001050458 001__ 1050458
001050458 005__ 20260122203304.0
001050458 0247_ $$2doi$$a10.1109/ISCAS56072.2025.11044190
001050458 037__ $$aFZJ-2026-00228
001050458 1001_ $$0P:(DE-Juel1)192242$$aManea, Paul-Philipp$$b0$$eCorresponding author$$ufzj
001050458 1112_ $$a2025 IEEE International Symposium on Circuits and Systems (ISCAS)$$cLondon$$d2025-05-25 - 2025-05-28$$wUnited Kingdom
001050458 245__ $$aGain Cell-based Analog Content Addressable Memory for Dynamic Associative Tasks in AI
001050458 260__ $$bIEEE$$c2025
001050458 300__ $$a1-5
001050458 3367_ $$2ORCID$$aCONFERENCE_PAPER
001050458 3367_ $$033$$2EndNote$$aConference Paper
001050458 3367_ $$2BibTeX$$aINPROCEEDINGS
001050458 3367_ $$2DRIVER$$aconferenceObject
001050458 3367_ $$2DataCite$$aOutput Types/Conference Paper
001050458 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1769065153_2356
001050458 520__ $$aanalog Content Addressable Memories (aCAMs)have proven useful for associative Compute-in-Memory (CIM)applications like Decision Trees, Finite State Machines, andHyper-dimensional Computing. While non-volatile implementa-tions using FeFETs and ReRAM devices offer speed, power,and area advantages, they suffer from slow write speeds andlimited write cycles, making them less suitable for computa-tions involving fully dynamic data patterns. To address theselimitations, in this work, we propose a capacitor gain cell-based aCAM designed for dynamic processing, where frequentmemory updates are required. Our system compares analog inputvoltages to boundaries stored in capacitors, enabling efficientdynamic tasks. We demonstrate the application of aCAM withintransformer attention mechanisms by replacing the softmax-scaled dot-product similarity with aCAM similarity, achievingcompetitive results. Circuit simulations on a TSMC 28 nmnode show promising performance in terms of energy efficiency,precision, and latency, making it well-suited for fast, dynamic AIapplications.
001050458 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001050458 588__ $$aDataset connected to CrossRef Conference
001050458 7001_ $$0P:(DE-Juel1)194421$$aLeroux, Nathan$$b1$$ufzj
001050458 7001_ $$0P:(DE-Juel1)188273$$aNeftci, Emre$$b2$$ufzj
001050458 7001_ $$0P:(DE-Juel1)188145$$aStrachan, John Paul$$b3$$ufzj
001050458 773__ $$a10.1109/ISCAS56072.2025.11044190
001050458 8564_ $$uhttps://juser.fz-juelich.de/record/1050458/files/Gain_Cell-based_Analog_Content_Addressable_Memory_for_Dynamic_Associative_Tasks_in_AI.pdf$$yRestricted
001050458 909CO $$ooai:juser.fz-juelich.de:1050458$$pVDB
001050458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192242$$aForschungszentrum Jülich$$b0$$kFZJ
001050458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194421$$aForschungszentrum Jülich$$b1$$kFZJ
001050458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188273$$aForschungszentrum Jülich$$b2$$kFZJ
001050458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188145$$aForschungszentrum Jülich$$b3$$kFZJ
001050458 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001050458 920__ $$lyes
001050458 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0
001050458 9201_ $$0I:(DE-Juel1)PGI-15-20210701$$kPGI-15$$lNeuromorphic Software Eco System$$x1
001050458 980__ $$acontrib
001050458 980__ $$aVDB
001050458 980__ $$aI:(DE-Juel1)PGI-14-20210412
001050458 980__ $$aI:(DE-Juel1)PGI-15-20210701
001050458 980__ $$aUNRESTRICTED