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1 Introduction

In his seminal paper [1], Leutwyler has studied the finite-volume excitation spectrum of
QCD in the chiral limit. It was demonstrated that a tower of excitations with a zero three-
momentum emerges, whose energy in a box of a size L is proportional to L−3. The excitations
with such a small energy cannot be treated in perturbation theory. Rather, they are described
by the Lagrangian of the quantum-mechanical rigid rotator. Besides these “slow” modes,
the pion field in the effective Lagrangian of QCD contains the so-called “fast” modes (the
modes having nonzero three-momenta), whose energy is proportional to L−1. These modes
are perturbative and can be treated by using the conventional diagrammatic technique.

In the same paper, different regimes of the low-energy expansion of QCD are identified,
depending on the values of the quark masses as well as the external parameters L (the size of
the three-dimensional box) and T (the temperature). All these expansions are carried out in
powers of 1/(FL)2, where F denotes the pion decay constant in the chiral limit that defines
the hard scale of the theory. Assume that the quark mass is nonzero and let M denote the
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pion mass at lowest order (for simplicity, we restrict ourselves to the isospin-symmetric world
with two light quarks). If both the temperature T and M are of order of 1/L, we are in
the so-called p-regime, in which the coefficients in the low-energy expansion are functions
of ML and LT . For the smaller quark mass, with M ≪ T ∼ L−1 and F 2M2L3/T ∼ 1, the
so-called ϵ-regime sets in, with the low-energy expansion rearranged. Finally, the δ-regime
is characterized by the counting rules

1/L = O(δ) , T = O(δ3) , M = O(δ3) . (1.1)

Here, δ denotes a generic small parameter.
From the above-mentioned cases, the p-regime is the best explored one. A systematic

perturbative approach has been formulated in ref. [2] and is routinely used to evaluate finite-
volume artifacts in the observables measured on the lattice.1 The temperature dependence
in this regime is studied, for example, in ref. [9]. Furthermore, a systematic perturbative
technique, which has to be used in the ϵ-regime, has been also set up in ref. [9]. The subsequent
works [10, 11] used this technique to study the temperature and volume dependence of different
fundamental characteristics of the effective field theories (EFT) of QCD at low energy, whereas
in ref. [12] the same approach has been utilized to calculate the nucleon mass shift in a
finite volume and at a finite temperature. The main difference between the calculations
in the p- and ϵ-regimes consists in a different treatment of the slow mode. While in the
p-regime all modes are treated on equal footing, the global slow mode is singled out in the
ϵ-regime. The partition function in this case is given as a group average of an expression,
in which the slow mode is removed.

The foundations for the perturbative framework in the δ-regime have been laid, e.g., in
refs. [1, 13, 14]. As already mentioned, this regime is relevant for the study of the chiral limit in
QCD, see, e.g., the recent work [15], as well as an attempt to determine some of the O(p4) low-
energy constants via the simulations carried out in the δ-regime [16]. Perhaps an even more
interesting application of the framework is the study of the volume dependence in different
models of condensed matter physics, which feature massless excitations in the spontaneously
broken phase. For example, the long-wavelength physics of the undoped antiferromagnets is
described by the O(N) non-linear σ-model [17–19]. A perturbative framework for these kind
of models, which goes under the name of Magnon Chiral Perturbation Theory, is formally
equivalent to the one used to describe QCD in the chiral limit. In the selected papers given
below we tried to credit the important work carried out so far in this field [20–30]. Furthermore,
it was shown that the hole-doped antiferromagnets with the spontaneously broken SU(2)
spin symmetry in the long-wavelength limit are described by the Chiral Perturbation Theory
of magnons and holes (massive fermions), in a direct reminiscence of the Baryon Chiral
Perturbation Theory [31–36].

Despite the significant effort invested in the study of the δ-regime in the last decades,
the formalism used still contains caveats which need to be addressed. Namely, in the p-

1The case ML ≫ 1 and T ≪ M can be also attributed to the p-regime. Scattering observables (e.g.,
two-body scattering phase shifts, weak and electromagnetic decay amplitudes, timelike form factors, etc.) are
measured on the lattice in this regime. The Lüscher finite-volume approach [3] has become a standard tool to
analyze lattice data on two-particle scattering and a three-particle framework has been recently proposed as
well [4–8].
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and ϵ-regimes, consistent Feynman rules can be written down that enable one to carry out
calculations (in principle) to any given order in the expansion. Namely, in the p-regime, a single
momentum scale p ∼ 1/L is relevant and, hence, the expansion can be carried out without
further ado. Furthermore, the global slow mode in the ϵ-regime can be straightforwardly taken
into account with the use of the Faddeev-Popov trick. To the contrary, the slow mode in the
δ-regime is time-dependent and corresponds to a dynamical degree of freedom, whose energy
scales as 1/L3 in the chiral limit (we remind the reader that the energies of the fast modes
scale as 1/L, see also a related discussion in ref. [15]). Stated differently, we face a well-known
situation of the EFT with two distinct scales that need to be clearly separated in order to yield
a consistent framework. In addition, note that the standard Feynman diagrammatical method
cannot be used for the slow mode that makes the separation of scales technically challenging,
albeit a perturbative expansion of the Green functions still can be carried out. In the
literature, one finds examples of calculations of the higher-order corrections [1, 13, 14, 22, 23],
originating from the loop corrections with the fast modes alone. However, even if, in some
cases, the contribution from the slow mode can be relegated to a rather high order by using
a very special field transformation [13, 14], carrying out a systematic expansion to all orders
still remains a challenge. The present work aims at closing this gap.

In this paper we shall demonstrate that a consistent perturbative framework in the
δ-regime emerges by using the so-called “threshold expansion” in all diagrams containing
fast as well as slow modes [37]. In order to set the stage, we shall concentrate on the O(N)
σ-model and try to reproduce the result of refs. [13, 14] with the use of the alternative
technique proposed here (the generalization to other models is relatively straightforward and
will not be considered in this work). It will in particular be demonstrated that the field
redefinition introduced in refs. [13, 14] is in fact unnecessary — the threshold expansion
neatly does the job (in fact, it is not clear, whether a similar field redefinition can be used in
higher orders as well). We would like to stress that we do not aim to obtain new results here,
pursuing the calculations to even higher orders. Our aim is rather to set systematic rules that
enable carrying out calculations to an arbitrary order without using additional tricks and
which could be eventually extended to the case where massive fermions are also present. For
clarity, we note that all our calculations will be performed in (split) dimensional regularization.
The space extension of a box L is finite and the periodic boundary conditions are imposed
in spatial directions. Furthermore, the calculations are performed at zero temperature, i.e.,
the time extension is assumed to be infinite.

The paper is organized as follows. In section 2 we briefly review the existing approach
in case of the O(N) σ-model and write down the path integral representation of the Green
functions we want to calculate. The low-lying spectrum at the leading order is considered in
the rest-frame as well as moving frames. In section 3 we show that the results of refs. [13, 14]
can be reproduced in any field parameterization, provided the threshold expansion is used.
Section 4 contains our conclusions and outlook. Various technical details are relegated to
the appendices.
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2 Path integral representation of the Green functions, the finite-volume
spectrum and matrix elements

2.1 The Lagrangian and the observables

The (Euclidean) Lagrangian of the O(N) σ-model, which will be used to demonstrate our
method, is given by the following expression

L = L (2) + L (4) + · · · . (2.1)

The lowest-order (LO) Lagrangian is given by:

L (2) = F 2

2 ∂µSα∂µSα . (2.2)

Here, Sα, α = 0, 1, . . . , N − 1, denotes a unit N -component real scalar field that transforms
under O(N). Note also that the above Lagrangian does not contain chiral symmetry breaking
terms and thus describes exactly massless Goldstone bosons. With a slight abuse of language,
we shall call these particles “pions” for brevity.

At next-to-leading order (NLO) two additional terms arise that contain the low-energy
constants ℓ1, ℓ2:

L (4) = −ℓ1(∂µSα∂µSα)(∂νSβ∂νSβ)− ℓ2(∂µSα∂νSα)(∂µSβ∂νSβ) . (2.3)

All information about the observables is encoded in the Green functions of the field Sα(x).
For example, the single-particle spectrum in a finite volume can be extracted from the
two-point function in the following manner. Following ref. [38], in the rest-frame we consider
the correlator2

C(t) = 1
L6

∫
d3x d3y ⟨Sα(x)Sα(y)⟩ , t = x0 − y0 . (2.4)

Here, the integration over the spatial dimensions projects onto the states with the zero total
three-momentum and is carried out in a finite cube. For large Euclidean time separations,
one has3

C(t) = const · e−M(L)t + O

(
exp

(
−4πt

L

))
. (2.5)

It is tempting to interpret M(L) as the pion “mass” in a box of size L. This interpretation
comes, however, with a grain of salt, see below.

Furthermore, in the theory described by the Lagrangian (2.1), the correlator can be
expanded in regular perturbation series, where the quantity 1/(FL)2 plays the role of the
small parameter

C(t) = 1 +
∞∑

i=0

1
(FL)2(i+1) Ci

(
t

L

)
. (2.6)

2On the lattice as explained in ref. [38], one should impose free boundary conditions in the time direction.
This ensures that the states corresponding to the different excited levels of the rigid rotator do not mix. In
our analytic calculations the time elongation of the lattice is taken to be infinite.

3The suppression factor of the remainder in eq. (2.5) will be justified below, see section 2.4.
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Anticipating that M(L) scales like 1/(F 2L3), we expand the first term in the correlator in
powers of M(L)t (the remainder is still exponentially suppressed, since t/L ∼ 1 is assumed).
Comparing this expansion with eq. (2.6), one may further conclude that the coefficients of
the expansion are polynomials in t/L:

Ci

(
t

L

)
=

i+1∑
k=0

Cik

(
t

L

)k

+ O

(
exp

(
−4πt

L

))
. (2.7)

From eq. (2.5) it is also seen that the expansion of lnC(t) should be linear in t and the
higher-order terms must cancel. The coefficient in front of the linear term determines M(L),
whereas the cancellation of the higher-order terms provides a useful check in the calculations.

Furthermore, one could try to generalize the above method to moving frames with
arbitrary three-momentum p. The counterpart of eq. (2.4) reads

C(t, p) = 1
L6

∫
d3x d3y e−ip(x−y)⟨Sα(x)Sα(y)⟩ . (2.8)

The behavior of the correlation function at large values of t is given by

C(t, p) = const · e−E(L,p)t + · · · , (2.9)

where the ellipses stand for the exponentially suppressed contributions.
In moving frames, the ground-state energy E(L, p) scales as 1/L, and so does the energy

gap between the ground state and the lowest excited level. The logarithm of C(t, p) will still
be a linear function of t up to exponential corrections. One could use this property and drop
these exponential corrections “by hand”. In the remainder, the energy E(L, p) is still given
by the coefficient in the linear term. Finally, a similar method can be applied for extracting
the k-pion energy levels (both in the center-of-mass and moving frames). The simplest
way to achieve this is to use a product of k pion fields Oα1···αk(x) = Sα1(x) · · ·Sαk(x).
From Oα1···αk(x) one could construct a traceless fully symmetric tensor by subtracting
traces with respect to each pair of indices. This tensor transforms as a basis vector of an
irreducible representation of O(N), which is not contained in the product of m fundamental
representations for any m < k. Other observables, like the magnetization and susceptibility,
can also be expressed in terms of the Green functions and evaluated in perturbation theory
in a form of a regular expansion in 1/(FL)2.

The main challenge that emerges in the construction of the perturbative series in 1/(FL)2
is the emergence of the so-called slow mode (or, zero mode), which leads to the ill-defined
terms in standard Feynman diagrams. In order to arrive at the Feynman diagrams without
singularities, the contribution of the slow mode should be treated separately from the rest.
In the following section, we shall briefly discuss how this goal should be achieved.

2.2 Separation of the slow modes

The technique for the removal of the slow mode is well known in the literature, see, e.g., [13,
14, 22]. In order to keep the presentation self-contained, we shall briefly recapitulate crucial
points of the derivation below. The collective coordinate, corresponding to the time-dependent
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net magnetization mα(t), will be singled out by using the Faddeev-Popov trick.4 To this
end, we insert the following identity into the path integral

1 =
∏

t

∫
dN m(t)

N−1∏
α=0

δ

(
mα(t)− 1

L3

∫
d3x Sα(x, t)

)
. (2.10)

Next, one defines the unit vector eα(t), and

mα(t) = m(t)eα(t) , dN m(t) = mN−1(t)dm(t)dN e(t) δ (eα(t)eα(t)− 1) . (2.11)

The partition function can be rewritten as follows

Z =
∏
x

∫
dN S(x)δ (Sα(x)Sα(x)− 1) exp (−A [S])

=
∏
x

∫
dN S(x)δ (Sα(x)Sα(x)− 1)

∏
t

∫
mN−1(t)dm(t)dN e(t) δ (eα(t)eα(t)− 1)

× δN
(

m(t)eα(t)− 1
L3

∫
d3x Sα(x, t)

)
exp (−A [S]) , (2.12)

where
A [S] =

∫
d4xL [S(x)] (2.13)

denotes the action functional. We further define the O(N) rotation matrix Ω(t) as

eα(t) = Ωαβ(t)nβ , n = (1, 0, . . . , 0) , (2.14)

and choose the following parameterization of Ω(t)

Ω00(t) = e0(t), Ωi0(t) = ei(t) , Ω0i(t) = −ei(t) ,

Ωij(t) = δij − ei(t)ej(t)
1 + e0(t) , i, j = 1, . . . , N − 1 . (2.15)

Introducing now the new variable Sα(x) = Ωαβ(t)Rβ(x), the partition function can be
rewritten as5

Z =
∏
x

∫
dN R(x)δ (Rα(x)Rα(x)− 1)

∏
t

∫
mN−1(t)dm(t)dN e(t) δ (eα(t)eα(t)− 1)

× δN
(

m(t)nα − 1
L3

∫
d3x Rα(x, t)

)
exp (−A [ΩR]) . (2.16)

4In the ϵ-regime, with L ∼ T−1, the net magnetization mα is a constant. For T−1 ≫ L, however, this
approximation is no more valid and the time-dependent mα(t) corresponds to a dynamical degree of freedom.

5The matrix Ω(t) is not defined unambiguously, since the vector n is invariant under O(N − 1) group
transformations in the subspace orthogonal to it. This property was used in refs. [13, 14, 22], where the variable
transformation in the path integral was written down as Sα(x) =

(
Ω(t)ΣT (t)

)αβ
Rβ(x). The block-diagonal

matrix ΣT (t), which leaves the vector n invariant, was chosen in a particular form that enabled to significantly
simplify the structure of the Lagrangian at the order one is working. In our paper, we do not resort to such a
field redefinition and reproduce the result of the above-mentioned papers by applying the threshold expansion
in all relevant Feynman integrals.
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Here, the invariance of the δ-function with respect of the O(N) group transformations has
been used. Next, choosing the parameterization R = (R0, R) .= (

√
1− R2, R), and carrying

out the integration over the variables R0(x) and m(t), we get

Z =
∏
x

∫
dR(x)

∏
t

∫
dN e(t) δ (eα(t)eα(t)− 1) J

× δN−1
(
− 1

L3

∫
d3x R(x, t)

)
exp (−A [ΩR]) . (2.17)

Here, the factor J is given by

J =
∏
x

1
2
√
1− R2(x)

×
∏

t

( 1
L3

∫
d3x

√
1− R2(x)

)N−1

= const · exp
(
−δ4(0)

∫
d4x ln

√
1− R2(x)

+ (N − 1) δ(0)
∫

dt ln
( 1

L3

∫
d3x

√
1− R2(x)

))
. (2.18)

It is seen that the argument of the exponent vanishes in dimensional regularization.6 For this
reason, we shall set the factor J equal to one in the following (the physical results, of course,
do not depend on the regularization used). Note that the path integral representation for a
generic Green function looks similar to eq. (2.17) — in this case the integrand, in addition,
contains the product of the pertinent operators, expressed in terms of the variables R(x) and
eα(t). The latter correspond to the fast and slow modes, respectively. The representation
displayed in eq. (2.17) provides the basis for the perturbative expansion of the Green function
in powers of 1/L (modulo logarithms).

2.3 Expansion of the Lagrangian

In order to formulate the Feynman rules, one has to expand the Lagrangian and separate
the “free” part from the rest. The expansion proceeds along the standard pattern and the
“free” Lagrangian is given by

Lfree =
F 2

2 ėα(t)ėα(t) + F 2

2 ∂µR(x)∂µR(x) . (2.19)

The above Lagrangian represents a sum of the Lagrangian of the rigid rotator and the free
massless field Lagrangian. In the latter, the mode with zero three-momentum is absent. All
other terms obtained in the expansion of the full Lagrangian in powers of R are considered
as a perturbation. Note that a rigid rotator does not describe non-interacting particles in the
standard sense. This was the reason for putting the word “free” in quotation marks.

The two-point function of the free fast fields is given by

⟨Ri(x)Rj(y)⟩ = δij

F 2

∫
dk0
2π

1
L3

∑
k ̸=0

eik(x−y)

k2
0 + k2

.= δij

F 2 d(x − y) . (2.20)

6In order to arrive at this conclusion, one has to use the so-called split dimensional regularization, i.e.,
regularize the timelike τ = 1 + ε′ and spacelike d = 3 + ε dimensions separately, with D = d + τ and ε, ε′ → 0
at the end [39]. The quantities δ4(0) and δ(0) in eq. (2.18) are replaced by δD(0) and δτ (0) which vanish in
dimensional regularization.
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Both the energy k0 and the three-momentum k count as 1/L. Note also that the above
sum does not contain the zero three-momentum term k = 0. These terms are singled out
and are described by the slow mode.

The slow mode eα(t) depends on the time only. Its three-momentum is exactly zero, and
its energy counts as 1/L3. Thus, one anticipates the breaking of the power counting through
the loops which contain both fast and slow momenta. The exact two-point function of the
slow fields can easily be written down. However, it is not very useful since Wick’s theorem for
the slow fields cannot be used, owing to the fact that the free Lagrangian for the slow modes
coincides with the one of a rigid rotator and not of a harmonic oscillator (see also appendix A).

In the following, we plan to carry out the perturbative expansion step by step and identify
the place where the counting rule breaks down. In order to set the stage, we shall focus
exclusively on the calculation of the one-particle spectrum.

2.4 Two-point function at the lowest order

We start from the two-point function at lowest order which nicely factorizes:

C(x − y) = ⟨Sα(x)Sα(y)⟩
= ⟨Ωα0(x0)Ωα0(y0)⟩⟨R0(x)R0(y)⟩
+ ⟨Ωαi(x0)Ωα0(y0)⟩⟨Ri(x)R0(y)⟩
+ ⟨Ωα0(x0)Ωαi(y0)⟩⟨R0(x)Ri(y)⟩
+ ⟨Ωαi(x0)Ωαj(y0)⟩⟨Ri(x)Rj(y)⟩ . (2.21)

In this expression, the vacuum expectation values of the slow and fast variables are defined
as follows

⟨Ωαβ(x0)Ωγδ(y0) · · · ⟩ =
∏

t

∫
dN e(t)δ(eλ(t)eλ(t)− 1)

(
Ωαβ(x0)Ωγδ(y0) · · ·

)
× exp

(
−F 2L3

2

∫
dt ėσ(t)ėσ(t)

)
,

⟨Rα(x)Rβ(y) · · · ⟩ =
∏
x

∫
dR(x)δN−1

(
− 1

L3

∫
d3x R(x, t)

)

×
(
Rα(x)Rβ(y) · · ·

)
exp

(
−F 2

2

∫
d4x∂µR(x)∂µR(x)

)
. (2.22)

The second and the third terms in eq. (2.21) vanish identically, because the free Lagrangian
has the symmetry with respect to R → −R. The fast mode propagator in the fourth term
is given in eq. (2.20), whereas the correlator of two composite fields R0 in the first term
can be expanded as

⟨R0(x)R0(y)⟩ .= T0(x − y)

= 1− ⟨R2(0)⟩ − 1
4 ⟨
(
R2(0)

)2
⟩+ 1

4 ⟨R2(x)R2(y)⟩+ O(R6)

= 1− N − 1
F 2 d(0)− N − 1

2F 4 d2(0) + N − 1
2F 4 d2(x − y) + O(F−6)

.=
∞∑

a=0
Cad2a(x − y) . (2.23)
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Performing the Fourier transform, one gets

C(t, p) .=
∫

d3xe−ipxC(x)

= ⟨Ωαi(t)Ωαi(0)⟩1− δp0
F 2

e−|p|t

2|p|

+ ⟨Ωα0(t)Ωα0(0)⟩
∫

d3xe−ipxT0(x, t) . (2.24)

In this expression,∫
d3xe−ipxT0(x, t) = L3δp0 +

∞∑
a=1

Ca

L6a

∑
k1···k2a

L3δp,k1+···+k2a

× (1− δk10) · · · (1− δk2a0)
exp(−(|k1|+ · · ·+ |k2a|)t)

2|k1| · · · 2|k2a|
. (2.25)

We consider two cases separately:

• p = 0. In this case, the first term in eq. (2.24) does not contribute. Furthermore,
in the momentum sums contained in the quantity T0, see eq. (2.25), one always has
|k|1 + · · ·+ |k|2a ≥ 2 (in units of 2π/L). Hence, the leading contribution comes from
the constant term, and we get:

C(t,0) = L3⟨Ωα0(t)Ωα0(0)⟩+ O

(
exp

(
−4π

L

))
. (2.26)

Note that the argument of the exponentially suppressed term was already anticipated
in eq. (2.5).

• p ̸= 0. In this case, the first term in eq. (2.24) contributes. Furthermore, |k|1 +
· · · + |k|2a ≥ |p| always holds for k1 + · · · + k2a = p and ki ̸= 0. Note that for
|p| ≥ 2 the configurations of ki exist that obey the equality |k|1 + · · · + |k|2a = |p|.
We denote the sum over such configurations by ∑′. For all other configurations,
|k|1 + · · ·+ |k|2a ≥ |p|+ a, where a depends on the choice of the vector p. Hence, we
have:

C(t, p) = ⟨Ωαi(t)Ωαi(0)⟩ e−|p|t

2F 2|p|
+ ⟨Ωα0(t)Ωα0(0)⟩e−|p|t (2.27)

×
(∑

a

Ca

L6a

∑
k1···k2a

′ L3δp,k1+···+k2a(1− δk10) · · · (1− δk2a0)
2|k1| · · · 2|k2a|

+ O(e−at)
)

.

Furthermore, in order to evaluate the vacuum expectation value of the product of two Ω’s,
we insert a full set of the rigid rotator eigenstates between two operators

⟨Ωαi(t)Ωαi(0)⟩ =
∑

n

e−εnt⟨0|Ωαi(0)|n⟩⟨n|Ωαi(0)|0⟩ ,

⟨Ωα0(t)Ωα0(0)⟩ =
∑

n

e−εnt⟨0|Ωα0(0)|n⟩⟨n|Ωα0(0)|0⟩ . (2.28)
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Here,
εn = n(n + N − 2)

2Θ , n = 0, 1, . . . (2.29)

denotes the nth eigenvalue of the Hamiltonian, corresponding to the eigenvector |n⟩ and
Θ = F 2L3 is the moment of inertia. As seen, the eigenvalues scale as L−3.

In the next step, we consider the sums over the eigenvectors of the rigid rotator (more
details can be found in appendix B). Since Ωα0 = eα is the irreducible tensor operator
belonging to the fundamental representation of O(N), all matrix elements ⟨0|Ωα0(0)|n⟩
vanish except for n = 1. Furthermore, using a proper choice of the basis vectors in the
fundamental representation, |1, γ⟩ , γ = 1, . . . , N , the above matrix element takes a simple
form ⟨0|Ωα0(0)|1γ⟩ = δαγ (the normalization of the matrix follows from the condition
eαeα = 1). The calculation of the matrix element of Ωαi is a more complicated task and is
considered in appendix B). Here, it suffices to say that the state with n = 0 also contributes to
the sum over the intermediate states since the corresponding matrix element does not vanish.

To summarize, the free finite-volume spectrum of the two-point function has rather
peculiar properties. Namely, in the rest-frame, the lowest excitation has the energy ε1(L) =
(N − 1)/(2F 2L3) and the first excited level is separated by 4π/L. In the frame moving with
a momentum p, the lowest energy level is exactly at E = |p|. This, by the way, demonstrates
that interpreting the quantity (N − 1)/(2F 2L3) as the pion mass in a finite volume is a slight
abuse of language, because the lowest level in different frames does not obey the relativistic
dispersion law. This does not come at a complete surprise, since the separation of the fast
and slow modes is done in the rest-frame and breaks Lorentz invariance from the beginning.
In case of massive particles, there exists a natural scale: if ML ≫ 1, the fast and slow modes
glue together and form a relativistic particle. There exists no such scale in the massless case
and the lattice breaks relativistic invariance at all scales.

2.5 Perturbative expansion

At the next step, we evaluate radiative corrections to the two-point function, in order to obtain
a regular expansion of the low-lying spectrum in powers of 1/(FL)2. At NLO, it suffices to
work with the Lagrangian L (2). Expanding this Lagrangian in powers of the field R, one gets:

L (2) = Lfree −
F 2

2 ėαėαR2 + F 2

2 Ω̇αiΩ̇αjRiRj + F 2

2
(
Ω̇αiΩαj − Ω̇αjΩαi

)
RiṘj + · · · . (2.30)

At this place, it is appropriate to discuss the power counting. The dimensionless field eα(t)
counts as O(1). From eq. (2.20) one concludes that the field R(x) should count as O(L−1)
(we remind the reader that all components of the four-momentum of the fast mode count
as O(L−1)). On the contrary, the energy of the soft mode counts as O(L−3), and its three-
momentum is zero by definition. Consequently, ėα(t) in the Lagrangian counts as O(L−3)
and ∂µR(x) as O(L−2). The free Lagrangian of the slow modes, which will be used to read
off the spectrum, is given in eq. (2.19) and counts as O(L−6). This effective Lagrangian is
obtained by integrating out the fast modes. To this end, one first writes:

exp
(
−
∫

d4x L (2)(x)
)
= 1− 1

1!

∫
d4x L (2)(x)

+ 1
2!

∫
d4x L (2)(x)

∫
d4y L (2)(y) + · · · , (2.31)

– 10 –



J
H
E
P
0
2
(
2
0
2
5
)
0
9
2

integrates out the fields R(x) in the path integral and finally exponentiates the remainder
back. Dealing with the first two terms is easy: in the first-order term of eq. (2.31) we have
two fields Ri(x)Rj(x) which have to be contracted. This is equivalent to replacing Ri(x)Rj(x)
by ⟨Ri(x)Rj(x)⟩ in the Lagrangian. Graphically, this corresponds to the tadpole diagram
shown in figure 1a. It is immediately seen that the resulting term in the Lagrangian should
count as O(L−8) and thus results into a O(L−2) correction to the leading-order result for
the energy spectrum. Higher order terms in perturbation theory (2.31) with this part of
the Lagrangian will be more suppressed and are not considered here. With the last term in
eq. (2.30), the situation is slightly different. The tadpole term does not contribute, because
⟨Ṙi(x)Rj(x)⟩ = 0. Integrating out the fields R(x) in the second-order term of eq. (2.31)
leads to a loop shown in figure 1b. In addition of the product of four fields Ω with two time
derivatives that count as O(L−6), there are two additional lines of field R(x), two derivatives
on these fields and an additional integration over d4x. All this results in a factor O(L−2) in
addition, so the contribution of the diagram figure 1b in the effective Lagrangian counts as
O(L−8), the same as the contribution of figure 1a. We would also stress here that the whole
discussion above is based on the naive power counting which gives the leading power correctly.

In refs. [13, 14, 22], a field transformation in the Lagrangian given by eq. (2.30) is
performed that renders its structure simpler. We discuss this transformation in detail in
appendix C. It has the following structure

Ω(t) → Ω(t)ΣT (t) , (2.32)

where
Σ00(t) = 1 , Σ0j(t) = Σi0(t) = 0 , Σij(t) = Σ̂ij(t) , (2.33)

and Σ̂(t) ∈ O(N −1). Clearly, this transformation leaves the vector n = (1, 0, . . . , 0) invariant,
see footnote 5.

It can be shown (see appendix C) that, after the field transformation with a properly
chosen matrix Σ, the last term in eq. (2.30) vanishes:

d

dt
(Ω(t)ΣT (t))αi(Ω(t)ΣT (t))αj = 0 . (2.34)

Furthermore, it can be shown that, after the same transformation,

d

dt
(ΩΣT )αi(t) d

dt
(ΩΣT )αi(t) = 1

2 ėα(t)ėα(t) . (2.35)

This allows one to use a shortcut in the calculation of the excitation spectrum at NLO.
At this order, only the tadpole diagrams shown in figure 1a contribute, and the net effect
reduces to a correction to the moment of inertia

Θ → Θ
(
1− N − 2

F 2 d(0)
)

. (2.36)

The excitation spectrum in the rest-frame is given by [14]

εn = n(n + N − 2)
2F 2L3

(
1 + N − 2

F 2 d(0)
)

, n = 0, 1, . . . (2.37)
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Note that, according to eq. (2.20), the quantity d(0) is of order 1/L2. No multi-scale integrals
arise, and the power counting is not violated. Furthermore, as shown in ref. [14], no new
structures arise at NNLO as well, and hence the same method can be used for calculations also
in this case.7 It, however, remains unclear how this field transformation can be systematically
performed at higher orders. On the other hand, physical results cannot depend on the choice
of the interpolating field. This is not immediately manifest in the present example. If the
field transformation is not performed, the loop diagram (the self-energy) shown in figure 1b
also contributes. The integrand of this diagram depends on different low-energy scales, and
the power counting is not straightforward. In the following section we shall demonstrate
how the above problems can be addressed.

3 The threshold expansion

3.1 NLO

As became clear from the previous discussion, the main problem that precludes carrying out
a systematic expansion in inverse powers of L is related to the presence of different scales in
the Feynman diagrams. A standard method to address this problem, applicable at any order,
is to use threshold expansion in these diagrams. This method enables one to arrive at the
final result without further ado (e.g., field redefinitions). The independence of the result on
the choice of the field will then represent a nice test of the calculations.

We shall first explain this method in detail at NLO. Since we focus on the calculation of
the excitation spectrum in the rest frame, we shall use the same shortcut as in refs. [13, 14, 22],
evaluating the (non-local) effective action at second order. The piece of this action that
contains the contribution of the diagram in figure 1b (the culprit) to the pion self-energy,
is given by

δS
(b)
eff =

∫
d4x δL

(b)
eff (x) , (3.1)

where

δL
(b)
eff (x) = −F 4

8

∫
d4zΛij(u0)Λkn(v0)

(
⟨Ri(u)Rk(v)⟩⟨Ṙj(u)Ṙn(v)⟩

+ ⟨Ri(u)Ṙn(v)⟩⟨Ṙj(u)Rk(v)⟩
)

. (3.2)

Here, u = x + z/2, v = x − z/2 and

Λij(u0) = Ω̇αi(u0)Ωαj(u0)− Ω̇αj(u0)Ωαi(u0) . (3.3)

We have in addition used the fact that

⟨Ri(u)Ṙj(u)⟩ = ⟨Rk(v)Ṙn(v)⟩ = 0 . (3.4)
7It should be mentioned that in ref. [14] an additional approximation was used, assuming that the terms

in the perturbative expansion, which are non-local in time, are exponentially suppressed. In fact, this
approximation is conceptually related to the threshold expansion used in the present paper. As we shall show,
however, the suppression is only power-like and will show up in subsequent orders.
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k

p− k

(b)

p

Λ

p

Λ

(a)

Γ

Figure 1. One-loop contributions to the self-energy: a) the tadpole diagram, b) the second-order
(self-energy) diagram. The solid and wiggle lines denote the fast and the slow modes, respectively. The
vertices Γ and Λ emerge from the Lagrangian (2.30) after integrating out the fast mode perturbatively,
see eqs. (3.3) and (3.12).

Next, note that

⟨Ri(u)Rk(v)⟩⟨Ṙj(u)Ṙn(v)⟩ = δik

F 2
δnj

F 2 I1 ,

I1 =
∫

dk0
2π

1
L3

∑
k ̸=0

∫
dp0
2π

1
L3

∑
p ̸=k

k2
0e−ipz

k2(p − k)2 , (3.5)

and

⟨Ri(u)Ṙn(v)⟩⟨Ṙj(u)Rk(v)⟩ = δin

F 2
δkj

F 2 I2 ,

I2 =
∫

dk0
2π

1
L3

∑
k ̸=0

∫
dp0
2π

1
L3

∑
p ̸=k

k0(p0 − k0)e−ipz

k2(p − k)2 . (3.6)

The effective Lagrangian δL
(b)
eff is essentially non-local. Consider now the loop integrals in

eqs. (3.5) and (3.6). First, since the matrices Λij ,Λik in eq. (3.2) do not depend on the
argument z, the integration over this variable can be carried out and one gets:∫

d3z I1 =
∫

dk0
2π

1
L3

∑
k ̸=0

∫
dp0
2π

1
L3

∑
p ̸=k

L3δp0
k2
0e−ip0z0

k2(p − k)2

=
∫

dp0
2π

e−ip0z0

∫
dk0
2π

1
L3

∑
k ̸=0

k2
0

k2((p0 − k0)2 + k2) . (3.7)

It is now seen that the above integral features different momentum scales. Namely, the
energy of the slow mode, p0, scales like L−3, whereas the three-momentum of the fast mode,
k, scales like L−1. It is easy to ensure that the only non-vanishing contribution to this
integral comes from the region where k0 also scales like L−1. Applying the so-called threshold
expansion [37] to this integral, one finally gets∫

d3z I1 =
∫

dp0
2π

e−ip0z0

∫
dk0
2π

1
L3

∑
k ̸=0

k2
0

k2(k2
0 + k2)

(
1 + 2p0k0

k2
0 + k2 + · · ·

)

= δ(z0)
∫

dk0
2π

1
L3

∑
k ̸=0

k2
0

(k2)2 + · · ·

= 1
4 δ(z0)

1
L3

∑
k ̸=0

1
|k|

+ · · · = 1
2 δ(z0)d(0) + · · · (3.8)
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The integral I2 can be expanded similarly

∫
d3z I2 = −1

2 δ(z0)d(0) + · · · (3.9)

Substituting this result in eq. (3.2), one obtains

δL
(b)
eff (x) = − 1

16 d(0)Λij(x0)Λkn(x0)(δikδjn − δinδjk) + · · ·

= −1
4 d(0)(Ω̇αi(x0)Ωαj(x0)− Ω̇αj(x0)Ωαi(x0))Ω̇βi(x0)Ωβj(x0) + · · ·

= −1
2 d(0)Ω̇αi(x0)Ωαj(x0)Ω̇βi(x0)Ωβj(x0) + · · ·

= −1
2 d(0)(Ω̇αi(x0)Ω̇αi(x0)− Ω̇α0(x0)Ω̇α0(x0)) + · · · (3.10)

This expression should be added to the tadpole contribution coming from the diagram in
figure 1a. The corresponding effective Lagrangian is local and is given by

δL
(a)
eff (x) = F 2

2 Γij(x0)⟨Ri(x)Rj(x)⟩

= −N − 1
2 d(0)ėα(x0)ėα(x0) +

1
2 d(0)Ω̇αi(x0)Ω̇αi(x0) , (3.11)

where

Γij(x0) = −ėα(x0)ėα(x0) + Ω̇αi(x0)Ω̇αj(x0) . (3.12)

Hence,

δL
(a)
eff (x) + δL

(b)
eff (x) = −N − 2

2 d(0)ėα(x0)ėα(x0) , (3.13)

and the result given in eq. (2.36) is readily reproduced. Hence, as expected, the physical result
does not depend on the field parameterization.8 In other words, the field transformation,
introduced in refs. [13, 14, 22], ensures the separation of the fast and slow modes at the
order one is working.

3.2 NNLO

The interaction Lagrangian that will be used in the calculations at NNLO is obtained by
the expansion of the Lagrangian given in eqs. (2.1)–(2.3) in powers of the field R. Up to
the NNLO, the relevant terms are given by

L (4) = F 2

2 ΓijRiRj + F 2

2 ΛijRiṘj − F 3∆iR2Ṙi + LR

− 4ℓ1b
ij
1 ṘiṘj − 2ℓ2b

ij
2 ṘiṘj + · · · , (3.14)

8Note that the final result contains only Ωα0(t) and thus does not depend on the matrix Σ in eq. (2.32).
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Γ, ℓ1, ℓ2 Λ Λ Γ

∆ ∆ Λ Λ

LR

(a) (b) (c)

(d) (e)

LR

Figure 2. The diagrams contributing to the self-energy at NNLO. For notations, see figure 1.

where

Γij = −δij ėαėα + Ω̇αiΩ̇αj ,

Λij = Ω̇αiΩαj − Ω̇αjΩαi ,

∆i = Ω̇α0Ωαi − Ω̇αiΩα0 ,

bij
1 = Ω̇α0ΩαiΩ̇β0Ωβj ,

bij
2 = Ω̇α0Ω̇α0ΩβiΩβj + Ω̇α0Ω̇β0ΩαiΩβj ,

LR = (R∂µR)2 . (3.15)

Note that Γij and Λij have been introduced earlier, in eqs. (3.12) and (3.3), respectively. In
the calculations at the NLO, only the first two terms of eq. (3.14) contribute.

Since we shall again focus on the calculation of the excitation spectrum in the rest-frame,
the same shortcut as at the NLO can be used as a substitute for the general method described
in section 2.1. Only the diagrams depicted in figure 2 contribute. The calculations based on
the threshold expansion are pretty standard and will not be described in much detail.

Figure 2a, Γ + figure 2b, ΛΛ. The sum of two diagrams shown in figure 2a (with the
vertex Γ) and in figure 2b has been calculated already, see eq. (3.13). The result is given by

δL Γ(x) + δL ΛΛ(x) = −N − 2
2 d(0)ėα(x0)ėα(x0) . (3.16)

Figure 2a, ℓ1 + ℓ2. Another two contributions in the diagram in figure 2a come from the
terms in the Lagrangian that contain the low-energy constants ℓ1 and ℓ2. These contributions
are again given by the tadpoles:

δL ℓ1(x) + δL ℓ2(x) = (4ℓ1 + 2ℓ2N)
F 2 d̈(0)ėα(x0)ėα(x0) , (3.17)

where
d̈(0) = −

∫
dk0
2π

1
L3

∑
k ̸=0

k2
0

k2
0 + k2 . (3.18)

Note that d̈(0) = O(L−4) and hence the above contribution comes indeed at NNLO.
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Figure 2c, ΓR. The contribution of the two-loop the diagram shown in figure 2c is given by

δL ΓR(x) = − 1
2F 2

∫
d4y Γii(x0)

(
−d2(x − y)∂µ∂µd(0) + ∂µd(x − y)∂µd(x − y)d(0)

)
.

(3.19)
Taking into account that

∂µ∂µd(0) =
∫

dk0
2π

1
L3

∑
k ̸=0

−k2

k2 = 0 ,

∫
d4y ∂µd(x − y)∂µd(x − y) =

∫
dk0
2π

1
L3

∑
k ̸=0

k2

(k2)2 = d(0) , (3.20)

we finally get

δL ΓR(x) = − 1
2F 2 d2(0)

(
−(N − 1)ėα(x0)ėα(x0) + Ω̇αi(x0)Ωαi(x0)

)
. (3.21)

Figure 2d, ∆∆. The contribution of the diagram shown in figure 2d is given by

δL ∆∆(x) = N − 2
4F 2

∫
d4y∆i(x0)∆i(y0)d2(x − y)d̈(x − y) . (3.22)

The integral above contains different scales, so the threshold expansion in p0 is necessary:∫
d3yd2(x − y)d̈(x − y)

=
∫

d3y

∫
dk10dk20dk30

(2π)3
1

L9

∑
k1,k2,k3 ̸=0

−k2
30e

i(k10+k20+k30)(x0−y0)+i(k1+k2+k3)(x−y)

k2
1k2

2k2
3

=
∫

dk10dk20dp0
(2π)3

1
L6

∑
k1,k2,k3 ̸=0

−δ3k1+k2+k3,0(p0 − k10 − k20)2eip0(x0−y0)

k2
1k2

2((p0 − k10 − k20)2 + (k1 + k2)2)

= δ(x0 − y0)
∫

dk10dk20
(2π)2

1
L6

∑
k1,k2 ̸=0

−
(
1− δ3k1+k2,0

)
(k10 + k20)2

k2
1k2

2((k10 + k20)2 + (k1 + k2)2)
+ · · · (3.23)

Carrying out the summation over the index i, we finally obtain

δL ∆∆(x) = N − 2
F 2 eα(x0)eα(x0)

∫
d4yd2(y)d̈(y) + · · · (3.24)

Figure 2e, ΛRΛ. Finally, the contribution from the diagram figure 2e can be written as

δL ΛRΛ(x) = 2
F 2 (δ

imδjl − δilδjm)
∫

dy0Λij(x0)Λlm(y0)K(x0, y0) , (3.25)

where

K(x0, y0) =
∫

dz0

∫
dp0dq0dk0dl0

(2π)4
1

L6

∑
k1,k2,l1,l2 ̸=0

δ3k1+k2,0δ
3
l1+l2,0

× l0lµk0kµeip0(x0−z0)+iq0(z0−y0)

((p0 − l0)2 + l21)(l20 + l21)((q0 − k0)2 + k2
1)(k2

0 + k2
1)

= 1
4 δ(x0 − y0)d2(0) + · · · (3.26)
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Again, we have used threshold expansion in p0 and q0 to arrive at this result. Carrying out
the summation over indices i, j, l, m, we finally get

δL ΛRΛ(x) = 1
2F 2 d2(0)

(
Ω̇αi(x0)Ω̇αi(x0)− ėα(x0)ėα(x0)

)
. (3.27)

As at the NLO, even if the set of the diagrams differs from the ones considered in ref. [14],
one arrives exactly at the same result after adding all contributions and canceling terms
with Ω̇αiΩ̇αi. Namely, the expression for the correction to the moment of inertia at this
order takes the form

Θ = F 2L3
(
1 + C1

(FL)2 + C2
(FL)4 + C3

(FL)4 ln(FL)
)

, (3.28)

where C1, C2, C3, expressed in terms of the loop integrals, are exactly the same as in ref. [14].
This result was of course expected, since observables should not depend on the choice of
the interpolating field.9 In addition, it becomes clear that, contrary to the claim of ref. [14],
the subleading terms in the threshold expansion are only power-law suppressed and not
exponentially suppressed.

It should be also mentioned that an alternative calculation of the mass gap to this order
exists [40], which does not coincide with the result of ref. [14]. Unfortunately, no details of
calculation are given in ref. [40], so it is impossible to track the reason for this difference
unambiguously. In particular, the final expression for the mass gap differs from our expression
at two places, that affects the value of the coefficient C2. First, the eq. (5.20) in ref. [40]
contains an additional term proportional to the quantity β

(3)
1 . This term should stem from

the zero mode contribution to the effective action, see eq. (3.7) of ref. [40]. This contribution
is absent in ref. [14] as well as in the present paper, because it is proportional to δ(0) that
vanishes in the split dimensional regularization (for the origin of this factor, see, e.g., ref. [41]).
The second difference emerges in the calculation of the loop integral in eq. (3.24) of the
present paper, see eqs. (5.17)-(5.18) of ref. [40] and the discussion that follows (more details
are given in ref. [42]). We opt not to comment on this difference before carrying out all
calculations of the loop diagrams ourselves. This, question, however, has not been the main
aim of the present paper that is focused on restoring the power counting with the use of the
threshold expansion, and is relegated to our future publications.

The generalization of the approach to any order is crystal-clear. Evaluating arbitrary
Green functions, one first has to integrate out the fast modes corresponding to the field R(x).
Then, one obtains multi-scale Feynman integrals whose counting in the small parameter 1/L

is obscure. The key observation is that the power counting can be formulated by performing
the threshold expansion in all integrals. After that, calculations can proceed without further
ado. The vacuum matrix elements of the product of the fields Ωαβ(t) and derivatives thereof
can be then calculated along the lines described in appendix B. Stated differently, the fast
and slow modes are integrated out separately and the result is “glued together” in order to
arrive at the final expression for the Green functions. Furthermore, as argued in appendix D,
the large momenta (of order of L−1) do not appear in the matrix elements with the slow
modes and thus threshold expansion is not necessary there.

9Furthermore, the logarithm in eq. (3.28) emerges from the two-loop diagram in figure 2d, see eq. (3.24).
Details of calculations are given in ref. [14].
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Finally, we make a short remark concerning renormalization. Potentially, ultraviolet
divergences may arise at two different places: in the Feynman diagrams with the fast modes,
and in the infinite sums that are present in the Green functions of the slow modes. Consider
first the fast modes. The Feynman integrals emerging here are identical to the ordinary ones,
with the k = 0 component removed. This removal, however, does not affect the ultraviolet
divergences. On the other hand, as argued in appendix B, all matrix elements containing
slow modes are ultraviolet-finite. Hence, as expected, the couplings that are present in
the effective Lagrangian suffice to remove all ultraviolet divergences, and the pertinent β

functions coincide with the ones in the infinite volume.

4 Conclusion and outlook

Effective field theory methods allow one to study the temperature and volume dependence of
QCD, as well as different condensed-matter models, whose behavior in the long-wavelength
limit can be described by effective chiral Lagrangians. According to the particular values of
the parameters T and L, as well as the lowest mass in the system (the pion mass, M), the
perturbative expansion of the physical observables in these parameters should be rearranged,
corresponding to what is termed as different regimes.

The perturbative expansion of the effective theory in the δ regime, unlike the p- and
ϵ-regimes, is characterized by the presence of two distinct energy scales, corresponding to the
so-called slow and fast pions. Such a separation is unnecessary in the p-regime, whereas in
the ϵ-regime the slow mode is not a dynamical variable. Only in the δ-regime, in which the
time-dependent slow mode emerges, one is faced with the above-mentioned problem. For this
reason, the perturbative calculations, up to now, have been limited to the lower orders in
the expansion, and some cleverly designed tricks (like the field transformation considered
in the present paper) were used to restore power counting at higher orders.

The key observation made in the present paper was that the application of the threshold
expansion to the Feynman integrals appearing in the perturbative expansion allows one to
address the problem simultaneously at all orders and to rectify the power counting without
resorting to further tricks. The known results for the rest-frame excitation spectrum at NNLO
have been readily reproduced in a straightforward manner, demonstrating the independence
of the physical observables on the choice of the interpolating field. The proposed method, on
one hand, paves way for a systematic calculation of other observables in QCD and condensed
matter physics even at higher orders and, on the other hand, can be generalized to the case,
when the massive fermions interacting with pions, are present (this Lagrangian describes
the physics of hole-doped antiferromagnets in the long-wavelength limit). In addition, an
intriguing question arises, whether it is possible to implement the threshold expansion at
the Lagrangian level using so-called labeled fields (like in case of the heavy quark effective
theory of QCD) that would render power counting explicit. These issues form the subject
of future investigations.
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A Wick’s theorem for the slow modes?

As already mentioned, Wick’s theorem cannot be used if the free Lagrangian describes the
rigid rotator rather than a harmonic oscillator. We shall demonstrate this (rather obvious)
statement here in an explicit example in the O(3) model. Here, the eigenstates coincide
with the eigenvectors of the angular momenta |n⟩ = |ℓm⟩, and the eigenvalues are given by
the expression εℓ = ℓ(ℓ + 1)/Θ. To simplify things as much as possible, we consider the
Green functions of the fields e0(t). Then,

⟨ℓ′m′|e0|ℓm⟩ =
∫

dΩY ∗
ℓ′m′(Ω)

√
4π

3 Y10(Ω)Yℓm(Ω)

=
√
(2ℓ′ + 1)(2ℓ + 1)(−1)m′

(
1 ℓ ℓ′

0 m −m′

)(
1 ℓ ℓ′

0 0 0

)
. (A.1)

In the calculation of the Green functions of the field e0(t), we can set m = m′ = 0. Using
explicit values of the Wigner 3 − j symbols, one gets

⟨0, 0|e0|1, 0⟩ = ⟨1, 0|e0|0, 0⟩ = 1√
3

,

⟨1, 0|e0|2, 0⟩ = ⟨2, 0|e0|1, 0⟩ = 2√
15

. (A.2)

With the use of the above formula, the two-point and the four-point functions of the field
e0(t) can be written as follows

⟨e0(t1)e0(t2)⟩ =
1
3

(
e−(ε1−ε0)(t1−t2)θ(t1 − t2) + e−(ε1−ε0)(t2−t1)θ(t2 − t1)

)
= 1

3 exp
(
−|t1 − t2|

Θ

)
, (A.3)

and

⟨e0(t1)e0(t2)e0(t3)e0(t4)⟩=
∑

perm ijkl

θ(ti−tj)θ(tj−tk)θ(tk−tl) (A.4)

×
[1
9 exp

(
− ti−tj+tk−tl

Θ

)
+ 16
225 exp

(
− ti+2tj−2tk−tl

Θ

)]
,
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where perm ijkl denotes all possible permutations of the indices. It can be explicitly verified
that the Wick’s theorem does not hold. On the other hand, considering the case of the
harmonic oscillator, one may construct a similar four-point function

⟨a(t1)a(t2)a†(t3)a†(t4)⟩= e−ω(t1+t2−t3−t4)

×
[
2

∑
ijkl=1234,2134,1243,2143

θ(ti−tj)θ(tj−tk)θ(tk−tl)

+
∑

ijkl=1324,2314,1423,2413
θ(ti−tj)θ(tj−tk)θ(tk−tl)

]

= e−ω(t1+t2−t3−t4)
[
θ(t1−t3)θ(t2−t4)+θ(t1−t4)θ(t2−t3)

]
. (A.5)

Here, ω denotes the energy of a single excitation, and the matrix elements of the cre-
ation/annihilation operators are normalized in the following way

⟨0|a|1⟩ = ⟨1|a†|0⟩ = 1 , ⟨1|a|2⟩ = ⟨2|a†|1⟩ =
√
2 . (A.6)

It is immediately seen that the Wick’s theorem holds in the case of an oscillator.
To summarize, one sees that the validity of the Wick’s theorem is tied to the choice

of the free Lagrangian. In our context, it is important to realize that, for this reason, it is
impossible to single out the contribution of slow modes at the level of individual Feynman
integrals, using, e.g., some kind of the threshold expansion, because slow modes are inherently
non-perturbative.

B Calculation of the matrix elements with the slow modes

As we have seen, the path integral over the slow modes cannot be calculated by using the
standard diagrammatic technique. The reason for this is that the unperturbed part of the
Lagrangian of the slow modes coincides with the Lagrangian of the rigid rotator rather
than that of an harmonic oscillator. As noted above, in order to evaluate the vacuum
expectation value of the operators containing slow modes, one may insert a full set of the
eigenvectors of the unperturbed Hamiltonian between each two operators. Consider, for
example, the Green function

G(t1, · · · , tm) =
∏

t

∫
dN e(t)δ(eαeα − 1) exp

(
−Θ

2

∫
dt ėα(t)ėα(t)

)
× O1 [e(t1)] · · ·Om [e(tm)] , (B.1)

where O1, . . . , Om are arbitrary local operators built of eα(t) (and time derivatives thereof
which enter polynomially in the expression). Assume, for instance that t1 > t2 > . . . > tm.
Then, the above Green function can be represented by a sum

G(t1, · · · , tm) =
∑

n1,...,nm−1

e−εn1 (t1−t2)−···−εnm−1 (tm−1−tm)

× ⟨0|O1|n1⟩ · · · ⟨nm−1|Om|0⟩ . (B.2)
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In case of the O(N) rigid rotator, the eigenfunctions of the Laplace operator are given by
pertinent hyperspherical harmonics (see, e.g., [43]). The polar coordinates are introduced as

e0 = cos θ1 ,

e1 = sin θ1 cos θ2 ,

e2 = sin θ1 sin θ2 cos θ3 ,

· · ·
eN−2 = sin θ1 · · · sin θN−2 cosφ ,

eN−1 = sin θ1 · · · sin θN−2 sinφ , (B.3)

and the hyperspherical harmonics are given by

Y (mk; θk,±φ) = N−1/2(mk)e±imN−2φ
N−3∏
k=0

C
mk+1+N−1−k

2
mk−mk+1 (cos θk+1) . (B.4)

Here, the mk are the integers

n = m0 ≥ m1 ≥ · · ·mN−2 ≥ 0 , (B.5)

where the index n labels the irreducible representations (an analog of the angular momentum
ℓ in case of the O(3) group).10 Furthermore, the Cµ

n(x) denote Gegenbauer polynomials

Cµ
n(x) =

Γ(n + 2µ)
Γ(n + 1)Γ(2µ) 2F1

(
−n, n + 2µ, µ + 1

2 ,
1
2 − 1

2 x

)
. (B.6)

The normalization constant is given by

N(m0, · · ·mN−2) = 2π
N−2∏
k=1

Ek(mk−1, mk) ,

Ek(l, m) = π
2k−2m−N+2Γ(l + m + N − 1− k)(

l + N−1−k
2

)
(l − m)!

(
Γ
(
m + N−1−k

2

))2 . (B.7)

The eigenvalues εn are given by eq. (2.29).
Assume first that the operator O(e) does not contain time derivatives of eα. Then,

the matrix element of such an operator between two eigenstates characterized by the sets
n

.= {mk} and n′ .= {m′
k} with k = 0, . . . , N − 2 is given by

⟨n|O|n′⟩ =
∫

dΩN Y ∗(mk; θk,±φ)O [e(θk, φ)]Y (m′
k; θk,±φ) , (B.8)

where dΩN denotes the volume in the N -dimensional space

dΩN = (sin θ1)N−2 · · · sin θN−2dθ1 · · · dθd−2dφ . (B.9)

In case when the operator O [e] has a polynomial dependence on eα, the matrix elements
⟨n|O|n′⟩ are nonvanishing for selected values on n, n′, owing to the Wigner-Eckart theorem.

10The need for both signs ± in eq. (B.4) is related to our convention mN−2 ≥ 0.
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Note however that, for example, the operator Ωij is not a polynomial in eα. On the contrary,
the dependence on time derivatives always has a polynomial form. Consider, for instance,
the operator O = Õ [e] ėα, where the operator Õ does not contain time derivatives. The
matrix element of this operator is given by

⟨n|O|n′⟩ =
∑
n′′

⟨n|Õ|n′′⟩(εn′ − εn′′)⟨n′′|eα|n′⟩ . (B.10)

The matrix element ⟨n′′|eα|n′⟩ obeys selection rules in n′, n′′ and α (Wigner-Eckart theorem).11

Hence, the summation over n′′ can be carried out explicitly.
To summarize, if all operators present in (B.1) are polynomials in eα, all sums over

intermediate states can be carried out in a closed form and contain only a finite number of
terms. From this it immediately follows that there are no (ultraviolet) divergences in this
case. Hence, the Green functions of Ωαβ(t) with α = 0 and/or β = 0 are ultraviolet-finite, as
well as time derivatives thereof to all orders. In case of a non-polynomial dependence, as in
Ωij(t), (infinite) sums remain in a final expression. These sums are anyway convergent for
t1 ̸= t2 ̸= · · · ̸= tm, due to the presence of the exponential damping factors. This argument
does not apply, however, if any two (or more) arguments coincide. Thus, the (potential)
divergences in the position space must be proportional to δ(ti − tj) and derivatives thereof
and can therefore be removed by local counterterms in the effective Lagrangian that contain
slow degrees of freedom only. It is straightforward to see, however, that there is no need
for such counterterms at all. Indeed, consider first the case when no time derivatives are
present. The matrix elements of Ωij(t) itself are finite, since eiej/(1+ e0) is a regular function
even at e0 → −1. Furthermore, at coinciding time arguments we merely get a product of
two (or more) operators Ωij(t)Ωkn(t) . . ., whose matrix elements are also finite. Further, the
derivative terms always contain the quantity ėα(t) polynomially and thus do not lead to the
divergences as well. Finally, since the Lagrangian is built only of Ωαβ and time derivatives
thereof, we come to the conclusion that all Green functions of the fields Ωαβ(t) and their
time derivatives are ultraviolet-finite.

C Field transformation

Below, we consider the field transformation introduced in refs. [13, 14, 22], in its continuum
version. In order to specify the matrix Σ(t) in eq. (2.33), we first define the matrix V (t′, t) ∈
O(N) that obeys the first-order differential equation

∂

∂t
V (t′, t) = Σ(t′)ΩT (t′) ∂

∂t
Ω(t) . (C.1)

The following boundary condition is imposed

V (t, t) = Σ(t) , (C.2)

where Σ(t′) is the matrix defined in eq. (2.33), and

Σ̂ij(t) = V ij(t′, t)− V i0(t′, t)V 0j(t′, t)
1 + V 00(t′, t) . (C.3)

11For example, in case of the O(3) group, the eigenstates are labeled as |n⟩ .= |ℓm⟩, and the matrix element
⟨ℓ′′m′′|rm|ℓ′m′⟩ is non-zero, if and only if ℓ′′ = ℓ′ ± 1 and m′′ = m + m′.
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These equations determine Σ(t) any given time t, provided its initial value is fixed. Note
that the argument t′ in Σ(t) is implicit (we remind the reader that the boundary conditions
are set at t = t′).

Let us now differentiate both sides of eq. (C.3) with respect to the variable t and consider
the limit t′ → t afterwards. The differentiation gives

∂

∂t
Σ̂ij(t) = ∂

∂t
V ij(t′, t)− V 0j(t′, t)

1 + V 00(t′, t)
∂

∂t
V i0(t′, t)

− V i0(t′, t)
1 + V 00(t′, t)

∂

∂t
V 0j(t′, t) + V i0(t′, t)V 0j(t′, t)

(1 + V 00(t′, t))2
∂

∂t
V 00(t′, t) . (C.4)

On the other hand, from the boundary condition in eq. (C.1) we get that V i0(t, t) =
V 0j(t, t) = 0 and V 00(t, t) = 1. Hence,

lim
t′→t

∂

∂t
Σ̂ij(t) = lim

t′→t

∂

∂t
V ij(t′, t) . (C.5)

Furthermore, the differential equation (C.1) at t′ → t yields:

lim
t′→t

∂

∂t
Σ̂ij(t) = lim

t′→t
Σ̂ik(t)

(
ΩT (t′) ∂

∂t
Ω(t)

)kj

, (C.6)

or, finally, (
ΣT (t)Σ̇(t)

)ij
=
(
ΩT (t)Ω̇(t)

)ij
, (C.7)

where the limit t′ → t on the left-hand side is implicit.
Next, let us consider the Lagrangian given in eq. (2.30). After the field redefinition,

the quantity Ω̇αiΩαj in the last term turns into(
d

dt
(ΣΩT )(ΩΣT )

)ij

=
(
(Σ̇ΩT +ΣΩ̇T )ΩΣT

)ij

= (Σ̇ΣT )ij − Σik(ΩT Ω̇)km(ΣT )mj = 0 . (C.8)

The last equality follows from eq. (C.7).
Next, let us consider the term Ω̇αiΩ̇αj , which emerges in the same Lagrangian. Using

field transformation and partial integration, it can be rewritten as

d

dt
(ΩΣT )αi d

dt
(ΩΣT )αj = d

dt

(
(ΩΣT )αi d

dt
(ΩΣT )αj

)
− (ΩΣT )αi d2

dt2
(ΩΣT )αj . (C.9)

We have already shown that the first term vanishes. The second term can be rewritten as

− lim
t′→t

(Ω(t)ΣT (t))αi d2

dt′2
(Ω(t′)ΣT (t′))αi = − lim

t′→t

d2

dt′2
(V ik(t′)(ΣT (t′))kj)

= − lim
t′→t

d2

dt′2

(
V ik(t′)

(
V jk(t′)− V j0(t′)V 0k(t′)

1 + V 00(t′)

))
= − lim

t′→t

d2

dt′2
V i0(t′)V j0(t′)
1 + V 00(t′) . (C.10)
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Taking now into account the boundary conditions on V 00, V i0, V 0j at t′ = t, one finally gets

− lim
t′→t

(Ω(t)ΣT (t))αi d2

dt′2
(Ω(t′)ΣT (t′))αi = 1

2 V̇ i0(t)V̇ j0(t) . (C.11)

On the other hand,

V̇ i0(t) = lim
t′→t

d

dt′

(
Σ(t)ΩT (t)Ω(t′)

)i0
= (Σ(t)ΩT (t))iαėα(t) . (C.12)

In particular, summing up over the indices i, j we arrive at a simple result quoted in
refs. [13, 14, 22]:

V̇ i0(t)V̇ i0(t) = ėα(t)ėα(t) , (C.13)

from which Eq, (2.35) directly follows.

D Is there a large scale present in the matrix elements with the slow
modes?

In this appendix, we shall argue that the threshold expansion carried out in the Feynman
integrals solves the problem with the violation of the power counting everywhere, i.e., there
is no need for additional measures in the matrix elements containing slow modes. We shall
explain the meaning of this statement in a particular example. No attempt will be made to
rigorously generalize it, albeit such a generalization seems to us to be relatively straightforward.

For definiteness, let us consider the following four-point function

G4({pi}) =
∫ 4∏

i

d4xie
−ipixi⟨S(x1)S(x2)S(x4)S(x4)⟩ . (D.1)

Note that, in order to ease the notations, we shall discard all indices, derivative couplings,
overall normalization factors, etc. For example, the operator S(x) is given by a product
S(x) = Ω(x0)R(x). We shall further concentrate on a typical two-loop contribution to this
Green function shown in figure 3. The interaction Lagrangian in the vertices will be chosen in
a simple form Lint(x) = R4(x)O(x0), where the operator O collects soft modes. Integrating
out fast modes leads to the following expression:

G4({pi}) =
∫ 4∏

i

dxi0e
−ipi0xi0

∫
du0dv0dz0⟨Ω(x10) · · ·Ω(x40)O(u0)O(v0)O(z0)⟩

× K({pi}, {xi0};u0, v0, z0) , (D.2)

where

K({pi}, {xi0};u0, v0, z0) =
∫

d3x1 · · · d3x4e
−i(p1x1+···+p4x4)

× d(x1 − u)d2(u − v)d(x2 − v)d(x3 − z)d(x4 − z) . (D.3)
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u v

z

q1 q2

q3 q4

k1 k2

k3

k4

(x1, p1) (x2, p2)

(x3, p3) (x4, p4)

Figure 3. A typical two-loop diagram. Notations for momenta and vertices are the same as in
the text.

Next, we substitute the Fourier-transform for each propagator of the fast mode (2.20). After
this substitution, the argument of the exponential eiA containing only zeroth components
of momenta is given by12

A = q10x10 + q20x20 + q30x30 + q40x40 + (−q10 + k10 + k30 + k40)u0

+ (−q20 − k20 − k30 − k40)v0 + (−q30 − q40 − k10 + k20)z0 . (D.4)

Next, we define the “small” momenta p0, q0, corresponding to the slow mode:

p0 = k10 + k30 + k40 − q10 ,

q0 = −k20 − k30 − k40 − q20 ,

∆ = q30 + q40 + k10 − k20 − p0 − q0 = q10 + q20 + q30 + q40 . (D.5)

The Feynman integral, corresponding to the two-loop diagram in Fiq. 3, is given by

I =
∫

dk30dk40
(2π)2

1
L6

∑
k3,k4 ̸=0

1
((p0 + q10 − k30 − k40)2 + (q1 − k3 − k4)2)

× 1
((q0 + q20 + k30 + k40)2 + (q2 + k3 + k4)2)(k2

30 + k2
3)(k2

40 + k2
4)

. (D.6)

Applying threshold expansion amounts to expanding the integrand in powers of p0, q0. At
the first order, I does not depend on these variables at all, and a subsequent integration
of the exponent eiA over p0, q0 yields δ-functions:

E = exp
(

i
4∑

i=1
qi0xi0 − iz0∆

)
δ(u0 − z0)δ(v0 − z0) + · · · (D.7)

In higher orders, the derivatives of the delta functions will emerge.
At the next step, the result should be convoluted with the matrix element of the slow

operators in eq. (D.2). Potential danger arises from the factor e−iz0∆, because ∆ contains
12The momenta are defined in figure 3.
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the energies of the fast modes and the convolution could inject the large momentum into
the matrix element of the slow modes. It is easy to see, however, that this does not happen.
Indeed, using translational invariance of the matrix element, one can shift all arguments of
the operators by z0. The dependence on z0 in the factor E disappears and instead emerges in
the exponential exp

(
i

4∑
i=1

pi0xi0

)
, which is also present eq. (D.2). Carrying out integration

over z0 yields a trivial delta-function, corresponding to the conservation of total energy, with
no hard scales present in the remainder.

As mentioned above, we make no attempt here to apply the same argument to a generic
multi-loop diagram, albeit the fact that the argument is based only on the conservation of
energy makes it very likely that this may work in other cases as well. Putting differently, it is
known that the large momenta should be conserved separately. Here, we claim that these
large momenta can be routed through the fast lines so that they are never injected in the
matrix elements of the slow modes. A detailed investigation of this claim, however, forms a
subject of a separate investigation, and we plan to undertake it in the future.
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