
Nature Computational Science | Volume 5 | September 2025 | 813–824 813

nature computational science

https://doi.org/10.1038/s43588-025-00854-1Article

Analog in-memory computing attention
mechanism for fast and energy-efficient
large language models

Nathan Leroux    1,4  , Paul-Philipp Manea    2,3,4  , Chirag Sudarshan2,
Jan Finkbeiner    1,3, Sebastian Siegel2, John Paul Strachan2,3 & Emre Neftci    1,3

Transformer networks, driven by self-attention, are central to large language
models. In generative transformers, self-attention uses cache memory
to store token projections, avoiding recomputation at each time step.
However, graphics processing unit (GPU)-stored projections must be loaded
into static random-access memory for each new generation step, causing
latency and energy bottlenecks. Here we present a custom self-attention
in-memory computing architecture based on emerging charge-based
memories called gain cells, which can be efficiently written to store new
tokens during sequence generation and enable parallel analog dot-product
computation required for self-attention. However, the analog gain-cell
circuits introduce non-idealities and constraints preventing the direct
mapping of pre-trained models. To circumvent this problem, we design an
initialization algorithm achieving text-processing performance comparable
to GPT-2 without training from scratch. Our architecture reduces attention
latency and energy consumption by up to two and four orders of magnitude,
respectively, compared with GPUs, marking a substantial step toward
ultrafast, low-power generative transformers.

Transformers1 are central to modern artificial intelligence (AI), power
ing advances in language models, image processing and beyond.
However, their high computational demands lead to substantial energy
consumption. Enhancing their efficiency is essential to reduce environ-
mental impact and to keep pace with the exponentially growing size of
AI models. The success of transformers as state of the art in sequence
processing and generation is enabled by their attention mechanism2.
To capture dependencies across sequences, the attention mechanism
performs dot products between different projections of multiple
sequence elements, known as tokens. For generative tasks, the best
performance is achieved by autoregressive, decoder-only transfor
mers3. At each inference step, the decoder generates a token, which is
then appended to the input sequence, forming the input for the sub-
sequent step. To avoid recomputing the keys and values (KV cache)

projections of the previously generated tokens, the so-called
KV-caching method stores the projections from previous tokens in
memory and updates the KV cache with the new projections4.

In a graphics processing unit (GPU), for each token, the entire KV
cache must be transferred from main high-bandwidth memory to cache
memory (static random-access memory (SRAM)). In addition, the KV
cache is often much larger than the available SRAM memory owing to
the dimensions of the stored projections and the sequence length5. For
instance, the entire KV cache of the model Mistral 7B6 requires 8 Gb
for a batch size of 1, as necessary for inference workloads. In recent
technologies, the energy for data access exceeds the energy required
for computations7. Loading the KV cache for the attention mechanism
is thus a major bottleneck, causing increased energy consumption and
latency in large language models (LLMs)8. To mitigate this bottleneck,

Received: 15 November 2024

Accepted: 22 July 2025

Published online: 8 September 2025

 Check for updates

1PGI-15, Forschungszentrum Jülich, Jülich, Germany. 2PGI-14, Forschungszentrum Jülich, Jülich, Germany. 3Faculty of Electrical Engineering,
RWTH Aachen, Aachen, Germany. 4These authors contributed equally: Nathan Leroux, Paul-Philipp Manea.  e-mail: n.leroux@fz-juelich.de;
p.manea@fz-juelich.de

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-025-00854-1
http://orcid.org/0000-0003-3672-0870
http://orcid.org/0000-0001-6998-3066
http://orcid.org/0000-0003-4556-3758
http://orcid.org/0000-0002-0332-3273
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-025-00854-1&domain=pdf
mailto:n.leroux@fz-juelich.de
mailto:p.manea@fz-juelich.de

Nature Computational Science | Volume 5 | September 2025 | 813–824 814

Article https://doi.org/10.1038/s43588-025-00854-1

In addition, the normalization in softmax requires summing across
all input elements, requiring global connections with an increased
hardware complexity scaling with the sequence length37,38. In our
system, the activation function is instead operated element-wise with
charge-to-pulse circuits implementing HardSigmoid functions.

To overcome this discrepancy, we introduce an algorithm that
adapts a pre-trained language model to our architecture by scaling
each layer according to its statistics and hardware characteristics.
With our adaptation algorithm, our model achieves accuracy similar
to a pre-trained GPT-2 model without having to train the model from
scratch. Overall, the contributions of this study are:

•	 An in-memory, mixed analog–digital computing design to
store token projections and compute attention dot products
with gain-cell arrays at high energy efficiency.

•	 An end-to-end attention mechanism based on analog signals lever-
aging charge-to-pulse circuits to avoid power- and area-intensive
ADCs.

•	 Quantitative performance analysis of a scalable architecture
with area floorplan including analog circuits and digital
peripheries.

•	 A software-to-hardware methodology to map pre-trained (ideal)
models to non-traditional hardware reaching an accuracy equiva-
lent to GPT-2.

•	 Our architecture achieves up to five and two orders of magnitude
lower energy consumption and latency, respectively, compared
with GPUs.

After detailing the attention mechanism algorithm, we demon
strate its implementation using gain cells and charge-to-pulse
circuits. We then show how our approach maps a pre-trained model
to our hardware while maintaining high accuracy on common natural
language processing (NLP) benchmarks. Finally, we evaluate the
architecture’s performance in terms of energy consumption, latency
and area footprint.

Results
Attention mechanism
Figure 1a shows the attention mechanism algorithm. In autoregressive
transformers, new token projections called queries (Q), keys (K) and
values (V) are created for each inference step from the weights
WQ,K,V ∈ ℝD,d and an input token xi ∈ ℝ1,D as:

Qi,Ki,Vi = WQ,K,Vxi, (1)

where i is the token index, D is the token dimension and d is the
embedding dimension. The keys and values Ki ∈ ℝ1,d and Vi ∈ ℝ1,d are
stored as part of the full KV cache with K ∈ ℝT,d and V ∈ ℝT,d , where
T is the sequence length. The query Qi ∈ ℝ1,d is not stored but used
for inference as

Si = Qi ⋅ KT; Ai = ϕ (
Si
√d

) ⋅ V. (2)

The dot product between the queries and keys produces an attention
score matrix Si ∈ ℝ1,T . In standard transformers, the activation func-
tion ϕ is typically a softmax function, but other nonlinear activation
functions can yield similar accuracy10,39,40. In particular, sigmoid-based
attention has been shown to match softmax-based attention on
models up to 7-billion-parameters large40. Recent studies show that in
the case of sliding window attention41, the normalization of softmax
leads to vanishing memory while sigmoid-based attention can lead to
better information42,43. The output of the attention mechanism Ai is
then obtained by the dot product between the activation ϕ(Si) and the
values. In the transformer architecture, multiple attention ‘heads’ are

a wide body of literature explores resource-efficient algorithms9. Alter-
native architectures to transformers with linear time complexity are
developed to improve long-sequence processing efficiency10,11. How-
ever, transformers continue to exhibit more stable training at scale
than alternatives such as Mamba11, which contributes to their ongoing
dominance despite the efficiency of state-space models. Alternatively,
different methods have been developed to reduce the memory require-
ments of KV caching through token pruning12, latent KV-cache compres-
sion13 or low-rank approximations14, or by reusing the same KV-cache
pairs across multiple heads (grouped-query attention)15.

While these algorithmic strategies reduce computational and
memory overhead, achieving further energy efficiency increasingly
depends on hardware innovation. Hardware systems dedicated to spe-
cific neural architectures can substantially outperform conventional
central processing units and GPUs in terms of energy efficiency16. In
particular, to mitigate data-transfer overhead of weights loading,
several approaches leverage either near-memory or in-memory com-
puting (IMC)17–21. IMC is particularly beneficial when using non-volatile
memories to store stationary weights in linear layers22. However, a full
optimization of transformers’ inference also requires addressing the
attention mechanism, which contributes substantially to the overall
computational cost9,18. Current IMC solutions do not yet meet all the
requirements for efficient hardware implementation of attention.
Specifically, KV cache demands fast and energy-efficient memory
writing as it is input dependent and must be updated at every genera-
tion step. In addition, high parallelism is crucial for low-latency infer-
ence, while high memory density is needed for scaling to large models.
Finally, long retention time is essential to avoid frequent memory
refresh operations. KV cache has been implemented either by dynamic
random-access memories (DRAMs)21,23, which have limited parallelism
requiring many digital sequential adders, or by SRAMs19,24, which are
limited by their volatility and relatively low density25. Non-volatile
memories can be used for linear layers of transformers17, but are too
slow, energy expensive and are not endurant enough for dynamical
KV-cache writing18,22.

In this work, we propose an IMC hardware architecture based on
emerging charge-based memory devices, known as gain cells26,27, to
store token projections and compute dot products for the attention
mechanism. As a result, gain-cell crossbar arrays simultaneously serve
to store the KV cache and to perform attention computation. Gain
cells store information in a capacitor, with a dedicated read transistor
generating current based on the capacitor’s voltage. Unlike DRAM,
this enables non-destructive read operations, supporting highly
parallel IMC computations. Gain cells have high endurance, fast write
speeds and low write energy, and are multi-level. Oxide semiconductor
field effect transistor (OSFET)-based gain cells (for example, indium
gallium zinc oxide (IGZO) or indium tin oxide (ITO)) are capable of
retaining their state for several seconds without a power supply28–30,
can be manufactured with very small feature sizes, achieving higher
density than SRAM, and also support three-dimensional (3D) integra-
tion, which can further reduce effective area requirements for IMC
applications28–33.

The analog-to-digital conversion required for analog IMC often
hinders the advantages this approach offers, as analog-t-digital con-
verters (ADCs) are power and area intensive34. To mitigate this issue,
charge-based integration is an energy-efficient alternative35,36. Here,
we choose to perform the core of the attention mechanism—two
dot products, scaling and activation function—fully in the analog
domains, using charge-to-pulse circuits for activation and inter-module
communication, combined with pulse counters for final readout.

Practical applications of LLMs often rely on pre-trained models
to reduce training costs. However, our co-optimization approach
introduces specific hardware constraints to enhance architectural
performance, which leads to a divergence from standard pre-trained
models. The multiplications operated with gain cells are non-ideal.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 5 | September 2025 | 813–824 815

Article https://doi.org/10.1038/s43588-025-00854-1

computed in parallel, concatenated and provided to a subsequent
linear layer to produce the final multi-head attention result.

In decoder-based transformers, causal attention allows the score
matrix S to compare the input token with all previous sequence ele-
ments. However, to prevent the physical memory size from scaling
with the entire sequence length, we employ a type of attention that
is both causal and local: sliding window attention41. In this approach,
only a fixed number M of key and value projections are retained in
memory and attention scores for elements older than the last M are
masked (Fig. 2a). Although sliding window attention is local at each
layer, it can still capture global information in deep networks because
the receptive field grows with the number of layers6.

End-to-end analog hardware attention
In this section, we first give an overview of how our architecture
performs operations on analog signals to compute attention. Then,
we detail how the different circuits operate. Keys K and values V
are stored in two gain-cell arrays. The query Qi is encoded as pulse-
width modulation (PWM) pulses and is the input of the first array, per-
forming the dot product Qi ⋅ KT. An intermediate charge-to-voltage
pulse block integrates the output currents from the first array and

outputs PWM voltage pulses for the second array, while applying a
HardSigmoid activation function (Fig. 1c). The second array, computing
ϕ(S) ⋅ V is read out using a signed charge-to-voltage pulse block, where
the resulting pulse widths are measured by a digital counter.

The proposed gain cell, shown in Fig. 1d, contains a write stage
for programming the capacitor C1 and a multiplication stage approxi
mating the product between the input and the capacitor voltage.

The storage capacitor is charged with a multi-level voltage pulse
emitted by a digital-to-analog converter (DAC). The voltage pulse
is gated to the designated capacitor by a write-enable transmission
gate. Due to leakage in the storage capacitors, the voltages gradually
decay over time. Figure 1f shows the simulated transient response
of the storage capacitor voltage Vstore, which corresponds to the
cell weight for both extreme values 0 V and 0.9 V. An exponential
decay fit of the gain cells leakage reveals that the time constant (that
is, retention time) of our silicon complementary metal–oxide–semi-
conductor (CMOS)-based gain cell is τ = 5 ms. Note that an OSFET-
based gain cell can achieve multiple orders of magnitude longer
retention times29.

The multiplication stage generates an analog current via a push–
pull transistor pair, with its amplitude set by the stored capacitor

Vstore = Ki

N heads

V

Linear

Concat

Linear

x

Dot product

Q

φ

K

A

Scale

S

a b

<M>

φ(S)

φ(S) V
<M>

∑I

Pu
ls

es
S = Q KT

Q

K

DAC

<D
>

<D
>

V

DAC

C
O

U
N

T

∑
I

HardSigmoid charge-to-pulse

C1

P2

N2

P1

N1

WLW

WLR

Icell = QiKi

P3

N3

Iout = ∑–Icell

WLR

Vin

Vin

Signed multiplier gain cell

WEWE

BL

Vb

REST

DCH

SAMPA

Pulse Vint

HardSigmoid charge-to-pulse

e f g h

Gain-cell array

c

d

O
ut

pu
t:

I ce
ll (
µ

A)

Weight: Vstore (V)

W
ei

gh
t:

V st
or

e (
V)

Time (ms)

O
ut

pu
t p

ul
se

 w
id

th
 (%

)

Input: ΣQi .Ki (µA)

O
ut

pu
t p

ul
se

 w
id

th
 (%

)

O
utput sign (V)

Input: Σφ(Si) .Vi (µA)

VDD

0 0.45 0.90

–10

0

10

0

0 10 0

0

50

100

0

50

100

50 0
0

50–50

0.45

0.90

Dot product

Fig. 1 | Building blocks of the analog hardware attention mechanism.
a, Multi-head attention architecture. The nonlinear activation is denoted by ϕ.
Inputs Q, K and V are the token projections. S = Q ⋅ KT is the attention score
and A = ϕ(S) ⋅ V is the final attention output. b, Hardware implementation of the
attention mechanism. Red and green traces indicate analog input currents and
generated voltage pulses, respectively. ∑I indicates current integration. M and D
denote the sliding window and embedding dimensions. COUNT blocks are pulse
counters returning the digital attention result A. c, HardSigmoid charge-to-pulse
circuit: integrates bitline (BL) current and emits a pulse width proportional to
the accumulated charge during the discharge phase. The circuit is controlled by
the signals: sample (SAMP), reset (REST) and discharge (DCH) which control
the three states. Vint, the charge integrated by the charge-to-pulse circuits.

d, Signed gain-cell-based multiplier: Vstore encodes the weight (K or V) and is set
via write transistors N2 and P2. P1 and N1 modulate the output current based on
Vstore, while P3 and N3 act as switches driven by the input query Q. The signals of the
cell include two complementary word line read (WLR) signals, which serve as the
inputs, a word line write (WLW) signal, a complementary write enable (WE) signal
pair, and a BL that collects the output current. e, Simulated output current Icell
versus stored voltage Vstore for Vin = 0.9 V. Monte Carlo variation bounds are shown
in green. f, Simulated voltage decay of the storage capacitor over time due
to leakage from write transistors. g, Output pulse width of the HardSigmoid
charge-to-pulse block versus summed input current ∑iQi ⋅ Ki. h, Output pulse
width and sign from the signed charge-to-pulse block versus summed input
current ∑iϕ(Si) ⋅ Vi. All simulations assume VDD = 0.9 V.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 5 | September 2025 | 813–824 816

Article https://doi.org/10.1038/s43588-025-00854-1

voltage (Vstore), as shown in Fig. 1e. This current is enabled only during
the input pulse, which gates it onto the shared bitline, where currents
from multiple cells are summed according to Kirchhoff’s law.

In each inference step, both arrays are updated with one
column from the key and value matrices, as we will show in more
detail in the section ‘Analog hardware sliding window attention data-
flow’. The M columns of each array represent the K and V of the
previous M tokens, while the rows correspond to the d distinct
embedding elements.

Due to temporal input encoding, gain-cell outputs also vary
over time and must be integrated to compute the dot product.

This is performed by charge-to-pulse circuits (Fig. 1c), which emit
PWM voltage pulses. The pulses’ width increase linearly with accu-
mulated charge, up to a saturation threshold Ssat, as shown in Fig. 1g.
The circuit emit pulses only for positive charge, implementing a
HardSigmoid activation. Further circuit details are provided in Sup-
plementary Fig. 2.

The pulses representing ϕ (S) ∈ ℝM are fed as inputs to the second
gain-cell array to perform the dot product ϕ(S) ⋅ V. A different type
of charge-to-pulse circuit integrates the output currents of the
second array. Unlike the first one, this signed charge-to-pulse circuit
is capable of generating pulses for both positive and negative input

Vint

Ti
m

e

Memory

Q0

Q1

Q2

Q3

Q4

Q5

K0 K1 K2 K3 K4 K5

Window size M

a

Ti
m

e

Memory

Window size M

Ti
m

e

Memory

Window size M

b

t0

COUNTER
Write Vi Write Ki + 1

MAC φ(Si) · V DIGITAL ADD

15 ns
65 ns

t

c

MAC Qi · KT

RSTK RSTV

10 ns

Q0,1

Q0,0

In
pu

t p
ul

se
s

A0,1

A0,0

O
utput pulses

∑I

S0,0 S0,1 S0,2

Write voltages
K0,0

K0,1

Write voltages
V0,1

V0,0

Q1,1

Q1,0

In
pu

t p
ul

se
s

A1,1

A1,0
O

utput pulses

∑I

S1,0 S1,1 S1,2

Write voltages
K1,0

K1,1

Write voltages
V1,1

V1,0

Q2,1

Q2,0

In
pu

t p
ul

se
s

A2,1

A2,0

O
utput pulses

∑I

S2,0 S2,1 S2,2

Write voltages
K2,0

K2,1

Write voltages
V2,1

V2,0

t0 +0 t0 +15

0

0.45

0.90

5 10 15 20 25 30 35 20 25 30 35 40 45 50

RSTK RSTV COUNTERMAC Qi · K
T MAC φ(Si) · V

d e

Vo
lta

ge
 (V

)

Vo
lta

ge
 (V

)

Time (ns) Time (ns)

Pulse

Vint

Pulse
Sign

0

0.45

0.90

Q0

Q1

Q2

Q3

Q4

Q5

K0 K1 K2 K3 K4 K5

Q0

Q1

Q2

Q3

Q4

Q5

K0 K1 K2 K3 K4 K5

MAC φ(Si) · V

Fig. 2 | Analog hardware attention pipeline. a, Three inference steps of a dot
product between Q and K in sliding window attention. The gray boxes represent
tokens that are attended to and the blank boxes represent the masked tokens.
b, Equivalent gain-cell-array implementations for an entire attention head. In
every inference step, a new column (pointed by red arrows) of K and V is written
before the queries Q are applied at the input. S are the currents summed at the
bitlines, ∑I represents current integration in charge-to-pulse circuits, and A are
the outputs. c, Proposed temporal pipeline. The process begins by resetting
the charge-to-pulse readout capacitors for the K array (RSTK). While Q pulses

are applied to compute S = Q ⋅ KT, the V values for the current token are written
in parallel to the V array. After the write, the V readout is reset (RSTV), and the
resulting ϕ(S) pulses from the charge-to-pulse circuits are applied to the V array
to compute ϕ(S) ⋅ V. COUNTER digitizes the final pulse width and sign, and a
digital adder combines results from multiple sub-tiles to produce the attention
output A. d,e, Transient simulation of the ϕ(Q ⋅ KT) multiply–accumulate (MAC)
operation (d) and the ϕ(S) ⋅ V MAC operation including temporal location (e).
Vint is the charge integrated by the charge-to-pulse circuits, ‘Pulse’ is their output
signal and ‘Sign’ is the signal current for the counter within the pipeline.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 5 | September 2025 | 813–824 817

Article https://doi.org/10.1038/s43588-025-00854-1

charges, while a D flip-flop stores the result’s sign. The behavior of this
circuit for different inputs is highlighted in Fig. 1h. A 16-level digital
counter measures the generated pulse widths and multiplies the result
by the retrieved sign bit, resulting in a total precision of 32 levels.

Analog hardware sliding window attention data-flow
Having described how inference is performed for one token, we now
describe how the architecture processes multiple tokens sequentially.
In sliding window attention, the input query is multiplied only with
the M most recent keys and values, corresponding to the window
size M (Fig. 2a). At each time step, the keys and values must be
updated with the most recent token and the oldest one must be
forgotten. All other projections remain stationary until they are
updated after M cycles. In our implementation, we write the array
that encodes the keys and values at inference time in a column-wise
manner (Fig. 2b).

Figure 2c illustrates the sequential execution of inference steps
in the hardware performing sliding window attention. Read and write
operations are interleaved for efficiency, as further detailed in ‘Analog
sliding window attention timing and execution’ in Methods. To perform
attention on sliding window sizes and embedding dimensions larger
than a single array can support, sub-tiling is used to stack multiple
arrays, as shown in Fig. 3, and detailed in ‘Sub-tiling to scale attention
dimensions’ in Methods.

Pre-trained model hardware-aware mapping and fine-tuning
Using weights from pre-trained models is challenging because
our attention mechanism differs from the conventional ones (Fig. 4a).
The main differences are:

•	 HardSigmoid activation used instead of softmax (Fig. 1b).
•	 Sliding window attention is implemented instead of causal atten-

tion (Fig. 2a).
•	 Input, stored projections and output are quantized in four, three

and five bits, respectively, by digital PWMs, DACs and pulse coun-
ters (Fig. 1b).

•	 Gain-cell arrays are split into sub-tiles before final result summa-
tion (Fig. 3a).

•	 The relation between gain-cell input and stored voltages is non-
linear (Fig. 1e).

•	 Capacitor leakage causes stored value decay (Fig. 1f).

The implementation of these hardware constraints in our simula-
tions is explained in ‘Hardware-based neural network simulations’ in
Methods. As the nonlinear relation between input voltage and stored
voltage in gain cells is described by a third-order polynomial func-
tion, this substantially increases the computational complexity and
memory requirements to train our gain-cell-based model. Therefore, to
adapt the pre-trained public GPT-2 model to our hardware constraints,

HardSigm

<6
4,

5b
>

Sub-tile 16

Gain cell
HardSigm

∑I

∑I

Vj

Gain-cell
array

64 × 64

DAC

 KjQ

DAC

Digital PWM AnalogSignal types:

C
O

U
N

T
C

O
U

N
T

Sub-tile 2

Gain cell
HardSigm

DAC DAC

Gain-cell
array

64 × 64

Sub-tile 1

Gain cell C
O

U
N

T

DAC DAC

Gain-cell
array

64 × 64

A

<64,4b>

AD
D

RW
(K

)

Q
Kj

Vj

PWM

AD
D

RW
(V

)

<64,1b> <64,4b>
<64,4b>

Write address controller

a b

WE

WL_W

WL_R

BL
Write DACs

HardSigm ∑I Pulse

Sign ∑I Pulse

K
ro

w
 a

dd
re

ss
V

ro
w

 a
dd

re
ss

c d

20
0
µ

m
24

0
µ

m

1,200 µm

70 µm

1 µm
φ(S) · V

MAC

Q · KT

MAC

∑I

array
64 × 64

array
64 × 64

array
64 × 64

∑I

∑I

∑I

Fig. 3 | Multi-tile design and layout for multi-head attention. a, High-level
architectural diagram of a hardware unit implementing 1 attention head,
supporting a sequence length (M) of 1,024 and embedding dimension (d) of 64.
Labels of the form ‘<d,pb>’ denote a d-element vector with p-bit digital precision.
The design is partitioned into 16 identical sub-tiles, each integrating two 64 ×
64 gain-cell memory arrays to store the K and V projections and perform dot
products. Input queries Q are encoded using PWM, while K and V are converted
into analog voltages via DACs. A write address controller selects the active
memory row for K and V using ADDRW(K) and ADDRW(V). The result passes
through a nonlinear activation function (HardSigm), and is re-encoded into
PWM and routed to the next array within the sub-tile. The final PWM output is
digitized using a counter (COUNT) block. Outputs from all sub-tiles are summed
by a digital adder to yield the attention result A. Digital logic is shown in yellow,
PWM signals in green and intermediate analog voltages in red. b, Physical layout

corresponding to a, showing 16 sub-tiles in the middle with shared digital logic
at the top and bottom. Memory arrays are based on compact 6-transistor gain
cells, each occupying approximately 1 μm2. The layout is synthesized, placed
and routed using Synopsys tools and shown with its default color scheme. c,
Zoomed-in floorplan of a sub-tile, showing vertically stacked memory arrays,
activation blocks and DACs. Blue and green lines indicate input and output
signal paths, respectively. d, Routing scheme for converting signal orientation
between vertical and horizontal. Write DAC signals arrive vertically and connect
to vertically oriented word lines (WL_R, blue) in the Q ⋅ KT array. The array’s output
BLs (green in the bottom array) are routed horizontally. To feed these signals
to the vertically stacked HardSigmoid activation block, diagonal wire tapping
redirects the horizontal bitlines upward and reorients them for vertical input.
The same scheme applies to the ϕ(S) ⋅ V array. Write enable (WE, pink) and write
word lines (WL_W, orange) indicate programmable rows.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 5 | September 2025 | 813–824 818

Article https://doi.org/10.1038/s43588-025-00854-1

we first fine-tune it using an intermediate model. The intermediate
model employs ideal linear dot products, but integrates all the other
mentioned hardware constraints. The model is trained on predicting the
next words of the open-source text collection OpenWebText44, and the
metric used for evaluation is perplexity, which measures the uncertainty
of the prediction. In Fig. 4d, we see that our linear intermediate model
(blue curve) achieves results equivalent to a public GPT-2 model in less
than 3,000 iterations, whereas it takes more than 13,000 iterations for
the model trained from scratch (magenta curve). This result shows that
performing weight transfer is efficient even though the two models are
different (in particular, HardSigmoid activation instead of softmax).

After fine-tuning the intermediate linear model, we transfer the
weights to the final hardware model including the gain cell’s non
linearity. This mapping is non-trivial, as all the layers have different
statistics, making it difficult to apply a single fit to capture the gain
cells’ nonlinearity. To circumvent this issue, we introduce scaling
operations and an adaptation algorithm described in ‘Nonlinear model
adaptation algorithm’ in Methods. In Fig. 4c, we show how the perplexity
of the nonlinear gain-cell model is reduced from 1,757 to 21 during this
adaption stage. In Supplementary Fig. 5, we show that this adaptation

algorithm can generalize to other multiplication nonlinearities.
After the adaptation algorithm, we can fine-tune the nonlinear model
using backpropagation (Fig. 4d, green curve) to further improve the
results. The entire process is described in Fig. 4a.

Downstream task benchmarks
To evaluate the proposed hardware attention mechanism, in Table 1,
we benchmark two software baselines and three hardware models
on standard language modeling tasks (see details in ‘Downstream
tasks set-up’ in Methods). Our nonlinear hardware model, adapted
from a linear baseline and fine-tuned, achieves accuracy compara-
ble to the public GPT-2 model, and equal or better performance than
a software model trained from scratch under the same conditions.
We further observe that omitting nonlinearity-specific fine-tuning
yields near-identical results on most tasks, except LAMBADA and
WikiText-2. To test scalability, we apply the same training set-up
as GPT-2-XL (1.5 billion parameters). While the hardware version
falls slightly short of the public checkpoint, it clearly outperforms
the smaller GPT-2 baseline and matches the from-scratch software
GPT-2-XL. This indicates that remaining performance gaps are due to

b

y = ax + b

y = ax + b

y = a'x + b'

Linear hardware model

Nonlinear hardware model
before adaptation

Nonlinear hardware model
after adaptation

x

c d

Weight transfer +
fine-tuning

Weight transfer +
(a, b) adaptation +
fine-tuning

Linear
dot product

y = x · d1/2

Softmax

Q

Linear
dot product

Output

K V

Pre-trained
software model

Linear hardware model

y = ax + b

Q VK

Clip[0, 1]

Linear
dot product

Clip[0, 1]

Linear
dot product

y = x/Ssat

Clip[–1, 1]

Quantize

Output

Quantize

y = ax + b

Nonlinear hardware model

y = a’x + b’

Q VK

Clip[0, 1]

Nonlinear
dot product

Clip[0, 1]

Nonlinear
dot product

y = x/Ssat

y = x/Ssat

Clip[–1, 1]

Quantize

Output

Quantize

y = a’x + b’

–Ssat

Nonlinear model

Adaptation iterations
0 8 16

20

20

25

0

0

4,000

4,000
30

40

24
Backpropagation iterations

Pe
rp

le
xi

ty

Pe
rp

le
xi

ty

Software model trained from scratch

Nonlinear model trained from scratch

Linear model fine-tuned from GPT-2

Nonlinear model fine-tuned from linear model

Ssat

Ssat

a

Clip

Clip

Clip

y
0 0.5 1.00 0.5 1.0

x y
0 0.5 1.00 0.5 1.0

x y
0 0.5 1.00 0.5 1.0

8,000

8,000

12,000

12,
000

102

104

106

y = x/Ssat

–Ssat Ssat

Ssat

Fig. 4 | Hardware model adaptation and training. a, Pre-trained model
mapping. Q, K and V are the input projections. d is the embedding dimension,
Ssat is the charge-to-pulse threshold, and a and b are trained scaling parameters.
From a software pre-trained model, we fine-tune an intermediate model that
integrates all hardware constraints except dot-product nonlinearity. Then,
we use a custom adaptation algorithm to map the intermediate model to the
gain cell’s nonlinearity. Finally, we fine-tune the nonlinear model. b, Sketch
of the adaptation algorithm for scaling factors. Scaling factors re-scales the
input before clipping and quantization. The nonlinear model leads to different

statistics (red histogram) than the linear model (green histogram). The
adaptation algorithm modifies the scaling factors to match the statistics of the
nonlinear model to the statistics of the linear one. c, Evolution of perplexity
(lower the better) during the adaptation algorithm. d, Training curves for the
different models. The software model is GPT-2, the nonlinear model is the model
with the proposed hardware attention, and the linear model is the hardware
attention with ideal linear gain cells. The inset provides a magnified view of the
main training curves to emphasize finer differences in model convergence.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 5 | September 2025 | 813–824 819

Article https://doi.org/10.1038/s43588-025-00854-1

training iteration differences (the number of iterations for the public
model is undisclosed), not hardware limitations.

Circuit computing accuracy
The accuracy of our circuits for attention computation is highlighted
in Fig. 5a,b. For each of the two dot products, we simulate one 64 × 64
array and the corresponding 64 charge-to-pulse circuits. The results of
the first dot product, which are shown in Fig. 5a, are fed as input to the
second dot product and are shown in Fig. 5b. For each plot, we compare
the simulations performed with SPICE (a circuit simulation software)
with the model used for neural network simulations.

Energy consumption and latency
The circuit’s operational speed and timing, on which the energy
assumptions are based, are shown in Fig. 2d. The total latency of atten-
tion can be estimated to 65 ns.

The gain-cell arrays and charge-to-pulse circuits consume 1,120 pJ
per token computation for the first dot product, and 700 pJ for the
second dot product. The lower energy consumption in the second
dot-product arrays is attributed to the sparser activation of its input
ϕ(S), leading to less current in the second gain-cell array. The digital
control and routing block consumes a total power of 113.7 mW, or 4 nJ per
token, while the DACs require 330 pJ. Overall, we can estimate the power
consumption of processing 1 token for 1 attention head to 6.1 nJ. A pie
chart of the power composition attributed to each unit is shown in Fig. 5e.

The energy and latency of our architecture, compared with three
different GPUs, are shown in Fig. 5c,d. Focusing on the attention mecha-
nism alone, our architecture can lead to a speed-up of ×7,000 compared
with Nvidia Jetson Nano, ×300 compared with Nvidia RTX 4090 and
×100 compared with Nvidia H100, as well as an energy reduction of
×40,000 compared with Jetson Nano, ×90,000 compared with RTX
4090 and ×70,000 compared with H100.

Area and floorplan
On the basis of our assumptions, described in ‘Area estimation’ in
Methods, for the worst-case scenario, the area of the proposed gain cell

is 1 μm2. Figure 3c shows the floorplan of a single tile, which includes
64 shared DACs for writing the weights, 2-row address decoders and
charge-to-pulse circuitry. The total area of 1 head, shown in the floor-
plan in Fig. 3b, is 500 × 10−3 mm2 including digital control circuitry.

However, other studies have demonstrated substantially smaller
gain-cell dimensions45. On the basis of this, and following the methodol-
ogy outlined in ‘Area estimation’ in Methods, we estimate that the area
of the gain-cell crossbars required for the entire GPT-2 attention-head
KV cache is approximately 15.7 × 10−3 mm2, excluding digital control
circuitry.

In Supplementary Fig. 7, we show that multiple attention heads
can be executed using parallel tiles on-chip and stacked in 3D with
multiple layers, sharing peripheral and digital logic. As discussed in
‘Area estimation’ in Methods, 3D stacking can further improve area
efficiency. On the basis of ref. 45, we estimate the total area required
for a GPT attention-head KV cache, excluding digital control, to
be 36.7

N
× 10−3 mm2 , where N denotes the number of vertical stacks.

The resulting area is:

•	 36.7 × 10−3 mm2 for N = 1
•	 9.2 × 10−3 mm2 for N = 4
•	 4.6 × 10−3 mm2 for N = 8
•	 3.1 × 10−3 mm2 for N = 12

Discussion
In this work, we proposed an analog IMC architecture addressing the
energy consumption and latency bottlenecks of the attention compu-
tations at the core of generative AI models.

Our design leverages capacitor-based gain cells, offering an
efficient solution for both memory storage and computation,
substantially improving energy efficiency and speed. To avoid
power-intensive ADCs, we perform the attention computation in the
analog domain, using charge-to-pulse circuits to transmit analog sig-
nals between computation stages. This approach introduces non-ideal
operations compared with digital attention computations, but with
substantial efficiency gains. Another contribution is a hardware-aware

Table 1 | Downstream task results

ARC-E ARC-C WinoGrande HellaSwag LAMBADA LAMBADA PIQA WikiText-2 Average Average

acc ↑ acc ↑ acc ↑ acc ↑ ppl ↓ acc ↑ acc ↑ ppl ↓ acc ↑ ppl ↓

Public software
model

43.81 22.70 51.62 31.14 35.15 45.96 62.89 37.37 43.02 36.26

Software model
trained from
scratch

42.34 23.46 50.20 29.73 46.39 41.56 61.48 41.25 41.46 43.82

Linear hardware
model

42.80 23.46 52.41 30.31 51.69 38.10 61.21 39.79 41.38 45.74

Nonlinear
hardware model
with adaptation

42.09 22.87 50.51 30.10 76.59 31.61 61.53 42.34 39.79 59.47

Nonlinear
hardware model
with adaptation
and fine-tuning

43.94 22.78 51.14 30.18 43.08 40.16 62.62 39.97 41.80 41.52

Public software
model-XL

58.29 (+14.48) 28.50 (+5.80) 58.33 (+6.71) 50.89 (+19.75) 9.68 (−25.47) 63.87 (+17.91) 70.84 (+7.95) 20.38 (−16.99) 55.12 (+12.10) 15.03 (−21.23)

Software model
trained from
scratch-XL

53.82 (+11.48) 25.76 (+2.30) 53.75 (+3.55) 42.54 (+12.81) 14.82 (−31.57) 56.33 (+14.77) 68.71 (+7.23) 24.98 (−16.27) 50.15 (+8.69) 19.90 (−23.92)

Linear hardware
model-XL

54.08 (+11.28) 27.47 (+4.01) 57.93 (+5.52) 45.51 (+15.20) 12.32 (−39.37) 58.54 (+20.44) 68.01 (+6.80) 23.26 (−16.53) 51.92 (+10.54) 17.79 (−27.95)

Nonlinear
hardware
model-XL

53.79 (+9.85) 27.30 (+4.52) 54.70 (+3.56) 46.70 (+16.52) 12.17 (−30.91) 59.48 (+19.32) 68.17 (+5.55) 22.29 (−17.68) 51.69 (+9.89) 17.23 (−24.29)

The metrics are the percentage of accurate word predictions (acc), and the perplexity (ppl), a measure of prediction uncertainty. The last two columns average the accuracy results and the
perplexity results for each model, respectively. Values in parentheses (±x) indicate the improvement of XL models relative to their smaller counterparts (GPT-2-XL results − GPT-2 results). Rows
in bold correspond to our results.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 5 | September 2025 | 813–824 820

Article https://doi.org/10.1038/s43588-025-00854-1

training methodology compensating for the circuit non-idealities.
Nonetheless, future circuit optimizations could further reduce any
discrepancies.

Our neural network simulations confirm that an LLM imple-
mented with our hardware attention achieves results comparable to
software-based networks, even on complex NLP tasks. Nonetheless,
our larger network slightly underperforms the baseline, and therefore
deeper neural network training will require further methods to mitigate
the vanishing gradient issue due to clamping values. This slight perfor-
mance gap should still be put in perspective with the reduced energy
consumption. While our study uses device-level simulations to evaluate
design performance, our adaptation algorithm demonstrates potential
for measured device implementations, as it allows most of the training
process to proceed without requiring precise device-specific models
of nonlinear behavior, making the approach generically applicable and
computationally efficient.

Our architecture can benefit from OSFET transistors that enable
dense 3D integration45,46. Moreover, the KV-cache size grows modestly
compared with the overall models’ parameters count14,15,47. Our system
could therefore be applied to larger networks with a moderate area
footprint. Latency is reduced by up to two orders of magnitude, and
energy consumption by up to four orders for attention computations
alone compared with GPUs. While we focus on the attention mechanism,
a major bottleneck in generative transformers’ inference, substantial
reductions in overall energy consumption require optimizing all com-
ponents. In the future, our hardware attention mechanism can be inte-
grated with other IMC techniques to implement low-power linear layers.

In conclusion, this work demonstrates hardware-algorithm
co-optimization achieving low latency and energy consumption while
maintaining high model accuracy. In addition, it highlights the promise
of IMC with volatile, low-power memory for attention-based neural
networks, marking an important step toward ultrafast, energy-efficient
generative AI.

Methods
Hardware-based neural network simulations
We implement the sliding window attention by masking the elements
of S outside the sliding window (blank spaces in the example Fig. 1).
The HardSigmoid charge-to-pulse circuit is modeled by the equation

ϕ(S) =
⎧⎪
⎨⎪
⎩

Tmax if S ≥ Ssat
Tmax

Ssat
S if 0 < S < Ssat

0 if S ≤ 0

, (3)

where Tmax = 15 ns is the maximum pulse length for the input pulse
generators. The input queries Q are quantized in 16 levels between 0
and 1, the stored K and V projections are quantized in 8 levels between
0 and 0.9, and the outputs of the second dot product are quantized in
32 levels between −1 and 1. The quantized models (linear intermedi-
ate hardware model and nonlinear hardware model) are trained with
quantization aware training48: quantization is done only in the forward
pass and the backward pass is done in full precision.

For the nonlinear model of the gain cell, the third-order
polynomials

S =
3
∑
i

3−i
∑
j
Q ⋅ (KT − Koffset)

iV jinCi, j

A =
3
∑
i

3−i
∑
j
ϕ (S) ⋅ (V − Voffset)

iV jinCi, j

(4)

are used with S and A as the outputs, Q and ϕ(S) the input pulse width,
K and V the stored voltage, the constant Vin = 0.9 V is the input voltage
of the cell applied at the word line read (WLR) ports, the constant
yoffset = 0.45 V corresponds to half the supply voltage (VDD/2), and Ci,j
as fit parameters from the curve Fig. 1e. To speed-up computation

Digital and routing

DAC

La
te

nc
y

(s
)

En
er

gy
 (J

)

c d e

Nvid
ia

RTX
 4090

Nvid
ia

H10
0

Nvid
ia

Je
tso

n N
an

o

Th
is

work

a b

Nvid
ia

RTX
 4090

Nvid
ia

H10
0

Nvid
ia

Je
tso

n N
an

o

Th
is

work

φ(S) · V

φ(Q · KT)

Model φ(S)
SP

IC
E

si
m

ul
at

ed
 φ

(S
)

SP
IC

E
si

m
ul

at
ed

 A

Model A

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 –0.2 0.2–0.6

–0.6

–0.2

0.2

0.6

0.6

15.0%16.3%

10.2%

58.4%

0.8

10–2

10–4

10–6

10–4

10–6

10–5

10–7

Fig. 5 | Analog hardware attention mechanism accuracy and performances.
a, Comparison of expected results model versus SPICE simulation results for the
charge-to-pulse circuit output ϕ(S) with S = Q ⋅ KT the results of the first crossbar
array and ϕ the transfer function of the charge-to-pulse circuit. b, Comparison
of PyTorch model versus SPICE simulation results for the second crossbar
array output A = ϕ(S) · V. c,d, Latency and energy consumption per token of the

attention mechanism for 1 processed token (c) and energy consumption for a
12-head attention mechanism implemented by a consumer GPU, a server GPU, an
embedded application-specific GPU and our hardware architecture (d). e, Energy
consumption ratio for the different modules of our hardware architecture,
including analog and digital signals.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 5 | September 2025 | 813–824 821

Article https://doi.org/10.1038/s43588-025-00854-1

during training, we compute all the tokens in parallel with Q ∈ ℝT,D,
KT ∈ ℝD,T , V ∈ ℝT,D and ϕ (S) ∈ ℝT,T (the batch dimension and the
head dimension are omitted for simplicity).

The capacitor leakage leads to an exponential decay in the stored
value. After discretization, the exponential decay is formulated as

yt = yt−1e−
Δt
τ ; Δt = Lδt, (5)

where τ is the time constant of the capacitors, Δt is the time elapses
between two inference steps, δt is the latency caused by each neural
network layer, and L is the number of layers. To model the decay of all
capacitors at all time steps in parallel, we introduce a decay mask
α ∈ ℝT,T defined as

α = e−
Δt
τ
mt,t′ ; mt,t′ = max (0, t − t′) , (6)

where m is the relative tokens’ position. To optimize computation, the
decay mask is directly integrated in the dot-product computation as

S =
3
∑
i

3−i
∑
j
(Q ⋅ (KT − Koffset)

iV jinCi, j)α
i

A =
3
∑
i

3−i
∑
j
(ϕ (S)αi) ⋅ (V − Voffset)

iV jinCi, j

(7)

In our simulation, we chose a time constant τ = 5 ms to be consist-
ent with the data from Fig. 1h. We chose δt = 65 ns to be equal to
the latency of our full hardware attention mechanism (Fig. 2c). Our
decay factor is therefore Δt

τ
= 12×65×10−9

5×10−3
≃ 1.6 × 10−4 . In a full trans

former implementation, the latency per layer δt = will be higher
than 65 ns as it will also include latency from other modules, such as
feedforward neural networks. However, time constant τ of three
orders of magnitude larger were reported in OSFET-based gain-
cell memories26,29, and therefore we conclude that the choice of decay
factor of 1.6 × 10−4 is very conservative. In Supplementary Fig. 6, we
study empirically the effect of the decay constant over language pro-
cessing accuracy. It is noteworthy that the decay of stored keys and
values may not necessarily hinder network performance: several
approaches in deep learning leverage exponential decay masks to
enhance memory structure39,49. In Supplementary Information section
‘Effect of capacitor’s leakage’, we study the connection between the
KV pairs decay and the relative positional embedding called AliBi49.

To speed up our training process, we used the library Triton50
to incorporate our simulations into an adapted version of the flash
attention algorithm51, which optimizes the GPU resources. This method
led to a factor of five latency reduction during training.

For the adaptation, the algorithm was repeated until the mean
and standard deviation of the output of the scaling functions of the
nonlinear model matches the mean and standard deviation of the
linear model within a tolerance ratio: |σNL − σL| < 0.0001 and |μNL − μL|
< 0.0001.

Nonlinear model adaptation algorithm

y = ax + b (8)

with distinct scalars a and b for each of the Q, K and V projections, as
well as for the output of the attention, with separate factors applied
across different attention heads and layers.

To choose the scaling parameters a and b, we develop an algorithm
inspired by ref. 52, detailed in Supplementary Algorithm 1. Given a set
of input samples, we use an iterative loop that updates the scaling para
meters so that the output of the scaling function of the nonlinear model
matches the statistics of the linear model (as sketched in Fig. 4b). First,
we measure the standard deviation σL and the mean μL of the output

of every scaling stage (see equation (8)) of the linear model on a large
set of samples. Then, at each iteration, we measure the standard
deviation σNL and the mean μNL for the scaling stage of the nonlinear
model. For each iteration, the scaling parameters are updated as

a← a σL
σNL

b← b + (μL − μNL)
. (9)

Analog sliding window attention timing and execution
To support efficient sequential inference, our architecture implements
sliding window attention using a pipelined read–write mechanism
across analog gain-cell arrays. At each inference step, new (K, V) pairs
are written into the arrays while the current query (Q) is applied, ensur-
ing that memory access and computation overlap.

Each attention step begins with a 5 ns discharge phase to reset
the storage capacitors of the gain cells. New K and V vectors are
written to a column of the respective arrays using 10 ns multi-level
voltage pulses generated by 3-bit DACs. In parallel, the input query Q
is encoded as PWM voltage pulses with durations between 0 ns and
Tmax = 15 ns, generated by 4-bit (16 levels) voltage pulse generators
operating at 1 GHz.

This parallelization is possible because the V array is not required
during the Q ⋅ KT computation phase and can therefore be updated
while the first dot product is processed. Once the write is complete, the
charge-to-pulse circuit for the V array is reset, and the resulting ϕ(S)
pulses from the K array’s readout are applied to the V array to compute
the second dot product ϕ(S) ⋅ V.

After M time steps, when all columns in the K and V arrays have been
populated, the first column is overwritten, preserving a sliding atten-
tion window of fixed size M. The succession of write and read phases
implements a sequential sliding window attention mechanism, with
minimal idle time and continuous throughput. This pipelined execu-
tion scheme is visualized in Fig. 2c, and forms the basis for the latency
and energy analysis presented in later sections.

Sub-tiling to scale attention dimensions
IR drop, caused by resistive losses in interconnects, results in reduced
accuracy in large-scale analog crossbar arrays53. To mitigate IR drop
issues, we limit the size of our gain-cell arrays to 64 × 64. However, most
NLP applications require larger either a larger window dimension M
(columns) or a larger embedding dimension d (rows). To accommodate
larger dimensions, we perform inference across multiple sub-tiles, as
shown in Fig. 3a.

In this paper, we implement a GPT-2 model with an embedding
dimension d = 64 and a sliding window size M = 1,024. Therefore, the
entire KV cache of the window size M is divided into 16 sub-tiles, each
having its charge-to-pulse blocks and storing a fraction of the K and
V in two 64 × 64 arrays. A write address controller keeps track of the
current write index. All tiles receive the same input Q generated by the
digital block in parallel, are measured by pulse counters and summed
by 64 digital adders, each with 16 inputs (Fig. 3b,c). In sliding window
attention, the maximum attention span is equal to L(M − 1) + 1 (ref. 43).
Therefore, in the presented architecture, the maximum attention span
can be increased by increasing the number of sub-tiles. However, this
leads to additional area footprint scaling linearly with the sliding win-
dow dimension, and additional latency as each digital adder requires
one clock cycle.

Hardware-based neural network training
To evaluate our training algorithm and the inference accuracy of
our architecture, we implement the analog gain-cell-based atten-
tion mechanism on the GPT-2 architecture54. GPT-2 is a transformer
neural network with 124 million parameters, 12 layers, an attention
mechanism input dimension of 768, 12 heads per attention block

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 5 | September 2025 | 813–824 822

Article https://doi.org/10.1038/s43588-025-00854-1

and a head dimension of 64. We used the open-source text collec-
tion OpenWebText44 split between training and testing samples, and
the pre-trained GPT-2 tokenizer to encode the plain text into tokens
(vectors of size 50,304 each). Each training iteration had a batch size
of 1,920, with sequences of length 1,024 per sample. We selected a
sliding window size of 1,024, which matches the number of gain-cell
rows in the memory. As the sequence length also equals 1,024, each
gain cell is written only once per sequence, eliminating the need to over-
write cells during one sliding window iteration. For a larger sequence
length, the gain cells would be overwritten, as described in the section
‘Analog hardware sliding window attention data-flow’. To train the
network, the next token in the sequence is predicted for each input
token. Thus, the target sequences are the input sequences shifted
by one token. The cost function used was cross-entropy, calculated
between the predicted sequence and the target sequence. We used
backpropagation with the AdamW optimizer55, with a learning rate of
6 × 10−4 and a weight decay of 0.1. The results of each evaluation are
averaged over 4,000 samples.

Downstream tasks set-up
The datasets cover various types of problem. Our benchmarking
set-up is inspired by refs. 11,56 in terms of evaluated tasks and metrics.
ARC-Easy and ARC-Challenge57 focus on question answering, with
ARC-Easy containing straightforward questions and ARC-Challenge
featuring more difficult ones. WinoGrande58 evaluates common-sense
reasoning and co-reference resolution by presenting minimal pairs
to resolve ambiguities. HellaSwag59 tests common-sense inference,
requiring models to predict the most plausible continuation of a given
context. LAMBADA60 evaluates models’ text understanding through
a word prediction task that requires comprehension of broader dis-
course, not just local context. PIQA61 assesses physical common-sense
reasoning, testing a model’s understanding of physical scenarios.
WikiText-262 is a general text corpus derived from Wikipedia articles
to assess long-term dependencies processing, text prediction and
generation capabilities. For WikiText-2, we report perplexity scores
normalized by the word count in the original text. For fair compari-
sons, except for software public GPT-2, all the models were evaluated
after the same number of training iterations. The linear hardware
model was trained on 13,000 iterations, the nonlinear hardware
model was mapped from the 13,000 iterations linear model using
the adaptation algorithm but without fine-tuning, and the nonlinear
hardware model with adaptation and fine-tuning was adapted from
a linear model trained on 3,000 iterations, and then fine-tuned on
10,000 iterations.

Hardware SPICE simulations
To assess circuit performance accuracy, energy consumption and
speed, we conducted SPICE array simulations using the TSMC 28 nm
PDK within the Cadence Virtuoso environment. All simulations are
based on a 64 × 64 array, corresponding to the tile size in our architec-
ture (Fig. 3a). To extrapolate the energy and latency for a full attention
head with a window size of 1,024, we multiply the per-sub-tile meas-
urements by 16, reflecting the total number of sub-tiles comprising 1
attention head in our architecture. In these simulations, a parasitic wire
capacitance of 0.8 fF and a series resistance of 2 Ω per array element are
included. Both arrays, one performing ϕ(Q ⋅ KT) and the other perform-
ing ϕ(S) ⋅ V, are simulated separately, but always in combination with
their specific charge-to-pulse circuitry readout circuitry.

GPU attention latency and energy consumption
measurements
To measure the latency and energy on Nvidia RTX 4090, Nvidia H100
and Nvidia Jetson Nano, which are a consumer GPU, a data-center GPU
and an embedded application GPU, respectively, we perform 10 runs
of 1,024 steps of autoregressive token generation with 12 attention

heads using the method FlashAttention-251, which optimizes attention
computation in GPUs. The energy and latency consumption measure-
ment solely focus on attention computation, and for a fair compari-
son, the linear projections are not implemented in this experiment as
they are also not implemented by our hardware architecture, and
the static power measured before inference is subtracted from the
power measured during inference. For each run, we measure the latency
and the power using the Nvidia-SMI python API, and average them.

Area estimation
Our floorplan is based on ITO gain cells, an emerging OSFET technology
that has enabled low-area gain-cell designs45. A two-transistor ITO gain
cell occupies an area of 0.14 μm2 (approximately 370 nm × 370 nm)45,
allowing for denser memories than CMOS-based gain cells. On the
basis of the area results presented in these studies45,46, we estimate
the worst-case area of the proposed 6-transistor cell to be 1 μm2, lead-
ing to a 19× area reduction compared with gain cells based on CMOS
write transistors (our CMOS-based gain-cell layout is presented in
Supplementary Fig. 1). The total area of 1 attention head is derived
from this single-cell area estimation, as well as the charge-to-pulse
circuit layout and the total floorplan incorporating the 16 sub-tiles
and digital circuits, providing a precise representation of the space
requirements. This structure is designed to be repetitive (vertical
dimension in Fig. 3c), allowing multiple attention heads to be effi-
ciently integrated on a single chip. Each attention head receives inputs
from the lower digital block, while its outputs are processed by the
upper digital block. To facilitate the connection of the bitline outputs
of one array (that is, vertical metal lines) to the wordline input of the
next array (that is, horizontal metal line), we employ wire tapping, as
highlighted in Fig. 3d.

When considering 3D-stacked gain cells, the effective cell area
is reported in ref. 45 as 0.14/N μm2, where N denotes the number of
parallel oxide layers. Consequently, a signed gain-cell implementation
would occupy 0.28/N μm2, consisting of 2 gain cells, 1 for the positive
part and 1 for the negative part.

Data availability
The data supporting the figures of this study are publicly available in
a figshare repository63. Source data for Figs. 1, 2, 4 and 5 are available
with this paper. Data for Figs. 1, 2 and 5 were generated through simu-
lations using SPICE. Data for Fig. 4 were produced using evaluations
performed in the PyTorch framework. Data for Table 1 were obtained
using the Language Model Evaluation Harness toolkit64.

Code availability
The Python scripts used for the experiments are available without
restriction at https://github.com/NathanLeroux-git/GainCellAtten-
tion/, and are archived with a DOI in the Zotero repository65.

References
1.	 Vaswani, A. et al. Attention is all you need. In Proc. 31st

International Conference on Neural Information Processing
Systems, NIPS’17 6000–6010 (Curran Associates, 2017).

2.	 Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by
jointly learning to align and translate. Preprint at http://arxiv.org/
abs/1409.0473 (2016).

3.	 Lin, T., Wang, Y., Liu, X. & Qiu, X. A survey of transformers. AI Open
3, 111–132 (2022).

4.	 Pope, R. et al. Efficiently scaling transformer inference.
Proc. Mach. Learn. Syst. 5, 606–624 (2023).

5.	 Liu, Z. et al. KIVI: a tuning-free asymmetric 2bit quantization for KV
cache. In Proc. 41st International Conference on Machine Learning,
ICML’24 Vol. 235, 32332–32344 (JMLR.org, 2024).

6.	 Jiang, A.Q. et al. Mistral 7B. Preprint at http://arxiv.org/abs/
2310.06825 (2023).

http://www.nature.com/natcomputsci
https://github.com/NathanLeroux-git/GainCellAttention/
https://github.com/NathanLeroux-git/GainCellAttention/
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825

Nature Computational Science | Volume 5 | September 2025 | 813–824 823

Article https://doi.org/10.1038/s43588-025-00854-1

7.	 Jouppi, N. P. et al. Ten lessons from three generations shaped
Google’s TPUv4i: industrial product. In Proc. 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA)
1–14 (IEEE, 2021); https://doi.org/10.1109/ISCA52012.2021.00010

8.	 Fu, Y. Challenges in deploying long-context transformers:
a theoretical peak performance analysis. Preprint at https://arxiv.
org/abs/2405.08944 (2024).

9.	 Xu, M. et al. Resource-efficient algorithms and systems of foundation
models: a survey. ACM Comput. Surv. 57, 110–111039 (2025).

10.	 Katharopoulos, A., Vyas, A., Pappas, N. & Fleuret, F. Transformers
are RNNs: fast autoregressive transformers with linear attention.
In Proc. 37th International Conference on Machine Learning,
ICML’20 Vol. 119, 5156–5165 (JMLR.org, 2020); https://doi.org/
10.5555/3524938.3525416

11.	 Gu, A. & Dao, T. Mamba: linear-time sequence modeling with
selective state spaces. In Proc. Conference on Language Modeling
(2024); https://openreview.net/forum?id=tEYskw1VY2

12.	 Adnan, M. et al. Keyformer: KV cache reduction through key
tokens selection for efficient generative inference. Proc. Mach.
Learn. Syst. 6, 114–127 (2024).

13.	 DeepSeek-AI et al. Deepseek-v3 technical report. Preprint at
https://arxiv.org/abs/2412.19437 (2024)

14.	 Chang, C.-C. et al. Palu: KV-cache compression with
low-rank projection. In Proc. 13th International Conference
on Learning Representations (2025); https://openreview.net/
forum?id=LWMS4pk2vK

15.	 Ainslie, J. et al. GQA: training generalized multi-query transformer
models from multi-head checkpoints. In Proc. 2023 Conference
on Empirical Methods in Natural Language Processing
(eds Bouamor, H. et al.) 4895–4901 (Association for
Computational Linguistics, 2023); https://doi.org/10.18653/v1/
2023.emnlp-main.298

16.	 Vogginger, B. et al. Neuromorphic hardware for sustainable AI
data centers. Preprint at https://arxiv.org/abs/2402.02521 (2024).

17.	 Yang, X., Yan, B., Li, H., Chen, Y. ReTransformer: ReRAM-based
processing-in-memory architecture for transformer acceleration.
In Proc. 39th International Conference on Computer-Aided Design,
ICCAD ’20 92 (Association for Computing Machinery, 2020);
https://doi.org/10.1145/3400302.3415640

18.	 Laguna, A. F. Hardware–software co-design of an in-memory
transformer network accelerator. Front. Electron. 3, 847069 (2022).

19.	 Sridharan, S., Stevens, J. R., Roy, K. & Raghunathan, A. X-former:
in-memory acceleration of transformers. IEEE Trans. Very Large
Scale Integr. VLSI Syst. 31, 1223–1233 (2023).

20.	 Bhattacharjee, A., Moitra, A. & Panda, P. Clipformer: key–value
clipping of transformers on memristive crossbars for write noise
mitigation. IEEE Trans. Comput. Aided Design Integr. Circuits Syst.
44, 592–601 (2025).

21.	 Wu, Y., Wang, Z. & Lu, W. D. PIM GPT a hybrid process in memory
accelerator for autoregressive transformers. Npj Unconv. Comput.
1, 4 (2024).

22.	 Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E.
Memory devices and applications for in-memory computing.
Nat. Nanotechnol. 15, 529–544 (2020).

23.	 Zhou, M., Xu, W., Kang, J. & Rosing, T. TransPIM: a memory-based
acceleration via software–hardware co-design for transformer.
In Proc. 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA) 1071–1085 (IEEE, 2022);
https://doi.org/10.1109/HPCA53966.2022.00082

24.	 Liu, S. et al. HARDSEA: hybrid analog-ReRAM clustering and
digital-SRAM in-memory computing accelerator for dynamic
sparse self-attention in transformer. IEEE Trans. Very Large Scale
Integr. VLSI Syst. 32, 269–282 (2024).

25.	 Lepri, N. et al. In-memory computing for machine learning and
deep learning. IEEE J. Electron Devices Soc. 11, 587–601 (2023).

26.	 Wang, Y. et al. An in-memory computing architecture based on two-
dimensional semiconductors for multiply–accumulate operations.
Nat. Commun. https://doi.org/10.1038/s41467-021-23719-3 (2021).

27.	 Gou, S. et al. 2T1C DRAM based on semiconducting MoS2 and
semimetallic graphene for in-memory computing. Natl Sci. Open
2, 20220071 (2023).

28.	 Shi, M. et al. Counteractive coupling IGZO/CNT hybrid 2T0C
DRAM accelerating RRAM-based computing-in-memory via
monolithic 3D integration for edge AI. In Proc. 2023 International
Electron Devices Meeting (IEDM) 1–4 (IEEE, 2023); https://doi.org/
10.1109/IEDM45741.2023.10413876

29.	 Belmonte, A. et al. Lowest IOFF <3×10−21 A/μm in capacitorless
DRAM achieved by reactive ion etch of IGZO-TFT. In Proc.
2023 IEEE Symposium on VLSI Technology and Circuits (VLSI
Technology and Circuits) 1–2 (IEEE, 2023); https://doi.org/
10.23919/VLSITechnologyandCir57934.2023.10185398

30.	 Ye, H. et al. Double-gate W-doped amorphous indium oxide
transistors for monolithic 3D capacitorless gain cell eDRAM. In Proc.
2020 IEEE International Electron Devices Meeting (IEDM) 28.3.–28.3.4
(IEEE, 2020); https://doi.org/10.1109/IEDM13553.2020.9371981

31.	 Raman, S. R. S., Xie, S. & Kulkarni, J. P. Compute-in-eDRAM
with backend integrated indium gallium zinc oxide transistors.
In Proc. 2021 IEEE International Symposium on Circuits and
Systems (ISCAS) 1–5 (IEEE, 2021); https://doi.org/10.1109/
ISCAS51556.2021.9401798

32.	 Tang, W. et al. Low-power and scalable BEOL-compatible IGZO
TFT eDRAM-based charge-domain computing. IEEE Trans. Circuits
Syst. I 70, 5166–5179 (2023).

33.	 Lu, A. et al. High-speed emerging memories for AI hardware
accelerators. Nat. Rev. Electr. Eng. 1, 24–34 (2024).

34.	 Cai, F. et al. A fully integrated reprogrammable memristor–
CMOS system for efficient multiply–accumulate operations.
Nat. Electron. 2, 290–299 (2019).

35.	 Wan, W. et al. A compute-in-memory chip based on resistive
random-access memory. Nature 608, 504–512 (2022).

36.	 Ambrogio, S. et al. An analog-AI chip for energy-efficient speech
recognition and transcription. Nature 620, 768–775 (2023).

37.	 Vatalaro, M. et al. A low-voltage, low-power reconfigurable
current-mode softmax circuit for analog neural networks.
Electronics https://doi.org/10.3390/electronics10091004 (2021).

38.	 Dube, A., Manea, P., Gibertini, P., Covi, E. & Strachan, J. P. Analog
softmax with wide input current range for in-memory computing.
In Proc. IEEE International Symposium on Circuits and Systems
(ISCAS), paper 2530 (2025).

39.	 Ma, X. et al. Mega: moving average equipped gated attention.
In Proc. 11th International Conference on Learning Representations
(2023); https://openreview.net/forum?id=qNLe3iq2El

40.	 Ramapuram, J. et al. Theory, analysis, and best practices for
sigmoid self-attention. In Proc. 13th International Conference
on Learning Representations (2025); https://openreview.net/
forum?id=Zhdhg6n2OG

41.	 Beltagy, I., Peters, M. E. & Cohan, A. Longformer: the long-
document transformer. Preprint at https://arxiv.org/abs/
2004.05150 (2020).

42.	 Gu, X. et al. When attention sink emerges in language models:
an empirical view. In Proc. 13th International Conference on
Learning Representations (2025); https://openreview.net/
forum?id=78Nn4QJTEN

43.	 Fu, Z. et al. Sliding window attention training for efficient large
language models. Preprint at https://arxiv.org/abs/2502.18845 (2025).

44.	 Gokaslan, A. & Cohen, V. OpenWebText Corpus. GitHub
http://Skylion007.github.io/OpenWebTextCorpus (2019).

45.	 Liu, S. et al. Design guidelines for oxide semiconductor gain
cell memory on a logic platform. IEEE Trans. Electron Devices 71,
3329–3335 (2024).

http://www.nature.com/natcomputsci
https://doi.org/10.1109/ISCA52012.2021.00010
https://arxiv.org/abs/2405.08944
https://arxiv.org/abs/2405.08944
https://doi.org/10.5555/3524938.3525416
https://doi.org/10.5555/3524938.3525416
https://openreview.net/forum?id=tEYskw1VY2
https://arxiv.org/abs/2412.19437
https://openreview.net/forum?id=LWMS4pk2vK
https://openreview.net/forum?id=LWMS4pk2vK
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://arxiv.org/abs/2402.02521
https://doi.org/10.1145/3400302.3415640
https://doi.org/10.1109/HPCA53966.2022.00082
https://doi.org/10.1038/s41467-021-23719-3
https://doi.org/10.1109/IEDM45741.2023.10413876
https://doi.org/10.1109/IEDM45741.2023.10413876
https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185398
https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185398
https://doi.org/10.1109/IEDM13553.2020.9371981
https://doi.org/10.1109/ISCAS51556.2021.9401798
https://doi.org/10.1109/ISCAS51556.2021.9401798
https://doi.org/10.3390/electronics10091004
https://openreview.net/forum?id=qNLe3iq2El
https://openreview.net/forum?id=Zhdhg6n2OG
https://openreview.net/forum?id=Zhdhg6n2OG
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://openreview.net/forum?id=78Nn4QJTEN
https://openreview.net/forum?id=78Nn4QJTEN
https://arxiv.org/abs/2502.18845
http://Skylion007.github.io/OpenWebTextCorpus

Nature Computational Science | Volume 5 | September 2025 | 813–824 824

Article https://doi.org/10.1038/s43588-025-00854-1

46.	 Subhechha, S. et al. Demonstration of multilevel multiply
accumulate operations for AiMC using engineered a-IGZO
transistors-based 2T1C gain cell arrays. In Proc. 2023 IEEE
International Memory Workshop (IMW) 1–4 (IEEE, 2023);
https://doi.org/10.1109/IMW56887.2023.10145946

47.	 Brown, T. et al. Language models are few-shot learners.
Adv. Neural Inf. Process. Syst. 33, 1877–1901 (2020).

48.	 Jacob, B. et al. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition
2704–2713 (IEEE, 2018).

49.	 Press, O., Smith, N. A. & Lewis, M. Train short, test long: attention
with linear biases enables input length extrapolation. In Proc.
International Conference on Learning Representations (2022);
https://openreview.net/forum?id=R8sQPpGCv0

50.	 Tillet, P., Kung, H. T. & Cox, D. Triton: an intermediate language
and compiler for tiled neural network computations. In Proc.
3rd ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages, MAPL 2019 10–19 (Association for
Computing, 2019); https://doi.org/10.1145/3315508.3329973

51.	 Dao, T. FlashAttention-2: faster attention with better parallelism
and work partitioning. In Proc. 12th International Conference
on Learning Representations (2024); https://openreview.net/
forum?id=mZn2Xyh9Ec

52.	 Mishkin, D. & Matas, J. All you need is a good init. Preprint at
https://arxiv.org/abs/1511.06422 (2015).

53.	 Lepri, N., Glukhov, A., Mannocci, P., Porzani, M. & Ielmini, D.
Compact modeling and mitigation of parasitics in crosspoint
accelerators of neural networks. IEEE Trans, Electron Devices 71,
1900–1906 (2024).

54.	 Radford, A. et al. Language models are unsupervised
multitask learners. OpenAI https://cdn.openai.com/
better-language-models/language_models_are_unsupervised_
multitask_learners.pdf (2019).

55.	 Loshchilov, I. & Hutter, F. Decoupled weight decay regularization.
In Proc. International Conference on Learning Representations
(2019); https://openreview.net/forum?id=Bkg6RiCqY7

56.	 Beck, M. et al. xLSTM: extended long short-term memory. In
Proc. 38th Annual Conference on Neural Information Processing
Systems (2024); https://openreview.net/forum?id=ARAxPPIAhq

57.	 Clark, P. et al. Think you have solved question answering? Try
ARC, the AI2 reasoning challenge. Preprint at https://arxiv.org/
abs/1803.05457 (2018).

58.	 Sakaguchi, K., Bras, R. L., Bhagavatula, C. & Choi, Y. WinoGrande:
an adversarial winograd schema challenge at scale. Commun.
ACM 64, 99–106 (2021).

59.	 Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A. & Choi, Y. HellaSwag:
can a machine really finish your sentence? In Proc. 57th Annual
Meeting of the Association for Computational Linguistics,
4791–4800 (ACL, 2019).

60.	 Paperno, D. et al. The LAMBADA dataset: word prediction requiring
a broad discourse context. In Proc. 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers)
(eds Erk, K. & Smith, N. A.) 1525–1534 (Association for Computational
Linguistics, 2016); https://doi.org/10.18653/v1/P16-1144

61.	 Bisk, Y., Zellers, R., Bras, R. L., Gao, J. & Choi, Y. PIQA: reasoning
about physical commonsense in natural language. In Proc. 34th
AAAI Conference on Artificial Intelligence, 7432–7439 (AAAI, 2020).

62.	 Merity, S., Xiong, C., Bradbury, J. & Socher, R. Pointer sentinel
mixture models. In Proc. International Conference on Learning
Representations (2017); https://openreview.net/forum?id=
Byj72udxe

63.	 Leroux, N. et al. Analog in-memory computing attention mechanism
for fast and energy-efficient large language models source data.
figshare https://doi.org/10.6084/m9.figshare.27763548 (2025).

64.	 Gao, L. et al. A framework for few-shot language model evaluation.
Zenodo https://doi.org/10.5281/zenodo.5371628 (2025).

65.	 Leroux, N. et al. GainCellAttention. Zenodo https://doi.org/
10.5281/zenodo.15856645 (2025).

Acknowledgements
This work was supported in part by the Federal Ministry of Education
and Research (BMBF, Germany) in the project NEUROTEC II (project
number 16ME0398K). We gratefully acknowledge the Gauss Centre
for Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time through the John von Neumann
Institute for Computing (NIC) on the GCS Supercomputer JUWELS at
Jülich Supercomputing Centre (JSC).

Author contributions
The study was designed by N.L. and P.-P.M., and supervised by J.P.S.
and E.N. The analog circuit system schematic design and electrical
simulations were carried out by P.-P.M. C.S. was responsible for the
design and layout of all digital blocks, as well as the overall chip
floorplanning. S.S. completed the layout of the analog components.
Hardware parameter extraction was performed by P.-P.M. Neural
network training was conducted by N.L. and neural network evaluation
was conducted by N.L. and J.F. All authors contributed to the analysis
of the results and writing of the paper.

Funding
Open access funding provided by Forschungszentrum Jülich GmbH.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s43588-025-00854-1.

Correspondence and requests for materials should be addressed to
Nathan Leroux or Paul-Philipp Manea.

Peer review information Nature Computational Science thanks Jianshi
Tang, Yonghong Tian and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Peer reviewer reports are
available. Primary Handling Editor: Jie Pan, in collaboration with the
Nature Computational Science team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2025

http://www.nature.com/natcomputsci
https://doi.org/10.1109/IMW56887.2023.10145946
https://openreview.net/forum?id=R8sQPpGCv0
https://doi.org/10.1145/3315508.3329973
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://arxiv.org/abs/1511.06422
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=ARAxPPIAhq
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://doi.org/10.18653/v1/P16-1144
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.6084/m9.figshare.27763548
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.15856645
https://doi.org/10.5281/zenodo.15856645
http://www.gauss-centre.eu
https://doi.org/10.1038/s43588-025-00854-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Analog in-memory computing attention mechanism for fast and energy-efficient large language models

	Results

	Attention mechanism

	End-to-end analog hardware attention

	Analog hardware sliding window attention data-flow

	Pre-trained model hardware-aware mapping and fine-tuning

	Downstream task benchmarks

	Circuit computing accuracy

	Energy consumption and latency

	Area and floorplan

	Discussion

	Methods

	Hardware-based neural network simulations

	Nonlinear model adaptation algorithm

	Analog sliding window attention timing and execution

	Sub-tiling to scale attention dimensions

	Hardware-based neural network training

	Downstream tasks set-up

	Hardware SPICE simulations

	GPU attention latency and energy consumption measurements

	Area estimation

	Acknowledgements

	Fig. 1 Building blocks of the analog hardware attention mechanism.
	Fig. 2 Analog hardware attention pipeline.
	Fig. 3 Multi-tile design and layout for multi-head attention.
	Fig. 4 Hardware model adaptation and training.
	Fig. 5 Analog hardware attention mechanism accuracy and performances.
	Table 1 Downstream task results.

