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ABSTRACT

The equation of state (EoS) of neutron matter plays a decisive role to understand the neutron star
properties and the gravitational waves from neutron star mergers. At sufficient densities, the appear-
ance of hyperons generally softens the EoS, leading to a reduction in the maximum mass of neutron
stars well below the observed values of about 2 solar masses. Even though repulsive three-body forces
are known to solve this so-called “hyperon puzzle”, so far performing ab initio calculations with a sub-
stantial number of hyperons for neutron star properties has remained elusive. Starting from the newly
developed auxiliary field quantum Monte Carlo algorithm to simulate hyper-neutron matter (HNM)
without any sign oscillations, we derive three distinct EoSs by employing the state-of-the-art Nuclear
Lattice Effective Field Theory. We include NA, AA two-body forces, NNA, and NAA three-body
forces. Consequently, we determine essential astrophysical quantities such as the neutron star mass,
radius, tidal deformability, and the universal I-Love-Q relation. The maximum mass, radius and tidal
deformability of a 1.4Mg neutron star are predicted to be 2.17(1)(1) Mg, R1.ame = 13.10(1)(7) km,
and Ay 47, = 597(5)(18), respectively, based on our most realistic EoS. These predictions are in good
agreement with the latest astrophysical constraints derived from observations of massive neutron stars,
gravitational waves, and joint mass-radius measurements. Also, for the first time in ab initio calcula-
tions, we investigate both non-rotating and rotating neutron star configurations. The results indicate
that the impact of rotational dynamics on the maximum mass is small, regardless of whether hyperons

are present in the EoS or not.

1. INTRODUCTION

Neutron stars arguably emerge as the most captivat-
ing and enigmatic astrophysical objects in the era of
multi-messenger astronomy (Abbott et al. 2017, 2018;
Tong et al. 2020; Huth et al. 2022; Kumar et al. 2024;
Tsang et al. 2024; Marino et al. 2024). They are com-
posed of the densest form of baryonic matter observed
in the universe, and their interiors may harbor exotic
and previously unknown forms of matter (Lattimer &
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Prakash 2004; Gal et al. 2016; Burgio et al. 2021b).
The recent various neutron star observations, includ-
ing gravitational waves, electromagnetic radiation, and
X-ray bursts, have opened new frontiers for studying
the neutron star properties. These observations are ex-
pected to provide crucial insights into the mysterious
dense matter at the core of neutron stars, illuminating
the fundamental interactions and behavior of matter at
supra-saturation nuclear densities.

The recent precise measurements of neutron star
masses offer valuable constraints on the equation of state
(EoS) of neutron star matter (Demorest et al. 2010; An-
toniadis et al. 2013; Fonseca et al. 2016; Arzoumanian
et al. 2018; Cromartie et al. 2020; Fonseca et al. 2021),
which is essential for refining theoretical models of their
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internal composition and behavior. However, the dis-
covery of neutron stars with masses exceeding 2 solar
masses challenges many previous theoretical predictions
involving exotic non-nucleonic components, such as hy-
perons. This has led to the emergence of the ”hyperon
puzzle,” a long-standing issue in the field of nuclear
physics and astrophysics (Schaffner-Bielich 2008; Takat-
suka et al. 2008; Dapo et al. 2010; Vidana et al. 2011;
Schulze & Rijken 2011; Weissenborn et al. 2012; Ya-
mamoto et al. 2013; Astashenok et al. 2014; Lonardoni
et al. 2015; Maslov et al. 2015; Chatterjee & Vidana
2016; Masuda et al. 2016; Haidenbauer et al. 2017; Lo-
goteta et al. 2019; Gerstung et al. 2020; Friedman & Gal
2023). The appearance of hyperons at higher densities
typically softens the EoS, resulting in a reduction in the
maximum mass of neutron stars, which conflicts with
observations of massive neutron stars. Resolving this
puzzle is crucial not only for advancing our understand-
ing of neutron star physics but also for comprehending
the complex interplay between strong nuclear forces and
the behavior of dense matter under extreme conditions,
including the onset of hyperons, kaons, or other exotic
particles. Furthermore, neutron stars, due to their ex-
treme compactness, exhibit remarkably high rotational
speeds compared to other astrophysical objects. PSR
J1748-2446ad, with a rotational frequency of 716 Hz, is
the fastest known pulsar (Hessels et al. 2006). At such
extreme speeds, neutron stars experience significant cen-
trifugal forces, leading to an oblate shape that deviates
from spherical symmetry. It can be modeled as axisym-
metric, rigidly rotating bodies under Einstein’s general
relativity. These rapid rotations give rise to unique phe-
nomena that are pivotal for imposing tighter constraints
on the EoS (Komatsu et al. 1989; Weber & Glendenning
1991; Stergioulas & Friedman 1995; Glendenning et al.
1997; Hessels et al. 2006; Li et al. 2016; Qu et al. 2025).

On the theoretical side, the EoS can be derived
through various nuclear many-body theories (Oertel
et al. 2017; Burgio et al. 2021a; Tong et al. 2022; Se-
drakian et al. 2023a). Especially, ab initio methods us-
ing realistic nucleon-nucleon (NN) interactions stand out
for their predictive power, free from the uncertainties
of adjustable parameters. Among these, the state-of-
the-art Nuclear Lattice Effective Field Theory (NLEFT)
combines the theoretical principles of effective field the-
ory (EFT) with advanced numerical techniques, offering
a powerful approach to solving quantum many-body sys-
tems (Lee 2009; Lahde & MeiBner 2019). This method
has been used to describe the atomic nuclei (Borasoy
et al. 2006) and neutron matter (Lee & Schéfer 2005)
in pionless EFT at leading order (LO), the Hoyle state
in 12C (Epelbaum et al. 2011) and a-a scattering (El-

hatisari et al. 2015) in chiral EFT at next-to-next-to-
leading order (N2LO). More recently, it was extended
to the properties of atomic nuclei and the EoS of neu-
tron and symmetric nuclear matter in chiral EFT at
next-to-next-to-next-to-leading order (N3LO) (Elhatis-
ari et al. 2024). In addition, this method has been used
to formulate an EFT with only four parameters and
built on Wigner’s SU(4) spin-isospin symmetry (Wigner
1937). This EFT can reproduce light- and medium-
mass nuclei and neutron matter EoS with percent-level
accuracy (Lu et al. 2019). Applications include nu-
clear thermodynamics (Lu et al. 2020), cluster studies
in hot dilute matter (Ren et al. 2024), the geometry
of 12C states (Shen et al. 2021, 2023), and resolving
the alpha-particle monopole transition form factor puz-
zle (Meifiner et al. 2024). The first exploration of AN
scattering was performed on the lattice in Ref. (Bour
2009). The A particle was included into the NLEFT
framework in Ref. (Frame et al. 2020) using the im-
purity lattice Monte Carlo (ILMC) method (Elhatisari
& Lee 2014). This study focused on calculating the
binding energies of light hypernuclei, specifically 3H,
1H, and SHe. The ILMC method was also extended
to study the systems containing two impurities (Hilden-
brand et al. 2022). Recently, a novel auxiliary field quan-
tum Monte Carlo (AFQMC) algorithm was introduced
to efficiently investigate hyper-neutron systems with an
arbitrary number of hyperons (Tong et al. 2025). Based
on the achievements of EFT within Wigner’s SU(4)
spin-isospin symmetry, referred to as the minimal nu-
clear interaction, and the newly developed AFQMC al-
gorithm for hyper nuclear systems without any sign os-
cillations (Tong et al. 2025), we employ pionless EFT
at LO for nucleons (Konig et al. 2017) throughout this
work. This approach leverages the minimal nuclear in-
teraction as a foundation for our hyper-neutron matter
(HNM) EoS calculations. We also utilize minimal inter-
actions for the hyperon-nucleon and hyperon-hyperon
interactions.

In this work, it is timely and interesting to study the
EoS and the properties of non-rotating and rotating neu-
tron stars with hyperons from the NLEFT. This paper
is arranged as follows. The theoretical framework of
NLEFT, the EoS, and neutron star properties are briefly
introduced in Section 2. In Section 3, the properties of
neutron stars and related discussions are presented. The
summary is given in Section 4.

2. THEORETICAL FRAMEWORK

2.1. Nuclear Lattice Effective Field Theory

We map the four-dimensional space-time on a finite
volume with spatial length L in all three directions and



temporal length L; in the Euclidean time direction. We
further discretize the space and time directions in terms
of a spatial and temporal lattice spacing a and a;, re-
spectively. Our basic degrees of freedom are nucleons,
so as not to resolve their inner structure, a 2> 1 is re-
quired. The spatial coordinates on the lattice are given
by a three-vector i = (ng,ny,n,) with ng,n,,n, in-
tegers. The temporal lattice spacing is usually taken
much smaller. For more details, the reader is referred to
Ref. (Léahde & Meifiner 2019).
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The smeared annihilation and creation operators, a (b)
and a' (b) for nucleons (hyperons), have with spin i =
0,1 (up, down) and isospin j = 0,1 (proton, neutron)
indices,

a; (1) = a; (1) + snL Z ai;(i'), (5)

|7t —7|=1
bi(ii) = bi(7i) + snL » | bilil). (6)
|7’ —ii|=1

In Eq. (1), Vooulomb represents the Coulomb interac-
tion (Li et al. 2018). VIR VER and VAR de-
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The Hamiltonian for hyper-nuclear system is defined
as,

T
c L c L
H:Hfree"_%z : [,O(TL)]2 : J'_% : [pf(n)]2 :
7 1,7
R CAA 2 a2
+CNAZ : p(M)E(n) - +TZ : [5(1@)} :
VGIR VIR | yGIR v, 11 .
+ VNN +Vna +Viaa, (1)

where Hpeo is the kinetic energy term defined by us-
ing fast Fourier transforms to produce the exact disper-
sion relations Exy = p?/(2my) and Ey, = p?/(2ma)
with nucleon mass my = 938.92 MeV and hyperon
mass my = 1115.68 MeV, respectively, the :: symbol
indicates normal ordering, ¢y is the coupling constant
of the SU(4) symmetric short-range two-nucleon inter-
action, ¢k is the coupling constant of the isospin-
dependent short-range two-nucleon interaction, that
breaks SU(4) symmetry, cya (cap) is the coupling
constant of the spin-symmetric short-ranged hyperon-
nucleon (hyperon-hyperon) interaction, and 5 (£) is nu-
cleon (hyperon) density operator, that is smeared both
locally and non-locally (Elhatisari et al. 2016),

S Al @a, ), (2)

n—n’|2=1 %,j=0,1

2 X

|-’ |2=1 4,j,5'=0,1

S Dbl b (). (4)

|- |2=1 i=0,1

(

note the Galilean invariance restoration (GIR) inter-
actions for the nucleon-nucleon, nucleon-hyperon, and
hyperon-hyperon interactions, respectively (Li et al.
2019). Vnnn, Vana, and Vyaa are the three-baryon
interactions. The three-baryon interactions are defined
with two different choices of local smearing,

VNNNZZCNNNZ {(d) ] 5 (7)
i=1,2

where the parameter d; denotes the range of local smear-
ing with 0 < d; < do < 3 (in lattice units). Similarly,
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the three-baryon interactions consisting of two nucleons
and one hyperon are defined with two different choices
of local smearing,

VNN = Z CNNA Z [ ) (77 } g9y -, (8)

i=1,2
and the interactions involving one nucleon and two hy-
perons are expressed by also two different choices of local
smearing,
(di) 2

Vian = Y DA ST @) [¢4@m) i, ()

where p (£) is then purely locally smeared nucleon (hy-
peron) density operator with annihilation and creation
operators, a (b) and a' (b") for nucleons (hyperons),

p D)= > al ;(7)a, ,;(7)

4,7=0,1

d
s Y0 D al @) e,

|A—#’|2=1 4,j=0,1

€D (i) = > bl (i) by (i)
1=0,1
d (11)

+siB D0 Y dl@) b)),

|- |2=1 i=0,1

Here, the parameter d gives the range of local smearing,
and s32 defines the strength of the local smearing.

In our lattice simulations, we use the AFQMC
method, which effectively suppresses sign oscillations.
The following discussion begins with a discrete auxiliary
field formulation for the SU(4) symmetric short-ranged
two-nucleon interaction given in Eq. (1),

( at CNN CNN ~2)
L exp

Zwk exp \/—atcNNskﬁ) :
(12)

where a; is the temporal lattice spacing. From a Taylor
expansion of Eq. (12), we determine the constants s
and wy, as s = —s3 = V3, 5o =0, w; = w3 = 1/6 and
wy = 2/3. Since we use minimal interactions for the
hyperon-nucleon and hyperon-hyperon interactions, the
spin and isospin independent two-baryon interaction in

Eq. (1) is expressed as,
A%CNA‘EE: ﬁ

(13)

and it can be rewritten in the following form,

2 ~ 2 (14>
w5 (o225 fém) -
where i) is defined as,
p=pt L. (15)

In hypernuclear systems, the nucleon-nucleon interac-
tion strength cyny is significantly stronger than the
nucleon-hyperon interaction strength cyy. As a result,
the overall interaction strength of the second term in
Eq.(14) is naturally weak. Consequently, we treat the
first term in Eq.(14) non-perturbatively, while the sec-
ond term is computed using first-order perturbation the-
ory.

Employing a Hubbard-Stratonovich transformation
for the first term in Eq. (14) enables the simulations
of systems consisting of both arbitrary number of nucle-
ons and arbitrary number of A hyperons with a single
auxiliary field,

( as CNN 2)
L exp _—

5 :exp (\/—at CNN Sk p)

(16)
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It is evident that the solution for the auxiliary field vari-
ables s, and weights wy, is consistent with systems con-
taining only nucleons. For the two-nucleon interaction
~ ¢k, known to break SU(4) symmetry and to in-
duce significant sign oscillations, which was previously
disregarded in minimal nuclear interaction studies (Lu
et al. 2019, 2020; Ren et al. 2024; Shen et al. 2021,
2023; Meifiner et al. 2024), we also employ a Hubbard-
Stratonovich transformation and introduce a discrete
auxiliary field. Note that this term is required to ob-
tain a good description of nuclear matter as discussed
below.

2.2. Neutron star EoS and Neutron star properties

Hyper-neutron matter consists of neutrons and a frac-
tion of A hyperons defined as xpx = pa/p, where p =
PN + pa represents the total baryon density of the sys-
tem. Therefore, the neutron and hyperon densities are
written as py = (1 — xp)p and pp = pxa, respectively.
The HNM energy per particle can be expressed as

Eunm(p, xa)

+mpy(l —xp) +maza,
A&m N( )

(17)

eHNM(pa »”CA) =



where Eunm(p, za) and Nyt = Ny + Np denotes the
total energy of HNM and the total number of baryons.
Now, our objective is to compute eyxy(p, 2a), and sub-
sequently, calculate the energy density eyny, defined as
€unm = Peunm- Lhe chemical potentials for neutrons
and hyperons, denoted by pun(p,za) and pa(p,za) re-
spectively, are then evaluated using the expressions,

O€unmt

» pa(p,a) = “Don (18)

€uNM

pn(psza) = oo

The hyperon fraction as a function of the baryon den-
sity, xa(p), is determined by imposing the condition
wa = pn, which yields the threshold density pj\h which
is marking the point at which z(p) first deviates from
zero. Finally, the pressure P(p) of HNM is obtained
from the energy density,

de
P(p) = p27ﬂ = Z Pilti — Eanm- (19)
dp p i=NLA

Once the EoS of pure neutron matter (PNM) and
HNM in the form P(e) is obtained in Eq. (19), the mass
and radius of a neutron star can be described by the
Tolman-Oppenheimer-Volkoff (TOV) equations (Tol-
man 1939; Oppenheimer & Volkoff 1939)

dP(r) _ [P(r) +e(n)][M(r) +4mr*P(r)] (208)
dr rlr—2M(r)] ’
d]\ifr) = 4mr2e(r), (20Db)

where P(r) is the pressure at radius r and M (r) is the
total mass inside a sphere of radius r. Furthermore,
to solve the TOV equations, the EoS must cover the
entire structure of the neutron star, from the crust to
the core. In this work, we mainly focus on discussing
the core region within the NLEFT. For the crust, we
adopt the well-established EoSs formulated by Baym,
Pethick, Sutherland (BPS) (Baym et al. 1971b) and by
Baym, Bethe, and Pethick (BBP) (Baym et al. 1971a).

Besides the masses and radii, another important prop-
erty of neutron star, the tidal deformability A, is defined
as

A= %kQC—f’, (21)

which represents the mass quadrupole moment response
of a neutron star to the strong gravitational field induced
by its companion. Further, C' = M/R is the compact-
ness parameter, M and R are the neutron star mass and

radius, and ks is the second love number
8C®
ko :T(l —2C)%[2 — yg +2C(yr — 1)]
x {6C2 —yr + C(5yr — 8)]
+4C3[13 — 11yr + C(3yr — 2) + 2C?*(1 + yr)]
+3(1 - 20)%2 —yr +2C(yr — 1)]In(1 — 2C)} 1,
(22)

where yp = y(R) can be calculated by solving the fol-
lowing differential equation:

d%) + 9 () +y(F () +r°Q(r) =0, (23)

with

F(r) = [1 - 2]\{ﬂ(7‘)]_ x {1 —4rr®[e(r) — P(r)]},

(24a)
Q(r) = {47r [55(7«) +9P(r) + E(T;]j(f;(r) B 7g}
Oe
x [1 — 2]\{@} o [Mfg(r) +2x 47rrP(7")]2
X [1 — 2]{(7")} - . (24b)

The differential equation (23) can be integrated together
with the TOV equations with the boundary condition
y(0) = 2.

The moment of inertia is calculated under the
slow-rotation approximation pioneered by Hartle and
Thorne (Hartle 1967; Hartle & Thorne 1968), where
the frequency Q of a uniformly rotating neutron star
is significantly lower than the Kepler frequency at the
equator, Q < Qunax ~ /M/R3. In the slow-rotation
approximation, the moment of inertia of a uniformly ro-
tating, axially symmetric neutron star is given by the
following expression (Fattoyev & Piekarewicz 2010)

R _
= 81 / T4€—u(r)w(r) 6(7“) + P(T) dr. (25>
0 Q \/1-2M(r)/r
The quantity v(r) is a radially-dependent metric func-
tion and defined as

1 N < 2M> B R M(x) + 4ra® P(x)
- r o 2?1 =2M(z)/x]

dx.

The frame-dragging angular velocity @ is usually ob-
tained by the dimensionless relative frequency & = @/,
which satisfies the following second-order differential
equation:

2 [r4 i) d“;ff)} rar a0 20 @)
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where j(r) = e ¥ /1 —2M(r)/r for r < R. The

relative frequency @(r) is subject to the following two
boundary conditions

&' (0) = 0, (28a)
&'(R) = 1. (28b)

It should be noted that under the slow-rotation approx-
imation, the moment of inertia is independent of the
stellar frequency 2.

The quadrupole moment describes how much a neu-
tron star is deformed away from sphericity due to rota-
tion. It can be computed by numerically solving for the
interior and exterior gravitational field of a neutron star
in a slow-rotation (Hartle 1967; Hartle & Thorne 1968)
and a small-tidal-deformation approximation (Hinderer
2008; Hinderer et al. 2010). The quadrupole moment
in this work is calculated by following the detailed in-
structions described in Ref. (Yagi & Yunes 2013a). To
explore the universal I-Love-Q relations, the following
dimensionless quantities are introduced

I _ QM

o Y= Thor

I

(29)

In addition, to describe the rapidly rotating and ax-
isymmetric neutron star configurations in general rel-
ativity, we treat the stellar matter as a perfect fluid,
characterized by the energy-momentum tensor:

T = (e + P)utu” — g"" P, (30)

where ¢, P, and u* are the energy density, pressure,
and fluid’s four-velocity, respectively. We solve the Ein-
stein field equations for an axisymmetric and stationary
space-time with the metric

ds® = —e"tPdt? 4 2 (dr2 + r2d92)

31
+ 77 Pr? sin? 0(do — wdt)?, (1)

where the metric potentials v, p,«, and w are func-
tions of the radial coordinates r and the polar angle 6.
To numerically integrate the equilibrium equations, we
employ the RNS code (Stergioulas & Friedman 1995;
Paschalidis & Stergioulas 2017) to calculate the equi-
librium configurations of rotating neutron stars, deter-
mining their masses and radii for a given central energy
density.

3. NUMERICAL RESULTS AND DISCUSSION

The coupling constants for the NN interaction are de-
termined by fitting to the two S-wave phase shifts of NN
scattering. The results are cig, = —1.21 x 1077 MeV 2
and csg, = —1.92x 10~7 MeV 2 corresponding with the

spin-singlet isospin-triplet and the spin-triplet isospin-
singlet channel, which are related to the LECs given
in Eq. (1) via ey = (Barg, + e35,)/4, chy = (ag, —
¢sg, )/4. The two LECs of the three-nucleon forces given
in Eq. (7) are determined by fitting to the saturation
properties of symmetric nuclear matter. This procedure
involves considering all possible combinations three-
nucleon forces with d; and dy such that 0 < d; < dy < 3.
These combinations and the corresponding energies per
nucleon at the saturation density of symmetric nuclear
matter are presented in Tab. 1. The energy per nu-
cleon at the saturation point is -16.90(0.02)(0.25) MeV,
where the first parentheses represent the statistical error
and the second denote the theoretical uncertainty arising
from different three-nucleon force combinations. This
result is in good agreement with the empirical value.
The parameters of the NA and AA interactions are de-
termined by fitting them to experimental data (Sechi-
Zorn et al. 1968; Alexander et al. 1968; Kadyk et al.
1971; Hauptman et al. 1977) and the AA 1Sy scattering
phase shift from chiral EFT (Haidenbauer et al. 2016).
The NNA and NAA forces are further constrained by
the separation energies of single- and double-A hyper-
nuclei spanning systems from 3 He to ,§Be, and the A
threshold densities pf* around (2 — 3)py simultaneously,
denoted as HNM(I), HNM(II) and HNM(III), respec-
tively. In our calculations we use a spatial lattice spac-
ing of @ = 1.1 fm and a temporal lattice spacing of
a¢ = 0.2 fm. The local smearing parameter s;, = 0.06
and nonlocal smearing parameter sy, = 0.6. For the
three-baryon interaction, the local smearing parameter
is 3B = 0.06. We perform our calculations at differ-
ent finite Euclidean time steps and extrapolate to the
infinite Euclidean time limit using a single and double
exponential ansatz (Léhde & Meifiner 2019). Further-
more, for the computation of PNM and HNM energies
we use lattices with a length of 6.6 fm and impose the av-
erage twisted boundary conditions (ATBC) to efficiently
eliminate finite volume effects.

First, we compare our calculations with a few others
that we consider as benchmarks, focusing exclusively on
purely nucleonic scenarios. We predict the ground state
energies of several light nuclei with A = 3 — 16 based
on our interaction, and the results are summarized in
Tab. 2. These results are consistent with those reported
in Ref. (Lu et al. 2019), except for *H and *He, which
were used to constrain the 3N force therein.

Then, we compare our results for PNM with that
of Lovato et al. (Lovato et al. 2022) in the left panel
of Fig. 1. They presented the neutron matter EoS
as derived from three independent many-body meth-
ods: Brueckner-Hartree-Fock (BHF), Fermi hypernet-
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Table 1. The coupling constants of the NN N interaction for all possible combinations of d; and ds with 0 < d; < d2 < 3 in
Eq. (7), along with the corresponding binding energy per nucleon at the saturation density of symmetric nuclear matter.

Coupling constants Binding energy
iy (MeV—? E/A (MeV)
cina) = =378 x 107, Gy = B12x 100 | _17.42(2)
) = 211x 10712, ¢ NN 4421072 | —16.90(2)
SHED = 727 %1072 ¢ 2.09x 10712 | —16.63(2)
s = 155 x 10712, (2 2) = 423x1072 | —16.89(2)
NN = 496X 10712, 3T 5 781070 ~16.71(2)
B2 = 6.01x 10712, 278 = —7.08x 10713 | —16.89(2)
60 12 —
10 Causality limit L
—40 0.8}
>
[}
= o6t
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W oo 04+
021
0 : ‘ : : ' 0.0
0.1 0.2 0.3 0.0
-3
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Figure 1. Left Panel: Neutron matter EoS as obtained from the NLEFT. The red shaded band represents our results with the
uncertainty from three-nucleon forces and Monte Carlo errors, while the red solid curve denotes the mean value. The results
obtained with other many-body methods (Lovato et al. 2022) are also shown, including the Brueckner-Hartree-Fock (BHF)
theory, Fermi hypernetted chain (FHNC), and Auxiliary Field Diffusion Monte Carlo (AFDMC) using the AV18 two-nucleon
and Urbana IX (UIX) three-nucleon forces. Right Panel: Speed of sound as a function of density for the pure neutron matter
(PNM). The blue dashed curve is calculated with the Argonne V8 (AV8&’) and the UIX forces from the AFDMC (Lonardoni
et al. 2015). The dot-dashed line represents the causality limit ¢ = 1.

Table 2. Calculated ground state energies of some light
nuclei with A = 3 — 16 compared to the empirical values (in
MeV). The first (second) parentheses denote the statistical
(systematic) error.

| Nuclews | NLEFT | Exp. |
0 —9.21(4)(1) —8.48
‘He —29.38(1)(4) —28.3
®Be —58.38(3)(7) —56.5
2C —87.08(12)(11) | —92.2
150 —121.84(28)(52) | —127.6

ted chain (FHNC), and Auxiliary Field Diffusion Monte
Carlo (AFDMC). Our results are consistent with theirs
where the AV18 two-nucleon and UIX three-nucleon
forces were employed. Only at densities higher than
approximately 0.24 fm~3, the energies from the FHNC
method are lower than our results. It should be empha-
sized that the uncertainty in our calculation for PNM is
quite small. In the right panel of Fig. 1, we compare

our work to the pioneering calculations of Lonardoni
et al. (Lonardoni et al. 2015). They perform AFDMC
simulations with NV,, = 38,54,66 neutrons. For the
nucleonic sector, they use the phenomenological well-
motivated AV8’ and UIX two- and three-body forces.
Notably, their PNM EoS is stiffer compared to our re-
sults and exceeds the causality limit for the speed of
sound at densities above p ~ 0.68 fm~3. Although PNM
is an idealized system that does not directly exist in neu-
tron stars, it serves as a theoretical benchmark for mod-
eling dense matter (Lovato et al. 2022). Since the neu-
tron star EoS can exhibit stiffness trends similar to or
even stiffer than those of PNM (Krastev & Sammarruca
2006), maintaining causality in the PNM EoS ensures
its physical reliability and strengthens its applicability
to astrophysical scenarios. A violation of causality in
PNM may indicate potential issues with the underlying
nuclear interactions or many-body methods, making the
model unreliable at high densities.
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Figure 2. Energy density for hyper-neutron matter (HNM).
The energy density € as a function of different numbers for
A hyperons is shown for densities p = 0.8 fm ™2 and 0.7 fm =3
(inset). The blue triangles, green circles, and red squares
represent the energy density € of HNM with hyperons in-
teracting via the two-body interactions and the three-body
interactions. The differences between HNM(I), HNM(II) and
HNM(III) are the three-body NNA and NAA interactions.
The shaded regions represent the uncertainty from the three-
baryon forces and Monte Carlo errors. The arrows and the
solid triangle, circle, and square denote the lowest energy
density.

The energy density € by using the two-body inter-
actions (NN, NA,AA) and the three-body interactions
(NNN,NNA,NAA) are shown in Fig. 2 for differ-
ent numbers of A hyperons. The differences between
HNM(I), HNM(II), and HNM(III) are the three-body
NNA and NAA interactions. The shaded regions rep-
resent the uncertainty from the three-baryon forces and
Monte Carlo errors. The given density of p = 0.8 fm~3,
which is about five times the empirical nuclear matter
saturation density, pg, can be encountered in the core of
a neutron star. It should be noted that the quantity of A
hyperons corresponding to the lowest energy density is
intricately linked to accurately determining the chemical
equilibrium conditions. In contrast to the groundbreak-
ing study (Lonardoni et al. 2015) where the number of
A hyperons was varied from 1 to 14, the present study
indicates that the number of required A hyperons is com-
parable to the number of neutrons, especially at higher
densities. For instance, as depicted in Fig. 2, to fulfill
the equilibrium condition un = pa at p = 0.8 fm =3, 102,
92, and 32 A hyperons are required to obtain the lowest
energy density for HNM(I), HNM(II), and HNM(III),
respectively. Similarly, at p = 0.7 fm~3, 76, 60, and 18
hyperons are needed for the same purpose in HNM(I),
HNM(IT), and HNM(III), in order.
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Figure 3. The chemical potentials for neutrons and A hy-
perons. The A threshold densities pi are marked by open
circles. The chemical equilibrium conditions, puax = pn, are
fulfilled above pﬁ\h. The gray shaded area indicates the values
by using the chiral SU(3) interactions NLO19 with two and
three-body forces (NA + NNA) (Gerstung et al. 2020).

The chemical potentials for neutrons and A hyper-
ons are shown in Fig. 3. When the density is below
the threshold value, the chemical potential of the A hy-
peron exceeds that of the neutron. Once the density
reaches and is above the threshold value, the chemical
potentials of both particles become equal. Moreover,
HNM (III) gives the largest chemical potential among
our three HNM systems. We also compare our work with
that of Gerstung et al. (Gerstung et al. 2020). For the
AN interaction, they consider two next-to-leading or-
der chiral EFT representations, called NLO13 (Haiden-
bauer et al. 2013) and NLO19 (Haidenbauer et al.
2020). For the three-body forces, they use the lead-
ing AN N representation based on chiral EFT (contact
terms, one-pion and two-pion exchanges) with the in-
clusion of the ANN « XNN transition (Petschauer
et al. 2016) in an effective density-dependent two-body
approximation (Petschauer et al. 2017). The pertinent
LECs are given in terms of decuplet resonance satura-
tion and leave one with two B* BBB couplings, where
B denotes the baryon octet and B* the decuplet. If
one only considers the ANN force, these two LECs ap-
pear in the combination H' = H; + Hs. No AAN force
was considered in (Gerstung et al. 2020). The LECs H;
and Hy were constrained in Ref. (Gerstung et al. 2020)
so that the A single-particle potential in infinite matter
is Up(p ~ po) = —30 MeV (Gal et al. 2016). Due to
numerical instabilities in calculation of the Brueckner
G-matrix, the computation can only be done up to den-
sities p ~ 3.5p9. The authors of Ref. (Gerstung et al.
2020) then use a quadratic polynomial to extrapolate to



higher densities. They calculate the chemical potential
for the neutrons and As from the Gibbs-Duhem rela-
tion using a microscopic EoS computed from a chiral
nucleon-meson field theory in combination with func-
tional renormalization group methods. The parame-
ter combinations (Hy, Hs) were chosen so that the A
single-particle potential becomes maximally repulsive at
higher densities. The resulting chemical potentials are
displayed in Fig. 3 for the NLO19 AN forces. These
agree well with the HNM(III) chemical potentials up to
p =~ 2.5p9 but show, different to what we find, no cross-
ing. Note that the forces discussed in Ref. (Gerstung
et al. 2020) have not been applied to finite nuclei.
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Figure 4. A-fractions for our three HNM EoSs and the
one from AFDMC (Lonardoni et al. 2015). The gray cir-
cles denote a different number of neutrons (N,, = 66, 54, 38)
and hyperons (Na = 1,2,14) in the simulation box giving
momentum closed shells in AFDMC. The black dash-dot-
dotted curve is calculated using non-relativistic BHF theory
with only the NA interaction, specifically Nijmegen Soft-
Core 97 (NSC97). The black loosely dashed curve is calcu-
lated by including an additional NNA force derived within
the framework of xEFT (Logoteta et al. 2019).

In Fig. 4, A-fractions for our three HNM EoSs are
shown. At the given density, the Lambda fraction
from the HNM (III) is the smallest one, further indi-
cating that the EoS for HNM (III) is the stiffest. In
Ref. (Lonardoni et al. 2015), they perform calculations
with Ny = 1, 2,14 hyperons and use a phenomenological
hyperon-nucleon potential based on the work of (Bod-
mer et al. 1984). The EoS of HNM is then derived with
an extrapolation function f(p, ), which is quadratic
in density and cubic in the A-fraction x,. Clearly, our
calculations improve upon this by covering the full range
of densities and A-fractions relevant to the problem at
hand. In Ref. (Lonardoni et al. 2015), the A-fraction
increases at higher densities under their parametriza-
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tion (I) of the NNA force, predicting a maximum neu-
tron star mass of 1.36(5)Mg, as shown in Fig. 4. Un-
der their parametrization (II) of the NNA force, the
A-fraction drops to zero at higher densities, allowing for
neutron star masses above 2My. For comparison, we
also present another result examining the effects of the
N NA three-body force on neutron star properties using
the BHF approach (Logoteta et al. 2019). It is notable
that the strongly repulsive three-body hyperonic inter-
actions lead to an increase in the threshold density for
the A hyperons and a reduction in the A hyperon frac-
tion. It is also important to consider S-stable nuclear
matter for a more realistic depiction of neutron stars, as
the proton fraction can reach approximately 10%-30%
at their cores, depending on the symmetry energy and
density (Tong et al. 2022; Bombaci & Logoteta 2018).
However, incorporating protons introduces additional
constraints from chemical equilibrium among protons,
neutrons, electrons, and muons, as well as charge neu-
trality, which significantly increases the computational
cost of our NLEFT simulations. For this reason, we
have focused on neutrons and A hyperons in the present
work, and we will extend our approach to include -
stable matter in the next step.

300 T T T T T T T T ,/

- PNM 1
250 | s=e== HNM(II) //—
e | === HNM(II) /o

d 7/
">' 200 g HNM(I) / //,/' 7
(0] B // g T
=150 - yd 1
) | /" /‘/
- / /./
@ 100 o 1
(7] ,/,/‘
o I s
L _ /04"
0 - L . L . L .
200 400 600 800 1000
£ [MeV fm~3]

Figure 5. Pressure as a function of energy density. Shown
are the results for PNM as well as the three HNM EoS con-
sidered here.

In Fig. 5, the neutron star EoSs for PNM and for
HNM are displayed. With increasing energy density,
the pressure increases. The threshold energy density
is etf = 318(1)(1) MeV fm~2, 400(1)(1) MeV fm~3,
and 551(1)(1) MeV fm=2 for HNM(I), HNM(II), and
HNM(III), respectively. The introduction of A hyper-
ons results in a significant softening of the EoS compared
to PNM, indicating a substantial change in stiffness at
higher densities. As expected, the inclusion of A hy-
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perons softens the EoS, with HNM(III) displaying the
stiffest EoS among the hyperonic cases, highlighting dif-
ferences in hyperon interactions across the calculations.
This emphasizes the critical role of hyperons in influenc-
ing the stiffness and stability of neutron star matter at
supra-saturation nuclear densities.
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Figure 6. Neutron star tidal deformability, A, as a function
of neutron star mass. A(M) is compared to the masses and
tidal deformabilities inferred in Ref. (Fasano et al. 2019) for
the two neutron stars in the merger event GW170817 at the
90% level (open squares) as well as A(1.4Mg) at the 90%
level extracted from GW170817 (Abbott et al. 2018) (open
circle).

In the multimessenger era, another important con-
straint of the canonical neutron star mass (1.4Mg) is
the tidal deformability A 4ps,. In Fig. 6, the tidal de-
formability Aj4ar, for PNM, HNM(I), HNM(II), and
HNM(III) from the NLEFT are 597(5)(18), 451(5)(31),
587(5)(19), and 597(5)(18), respectively. The HNM(III)
gives the largest value. The initial estimation for
the tidal deformability A; .47, has an upper bound
A1.anm, < 800 (Abbott et al. 2017) from the observa-
tion of Binary Neutron Star merger event GW170817.
Then a revised analysis from the LIGO and Virgo col-
laborations gave Ay 4p7, = 1901“;’38 (Abbott et al. 2018).
It is important to underscore that our results are located
in these regions and agree well with the one inferred in
Ref. (Fasano et al. 2019) for the two neutron stars in the
merger event GW170817 at the 90% level.

The integral quantities of a neutron star, such as the
mass, radius, moment of inertia, and quadrupole mo-
ment, depend sensitively on the neutron star’s internal
structure and thus on the EoS (Greif et al. 2020). How-
ever, the universal I-Love-Q relations, which connect
the moment of inertia I, tidal deformability A, and the
quadrupole moment () in a slow rotation approximation,
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Figure 7. Universal relations for PNM and HNM together
within the slow-rotation approximation. The black solid line
is the fitted curve, the bottom panel is the absolute fractional
difference between the fit curves and the numerical results.
(a) I-Love relation, (b) Q-Love relation, (c) I-Q relation.
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Table 3. Numerical coefficients for the fit formula of the I-Love, I-Q, and @-Love relations.

X; a; bz

¢ d; e;

A | 1.49081 x 10°
A | 1.95541 x 1071
Q | 1.40552 x 10°

~ &~

5.93228 x 1072
9.42324 x 1072
5.15966 x 1071

2.25755 x 1072 | —7.05724 x 10™* | 8.22849 x 107¢
4.84774 x 1072 | —4.45415 x 1072 | 1.35698 x 10™*
4.82729 x 1072 | 1.69043 x 1072 | 1.16931 x 10~*

have been established for both hadronic EoSs and hy-
peronic EoSs from phenomenological approaches in re-
cent years (Yagi & Yunes 2013b,a, 2017; Sedrakian et al.
2023b). The I-Love relations for neutron star matter
with hyperons from our ab initio calculations are shown
in the Fig. 7(a). The dimensionless moment of inertia I
is defined as I = I/M?3. As suggested in Refs. (Yagi &
Yunes 2013b,a, 2017; Sedrakian et al. 2023b), the uni-
versal relations of I and A can be explored by using
the ansatz, Iny; = a; +b; Inz; + ¢;(Inx;)? + d;(In ;)3 +
ei(Inz;)*, where the coefficients are listed in Table 3.
These coefficients closely resemble those in Ref. (Yagi
& Yunes 2017; Li et al. 2023), where a large number
of FoSs are considered. The bottom panels show the
absolute fractional difference between all the data and
the fit, which remains below 1% across the entire range.
Consequently, these relations are highly insensitive to
whether the input EoSs include hyperons and demon-
strate a high level of accuracy. While the underlying
cause of this universal behavior remains incompletely
understood, its practical utility is promising. By aid-
ing in the constraint of quantities challenging to observe
directly and by eliminating uncertainties related to the
EoS during data analysis, it serves as a valuable tool.
This universal relation enables the extraction of the mo-
ment of inertia of a neutron star with a mass of 1.4Mg,
denoted as I_1_4M®, from the tidal deformability Ay 427,
observed in GW170817. The revised analysis from the
LIGO and Virgo Collaborations, Ay 47, = 1907350 (Ab-
bott et al. 2018), leads to 1:1,4M® = 10.25;"%:‘%8 as shown
in Fig. 7(a). These values are consistent with other re-
sults, such as Iy 4p, = 11.1073°53 obtained using a large
set of candidate neutron star EoSs based on relativistic
mean-field and Skyrme-Hartree-Fock theory (Landry &
Kumar 2018) and I_1,4M® = 10.30f§€’8 from the rela-
tivistic BHF theory in the full Dirac space (Wang et al.
2022). The @Q-Love and I-Q relations are also shown in
Fig. 7(b) and Fig. 7(c).

In addition to studying the properties of neutron stars
in static and slow-rotation approximation, exploring
their properties under rapid rotation is also a fascinat-
ing and significant area of research. We evaluate the
effects of uniform rotation on two millisecond pulsars ob-
served by the NICER collaboration: PSR J0030+0451
and PSR J0740+6620, with rotational frequencies of
205 Hz (Vinciguerra et al. 2024), 346 Hz (Salmi et al.

2024) and the most rapid known pulsar PSR J1748-
2446ad observed to date with 716 Hz (Hessels et al.
2006). The effect of rotation on stellar structures plays
a crucial role in determining the neutron star mass at
a given central energy density. Fig. 8 illustrates how
the gravitational mass varies with central energy den-
sity for both static and rotating configurations, using
the EoSs of PNM and HNM from NLEFT calculations.
At a given central energy density, the mass of a neu-
tron star increases with increasing rotational frequency
for both PNM and HNM. This underscores the signif-
icant impact of centrifugal forces on the structure of
neutron stars. Also, for a given non-zero frequency and
central energy density, the neutron star mass obtained
from HNM(III) remains larger than those from HNM(II)
and HNM(I), consistent with the conclusions drawn for
static case. Specifically, for HNM(II), it can support a
neutron star with 2Mg when the rotational frequency
reaches 716 Hz.

In Fig. 9, the gravitational masses of both static and
rotating neutron stars from PNM and HNM are plotted
as functions of their equatorial radii. The maximum
masses for PNM, HNM(I), HNM(II), and HNM(III)
are as follows: at v = 0 Hz, 2.19(1)(1), 1.59(1)(1),
1.94(1)(1), and 2.17(1)(1) Mg; at v = 205 Hz,
2.20(1)(1), 1.60(1)(1), 1.95(1)(1), and 2.18(1)(1) Me;
at v = 346 Hz, 2.21(1)(1), 1.61(1)(1), 1.96(1)(1),
and 2.19(1)(1) Mg; and at v = 716 Hz, 2.24(1)(1),
1.64(1)(1), 1.99(1)(1), and 2.22(1)(1) Mgy. It can
be observed that uniform rotation at » = 205 and
346 Hz has negligible effects on the maximum mass
and only a slight impact on intermediate masses. Even
at the largest frequency of v = 716 Hz, the im-
pact on the maximum mass is minimal, resulting in
an increase of approximately 0.05 Mg. In addition,
the radii of a 1.4Mg neutron star for PNM, HNM(I),
HNM(II), and HNM(III) are as follows: at v = 0
Hz, Riame = 13.10(1)(7), 12.71(4)(13), 13.09(1)(8),
and 13.10(1)(7) km; at v = 205 Hz, 13.26(1)(7),
12.89(4)(14), 13.25(1)(8), and 13.26(1)(7) km; at v =
346 Hz, 13.45(1)(7), 13.10(4)(14), 13.44(1)(8), and
13.45(1)(7) km; and at v = 716 Hz, 15.09(2)(14),
14.86(5)(15), 15.08(2)(14), and 15.09(2)(14) km. There-
fore, it is noteworthy that neutron stars spinning at
716 Hz exhibit a significant impact on their radii, partic-
ularly for low-mass stars, resulting in an increase of ap-
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Figure 8. Gravitational mass M as a function of central energy density .. Four cases are shown for constant spin frequencies
v = 0,205,346, 716 Hz. These calculations are based on the EoSs of PNM and HNM from the NLEFT calculations.

proximately 2 km. This increased rotational frequency
leads to a noticeable expansion in the equatorial radii,
altering the overall structure of the star. Such effects
are more pronounced in lower-mass neutron stars, where
the centrifugal forces induced by rapid rotation have
a greater influence on the star’s geometry and stabil-
ity. To further compare our results of mass-radius re-
lations to astrophysical constraints, we also show the
68% and 95% credible regions of joint estimations on
mass and radius for PSR J0437-4715 (Choudhury et al.
2024), PSR J07404+6620 (Salmi et al. 2024), and PSR
J0030+0451 (Vinciguerra et al. 2024) from NICER col-
laboration in Fig. 9. At v = 0, 205, and 346 Hz,
the neutron star radii predicted by PNM, HNM(III),
and HNM(II) align well with the observations of all
three NICER sources, but the radii predicted by HNM
(I) are consistent only with PSR J0437-4715 and PSR
J0030+0451. For low-mass neutron stars with radii be-
low approximately 18 km in Fig. 9, the spin frequency
of 716 Hz remains below the Kepler frequency, ensur-

ing stability. As the mass decreases further, the spin
frequency approaches the Kepler limit, resulting in in-
stability.

4. SUMMARY

In summary, by utilizing a recently developed aux-
iliary field quantum Monte Carlo algorithm, free from
sign oscillations, we derive the equation of state (EoSs)
through ab initio calculations, incorporating a signifi-
cant number of hyperons. Based on these EoSs from
the Nuclear Lattice Effective Field Theory, we inves-
tigate the structural properties of both non-rotating
and rotating neutron stars. The analysis provides key
physical quantities, including chemical potentials, par-
ticle fractions, pressure, energy density, neutron star
mass, radius, tidal deformability, and the universal I-
Love-Q relation. Notably, our study explores both non-
rotating and rotating configurations for neutron stars.
For a given central energy density, the inclusion of rota-
tion enables a neutron star to achieve a gravitational
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Figure 9. The gravitational mass M as a function of the equatorial radii Req. Four cases are shown for constant spin frequencies
v = 0,205,346,716 Hz. Results are obtained with EoSs of PNM and HNM from the LEFT calculations. The 68% and 95%
credible regions of joint estimations on mass and radius for PSR J0437-4715 (Choudhury et al. 2024), PSR J07404-6620 (Salmi
et al. 2024), and PSR J0030+0451 (Vinciguerra et al. 2024) from NICER are also shown. The gray shaded area in the upper

left corner denotes the constraints from the causality.

mass higher than the non-rotating counterpart. The predictions are consistent with these observational con-
most rapid spin frequency 716 Hz has a significant im- straints.

pact on the neutron star radii, particularly for low-mass
stars, reflecting significant impact of centrifugal force
that pushes the limits of mass and radius beyond those
of static configurations. Similar patterns in the mass-
radius relations are observed across the four different
EoSs, e.g., PNM, HNM(I), HNM(II), and HNM(IIT), in-
dicating that the impact of rotational dynamics on the
mass-radius relation is consistent, whether the EoS in-
cludes hyperons or not. By comparing the calculated
astrophysical quantities of both static and rapidly ro-
tating neutron stars with recent astronomical observa-
tions of massive neutron stars, gravitational waves, and
simultaneous mass-radius measurements, our ab initio
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