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Abstract

Dense pedestrian crowds may pose significant safety risks, yet their underly-
ing dynamics remain insufficiently understood to reliably prevent accidents. In
these environments, physical interactions and contact forces fundamentally shape
the dynamics of the crowd. However, accurately describing these interindividual
interactions requires specific modeling and analytical approaches. This chapter
reviews paradigms and models used to represent pedestrian dynamics in various
contexts, highlighting the transition from classical approaches to models tailored
for dense crowd conditions. We argue that further investigation is needed, fea-
turing new experimental studies and new modeling paradigms, to better capture
the complex dynamics that emerge in high-density situations.
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1 Introduction

In our increasingly urbanized societies, human crowd management faces crucial chal-
lenges. Large-scale events, if not properly controlled, can lead to discomfort, injuries, or
even fatalities [1, 2]. While such incidents may arise from a range of factors, this chapter
focuses specifically on issues related to crowd motion stemming from inter-individual
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physical interactions. We define dense crowds here as tightly packed formations of
individuals in which the free motion of each individual is limited and likely to result
in physical interactions with others. Such a definition still allows for an infinite variety
of crowd configurations which all share a common feature; a significant existence of
physical interactions between individuals. In this situation, contact forces can accu-
mulate and people in the crowd can experience unpleasant or even dangerous body
compression. This phenomenon can cause anxiety, fainting, and even asphyxia [2–4],
either due to pressure on the upper body or poor air quality at the bottom of the crowd
[3]. Physical interactions can also act as external perturbations that throw people off
balance. This loss of balance may then lead to additional restrictions on neighbors’
bodies, potentially developing into dangerous collective falls, commonly referred to
as crowd collapses [5] or wave motions [3]. Witness statements from the 2010 Love
Parade tragedy contained 32 references to falling, as analyzed by Sieben et al. [3].
These accounts frequently mentioned problems with the legs and feet as well.

Fortunately, most dense crowds do not result in accidents. Large-scale events are
constantly occurring around the world, with only a small fraction leading to accidents.
This raises a fundamental question: How do we identify when the risks to individuals
within a dense crowd become critical? Understanding and controlling crowd dynamics
is not straightforward. Pedestrian crowds are many-body systems of self-driven agents
with intricate social and physical interactions. So far, this human crowd dynamics has
been studied using different kinds of modeling approach. Classical pedestrian mod-
els are heuristics based on a superposition of pairwise interactions with neighbors.
Two-body interaction models can relatively accurately describe most of the collective
dynamics of pedestrians for low and intermediate densities in simple scenarios where
behaviors result mainly from social proxemics and anticipatory collision avoidance
behavior. However, these models are limited for modeling dense crowds in confined
spaces. In fact, the nature of the mechanisms that govern crowd dynamics changes
radically in dense situations where pedestrians begin to have direct contact. The inter-
actions are dominated by physical forces due to hard body exclusion and the forces
developed by pedestrians to remain standing. These are no longer social proxemics or
collision avoidance techniques, but physical interactions. There can accumulate, lead-
ing to extremely high-pressure forces when hundreds of pedestrians are in contact, and
potentially to injuries and fatalities.

Due to their compact nature, dense crowds are also particularly difficult to study.
Understanding the position of the body, the different forces at stake, and the psy-
chology of individuals in such contexts remains an open research topic. In addition,
the trigger factors for many accidents in dense crowds remain unclear [4, 6–8], fur-
ther blurring the line between life-threatening and regular densely crowded situations.
The study [9] observes that in extremely dense crowds, people do not move ran-
domly but rather exhibit collective back-and-forth oscillations. These oscillations arise
naturally due to the physical constraints and interactions between individuals. The
authors propose a first-principles-based theory that explains why crowds at extreme
densities spontaneously organize into oscillatory motion. Despite extensive efforts to
model pedestrian behavior over the past thirty years, a significant gap remains in
our ability to accurately simulate both high-density, physically interacting crowds and
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Fig. 1 Illustration of representation paradigms for pedestrians in crowd simulation. Different repre-
sentations are associated with different scales of observation. As more details are needed to capture
interactions at lower scales, simulated pedestrians need to get closer to a human body-like represen-
tation.

low-density, collision avoidance scenarios. Dense crowds introduce complex emergent
phenomena, such as force propagation, oscillating motions, and jamming, that arise
from detailed physical interactions among individuals. However, many existing models
are tailored to capture these emerging effects [9–11] or to manage anticipatory [12–14],
collision avoidance [15, 16] behaviors typical of sparser environments.

In this chapter, we begin by reviewing the current state-of-the-art in pedestrian
dynamics modeling, focusing on both fundamental body representations and the mod-
eling paradigms at microscopic and macroscopic scales. The limitations of these models
in capturing the complex physical interactions that emerge in dense crowds, such as
wedging, balance recovery, and force propagation, are eventually discussed. We then
examine insights from biomechanics and interdisciplinary experimental studies that
have been developed specifically to understand physical interaction and balance recov-
ery of individuals in dense crowds. Throughout this chapter, we outline emerging
methodologies and highlight key research gaps, offering perspectives on the necessary
advances to develop more accurate models to represent dense crowd dynamics.

2 Overview of Current Pedestrian Dynamics Models

In this section we discuss spatial representations of pedestrians and review existing
models of pedestrian motion. Current models are broadly categorized into two types:
microscopic models, which describe the trajectories of individual pedestrians, and
macroscopic models, which focus on the evolution of aggregated quantities such as
crowd density and flow volume.

We also highlight the limitations of these models, particularly in the context of
dense crowds, where physical interactions and complex biomechanical body aspects
become more pronounced. Finally, we propose viewing spatial representations of pedes-
trians as a spectrum, with varying levels of detail suited to different applications. This
conceptual spectrum is illustrated in Figure 1.
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2.1 Body Shape of Simulated Agents

A critical factor in enabling a seamless transition between low- and high-density crowd
modeling is the accurate representation of the shape of the pedestrian’s body. In low-
density regimes, simplified 2D shapes, such as circles or ellipses, are often sufficient to
capture anticipatory behaviors and collision-avoidance strategies. These approxima-
tions offer a computationally efficient means of modeling volume exclusion. However,
such a 2D approximation of the body falls short in high-density scenarios, where the
physical interactions between individuals become highly complex. In these conditions,
phenomena such as falling [3], balance recovery [17, 18], and the distribution of contact
forces require a three-dimensional representation of the human body.

The 3D modeling of pedestrian shapes unlocks new possibilities by allowing for a
more realistic depiction of how forces are transmitted and dissipated across the body.
This level of detail is essential for capturing the emergent dynamics observed in dense
crowds, such as oscillatory motion [9].

The need for better body representation becomes particularly evident in studies
such as those of Kim et al. [19], who developed a hybrid approach combining forces
based on physics with navigation constraints to simulate crowd behavior in dense
scenarios. Despite its sophistication, the model’s reliance on 2D representations lim-
its its ability to capture the full spectrum of physical interactions typical in dense
crowds, such as pushing with different body parts, dynamic balance recovery, and
fall-avoidance strategies.

We argue that these phenomena cannot be accurately reproduced without a
detailed three-dimensional representation of the human body. This paradigm shift,
from simplified disk-based approximations to a detailed, multiscale approach that
integrates both macroscopic and microscopic interactions, directly addresses the
shortcomings of existing models. It acknowledges that, while dense crowd condi-
tions introduce unique physical complexities, the behavioral foundations of pedestrian
motion remain relevant across all density regimes. Ensuring the validity of pedestrian
models across the full spectrum of densities is not only beneficial, but necessary to
create truly predictive and practical tools in pedestrian dynamics research.

One of the first questions that arises when developing microscopic pedestrian mod-
els is how to represent the three-dimensional human body within a two-dimensional
space without losing critical information. In industries such as gaming and film, fully
three-dimensional body models are essential for producing realistic animations. How-
ever, in most pedestrian dynamics applications, particularly these focused on crowd
safety and evacuation, reducing the problem to two dimensions is a common and prat-
cical choice. This simplification significantly reduces computational costs and enables
a focus on horizontal crowd movements, which are often of primary interest. Depend-
ing on the specific case study (for example, flow through bottleneck or lane formation),
this simplified Ansatz often proves sufficient to gain insights into the underlying
phenomena.

Despite the advantages of working in two dimensions, researchers have long recog-
nized that overly simplistic body representations can limit the accuracy of pedestrian
models. Early studies often reduced individuals to point-like representation, as in Hel-
bing’s work [20] or circular disks with fixed radius [21] and more recently with variable
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radii in [22]. These disk-based models offer computational efficiency, particularly in
calculating collision avoidance and repulsive forces, since the distance between two
pedestrians can be derived directly from their center coordinates. However, the rota-
tional symmetry of circles implies that they occupy the same amount of space in
all directions, which can be overly restrictive in simulating realistic two-dimensional
movement. In contrast, pedestrians navigating real environments often turn their bod-
ies sideways to squeeze through narrow gaps or adapt their effectively occupied space
depending on their speed and gait, behaviors that cannot be captured by a uniform
circular model.

To address these limitations, researchers introduced ellipses as a more flexible
approximation of the human body’s 2D projection. Fruin’s early concept of the “body
ellipse” [23], later expended upon by Templer [24] demonstrated how ellipses could
more accurately reflect the dynamics of human bodies interacting in space. Building
on these ideas, subsequent models presented in [25, 26], enabled agents to expand and
contract along both the direction of motion and laterally. This allowed simulation of
behaviors such as lateral swaying and torso rotation, which are essential for navigating
tight spaces and capturing more nuanced body dynamics in crowd movement.

Additional alternatives to elliptical representations also exist. Some researchers
have experimented with a “three-circle body” approach [27], which approximates the
torso and limbs using overlapping circles. Others, such as Alonso-Marroqúın et al. [28],
have employed spheropolygons, geometric shaped with multiple vertices and rounded
edges, to more closely mimic the contours of the human body.

Although point-based or circular approximations can be sufficient at lower den-
sities, the lack of bodily detail becomes problematic as crowd density increases and
physical contact intensifies. Static 2D shapes, such as circles or ellipses, are inher-
ently limited in their ability to capture complex phenomena like balance recovery
and the realistic distribution of forces across the pedestrian’s body. Although some
studies have proposed more anatomically realistic representations, none have fully
overcome the challenge of balancing geometric fidelity with computational feasibil-
ity in dense-crowd scenarios. This persistent gap highlights the need for a paradigm
shift in crowd modeling, one that transcends simplified 2D geometries and embraces
the three-dimensional nature of human body, along with the rich physical interactions
that emerge at high-density conditions.

2.2 Microscopic Models

Microscopic models represent each pedestrian as an individual agent whose behav-
ior emerges from local interactions and decision-making processes. These models are
especially well-suited for capturing fine-grained dynamics, such as collision avoidance,
small-group formation, and navigation strategies in buildings. Within this category,
two principal modeling approaches have gained widespread attention: force-based
models and velocity-based models. Each offers distinct assumptions and computa-
tional strategies to simulate how pedestrians respond to their environment and to one
another.
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2.2.1 Force-based Models

Force-based models draw inspiration from Newtonian mechanics, representing pedes-
trians as particles subjected to a superposition of pairwise interaction forces between
neighboring individuals. These interaction mechanisms are derived from diverse
anisotropic and nonlinear interaction potentials, which capture both attractive forces
- such as those needed to model group behaviors, and repulsive forces, which are
essential for collision avoidance and enforcing physical body exclusion. A pioneering
example is the social force model, introduced in the late 1990s by Helbing and Molnár
[20], which employs exponential repulsive potentials. This model builds on earlier fun-
damental work by Hirai and Tarui in the 1970s, who simulated crowd behavior at
train stations [29], as well as the theoretical concepts proposed by Lewin in the 1940s,
whose concepts on social fields contributed to understanding group behavior from a
psychological perspective [30].

General force-based models are given by the second-order dynamics [25, 31]

¨⃗xn(t) =
1

τ

[
v⃗0 − ˙⃗xn(t)

]
+

∑
m ̸=n

ω
(
ϕn,m(t)

)
∇⃗x U

[
∆x⃗n,m(t),∆ ˙⃗xn,m(t)

]
, (1)

where τ > 0 is a reaction (relaxation) time, v⃗0 ∈ R2 is the desired velocity coming
from a tactical where x⃗n(t) is the position of the pedestrian n at time t, τ > 0 is
a reaction (relaxation) time, v⃗0 ∈ R2 is the desired velocity coming from a tactical
modeling level, U ∈ C2((R2,R2),R2) is an interaction potential that usually depends
on the distance to the neighbors - its gradient is the interaction force that can be
attractive or repulsive, while ω ∈ C1(R2,R) is an anisotropic factor based on the
bearing angle ϕn,m that provides more weight to the pedestrians in the direction of
motion. A schematic representation of the force-based models is given in Figure 2.
For example, in the Social Force (SF) model, the interaction force is derived from an
exponential repulsive interaction potential based on the distance and the piecewise
constant anisotropic factor

Usf(∆x⃗) = AB exp(−|∆x⃗|/B), ωsf(ϕ) =

{
1 if |ϕ| < κ,
c otherwise,

(2)

where A,B > 0 are the repulsion range and the characteristic repulsion distance,
respectively, while 0 < c ≪ 1. Due to its exponential potential, the interaction in the
social force (SF) model is short-ranged. In contrast, both the Centrifugal Force (CF)
model [32] and the Generalized Centrifugal Force (GCF) model [33] feature interac-
tions with an algebraically decaying range. Furthermore, the GCF model incorporates
a pedestrian shape dependent on speed, modeled as ellipses [33]. Unlike the SF model,
both the CF and GCF models also consider the relative velocity between pedestri-
ans. Today, many extensions of the SF model integrate relative velocity terms and
other velocity-dependent mechanisms; see the review in [34] for further details and
references.

Despite their success in reproducing collective phenomena such as lane forma-
tion in bidirectional flows, force-based models often rely on simplified two-dimensional
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Fig. 2 Schematic representation of the force-based models. The repulsion with neighbors is short-
range and anisotropic, while the control to the desired direction is a linear relaxation process. Force-
based models are the sum of these two components.

geometries (points, circles, ellipses). This simplification becomes a critical limitation in
dense crowd scenarios, where more realistic representations of body shape and physical
contact are essential to accurately capture the effects of pushing, falling and balance
recovery. Another challenge lies in models’ inherent sensitivity to parameter tuning:
Small variations in interaction coefficients can lead to significantly different out-
comes. As a result, although force-based models perform well under moderate-density
conditions, they tend to lose accuracy when applied to high-density environments,
where a detailed account of physical forces and biomechanical responses becomes
indisponsable.

2.2.2 Velocity-based Models

Velocity-based models offer an alternative to force-based approaches by focusing on
the direct computation of an agent’s desired velocity, rather than simulating forces.
These models typically define a set of velocity constraints to ensure collision-free
movement, allowing each pedestrian to adjust their velocity based on the anticipated
movements of others in the environment. Unlike force-based models, which rely on
continuous interaction potentials, velocity-based models are often formulated as opti-
mization or geometric constraint problems, making them particularly well-suited for
real-time applications and multiagent systems.

Models such as Reciprocal Velocity Obstacle (RVO) and Optimal Reciprocal Colli-
sion Avoidance (ORCA) [15, 35, 36] exemplify this principle by computing admissible
velocities that account for the anticipated positions of all neighboring agents.

A general formulation of velocity-based models can be expressed as an optimization
problem under constraints [37]:

˙⃗xn(t) = arg min
v⃗n ̸∈ ∪m̸=nCm

n (t)
C v⃗0

x⃗(t)(v⃗n). (3)

Here, Cm
n (t) denotes the collision cone with the neighboring agent m, constructed

by linearly interpolating the agents’ trajectories – a concept initially introduced for
controlling robots amid moving obstacles [36]. The cost function C v⃗0

x⃗ depends on the
desired velocity as well as the positions and velocities of the neighbors. In its simplest
form, the cost is assumed to be the quadratic deviation from the desired velocity:

˙⃗xn(t) = arg min
v⃗n ̸∈ ∪m̸=nCm

n (t)
∥v⃗0 − v⃗n∥2. (4)
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More advanced formulations expand this cost function to account for additional behav-
ioral and biomechanical constraints. For instance, the collision-free model developed
in [38] incorporates terms associated with speed variations, deviations from preferred
speed, and changes in orientation. Similarly, the RVO model [35] extends the quadratic
cost with a repulsive potential based on time to collision. The ORCA model [39]
retains this quadratic structure, while its extension PORCA includes an additional
velocity-dependent term that prevents the system from freezing [40].

x⃗j

x⃗l

x⃗k

v⃗j

v⃗l

v⃗k

v⃗l

v⃗k

Cl
j

Ck
j

Fig. 3 Velocity obstacle cones for an agent as used by RVO-models. No collision occurs when the
velocity is set outside the cones.

By treating pairwise pedestrian interactions as a form of trajectory planning,
velocity-based models aim to ensure that agents proactively select paths avoiding col-
lisions while navigating through shared spaces. For low to moderate densities, these
models effectively reproduce collective behaviors – largely due to social proxemics
(the tendency to maintain preferred distances) and anticipatory strategies for collision
avoidance (how agents modify their paths to prevent collisions). However, as den-
sities increase and more complex physical interactions, such as body contact, force
propagation and falling, become dominant, the assumptions of velocity-based models
begin to break down. In high-density scenarios, where physical contact is unavoidable,
velocity-based models often struggle to maintain realism or capture critical behaviors
like pushing and falling.

Thus, while both force-based and velocity-based models offer valuable insights into
pedestrian movement at moderate densities, neither is sufficient for modeling dense
crowds, where contact-driven interactions and three-dimensional body dynamics play
a pivotal role. Bridging this gap requires novel modeling approaches that incorporate
detailed physical processes while remaining flexible across varying density regimes.

2.3 Macroscopic Models

Macroscopic models describe crowd dynamics by aggregating individual behaviors into
continuous fields such as density, velocity and flow, offering insights at a larger scale
compared to microscopic models. These models are particularly useful for simulating
large crowds over extended areas, where fine-grained individual interactions are less
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critical than global movement patterns. They can be broadly classified into network
models, hybrid models, and continuum models [41]. Network models, which are based
on graph theory and heuristic rules, are primarily used to capture pedestrian movement
at strategic and tactical levels, such as route choice or facility planning. In contrast,
continuum models treat the crowd as a continuous medium, often analogous to a fluid,
and use partial differential equations (PDEs) to describe pedestrian behavior at the
operational level, such as local velocity adaptation and density-driven flow.

2.3.1 Macroscopic Model Classification

In contrast to microscopic models, which focus on individual pedestrian positions
x⃗n(t) ∈ R2 and velocities v⃗n(t) ∈ R2 in Lagrangian coordinates (n, t) (n ∈ N is the
pedestrian index and t > 0 the time), macroscopic models use aggregated variables
such as density ρ(x⃗, t) ∈ R, flow q⃗(x⃗, t) ∈ R2, and mean velocity v⃗(x⃗, t) ∈ R2 in
Eulerian coordinates (x⃗, t). Here, x⃗ ∈ R2 is the space and t ∈ [0,∞) is the time. Note
that density is a scalar field, whereas flow and velocity are vector fields. Macroscopic
models are often classified by order of their dynamics [42]. First-order models rely on
the mass conservation equation

∂ρ

∂t
+∇ · q⃗(ρ) = 0, (5)

where the flux q⃗(ρ) is typically defined as q⃗(ρ) =: ρv⃗(ρ). In practice, the velocity
function v(ρ) = v(ρ)µ⃗(ρ) captures the dependence of pedestrian speed on density, with
µ(ρ) indicating the desired direction (normalized vector). The phenomenological scalar
relationships between density, flow and the mean speed are called the fundamental
diagram in traffic engineering. There are different forms for the fundamental diagram
in the literature (see, e.g., the reviews [43, 44]). Second-order models add momentum
conservation through an additional PED [42]:

∂ρ

∂t
+∇ · (ρv⃗) = 0,

∂v⃗

∂t
+ (v⃗ · ∇)v⃗ = a⃗(ρ, v⃗),

(6)

The first equation accounts for the conservation of mass (i.e., the pedestrians), while
the second equation models the conservation of the momentum. The function a⃗ in this
last equation represents the aggregated acceleration of pedestrians. It has to depend
on the two unknowns (ρ, v⃗) to close the system. These models are complemented by
the initial conditions ρ(0, x) = ρ0(x) and v⃗(0, x) = v⃗0(x) and by the desired direction
field µ⃗(ρ(x, t)).

2.3.2 Main Macroscopic Models

In the famous first-order model of Hughes [45], the desired direction field results from
an Eikonal equation that adjusts the direction with the density using the gradient of
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an interaction potential based on the fundamental diagram

|∇ϕ| = 1

v(ρ)
, (7)

v⃗(ρ) = v(ρ)
∇ϕ

|∇ϕ|
, (8)

∂ρ

∂t
+∇ ·

(
ρv⃗(ρ)

)
= 0. (9)

Adding an additional Laplace operator to the squared Eikonal equation (7) for a
sufficiently small ε > 0 leads to the approximation ϕε of the original solution ϕ, which
is called the viscosity solution [46] and the nonlinear second-order partial differential
equation:

ε2∆ϕε +
(
∇ϕ

)2
=

1

v2(ρ)
· (10)

Introducing the Laplacian term as a viscosity solution further improves numerical
stability [46]. In the second-order realm, the extension of the one-dimensional Payne-
Whitham vehicular traffic model to two-dimensional pedestrian motion [47] uses an
acceleration function:

a(ρ, v⃗) =
1

τ

(
ρv(ρ)µ⃗− ρv⃗

)
− P (ρ). (11)

where P (ρ) = p0ρ
γ , with p0 > 0, γ > 1, models a repulsive force due to volume filling

effect in [47]. Alternatively, the term P (ρ) = c2(ρ)∇ρ
ρ is used to capture anticipatory

effects in [48]. Some models, like [49], further include deviatoric stress represent to
frictional forces. See [50] for an overview of the different model forms. In all these
approaches, the desired direction is often determined by solving the density-based
Eikonal equation, sometimes with additional modifications such as the discomfort
fields in [48].

2.3.3 Mean Field Games

Some recent macroscopic models combine the tactical and operational levels in a cou-
pled partial differential equation system. They are derived from mean field games
(MFG), introduced by Lasry and Lions [51] and by Huang et al. [52] in 2006 to
describe Nash equilibria in differential games with infinitely many players. The first
applications to pedestrian dynamics date back to the early 2010s [53–55] Pedestri-
ans in a MFG adopt strategies that aim, for instance, to individually minimize their
walking time [56]. In contrast to classical macroscopic models, where the interactions
are mainly reactive, the pedestrians are able to anticipate over an arbitrary horizon
time. In addition, the dynamics are assumed to be stochastic and include a white
noise. The pedestrians are indistinguishable and move according to the same individ-
ual optimization criteria. The dynamics are considered at the mean field limit over a
large number of pedestrians in equilibrium. Therefore, pedestrians individually have

10



a minor (infinitesimal) influence on others, and their motions result from the mean-
field interaction. MFG pedestrian models are much less sophisticated than microscopic
N-player games.

MFG consists of a set of coupled differential equations. The first is a Hamilton-
Jacobi-Bellman (HJB) equation, which describes how each pedestrian optimizes its
trajectory over time as a feedback (backward) equation. The second is a Fokker-Planck
(FP) equation that describes how the distribution of pedestrians (i.e., the density)
evolves over time under the influence of collective behavior (forward equation). A
general formulation is given by [42]

− ∂u

∂t
+H(x, t,∇u, ρ) =

σ2

2
∆u,

∂ρ

∂t
−∇ ·

(
ρ
∂H

∂p
(x, t,∇u, ρ)

)
=

σ2

2
∆ρ,

(12)

where u is the value function representing the minimum cost and H is the Hamiltonian
representing an optimal trade-off between control effort and system dynamics via an
interaction potential. In the HJB equation the value function is derived from the
Hamiltonian, while the FP equation describes the evolution of the density according
to a continuity equation where the velocity is given by the optimal drift −∂H/∂p,
with p = ∇u, corresponding to a local fundamental diagram. In both equations, the
noise plays the role of a second-order diffusion.

The MFG is derived in the mean-field limit from the general microscopic dynamics
given by the stochastic differential equation:

dx(t) = b(α(x, t), ρ(x, t))dt+ σdW (t). (13)

where b(t, x, α,m) is the drift term derived from the interaction potential, α is the
optimal velocity control, while Wn is a standard Brownian motion with σ as diffusion
coefficient (noise amplitude). Quadratic mean-field games are specific tractable cases
for which the interaction potential is quadratic [57, 58], i.e. the drifts in the microscopic
dynamics are linear. Quadratic mean-field games are given by

− ∂u

∂t
+

1

2
|∇u|2 − U(ρ(x)) =

σ2

2
∆u,

∂ρ

∂t
−∇ · (ρ∇u) =

σ2

2
∆ρ.

(14)

The term −∇ · (ρ∇u) represents the movement of the crowd following optimal paths,
while U is an increasing function that penalizes high pedestrian densities. Quadratic
mean-field games provide analytical tractability and explicit solutions [59]. Addition-
ally, the HJB-FP system that governs pedestrian dynamics can be efficiently solved
using fast finite-difference methods, further enhancing scalability. The presence of
quadratic terms also allows for the application of Riccati equations, streamlining opti-
mization and making the approach well suited to large-scale simulations with low or
medium density levels.
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2.4 Limitation of Actual Models for Dense Crowds

In summary, classical microscopic and macroscopic pedestrian models perform ade-
quately for low and intermediate density levels, where interactions are primarily
governed by proxemics and collision-avoidance behavior and where the concept of fun-
damental diagram applies. However, these models are limited when applied to dense
situations where the interactions are dominated by physical pushing forces, body
compression, and wedging dynamics. While some models can partially reproduce cer-
tain collective behaviors of dense crowds by incorporating additional parameters and
mechanisms, there is no universal model or consensus. In extreme crowd conditions,
individuals can become so tightly packed that their bodies effectively lock together,
preventing movement, a phenomenon we refer to as wedging. This process occurs
under circumstances where collision avoidance becomes impossible, and the normal
regulation or optimization of velocity based on neighbor distance and displacement no
longer applies.

The current modeling paradigms, be they microscopic models based on pairwise
interactions or macroscopic models grounded in continuum theory, struggle to capture
these complex physical interactions. Concepts such as fundamental diagram, collision
avoidance, and trajectory optimization lose their applicability in such scenarios, as
the primary concern shifts to managing the accumulation of compression forces and
ensuring balance recovery. In addition, existing models do not adequately account for
the conditions under which wedging occurs, nor do they offer insights into strategies
that might prevent these dangerous configurations.

While some ad-hoc macroscopic models with additional parameters can reproduce
some collective behavior observed in dense crowds, they lack the fine-scale modeling
of pedestrian bodies in 3D and understanding of the microscopic and sub-microscopic
mechanisms that take place at high densities, such as balance recovery. The coupling
of such individual-related features with consistent macroscopic derivations capable of
describing the observed collective phenomena that arise in dense crowds remains to be
developed. To overcome these limitations, new models must be developed that inte-
grate detailed three-dimensional representations of pedestrian bodies in a consistent
multiscale framework.

3 Biomechanics and Physical Interactions in Dense
Crowds

Building on our previous discussion of crowd modeling, recent research has increasingly
focused on biomechanics and physical interactions that occur in dense formations.
This emerging line of research is at the crossroads of established research on stand-
ing balance and the study of collective dynamics. On one hand, extensive work has
been conducted within research communities dedicated to standing balance and bal-
ance recovery in individuals under various conditions and across different populations.
On the other hand, researchers in collective dynamics are now trying to understand
how standing balance is affected in crowded environments, where unique physiological
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factors and complex motion constraints come into play. Figure 4 shows in experimen-
tal setups how pedestrians try to maintain their balance in challenging and crowded
scenarios.

Fig. 4 Experimental evacuation from narrow bottlenecks. Pedestrians use different parts of their
body to squeeze through and evacuate. The inability of state-of-the-art models to simulate this
competitive evacuation process stems from their reliance on underlying 2D shapes and from lack of
empirical understanding of these mechanisms.

To fully grasp how dangerous dense crowds can be, it is fundamental to understand
how the human body responds to physical interactions in such contexts. At the human
body level, two main mechanisms emerge in response to these physical interactions in
dense crowds. The first is the use of whole-body movements to prevent falls. These
balance-recovery movements, which encompass coordinated actions that involve the
feet, legs, upper body, arms and hands [18, 60], are essential to maintain stability.
The second mechanism is related to the mechanical properties of body tissues; in
densely packed crowds, the upper body experiences significant compression, leading
to discomfort, injury, or even death [3]. In light of these observations, it becomes
important to understand how individuals leverage balance recovery movements to
avoid falls.

In this section, we first review the methods and experimental paradigms that
have been developed to understand standing balance and balance recovery following
external perturbations on single individuals. We then present a review of the existing
literature on the experimental study and modeling of physical interactions and bal-
ance recovery in dense crowds. This dual perspective not only aims at enlarging our
understanding of individual biomechanics but also informs the development of more
realistic crowd models aimed at enhancing safety in high-density situations.

3.1 Standing Balance and Recovery Strategies of Single
Individuals

In 2019, falls were estimated to be the second leading cause of unintentional injury
or death worldwide, with more than 684,000 people involved in fatal fall incidents
[61]. Falls are a major public health problem, particularly in the elderly. Conse-
quently, research on standing balance has become extensive, particularly in relation
to responses to various types of internal and external perturbations [62–65].
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We focus here on studies regarding reactions to external perturbations, as these are
inherently more relevant to the physical interactions encountered in dense crowds. Per-
turbations in standing balance can arise in a wide variety of forms, such as mechanical
pushes, surface instability, or unexpected shifts in posture, and are often investigated
through parameter studies. This approach allows researchers to isolate and assess the
influence of specific factors, such as age, health conditions, or specific type of terrain,
on the balance recovery and stability responses [66–68].

3.1.1 Methods and Metrics

To understand how individuals fall in crowds, we need to define the Limit of Standing
Balance (LoSB) or limit of stability [69]. This is the limit beyond which individuals
must initiate recovery strategies involving Change-in-support to regain balance fol-
lowing perturbations. This Change-in-support corresponds to a modification of the
Base of Support (BoS), which is defined as the area that includes all points of con-
tact between individuals and their support surfaces. Modifications of the base of
support may include step initiations and physical interactions with the surrounding
environment, including other individuals [70].

One of the most important variables used to study standing balance, and human
motion in general, is the position of the Center of Mass (CoM). This can be defined
as the average position of the body mass distribution in space. In early work, the
moment when the projection of the CoM on the ground reaches the boundary of the
Base of Support (BoS) was suggested as the functional LoSB [71, 72]. However, this
proposition is only limited to static situations, and individuals tend to initiate recovery
strategies before reaching this limit in dynamic scenarios [73]. To create a more general
model about the LoSB new metrics have been created such as Zero Moment Point,
originally proposed for robotic applications. Other simpler metrics may also be used to
study the LoSB. In [73], Hof et al proposed the use of an inverted pendulum model to
represent the standing individual and they derived the concept of Extrapolated Center
of Mass, (XCoM) which proved to be an efficient tool to access standing balance.
Another approach consists in using the Time to Boundary, that corresponds to the
time required by the CoM to exit the BoS [67]. Using this simple yet effective method,
the initiation of steps following perturbations in the sagittal plane could be archived
with an accuracy reaching 80%. Later, this accuracy was improved using trained neural
network models based on kinematic features [74].

In addition to the previous quantities, the angular momentum and its time deriva-
tive can also be studied. These variables have been studied mainly in walking subjects
and have been shown to increase during unstable gait phases [75]. Angular momen-
tum can also be used to identify the contribution of body parts to balance control or
to study the first steps after standing upright [68, 76].

3.1.2 Experimental Paradigms

In terms of experimental paradigms, balance recovery has been studied for a variety of
situations [77]. In a crowd, perturbations can occur while other voluntary movements
are also ongoing, e.g., walking towards a target. However, we are focusing here on dense
crowds, in which only a limited range of motion is possible [3]. Therefore, we restrict
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our attention here to balance recovery of static standing postures following external
perturbations. We can define, by analogy to physics, the hypothesis of a quasi-static
dense crowd. With this hypothesis, we consider that body motion is still possible
(e.g., for balance recovery) but no target-oriented motion takes place. One may also
note that balance recovery could be studied for very slow locomotion as well [78],
as this may occur in dense crowds [78]. Studies relative to standing balance recovery
following external perturbations can be grouped relative to the two main families of
perturbations applied in experimental protocols.

The first type of perturbations are noncompliant perturbations. For this type of
perturbations, an unbalanced posture is imposed on the participants’ body. Non-
compliant perturbations can be obtained using a tether-release method, i.e. releasing a
cable which maintains an unbalanced forward leaning angle position [79, 80]. Another
way of applying non-compliant perturbations is to directly impose body displacement
and velocity using a velocity-controlled mechanism [81].

Compliant perturbations can also be investigated. For this kind of perturbation,
the response of the subjects can modify the body displacement induced by the per-
turbation. These external perturbations can be obtained by generating perturbations
through different techniques such as; moving ground platforms [82, 83] or force-
controlled perturbations [67, 74, 84, 85]. Regarding the directions of the perturbation,
most of the above-mentioned studies focuse only on the perturbation in the anteropos-
terior and mediolateral directions. Only a few studies have investigated intermediate
perturbation directions using the moving ground paradigm [70, 86] or force-controlled
perturbations [87]. One must keep in mind that across all studies only a limited num-
ber of perturbations can be investigated, while perturbations in a real crowd context
can arise from all possible directions, leading to different recovery strategies [88].

3.2 Collective Dynamics with Physical Interactions

The current section is dedicated to research that specifically addresses collective
motion induced by physical interactions. We attempt to provide an overview of recent
studies on physical interactions and balance recovery in human crowds. In particular,
we review the different experimental setups and associated results on physical interac-
tion and standing balance in dense crowds. We then focus on the models and numerical
paradigms that have been proposed to represent an analysis of these specific crowd
configurations.

3.2.1 Field Studies

Many studies have documented accidents occurring in dense crowds (see, e.g., [3, 5,
89] or [2] and references therein). However, only a few studies include quantitative
analysis of the crowd and its dynamics. A pioneering analysis of Jamaraat Bridge
during the Hajj pilgrimage to Mecca in Saudi Arabia has shown that dense crowds can
describe large stop-and-go waves and show multidirectional motions [90, 91]. A study
of the Love Parade in Duisburg, Germany (2010), has highlighted the phenomenon of
crowd quakes [10]. Specific observations at crowded concerts and festivals also show
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coordinated dynamics such as wave phenomena, collective oscillations and vortices
[11, 92, 93].

Recently, Gu and co-authors have used advanced computer vision techniques to
collect large datasets of massive crowds that repeat every year during the San Firmı̀n
festival in Pamplona, Spain [94]. Data from Plaza Consistorial, which is approximately
50 m long and 20 m wide, and where up to 6 pedestrians per square meter (locally up
to 9) are regrouped in a confined space before the start of the festival. The data collec-
tion includes a fine-grained representation of the density and velocity field sequences,
allowing a precise analysis of the dense crowd dynamics. The results reveal the orga-
nization of the crowd into large chiral oscillations when the density exceeds a critical
threshold (about 4 pedestrians per square meter), coordinating the orbital motion of
hundreds of individuals without external guidance. See Figure 5.

Recent efforts also include the MADRAS project, which provides one of the first
large-scale field datasets capturing dense pedestrian dynamics in real-world conditions,
covering densities up to 4 pedestrians per square meter. Collected during the 2022
Festival of Lights in Lyon, France, the data include macroscopic crowd flows, GPS
traces, contact statistics, and nearly 7000 microscopic trajectories, offering a unique
opportunity to benchmark and calibrate crowd models under realistic conditions [95].

Fig. 5 Bird’s eye view image highlighting the position of a participant wearing a motion capture
suit while immersed in the crowd at a punk rock concert. Figure from [88].

One of the reasons field studies are rare is the difficulty in collecting data from
dense crowds. However, the advencement of modern computer vision techniques makes
it possible to accurately measure density and velocity fields, or even to track individ-
uals. Nevertheless, the collection of submicroscopic pedestrian characteristics such as
pedestrian positions, is not possible in field studies and must be investigated using
different methods.

3.2.2 Laboratory Experiments

In order to deal with the limitation of in-situ observation, recent experimental
paradigms have been created allowing to study collective dynamic due to physical
interaction in the laboratory. These experiments only consider a limited number of
participants, thus do not allow replicating large-scale motion observed during a real
life scenario. However, a greater variety of measurement techniques can be used in
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such controlled experimental setups. This provides access to higher quality measure-
ments of head trajectories as well as lower scale measurements such as whole body
motion recording and contact force measurements.

One of the first experimental studies to propose such an approach is the work of [96]
to study propagation of external perturbation along a single queue of participants. This
experimental setup was also investigated by [97] to investigate the propagation of force-
controlled perturbation in a row of participants. Later, this experimental paradigm
was broadened using a larger number of participants as well as different dense group
formations and perturbation methods. Figure 6 illustrate the experimental setup as
well as the reconstructed motion-captured data recorded during the experiments.

Fig. 6 Impulse propagation through a queue of 20 participants. (a) Top view of the experiments,
allowing head tracking of the participants. (b) side view of the experimental set-up. (c) reconstructed
motion-captured data with accurate relative placement of participants based on head tracking tra-
jectory data [98].

The dataset resulting from this experiment is, to our knowledge, the largest dataset
on balance recovery following external perturbation in dense crowd formations with
full-body motion recording of participants [99]. These experiments led to several find-
ings especially regarding the propagation of the perturbation in such crowd formation
[100], the different reaction stages of the participants after perturbation in such a
setup [60] and the modification of individual recovery strategies observed to maintain
balance in dense crowd environments [18].
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Regarding stepping strategies following external perturbation, one could also refer
to the work of [101] who investigated step characteristics in a two-person queue setup.
However, this study is very limited as only three participants were involved.

More and more studies also begun to investigate the force constraints undergone
by the individual in either dense static [102] or dynamic [103] group situations. Such
measures are usually obtained using pressure measurement pads. One of the latest
studies by Shen et al. [104] investigated the impulse propagation from a participant to
a static obstacle following external perturbations. In this study, the authors could draw
a link between impulse propagation and the recovery step taken by the participants.

Finally, a new experimental paradigm also emerges to study physical interaction in
crowded environments. As illustrated in, Chatagnon et al. proposed for example the
use of IMU-based motion capture to record balance recovery of participants following
physical interaction in crowds of punk rock concerts [88]. This kind of experimental
paradigm is at the crossroads between field observation and controlled laboratory
experiments. This provides a better ecological validity while still allowing some control
over the experimental setup. However, these types of experiments are still extremely
difficult to create on larger scales and require strong collaboration between event
organizers and researchers.

3.2.3 Models and Simulations

A number of models have been created following observation of large-scale field studies
[9] and smaller scale laboratory experiments, such as the “human domino process”
to represent the propagation of physical interaction in a queue of individuals [105].
However, these models are often limited to only representing crowd motion in specific
contexts, similar to the context in which the experimental observations occurred. In
addition, high-level features of dense crowds can generally be replicated in simulation
using both macroscopic [49] and microscopic [106] crowd representation paradigms.
Several second-order macroscopic models with additional parameters and mechanisms
operating only at high densities exist in the literature [49, 92, 107]. Microscopic models
can also incorporate additional parameters in case of contact [108]. However, sub-
microscopic dynamics (i.e., at an individual’s limb level) observed during laboratory
experiments requires a much finer representation of the body shape.

The importance of human body shape for crowd simulation was suggested in the
early works of Thompson and Marchant in [109]. However, the representation of disc-
like agents remained dominant up to now because of its attractive simplicity. This
representation paradigm is nevertheless very limited to represent the complexity of
physical interactions and standing balance [19]. To address these limitations, a new
representation paradigm for human body has been developed featuring simple limb
representation [110]. This representation paradigm could then be used in physics-
based simulation to evaluate the recovery ability of standing agents [17]. However,
multiple challenges are yet to be tackled in order to integrate accurate representation
of physical interactions in dense crowds, such as limbs contact detection [111]. Once
may also keep in mind that this more complex representation of human body shapes
also come with significant computational cost. Solutions must be found to enable these
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methods to be used to simulate large-scale events, for which risk assessment of dense
crowds is the most critical.

3.3 Discussions

This section has outlined the ongoing advancement of knowledge aimed at under-
standing the physical interactions that govern dynamics in dense crowds. On the one
hand, field observations have informed the development of models capable of describ-
ing large-scale dynamics of dense crowds. On the other hand, controlled laboratory
experiments have enabled for a more detailed analysis of sub-microscopic dynamics,
such as contact forces and limb motion, associated with physical interactions. Recent
experimental findings are increasingly being integrated into the development of accu-
rate simulations of dense crowds. However, further efforts are needed to advance this
line of research by creating new experimental and simulation paradigms that better
capture the complexity of such environments. The study of dense crowds and the phys-
ical interactions inherent in these contexts must continue to gain momentum to enable
concrete applications in accident prediction and risk assessment for major events.

To conclude this section, we would like to highlight some thoughts of research
directions that we believe should be explored in order to draw a complete picture of
dense human crowds.

First, we observed that physical interactions between individuals in crowds can
be conceptually divided into two main aspects, the actions that generate external
perturbations and the reactions of one or a set of individuals. Responses, also known as
balance recovery motions, may include step recovery strategies, momentum damping
mechanisms, and even follow-up actions on other individuals. This last type of recovery
can cascade into dangerous collective movements, also known as crowd collapses [5].
To the best of our knowledge, physical interaction has so far been studied mainly from
the point of view of reactions, by examining how individuals react to a given set of
external perturbations, taking into account a given set of influencing factors (e.g. age,
terrain, sensory conditions). We are now missing fundamental information regarding
the actions from which these external perturbations originate. To fill this gap, new
measurement techniques and novel experimental paradigms must be developed to
quantitatively assess the strength, location and temporal evolution of physical contacts
within dense crowds.

In addition, while recovery from external perturbations is crucial to understand-
ing how individuals maintain standing balance, in the most critical scenario, wedging
effects can be observed and movement is simply no longer possible1 In these dense
crowd scenarios, static constraints can result in severe outcomes such as chest com-
pression and fainting [3]. In light of these observations, we argue that understanding
the physiological limits of the human body under compression is essential. While some
studies have explored human tolerance to compressive forces [112], they remain under-
utilized in pedestrian dynamics research. Future work should integrate findings from
biomechanics and medical sciences to better identify critical thresholds and safety
margins in high-density environments [102].

1The authors are not aware of any published work quantifying the movement threshold in wedged
conditions and call for further research in this area.
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Finally, physical interactions are intrinsically related to behavioral and psycholog-
ical changes that arise in high-density conditions. These changes may themselves be
caused by physical discomfort, while also contributing to further crowding and con-
tact. For example, motivation and perceived urgency are known to vary with density,
influencing individual movement decisions [113].

Understanding the interplay between psychological state and physical behavior is
crucial for a complete description of dense crowd dynamics. Although a comprehensive
review is beyond the scope of this work, recent research in this domain is rapidly evolv-
ing [114–117], with practical implications in behavioral detection related to physical
contact and distress [118].

4 Conclusion

In this chapter, we have identified several challenges in modeling dense crowd dynam-
ics. First, we began by reviewing a range of existing models for crowd dynamics. From
microscopic approaches that detail individual trajectories featuring body representa-
tions to macroscopic frameworks that describe aggregated quantities like density and
flow.

Although these models have been instrumental in capturing pedestrian behavior
at low to moderate densities, they fall short in high-density scenarios, where physi-
cal interactions dominate. The limitations of traditional 2D disk-like representations
become particularly evident when trying to simulate phenomena such as wedging, bal-
ance recovery, and the complex transmission of contact forces that emerge at high
crowd densities.

We then explored alternative modeling paradigms, drawing on insights from disci-
plines, such as biomechanics. In the second section of this chapter, we have reviewed
various methodologies and techniques that can be used to study physical interactions
and balance recovery mechanisms following external perturbations. These methods,
combined with empirical observations from field studies and laboratory experiments,
provide a foundation for new investigations and modeling paradigms.

To address the underlying complexities of dense crowds, many studies on human
crowds have emerged from collaborations between researchers with multiple back-
grounds such as social and computer sciences, physics, mathematics, or biomechanics.

In addition, recent advances in computer vision through machine learning, as well
as improvements in of IMU-based motion capture, offer new possibilities to collect
accurate field measurements in dense crowd situations.

A key challenge moving forward is the development of a unified modeling frame-
work that integrates insights from diverse research domains. Such a framework must
combine two essential components: large-scale density dynamics and detailed represen-
tations of individual pedestrian body shapes. By achieving this, models can effectively
capture emergent phenomena that lead to critical situations while accurately depicting
contact forces and stress distributions.

A unified model should allow smooth transitions between low- and high-density
regimes, ensuring that the mechanisms governing collision avoidance at low densities
seamlessly give way to the detailed physical interactions required at high densities.
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Achieving this continuity would not only provide a more comprehensive understanding
of pedestrian dynamics across different crowd conditions but also improve predictive
capabilities and improve safety management strategies for large-scale events.

There is also considerable promise in the integration of data-driven techniques with
traditional physics-based approaches. By leveraging large-scale 3D motion databases
and state-of-the-art deep learning algorithms, future research can refine model param-
eters, validate simulations against real-world observations, and ultimately predict
critical events with higher accuracy.

In summary, building robust and predictive models of dense crowd dynamics
requires bridging the gap between detailed experimental observations and theoreti-
cal modeling, with a particular emphasis on seamless transitions between low-density
collision avoidance and high-density physical contact. This will involve not only refin-
ing the representation of pedestrian bodies and their interactions but also embracing
interdisciplinary approaches that draw from biomechanics, data science, and complex
systems’ theory. Such integrative efforts hold the potential to significantly advance our
understanding of crowd behavior and, more importantly, inform practical strategies
for crowd management and accident prevention in large-scale events.
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