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In the era of multi-messenger astronomy, neutron stars argu-
ably stand out as the most captivating astrophysical objects [1].
Neutron stars consist of the densest form of baryonic matter
observed in the universe, and within their interiors, exotic new
forms of matter may exist [2]. With the detection of various neu-
tron star phenomena in recent years, such as gravitational waves
and electromagnetic radiation, more valuable information regard-
ing the mysterious dense matter within their cores will be unrav-
eled. These findings, together with the measurements of the
masses or radii, strongly constrain the neutron star matter equa-
tion of state (EoS) and theoretical models of their composition.
However, the observation of neutron star masses above 2.0M,
has ruled out many predictions of exotic non-nucleonic compo-
nents. Resolving this problem, known as the hyperon puzzle, is
crucial for understanding the complex interplay between strong
nuclear forces and the behavior of dense matter under extreme
conditions [3,4].

In this study, we use the framework of nuclear lattice effective
field theory (NLEFT) [5] to gain new insights into the generation of
hyperons, more specifically A(1116) particles, within dense envi-
ronments. To enable calculations with arbitrary numbers of nucle-
ons and hyperons, we introduce a novel formulation of the
auxiliary field quantum Monte Carlo (AFQMC) algorithm, which
allows for more accurate and efficient simulations free of sign
oscillations using only one auxiliary field. Additionally, we incor-
porate two-body NA and AA interactions, as well as three-body
terms such as NNA and NAA, based on the minimal nuclear
interaction [6], into the pionless effective field theory for nucleons.
Initially, we focus on systems consisting solely of nucleons and
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determine the low-energy constants parameterizing the 2N and
the 3N forces by constraining them to the saturation properties
of symmetric nuclear matter, as it is well-known that fixing the
3N forces in light nuclei leads to a serious overbinding in heavier
systems [7] if mostly local forces are employed. After constructing
our interactions, we perform predictive calculations for the EoS of
pure neutron matter (PNM) by considering up to 232 neutrons in a
box to achieve densities up to five times the empirical saturation
density of nuclear matter, i.e., p = 0.8 fm~>. Our results for the
EoS of PNM are in very good agreement with ab initio calculations
using chiral interactions up to next-to-next-to-next-to-leading
order (N3LO) [7] within the given density range. Subsequently,
we introduce A-particles into our framework and determine the
parameters of the NA and AA interactions by fitting them to exper-
imental data, including the NA cross section [8] and the AA 1S,
scattering phase shift from chiral effective field theory [9], respec-
tively. The NNA and NAA forces are further constrained by the sep-
aration energies of single- and double-A hypernuclei, spanning
systems from 3He to ,%Be, denoted as HNM(I). It is difficult to
probe the behavior of the EoS at high densities encountered in neu-
tron stars in terrestrial laboratories, and various phenomenological
schemes [10] and microscopical models [3] suggest that hyperons
emerge in the inner core of neutron stars at densities around
p =~ (2 — 3)p,. Therefore, similar to using the saturation properties
of symmetric nuclear matter to pin down the three-nucleon forces
(3NFs), we alternatively determined the NNA and NAA forces by
the separation energies of hypernuclei and the A threshold densi-
ties p around (2 — 3)p, simultaneously in HNM(II) and HNM(III).
We set pth = 0.398(2)(5) and 0.520(2)(6) fm~> for HNM(II) and
HNM(III), respectively. In the next step, we perform simulations
for hyper-neutron matter by including up to 116 hyperons in the
box and calculate the corresponding EoSs. More details on the
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construction of the actions underlying PNM EoS and the three vari-
ants of hyper-neutron matter (HNM) are given in the Supplemen-
tary material.

The results for pure neutron matter and hyper-neutron matter
are presented from our state-of-art nuclear lattice simulations.
HNM is composed of neutrons and A hyperons, where py,p,,
and p = py + p, are the neutron, A hyperon and total baryon den-
sity of the system, respectively, and x, = p,/p is the fraction of A
hyperons. The A threshold densities p¥' is determined by imposing
the equilibrium condition py = u,, where the chemical potentials
for neutrons u, and lambdas pu, are evaluated via the derivatives
of the energy density &ynm,

in(p.x) = % 7 (1)

Ipy
which indicates that an accurate determination of the chemical
potentials necessitates computing the energy density for various
densities and different numbers of A hyperons.

In Fig. 1, the EoSs for PNM and for HNM are displayed. As antic-
ipated, the inclusion of hyperons results in a softer EoS, and the
threshold density is pt" = 0.325(2)(4) fm~3 for HNM(I). Here and
what follows, the first (second) error is the statistical (systematic)
one. This threshold aligns with predictions from various phe-
nomenological schemes [10] and microscopical models [3], which
suggest that hyperons emerge in the inner core of neutron stars
at densities around p = (2 — 3)p,. Furthermore, we construct two
additional variants of HNM, denoted as HNM(II) and HNM(III).
The EoS becomes stiffer at higher densities for these variants, indi-
cating the inclusion of more repulsion in the three-body hyperon-
nucleon interactions. The squared speed of sound, c2, is also shown
in the inset of Fig. 1. It is observed that the causality limit (¢? < 1)
is fulfilled for both PNM and HNM. It should be noted that in the
pioneering calculations of Lonardoni et al. [4], they performed aux-
iliary field diffusion Monte Carlo (AFDMC) simulations with
N, = 38,54,66 neutrons and their PNM EoS is stiffer compared
to our results and exceeds the causality limit for the speed of sound
at densities above p ~ 0.68 fm~>. The EoS characterized by nucle-
onic degrees of freedom exclusively demonstrates a monotonic
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Fig. 1. EoS for HNM. The orange solid curve denotes pure neutron matter, obtained
from the NN and NNN interactions. The red dashed line represents the EoS of HNM
with hyperons interacting via the two-body interactions (NA and AA) and the third
set of three-body hyperon-nucleon interaction (NNA and NAA). The blue dotted
curve and the green dot-dashed curve are calculated with the first and second sets
of three-body hyperon-nucleon interactions. The A threshold densities p}' are
marked by open circles. In the inset, the speed of sound corresponding to the PNM
and HNM EoSs is shown. The gray shaded regions are the inference of the speed of
sound for neutron star matter in view of the recent observational data [11].
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increase in ¢? with increasing energy density. The appearances of
A hyperons, however, induce changes in this behavior, leading to
non-monotonic curves that signify the incorporation of additional
degrees of freedom. The onset of A hyperons precipitates a sharp
reduction in the speed of sound, marking a significant transition
in the stiffness of the EoS. For comparison, the constraints on c?
within the interiors of neutron stars inferred by a Bayesian infer-
ence method are also shown [11]. These constraints are established
based on recent multi-messenger data, in combination with limit-
ing conditions from nuclear physics at low densities, as depicted by
the gray shaded regions. The results for PNM and HNM(III) agree
well with the marginal posterior probability distributions at the
95% and 68% levels. It should be noted that we used the minimal
nuclear interaction, not the interactions derived from chiral effec-
tive field theory [7]. In Ref. [7], a full chiral interactions at N3LO
was used for PNM and symmetric nuclear matter. This significantly
increases the computational cost so that the calculations were
done only at densities up to 2p,. In the future, we will incorporate
the methodological advancements introduced in this work to
explore neutron star EoS calculations using higher order chiral
forces at densities larger than 2p,. While our calculations extend
into the higher-density regime, we recognize that the behavior of
EoS at these densities is less constrained, and the nuclear interac-
tion we employ may introduce uncertainties. To validate the
nuclear interaction in this work, we have quantified the theoretical
uncertainty due to six different sets of three-nucleon forces which
are shown in Fig. 1 and Fig. S2 (online). We find the theoretical
uncertainty in Fig. S2 (online) is significantly smaller than the
empirical uncertainty of the nuclear matter, and the uncertainty
is also quite small for PNM in Fig. 1. This uncertainty quantification
provides a solid foundation for future research on uncertainties in
hyper-neutron matter, as the hyperonic three-baryon interactions
used in our calculations follow the same uncertainty quantification
approach. Therefore, the uncertainty in our nuclear interaction has
been significantly reduced and is well controlled. Due to the cur-
rent limitations of computational resources, calculating the EoS
for arbitrary fractions of protons, neutrons, and other hyperons is
still very challenging in any lattice approach. This can be achieved
when more computational resources become available in the
future and it will allow us to avoid the errors introduced by the
so-called symmetry energy approximation.

The “holy grail” of neutron-star structure, the mass-radius (MR)
relation, is displayed in Fig. 2. These relations for PNM and HNM
are obtained by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations with the EoSs of Fig. 2. The appearance of A hyperons
in neutron star matter remarkably reduces the predicted maxi-
mum mass compared with the PNM scenario. The maximum mass
for PNM, HNM(I), HNM(II), and HNM(III) are 2.19(1)(1)M.,,1.59(1)
(1)M,, 1.94(1)(1)M,, and 2.17(1)(1)M,, respectively. Three neu-
tron stars have been measured to have gravitational masses close
to 2M.: PSR J1614-2230, with M = (1.908 + 0.016)M,, [15]; PSR
J0348 + 0432, with (2.01 £0.04)M,, [16]; and PSR J0740 + 6620,
with (2.08 + 0.07)M,, [17]. These measurements significantly con-
strain the EoS of dense nuclear matter, ruling out the majority of
currently proposed EoSs with hyperons from phenomenological
approaches [18]. Our results show that the inclusion of the NNA
and NAA interaction in HNM(III) leads to an EoS stiff enough such
that the resulting neutron star maximum mass is compatible with
the three mentioned measurements of neutron star masses. There-
fore, the repulsion introduced by the hyperonic three-body inter-
actions plays a crucial role, since it substantially increases the
value of the A threshold density. It is also noteworthy that HNM
(I) predicts a maximum mass above the canonical neutron star
mass of 1.4M,, whereas the model (I) incorporating repulsive
NNA interactions in the auxiliary field diffusion Monte Carlo [4],
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Fig. 2. Neutron star mass-radius relation. The legend is the same as of Fig. 1. The
gray horizontal dotted line represents 2M.,. The inner and outer contours indicate
the allowed area of mass and radius of neutron stars by NICER’s analysis of PSR
JO030 + 0451 [12] and PSR J0740 + 6620 [13]. The excluded causality region is also
shown by the grey shaded region [14].

Hartree-Fock [19], and Brueckner-Hartree-Fock (BHF) [3,20] calcu-
lations yield values below 1.4M.. In addition, the radii correspond-
ing to PNM, HNM(), HNM(I), and HNM(II) are
Ri.ame = 13.10(1)(7) km, Riame = 12.71(4)(13) km,
Riame = 13.09(1)(8) km, and R;am- = 13.10(1)(7) km, in order.
Our results for the neutron star radii are also consistent with the
constraints by NICER [12] for the mass and radius of PSR
J0030 + 0451, ie., mass 1.447013M, with radius 13.027]2¢ km.
The 68% and 95% contours of the joint probability density distribu-
tion of the mass and radius from the NICER analysis are also shown
in Fig. 2. We further note that despite the significant reduction in
the fraction of A hyperons caused by the hyperonic three-body
force in HNM(III), they still exist within the interior of a 2.17M,,
neutron star. This is different from the conclusion drawn in Ref.
[4], where it was found the hyperonic three-body force in their
parametrization (II) capable of generating an EoS stiff enough to
support maximum masses consistent with the observations of
2M,, neutron stars results in the complete absence of A hyperons
in the cores of these objects. We also note that while model
HNM(III) successfully supports the mass of PSR J0740 + 6620 with
(2.08 £0.07)M,, the M(R) curve appears only marginally compat-
ible with the combined experimental data. This issue is primarily
associated with two factors. First, the characteristics of this neu-
tron star mass region are predominantly determined by the EoS
at higher densities. The baryon-baryon interactions considered in
this work account only for contributions from the minimal interac-
tion, whereas higher-order baryon-baryon interactions are
expected to influence the EoS at higher densities. Therefore, it will
be interesting and necessary to include the higher-order baryon-
baryon interactions in the subsequent work. Second, the rotation
of a neutron star induces corresponding increases in both its mass
and radius, which can lead to a better agreement with the com-
bined experimental data. The rotational frequency of this neutron
star is 346 Hz, while the current calculations have been limited
to static case. In the next step, we will incorporate the properties
of rotating neutron stars.

In summary, we have performed the first lattice Monte Carlo
calculation of hyper-neutron matter with a large number of neu-
trons and As and derived the resulting properties of neutron stars.
In the next steps, one should include the proton fraction, other
hyperons of the baryon octet, and make use of the recently
developed high-fidelity chiral interactions at N3LO [7], though this
will pose a formidable computational challenge.
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