted 
by one token. The cost function used was cross-entropy, calculated 
between the predicted sequence and the target sequence. We used 
backpropagation with the AdamW optimizer55, with a learning rate of 
6 × 10−4 and a weight decay of 0.1. The results of each evaluation are 
averaged over 4,000 samples.

Downstream tasks set-up
The datasets cover various types of problem. Our benchmarking 
set-up is inspired by refs. 11,56 in terms of evaluated tasks and metrics.  
ARC-Easy and ARC-Challenge57 focus on question answering, with 
ARC-Easy containing straightforward questions and ARC-Challenge 
featuring more difficult ones. WinoGrande58 evaluates common-sense 
reasoning and co-reference resolution by presenting minimal pairs 
to resolve ambiguities. HellaSwag59 tests common-sense inference, 
requiring models to predict the most plausible continuation of a given 
context. LAMBADA60 evaluates models’ text understanding through 
a word prediction task that requires comprehension of broader dis-
course, not just local context. PIQA61 assesses physical common-sense 
reasoning, testing a model’s understanding of physical scenarios. 
WikiText-262 is a general text corpus derived from Wikipedia articles 
to assess long-term dependencies processing, text prediction and 
generation capabilities. For WikiText-2, we report perplexity scores 
normalized by the word count in the original text. For fair compari-
sons, except for software public GPT-2, all the models were evaluated 
after the same number of training iterations. The linear hardware 
model was trained on 13,000 iterations, the nonlinear hardware 
model was mapped from the 13,000 iterations linear model using 
the adaptation algorithm but without fine-tuning, and the nonlinear 
hardware model with adaptation and fine-tuning was adapted from 
a linear model trained on 3,000 iterations, and then fine-tuned on 
10,000 iterations.

Hardware SPICE simulations
To assess circuit performance accuracy, energy consumption and 
speed, we conducted SPICE array simulations using the TSMC 28 nm 
PDK within the Cadence Virtuoso environment. All simulations are 
based on a 64 × 64 array, corresponding to the tile size in our architec-
ture (Fig. 3a). To extrapolate the energy and latency for a full attention 
head with a window size of 1,024, we multiply the per-sub-tile meas-
urements by 16, reflecting the total number of sub-tiles comprising 1 
attention head in our architecture. In these simulations, a parasitic wire 
capacitance of 0.8 fF and a series resistance of 2 Ω per array element are 
included. Both arrays, one performing ϕ(Q ⋅ KT) and the other perform-
ing ϕ(S) ⋅ V, are simulated separately, but always in combination with 
their specific charge-to-pulse circuitry readout circuitry.

GPU attention latency and energy consumption 
measurements
To measure the latency and energy on Nvidia RTX 4090, Nvidia H100 
and Nvidia Jetson Nano, which are a consumer GPU, a data-center GPU 
and an embedded application GPU, respectively, we perform 10 runs 
of 1,024 steps of autoregressive token generation with 12 attention 

heads using the method FlashAttention-251, which optimizes attention 
computation in GPUs. The energy and latency consumption measure-
ment solely focus on attention computation, and for a fair compari-
son, the linear projections are not implemented in this experiment as  
they are also not implemented by our hardware architecture, and  
the static power measured before inference is subtracted from the 
power measured during inference. For each run, we measure the latency 
and the power using the Nvidia-SMI python API, and average them.

Area estimation
Our floorplan is based on ITO gain cells, an emerging OSFET technology 
that has enabled low-area gain-cell designs45. A two-transistor ITO gain 
cell occupies an area of 0.14 μm2 (approximately 370 nm × 370 nm)45, 
allowing for denser memories than CMOS-based gain cells. On the 
basis of the area results presented in these studies45,46, we estimate 
the worst-case area of the proposed 6-transistor cell to be 1 μm2, lead-
ing to a 19× area reduction compared with gain cells based on CMOS 
write transistors (our CMOS-based gain-cell layout is presented in 
Supplementary Fig. 1). The total area of 1 attention head is derived 
from this single-cell area estimation, as well as the charge-to-pulse 
circuit layout and the total floorplan incorporating the 16 sub-tiles 
and digital circuits, providing a precise representation of the space 
requirements. This structure is designed to be repetitive (vertical 
dimension in Fig. 3c), allowing multiple attention heads to be effi-
ciently integrated on a single chip. Each attention head receives inputs 
from the lower digital block, while its outputs are processed by the 
upper digital block. To facilitate the connection of the bitline outputs 
of one array (that is, vertical metal lines) to the wordline input of the 
next array (that is, horizontal metal line), we employ wire tapping, as 
highlighted in Fig. 3d.

When considering 3D-stacked gain cells, the effective cell area 
is reported in ref. 45 as 0.14/N μm2, where N denotes the number of 
parallel oxide layers. Consequently, a signed gain-cell implementation 
would occupy 0.28/N μm2, consisting of 2 gain cells, 1 for the positive 
part and 1 for the negative part.

Data availability
The data supporting the figures of this study are publicly available in 
a figshare repository63. Source data for Figs. 1, 2, 4 and 5 are available 
with this paper. Data for Figs. 1, 2 and 5 were generated through simu-
lations using SPICE. Data for Fig. 4 were produced using evaluations 
performed in the PyTorch framework. Data for Table 1 were obtained 
using the Language Model Evaluation Harness toolkit64.

Code availability
The Python scripts used for the experiments are available without 
restriction at https://github.com/NathanLeroux-git/GainCellAtten-
tion/, and are archived with a DOI in the Zotero repository65.
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