001050467 001__ 1050467
001050467 005__ 20260112202640.0
001050467 0247_ $$2doi$$a10.1016/j.expneurol.2025.115604
001050467 0247_ $$2ISSN$$a0014-4886
001050467 0247_ $$2ISSN$$a1090-2430
001050467 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00236
001050467 037__ $$aFZJ-2026-00236
001050467 082__ $$a610
001050467 1001_ $$0P:(DE-Juel1)186027$$aBlaschke, Stefan J.$$b0
001050467 245__ $$aSubacute cathodal transcranial direct current stimulation rescues secondary thalamic neurodegeneration after cortical stroke in mice
001050467 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2026
001050467 3367_ $$2DRIVER$$aarticle
001050467 3367_ $$2DataCite$$aOutput Types/Journal article
001050467 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768229506_25760
001050467 3367_ $$2BibTeX$$aARTICLE
001050467 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050467 3367_ $$00$$2EndNote$$aJournal Article
001050467 520__ $$aTranscranial direct current stimulation (tDCS) is a clinically promising neuromodulatory therapy, capable of promoting function and motor recovery after stroke. Beyond the primary stroke lesion, remote networks disturbances, e.g., stroke-induced secondary neurodegeneration (SND), are related to long-term disabilities. Under the hypothesis that tDCS promotes recovery by supporting neuroprotection, we investigated the effects of tDCS on thalamic SND after stroke. Three days after cortical stroke, induced by photothrombosis, cathodal tDCS over the lesioned cortex was performed daily for ten days (39.6 kC/m2). SND, i.e., neuronal loss, and inflammation in the ipsilesional thalamus were evaluated ex vivo 28 days after stroke. Parameters of functional thalamic network integration measured by resting-state functional magnetic resonance imaging (rs-fMRI) were conducted longitudinally. To assess the effects of tDCS on glucose metabolism, positron emission tomography (PET) was performed after a similar tDCS regimen in healthy mice. Repetitive tDCS decreased the ipsilateral thalamic glucose metabolism in unlesioned animals. Four weeks after cortical stroke, secondary glial scaring was found in the ipsilesional thalamus, its extent correlating to the cortical lesion size (R2 = 0.54, p < 0.001). Notably, while it did not affect glial scaring, tDCS reduced thalamic neurodegeneration by over 60 % (p < 0.05), being reflected by parameters of functional thalamic integration as assessed by rs-fMRI. Additionally, tDCS downregulated the pro-inflammatory polarization of microglia. Overall, tDCS ameliorated the stroke-induced remote SND, in parallel to mitigating sustained neuroinflammation. Thus, the data show that tDCS exerts previously unknown effects on remote brain regions after stroke.Keywords: Experimental stroke; Glucose metabolism; Neuroinflammation; Secondary neurodegeneration; Stroke recovery; Transcranial direct current stimulation.
001050467 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001050467 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050467 7001_ $$0P:(DE-HGF)0$$aBackes, Heiko$$b1
001050467 7001_ $$0P:(DE-HGF)0$$aVlachakis, Susan$$b2
001050467 7001_ $$0P:(DE-Juel1)188381$$aRautenberg, Nora$$b3
001050467 7001_ $$0P:(DE-HGF)0$$aDemir, Seda$$b4
001050467 7001_ $$0P:(DE-HGF)0$$aWiedermann, Dirk$$b5
001050467 7001_ $$0P:(DE-Juel1)196051$$aAswendt, Markus$$b6
001050467 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b7
001050467 7001_ $$0P:(DE-HGF)0$$aSchroeter, Michael$$b8
001050467 7001_ $$0P:(DE-HGF)0$$aRueger, Maria A.$$b9$$eCorresponding author
001050467 773__ $$0PERI:(DE-600)1466932-8$$a10.1016/j.expneurol.2025.115604$$gVol. 398, p. 115604 -$$p115604 -$$tExperimental neurology$$v398$$x0014-4886$$y2026
001050467 8564_ $$uhttps://juser.fz-juelich.de/record/1050467/files/1-s2.0-S0014488625004698-main.pdf$$yOpenAccess
001050467 909CO $$ooai:juser.fz-juelich.de:1050467$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001050467 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b7$$kFZJ
001050467 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001050467 9141_ $$y2026
001050467 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
001050467 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
001050467 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-31
001050467 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-31
001050467 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31
001050467 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXP NEUROL : 2022$$d2024-12-31
001050467 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-31
001050467 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-31
001050467 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
001050467 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050467 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31
001050467 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEXP NEUROL : 2022$$d2024-12-31
001050467 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-31
001050467 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001050467 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-31$$wger
001050467 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
001050467 920__ $$lyes
001050467 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001050467 980__ $$ajournal
001050467 980__ $$aVDB
001050467 980__ $$aUNRESTRICTED
001050467 980__ $$aI:(DE-Juel1)INM-3-20090406
001050467 9801_ $$aFullTexts