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ABSTRACT

The equation of state (EoS) of neutron matter plays a decisive role to understand the neutron star

properties and the gravitational waves from neutron star mergers. At sufficient densities, the appear-

ance of hyperons generally softens the EoS, leading to a reduction in the maximum mass of neutron

stars well below the observed values of about 2 solar masses. Even though repulsive three-body forces

are known to solve this so-called “hyperon puzzle”, so far performing ab initio calculations with a sub-

stantial number of hyperons for neutron star properties has remained elusive. Starting from the newly

developed auxiliary field quantum Monte Carlo algorithm to simulate hyper-neutron matter (HNM)

without any sign oscillations, we derive three distinct EoSs by employing the state-of-the-art Nuclear

Lattice Effective Field Theory. We include NΛ, ΛΛ two-body forces, NNΛ, and NΛΛ three-body

forces. Consequently, we determine essential astrophysical quantities such as the neutron star mass,

radius, tidal deformability, and the universal I-Love-Q relation. The maximum mass, radius and tidal

deformability of a 1.4M⊙ neutron star are predicted to be 2.17(1)(1) M⊙, R1.4M⊙ = 13.10(1)(7) km,

and Λ1.4M⊙ = 597(5)(18), respectively, based on our most realistic EoS. These predictions are in good

agreement with the latest astrophysical constraints derived from observations of massive neutron stars,

gravitational waves, and joint mass-radius measurements. Also, for the first time in ab initio calcula-

tions, we investigate both non-rotating and rotating neutron star configurations. The results indicate

that the impact of rotational dynamics on the maximum mass is small, regardless of whether hyperons

are present in the EoS or not.

1. INTRODUCTION

Neutron stars arguably emerge as the most captivat-

ing and enigmatic astrophysical objects in the era of

multi-messenger astronomy (Abbott et al. 2017, 2018;

Tong et al. 2020; Huth et al. 2022; Kumar et al. 2024;

Tsang et al. 2024; Marino et al. 2024). They are com-

posed of the densest form of baryonic matter observed

in the universe, and their interiors may harbor exotic

and previously unknown forms of matter (Lattimer &
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Prakash 2004; Gal et al. 2016; Burgio et al. 2021b).

The recent various neutron star observations, includ-

ing gravitational waves, electromagnetic radiation, and

X-ray bursts, have opened new frontiers for studying

the neutron star properties. These observations are ex-

pected to provide crucial insights into the mysterious

dense matter at the core of neutron stars, illuminating

the fundamental interactions and behavior of matter at

supra-saturation nuclear densities.

The recent precise measurements of neutron star

masses offer valuable constraints on the equation of state

(EoS) of neutron star matter (Demorest et al. 2010; An-

toniadis et al. 2013; Fonseca et al. 2016; Arzoumanian

et al. 2018; Cromartie et al. 2020; Fonseca et al. 2021),

which is essential for refining theoretical models of their
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internal composition and behavior. However, the dis-

covery of neutron stars with masses exceeding 2 solar

masses challenges many previous theoretical predictions

involving exotic non-nucleonic components, such as hy-

perons. This has led to the emergence of the ”hyperon

puzzle,” a long-standing issue in the field of nuclear

physics and astrophysics (Schaffner-Bielich 2008; Takat-

suka et al. 2008; Dapo et al. 2010; Vidana et al. 2011;

Schulze & Rijken 2011; Weissenborn et al. 2012; Ya-

mamoto et al. 2013; Astashenok et al. 2014; Lonardoni

et al. 2015; Maslov et al. 2015; Chatterjee & Vidaña

2016; Masuda et al. 2016; Haidenbauer et al. 2017; Lo-

goteta et al. 2019; Gerstung et al. 2020; Friedman & Gal

2023). The appearance of hyperons at higher densities

typically softens the EoS, resulting in a reduction in the

maximum mass of neutron stars, which conflicts with

observations of massive neutron stars. Resolving this

puzzle is crucial not only for advancing our understand-

ing of neutron star physics but also for comprehending

the complex interplay between strong nuclear forces and

the behavior of dense matter under extreme conditions,

including the onset of hyperons, kaons, or other exotic

particles. Furthermore, neutron stars, due to their ex-

treme compactness, exhibit remarkably high rotational

speeds compared to other astrophysical objects. PSR

J1748-2446ad, with a rotational frequency of 716 Hz, is

the fastest known pulsar (Hessels et al. 2006). At such

extreme speeds, neutron stars experience significant cen-

trifugal forces, leading to an oblate shape that deviates

from spherical symmetry. It can be modeled as axisym-

metric, rigidly rotating bodies under Einstein’s general

relativity. These rapid rotations give rise to unique phe-

nomena that are pivotal for imposing tighter constraints

on the EoS (Komatsu et al. 1989; Weber & Glendenning

1991; Stergioulas & Friedman 1995; Glendenning et al.

1997; Hessels et al. 2006; Li et al. 2016; Qu et al. 2025).

On the theoretical side, the EoS can be derived

through various nuclear many-body theories (Oertel

et al. 2017; Burgio et al. 2021a; Tong et al. 2022; Se-

drakian et al. 2023a). Especially, ab initio methods us-

ing realistic nucleon-nucleon (NN) interactions stand out

for their predictive power, free from the uncertainties

of adjustable parameters. Among these, the state-of-

the-art Nuclear Lattice Effective Field Theory (NLEFT)

combines the theoretical principles of effective field the-

ory (EFT) with advanced numerical techniques, offering

a powerful approach to solving quantum many-body sys-

tems (Lee 2009; Lähde & Meißner 2019). This method

has been used to describe the atomic nuclei (Borasoy

et al. 2006) and neutron matter (Lee & Schäfer 2005)

in pionless EFT at leading order (LO), the Hoyle state

in 12C (Epelbaum et al. 2011) and α-α scattering (El-

hatisari et al. 2015) in chiral EFT at next-to-next-to-

leading order (N2LO). More recently, it was extended

to the properties of atomic nuclei and the EoS of neu-

tron and symmetric nuclear matter in chiral EFT at

next-to-next-to-next-to-leading order (N3LO) (Elhatis-

ari et al. 2024). In addition, this method has been used

to formulate an EFT with only four parameters and

built on Wigner’s SU(4) spin-isospin symmetry (Wigner

1937). This EFT can reproduce light- and medium-

mass nuclei and neutron matter EoS with percent-level

accuracy (Lu et al. 2019). Applications include nu-

clear thermodynamics (Lu et al. 2020), cluster studies

in hot dilute matter (Ren et al. 2024), the geometry

of 12C states (Shen et al. 2021, 2023), and resolving

the alpha-particle monopole transition form factor puz-

zle (Meißner et al. 2024). The first exploration of ΛN

scattering was performed on the lattice in Ref. (Bour

2009). The Λ particle was included into the NLEFT

framework in Ref. (Frame et al. 2020) using the im-

purity lattice Monte Carlo (ILMC) method (Elhatisari

& Lee 2014). This study focused on calculating the

binding energies of light hypernuclei, specifically 3
ΛH,

4
ΛH, and 5

ΛHe. The ILMC method was also extended

to study the systems containing two impurities (Hilden-

brand et al. 2022). Recently, a novel auxiliary field quan-

tum Monte Carlo (AFQMC) algorithm was introduced

to efficiently investigate hyper-neutron systems with an

arbitrary number of hyperons (Tong et al. 2025). Based

on the achievements of EFT within Wigner’s SU(4)

spin-isospin symmetry, referred to as the minimal nu-

clear interaction, and the newly developed AFQMC al-

gorithm for hyper nuclear systems without any sign os-

cillations (Tong et al. 2025), we employ pionless EFT

at LO for nucleons (König et al. 2017) throughout this

work. This approach leverages the minimal nuclear in-

teraction as a foundation for our hyper-neutron matter
(HNM) EoS calculations. We also utilize minimal inter-

actions for the hyperon-nucleon and hyperon-hyperon

interactions.

In this work, it is timely and interesting to study the

EoS and the properties of non-rotating and rotating neu-

tron stars with hyperons from the NLEFT. This paper

is arranged as follows. The theoretical framework of

NLEFT, the EoS, and neutron star properties are briefly

introduced in Section 2. In Section 3, the properties of

neutron stars and related discussions are presented. The

summary is given in Section 4.

2. THEORETICAL FRAMEWORK

2.1. Nuclear Lattice Effective Field Theory

We map the four-dimensional space-time on a finite

volume with spatial length L in all three directions and
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temporal length Lt in the Euclidean time direction. We

further discretize the space and time directions in terms

of a spatial and temporal lattice spacing a and at, re-

spectively. Our basic degrees of freedom are nucleons,

so as not to resolve their inner structure, a ≳ 1 is re-

quired. The spatial coordinates on the lattice are given

by a three-vector n⃗ = (nx, ny, nz) with nx, ny, nz in-

tegers. The temporal lattice spacing is usually taken

much smaller. For more details, the reader is referred to

Ref. (Lähde & Meißner 2019).

The Hamiltonian for hyper-nuclear system is defined

as,

H =Hfree +
cNN

2

∑
n⃗

: [ρ̃(n⃗)]
2
: +

cTNN

2

∑
I,n⃗

: [ρ̃I(n⃗)]
2
:

+ cNΛ

∑
n⃗

: ρ̃(n⃗)ξ̃(n⃗) : +
cΛΛ

2

∑
n⃗

:
[
ξ̃(n⃗)

]2
:

+ V GIR
NN + V GIR

NΛ + V GIR
ΛΛ + VCoulomb

+ VNNN + VNNΛ + VNΛΛ , (1)

where Hfree is the kinetic energy term defined by us-

ing fast Fourier transforms to produce the exact disper-

sion relations EN = p2/(2mN ) and EΛ = p2/(2mΛ)

with nucleon mass mN = 938.92 MeV and hyperon

mass mΛ = 1115.68 MeV, respectively, the :: symbol

indicates normal ordering, cNN is the coupling constant

of the SU(4) symmetric short-range two-nucleon inter-

action, cTNN is the coupling constant of the isospin-

dependent short-range two-nucleon interaction, that

breaks SU(4) symmetry, cNΛ (cΛΛ) is the coupling

constant of the spin-symmetric short-ranged hyperon-

nucleon (hyperon-hyperon) interaction, and ρ̃ (ξ̃) is nu-

cleon (hyperon) density operator, that is smeared both

locally and non-locally (Elhatisari et al. 2016),

ρ̃(n⃗) =
∑

i,j=0,1

ã†i,j(n⃗) ãi,j(n⃗) + sL
∑

|n⃗−n⃗′|2=1

∑
i,j=0,1

ã†i,j(n⃗
′) ãi,j(n⃗

′) , (2)

ρ̃I(n⃗) =
∑

i,j,j′=0,1

ã†i,j(n⃗) [τI ]j,j′ ãi,j′(n⃗) + sL
∑

|n⃗−n⃗′|2=1

∑
i,j,j′=0,1

ã†i,j(n⃗
′) [τI ]j,j′ ãi,j′(n⃗

′) , (3)

ξ̃(n⃗) =
∑
i=0,1

b̃†i (n⃗) b̃i(n⃗) + sL
∑

|n⃗−n⃗′|2=1

∑
i=0,1

b̃†i (n⃗
′) b̃i(n⃗

′) . (4)

The smeared annihilation and creation operators, ã (b̃)

and ã† (b̃†) for nucleons (hyperons), have with spin i =

0, 1 (up, down) and isospin j = 0, 1 (proton, neutron)

indices,

ãi,j(n⃗) = ai,j(n⃗) + sNL

∑
|n⃗′−n⃗|=1

ai,j(n⃗
′) , (5)

b̃i(n⃗) = bi(n⃗) + sNL

∑
|n⃗′−n⃗|=1

bi(n⃗
′). (6)

In Eq. (1), VCoulomb represents the Coulomb interac-

tion (Li et al. 2018). V GIR
NN , V GIR

NΛ , and V GIR
ΛΛ , de-

note the Galilean invariance restoration (GIR) inter-

actions for the nucleon-nucleon, nucleon-hyperon, and

hyperon-hyperon interactions, respectively (Li et al.

2019). VNNN , VNNΛ, and VNΛΛ are the three-baryon

interactions. The three-baryon interactions are defined

with two different choices of local smearing,

VNNN =
∑
i=1,2

c
(di)
NNN

6

∑
n⃗

:
[
ρ(di)(n⃗)

]3
: , (7)

where the parameter di denotes the range of local smear-

ing with 0 ≤ d1 < d2 ≤ 3 (in lattice units). Similarly,
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the three-baryon interactions consisting of two nucleons

and one hyperon are defined with two different choices

of local smearing,

VNNΛ =
∑
i=1,2

c
(di)
NNΛ

2

∑
n⃗

:
[
ρ(di)(n⃗)

]2
ξ(di)(n⃗) : , (8)

and the interactions involving one nucleon and two hy-

perons are expressed by also two different choices of local

smearing,

VNΛΛ =
∑
i=1,2

c
(di)
NΛΛ

2

∑
n⃗

: ρ(di)(n⃗)
[
ξ(di)(n⃗)

]2
: , (9)

where ρ (ξ) is then purely locally smeared nucleon (hy-

peron) density operator with annihilation and creation

operators, a (b) and a† (b†) for nucleons (hyperons),

ρ(d)(n⃗) =
∑

i,j=0,1

a†i,j(n⃗) ai,j(n⃗)

+ s3BL

d∑
|n⃗−n⃗′|2=1

∑
i,j=0,1

a†i,j(n⃗
′) ai,j(n⃗

′) ,

(10)

ξ(d)(n⃗) =
∑
i=0,1

b†i (n⃗) bi(n⃗)

+ s3BL

d∑
|n⃗−n⃗′|2=1

∑
i=0,1

b†i (n⃗
′) bi(n⃗

′) .

(11)

Here, the parameter d gives the range of local smearing,

and s3BL defines the strength of the local smearing.

In our lattice simulations, we use the AFQMC

method, which effectively suppresses sign oscillations.

The following discussion begins with a discrete auxiliary

field formulation for the SU(4) symmetric short-ranged

two-nucleon interaction given in Eq. (1),

: exp
(
−at cNN

2
ρ̃2
)
:=

3∑
k=1

wk : exp
(√

−at cNN sk ρ̃
)
:

(12)

where at is the temporal lattice spacing. From a Taylor

expansion of Eq. (12), we determine the constants sk
and wk as s1 = −s3 =

√
3, s2 = 0, w1 = w3 = 1/6 and

w2 = 2/3. Since we use minimal interactions for the

hyperon-nucleon and hyperon-hyperon interactions, the

spin and isospin independent two-baryon interaction in

Eq. (1) is expressed as,

V2B =
cNN

2

∑
n⃗

: [ρ̃(n⃗)]
2
: +cNΛ

∑
n⃗

: ρ̃(n⃗)ξ̃(n⃗) :

+
cΛΛ

2

∑
n⃗

:
[
ξ̃(n⃗)

]2
: ,

(13)

and it can be rewritten in the following form,

V2B =
cNN

2

∑
n⃗

:
[
/̃ρ(n⃗)

]2
:

+
1

2

(
cΛΛ − c2NΛ

cNN

)∑
n⃗

:
[
ξ̃(n⃗)

]2
: ,

(14)

where /̃ρ is defined as,

/̃ρ = ρ̃+
cNΛ

cNN
ξ̃ . (15)

In hypernuclear systems, the nucleon-nucleon interac-

tion strength cNN is significantly stronger than the

nucleon-hyperon interaction strength cNΛ. As a result,

the overall interaction strength of the second term in

Eq.(14) is naturally weak. Consequently, we treat the

first term in Eq.(14) non-perturbatively, while the sec-

ond term is computed using first-order perturbation the-

ory.

Employing a Hubbard-Stratonovich transformation

for the first term in Eq. (14) enables the simulations

of systems consisting of both arbitrary number of nucle-

ons and arbitrary number of Λ hyperons with a single

auxiliary field,

: exp
(
−at cNN

2
/̃ρ
2
)
:=

3∑
k=1

wk : exp
(√

−at cNN sk /̃ρ
)
. :

(16)

It is evident that the solution for the auxiliary field vari-

ables sk and weights wk is consistent with systems con-

taining only nucleons. For the two-nucleon interaction

∼ cTNN , known to break SU(4) symmetry and to in-

duce significant sign oscillations, which was previously

disregarded in minimal nuclear interaction studies (Lu

et al. 2019, 2020; Ren et al. 2024; Shen et al. 2021,

2023; Meißner et al. 2024), we also employ a Hubbard-

Stratonovich transformation and introduce a discrete

auxiliary field. Note that this term is required to ob-

tain a good description of nuclear matter as discussed

below.

2.2. Neutron star EoS and Neutron star properties

Hyper-neutron matter consists of neutrons and a frac-

tion of Λ hyperons defined as xΛ = ρΛ/ρ, where ρ =

ρN + ρΛ represents the total baryon density of the sys-

tem. Therefore, the neutron and hyperon densities are

written as ρN = (1 − xΛ)ρ and ρΛ = ρxΛ, respectively.

The HNM energy per particle can be expressed as

eHNM(ρ, xΛ) =
EHNM(ρ, xΛ)

Ntot
+mN (1− xΛ) +mΛxΛ,

(17)
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where EHNM(ρ, xΛ) and Ntot = NN + NΛ denotes the

total energy of HNM and the total number of baryons.

Now, our objective is to compute eHNM(ρ, xΛ), and sub-

sequently, calculate the energy density εHNM, defined as

εHNM = ρeHNM. The chemical potentials for neutrons

and hyperons, denoted by µN (ρ, xΛ) and µΛ(ρ, xΛ) re-

spectively, are then evaluated using the expressions,

µN (ρ, xΛ) =
∂εHNM

∂ρN
, µΛ(ρ, xΛ) =

∂εHNM

∂ρΛ
. (18)

The hyperon fraction as a function of the baryon den-

sity, xΛ(ρ), is determined by imposing the condition

µΛ = µN , which yields the threshold density ρthΛ which

is marking the point at which xΛ(ρ) first deviates from

zero. Finally, the pressure P (ρ) of HNM is obtained

from the energy density,

P (ρ) = ρ2
d

dρ

εHNM

ρ
=

∑
i=N,Λ

ρiµi − εHNM. (19)

Once the EoS of pure neutron matter (PNM) and

HNM in the form P (ε) is obtained in Eq. (19), the mass

and radius of a neutron star can be described by the

Tolman-Oppenheimer-Volkoff (TOV) equations (Tol-

man 1939; Oppenheimer & Volkoff 1939)

dP (r)

dr
= − [P (r) + ε(r)][M(r) + 4πr3P (r)]

r[r − 2M(r)]
, (20a)

dM(r)

dr
= 4πr2ε(r), (20b)

where P (r) is the pressure at radius r and M(r) is the

total mass inside a sphere of radius r. Furthermore,

to solve the TOV equations, the EoS must cover the

entire structure of the neutron star, from the crust to

the core. In this work, we mainly focus on discussing

the core region within the NLEFT. For the crust, we

adopt the well-established EoSs formulated by Baym,

Pethick, Sutherland (BPS) (Baym et al. 1971b) and by

Baym, Bethe, and Pethick (BBP) (Baym et al. 1971a).

Besides the masses and radii, another important prop-

erty of neutron star, the tidal deformability Λ, is defined

as

Λ =
2

3
k2C

−5, (21)

which represents the mass quadrupole moment response

of a neutron star to the strong gravitational field induced

by its companion. Further, C = M/R is the compact-

ness parameter, M and R are the neutron star mass and

radius, and k2 is the second love number

k2 =
8C5

5
(1− 2C)2[2− yR + 2C(yR − 1)]

× {6C[2− yR + C(5yR − 8)]

+ 4C3[13− 11yR + C(3yR − 2) + 2C2(1 + yR)]

+ 3(1− 2C)2[2− yR + 2C(yR − 1)] ln(1− 2C)}−1,
(22)

where yR = y(R) can be calculated by solving the fol-

lowing differential equation:

r
dy(r)

dr
+ y2(r) + y(r)F (r) + r2Q(r) = 0, (23)

with

F (r) =

[
1− 2M(r)

r

]−1

×
{
1− 4πr2[ε(r)− P (r)]

}
,

(24a)

Q(r) =

{
4π

[
5ε(r) + 9P (r) +

ε(r) + P (r)
∂P
∂ε (r)

]
− 6

r2

}

×
[
1− 2M(r)

r

]−1

−
[
2M(r)

r2
+ 2× 4πrP (r)

]2
×

[
1− 2M(r)

r

]−2

. (24b)

The differential equation (23) can be integrated together

with the TOV equations with the boundary condition

y(0) = 2.

The moment of inertia is calculated under the

slow-rotation approximation pioneered by Hartle and

Thorne (Hartle 1967; Hartle & Thorne 1968), where

the frequency Ω of a uniformly rotating neutron star

is significantly lower than the Kepler frequency at the

equator, Ω ≪ Ωmax ≃
√
M/R3. In the slow-rotation

approximation, the moment of inertia of a uniformly ro-

tating, axially symmetric neutron star is given by the

following expression (Fattoyev & Piekarewicz 2010)

I =
8π

3

∫ R

0

r4e−ν(r) ω̄(r)

Ω

ϵ(r) + P (r)√
1− 2M(r)/r

dr. (25)

The quantity ν(r) is a radially-dependent metric func-

tion and defined as

ν(r) =
1

2
ln

(
1− 2M

R

)
−

∫ R

r

M(x) + 4πx3P (x)

x2[1− 2M(x)/x]
dx.

(26)

The frame-dragging angular velocity ω̄ is usually ob-

tained by the dimensionless relative frequency ω̃ ≡ ω̄/Ω,

which satisfies the following second-order differential

equation:

d

dr

[
r4j(r)

dω̃(r)

dr

]
+ 4r3

dj(r)

dr
ω̃(r) = 0, (27)
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where j(r) = e−ν(r)
√
1− 2M(r)/r for r ≤ R. The

relative frequency ω̃(r) is subject to the following two

boundary conditions

ω̃′(0) = 0, (28a)

ω̃(R) +
R

3
ω̃′(R) = 1. (28b)

It should be noted that under the slow-rotation approx-

imation, the moment of inertia is independent of the

stellar frequency Ω.

The quadrupole moment describes how much a neu-

tron star is deformed away from sphericity due to rota-

tion. It can be computed by numerically solving for the

interior and exterior gravitational field of a neutron star

in a slow-rotation (Hartle 1967; Hartle & Thorne 1968)

and a small-tidal-deformation approximation (Hinderer

2008; Hinderer et al. 2010). The quadrupole moment

in this work is calculated by following the detailed in-

structions described in Ref. (Yagi & Yunes 2013a). To

explore the universal I-Love-Q relations, the following

dimensionless quantities are introduced

Ī ≡ I

M3
, Q̄ ≡ − QM

(IΩ)2
. (29)

In addition, to describe the rapidly rotating and ax-

isymmetric neutron star configurations in general rel-

ativity, we treat the stellar matter as a perfect fluid,

characterized by the energy-momentum tensor:

Tµν = (ε+ P )uµuν − gµνP, (30)

where ε, P , and uµ are the energy density, pressure,

and fluid’s four-velocity, respectively. We solve the Ein-

stein field equations for an axisymmetric and stationary

space-time with the metric

ds2 = − eγ+ρdt2 + e2α(dr2 + r2dθ2)

+ eγ−ρr2 sin2 θ(dϕ− ωdt)2,
(31)

where the metric potentials γ, ρ, α, and ω are func-

tions of the radial coordinates r and the polar angle θ.

To numerically integrate the equilibrium equations, we

employ the RNS code (Stergioulas & Friedman 1995;

Paschalidis & Stergioulas 2017) to calculate the equi-

librium configurations of rotating neutron stars, deter-

mining their masses and radii for a given central energy

density.

3. NUMERICAL RESULTS AND DISCUSSION

The coupling constants for the NN interaction are de-

termined by fitting to the two S-wave phase shifts of NN

scattering. The results are c1S0
= −1.21× 10−7 MeV−2

and c3S1
= −1.92×10−7 MeV−2 corresponding with the

spin-singlet isospin-triplet and the spin-triplet isospin-

singlet channel, which are related to the LECs given

in Eq. (1) via cNN = (3 c1S0
+ c3S1

)/4, cTNN = (c1S0
−

c3S1
)/4. The two LECs of the three-nucleon forces given

in Eq. (7) are determined by fitting to the saturation

properties of symmetric nuclear matter. This procedure

involves considering all possible combinations three-

nucleon forces with d1 and d2 such that 0 ≤ d1 < d2 ≤ 3.

These combinations and the corresponding energies per

nucleon at the saturation density of symmetric nuclear

matter are presented in Tab. 1. The energy per nu-

cleon at the saturation point is -16.90(0.02)(0.25) MeV,

where the first parentheses represent the statistical error

and the second denote the theoretical uncertainty arising

from different three-nucleon force combinations. This

result is in good agreement with the empirical value.

The parameters of the NΛ and ΛΛ interactions are de-

termined by fitting them to experimental data (Sechi-

Zorn et al. 1968; Alexander et al. 1968; Kadyk et al.

1971; Hauptman et al. 1977) and the ΛΛ 1S0 scattering

phase shift from chiral EFT (Haidenbauer et al. 2016).

The NNΛ and NΛΛ forces are further constrained by

the separation energies of single- and double-Λ hyper-

nuclei spanning systems from 5
ΛHe to 6

ΛΛBe, and the Λ

threshold densities ρthΛ around (2− 3)ρ0 simultaneously,

denoted as HNM(I), HNM(II) and HNM(III), respec-

tively. In our calculations we use a spatial lattice spac-

ing of a = 1.1 fm and a temporal lattice spacing of

at = 0.2 fm. The local smearing parameter sL = 0.06

and nonlocal smearing parameter sNL = 0.6. For the

three-baryon interaction, the local smearing parameter

is s3BL = 0.06. We perform our calculations at differ-

ent finite Euclidean time steps and extrapolate to the

infinite Euclidean time limit using a single and double

exponential ansatz (Lähde & Meißner 2019). Further-

more, for the computation of PNM and HNM energies

we use lattices with a length of 6.6 fm and impose the av-

erage twisted boundary conditions (ATBC) to efficiently

eliminate finite volume effects.

First, we compare our calculations with a few others

that we consider as benchmarks, focusing exclusively on

purely nucleonic scenarios. We predict the ground state

energies of several light nuclei with A = 3 − 16 based

on our interaction, and the results are summarized in

Tab. 2. These results are consistent with those reported

in Ref. (Lu et al. 2019), except for 3H and 4He, which

were used to constrain the 3N force therein.

Then, we compare our results for PNM with that

of Lovato et al. (Lovato et al. 2022) in the left panel

of Fig. 1. They presented the neutron matter EoS

as derived from three independent many-body meth-

ods: Brueckner-Hartree-Fock (BHF), Fermi hypernet-
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Table 1. The coupling constants of the NNN interaction for all possible combinations of d1 and d2 with 0 ≤ d1 < d2 ≤ 3 in
Eq. (7), along with the corresponding binding energy per nucleon at the saturation density of symmetric nuclear matter.

Coupling constants Binding energy

c
(di)
NNN (MeV−5) E/A (MeV)

c
(d1=0)
NNN = −3.78× 10−11, c

(d2=1)
NNN = 3.12× 10−11 −17.42(2)

c
(d1=0)
NNN = 2.11× 10−12, c

(d2=2)
NNN = 4.42× 10−12 −16.90(2)

c
(d1=0)
NNN = 7.27× 10−12, c

(d2=3)
NNN = 2.09× 10−12 −16.63(2)

c
(d1=1)
NNN = 1.55× 10−12, c

(d2=2)
NNN = 4.23× 10−12 −16.89(2)

c
(d1=1)
NNN = 4.96× 10−12, c

(d2=3)
NNN = 1.78× 10−12 −16.71(2)

c
(d1=2)
NNN = 6.01× 10−12, c

(d2=3)
NNN = −7.08× 10−13 −16.89(2)
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Figure 1. Left Panel: Neutron matter EoS as obtained from the NLEFT. The red shaded band represents our results with the
uncertainty from three-nucleon forces and Monte Carlo errors, while the red solid curve denotes the mean value. The results
obtained with other many-body methods (Lovato et al. 2022) are also shown, including the Brueckner-Hartree-Fock (BHF)
theory, Fermi hypernetted chain (FHNC), and Auxiliary Field Diffusion Monte Carlo (AFDMC) using the AV18 two-nucleon
and Urbana IX (UIX) three-nucleon forces. Right Panel: Speed of sound as a function of density for the pure neutron matter
(PNM). The blue dashed curve is calculated with the Argonne V8’ (AV8’) and the UIX forces from the AFDMC (Lonardoni
et al. 2015). The dot-dashed line represents the causality limit c2s = 1.

Table 2. Calculated ground state energies of some light
nuclei with A = 3− 16 compared to the empirical values (in
MeV). The first (second) parentheses denote the statistical
(systematic) error.

Nucleus NLEFT Exp.

3H −9.21(4)(1) −8.48
4He −29.38(1)(4) −28.3
8Be −58.38(3)(7) −56.5
12C −87.08(12)(11) −92.2
16O −121.84(28)(52) −127.6

ted chain (FHNC), and Auxiliary Field Diffusion Monte

Carlo (AFDMC). Our results are consistent with theirs

where the AV18 two-nucleon and UIX three-nucleon

forces were employed. Only at densities higher than

approximately 0.24 fm−3, the energies from the FHNC

method are lower than our results. It should be empha-

sized that the uncertainty in our calculation for PNM is

quite small. In the right panel of Fig. 1, we compare

our work to the pioneering calculations of Lonardoni

et al. (Lonardoni et al. 2015). They perform AFDMC

simulations with Nn = 38, 54, 66 neutrons. For the

nucleonic sector, they use the phenomenological well-

motivated AV8’ and UIX two- and three-body forces.

Notably, their PNM EoS is stiffer compared to our re-

sults and exceeds the causality limit for the speed of

sound at densities above ρ ≃ 0.68 fm−3. Although PNM

is an idealized system that does not directly exist in neu-

tron stars, it serves as a theoretical benchmark for mod-

eling dense matter (Lovato et al. 2022). Since the neu-

tron star EoS can exhibit stiffness trends similar to or

even stiffer than those of PNM (Krastev & Sammarruca

2006), maintaining causality in the PNM EoS ensures

its physical reliability and strengthens its applicability

to astrophysical scenarios. A violation of causality in

PNM may indicate potential issues with the underlying

nuclear interactions or many-body methods, making the

model unreliable at high densities.
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Figure 2. Energy density for hyper-neutron matter (HNM).
The energy density ε as a function of different numbers for
Λ hyperons is shown for densities ρ = 0.8 fm−3 and 0.7 fm−3

(inset). The blue triangles, green circles, and red squares
represent the energy density ε of HNM with hyperons in-
teracting via the two-body interactions and the three-body
interactions. The differences between HNM(I), HNM(II) and
HNM(III) are the three-body NNΛ and NΛΛ interactions.
The shaded regions represent the uncertainty from the three-
baryon forces and Monte Carlo errors. The arrows and the
solid triangle, circle, and square denote the lowest energy
density.

The energy density ε by using the two-body inter-

actions (NN,NΛ,ΛΛ) and the three-body interactions

(NNN,NNΛ, NΛΛ) are shown in Fig. 2 for differ-

ent numbers of Λ hyperons. The differences between

HNM(I), HNM(II), and HNM(III) are the three-body

NNΛ and NΛΛ interactions. The shaded regions rep-

resent the uncertainty from the three-baryon forces and

Monte Carlo errors. The given density of ρ = 0.8 fm−3,

which is about five times the empirical nuclear matter
saturation density, ρ0, can be encountered in the core of

a neutron star. It should be noted that the quantity of Λ

hyperons corresponding to the lowest energy density is

intricately linked to accurately determining the chemical

equilibrium conditions. In contrast to the groundbreak-

ing study (Lonardoni et al. 2015) where the number of

Λ hyperons was varied from 1 to 14, the present study

indicates that the number of required Λ hyperons is com-

parable to the number of neutrons, especially at higher

densities. For instance, as depicted in Fig. 2, to fulfill

the equilibrium condition µN = µΛ at ρ = 0.8 fm−3, 102,

92, and 32 Λ hyperons are required to obtain the lowest

energy density for HNM(I), HNM(II), and HNM(III),

respectively. Similarly, at ρ = 0.7 fm−3, 76, 60, and 18

hyperons are needed for the same purpose in HNM(I),

HNM(II), and HNM(III), in order.
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Figure 3. The chemical potentials for neutrons and Λ hy-
perons. The Λ threshold densities ρthΛ are marked by open
circles. The chemical equilibrium conditions, µΛ = µn, are
fulfilled above ρthΛ . The gray shaded area indicates the values
by using the chiral SU(3) interactions NLO19 with two and
three-body forces (NΛ +NNΛ) (Gerstung et al. 2020).

The chemical potentials for neutrons and Λ hyper-

ons are shown in Fig. 3. When the density is below

the threshold value, the chemical potential of the Λ hy-

peron exceeds that of the neutron. Once the density

reaches and is above the threshold value, the chemical

potentials of both particles become equal. Moreover,

HNM (III) gives the largest chemical potential among

our three HNM systems. We also compare our work with

that of Gerstung et al. (Gerstung et al. 2020). For the

ΛN interaction, they consider two next-to-leading or-

der chiral EFT representations, called NLO13 (Haiden-

bauer et al. 2013) and NLO19 (Haidenbauer et al.

2020). For the three-body forces, they use the lead-

ing ΛNN representation based on chiral EFT (contact

terms, one-pion and two-pion exchanges) with the in-

clusion of the ΛNN ↔ ΣNN transition (Petschauer

et al. 2016) in an effective density-dependent two-body

approximation (Petschauer et al. 2017). The pertinent

LECs are given in terms of decuplet resonance satura-

tion and leave one with two B∗BBB couplings, where

B denotes the baryon octet and B∗ the decuplet. If

one only considers the ΛNN force, these two LECs ap-

pear in the combination H ′ = H1 +H2. No ΛΛN force

was considered in (Gerstung et al. 2020). The LECs H1

and H2 were constrained in Ref. (Gerstung et al. 2020)

so that the Λ single-particle potential in infinite matter

is UΛ(ρ ≃ ρ0) = −30 MeV (Gal et al. 2016). Due to

numerical instabilities in calculation of the Brueckner

G-matrix, the computation can only be done up to den-

sities ρ ≃ 3.5ρ0. The authors of Ref. (Gerstung et al.

2020) then use a quadratic polynomial to extrapolate to
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higher densities. They calculate the chemical potential

for the neutrons and Λs from the Gibbs-Duhem rela-

tion using a microscopic EoS computed from a chiral

nucleon-meson field theory in combination with func-

tional renormalization group methods. The parame-

ter combinations (H1, H2) were chosen so that the Λ

single-particle potential becomes maximally repulsive at

higher densities. The resulting chemical potentials are

displayed in Fig. 3 for the NLO19 ΛN forces. These

agree well with the HNM(III) chemical potentials up to

ρ ≃ 2.5ρ0 but show, different to what we find, no cross-

ing. Note that the forces discussed in Ref. (Gerstung

et al. 2020) have not been applied to finite nuclei.
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Figure 4. Λ-fractions for our three HNM EoSs and the
one from AFDMC (Lonardoni et al. 2015). The gray cir-
cles denote a different number of neutrons (Nn = 66, 54, 38)
and hyperons (NΛ = 1, 2, 14) in the simulation box giving
momentum closed shells in AFDMC. The black dash-dot-
dotted curve is calculated using non-relativistic BHF theory
with only the NΛ interaction, specifically Nijmegen Soft-
Core 97 (NSC97). The black loosely dashed curve is calcu-
lated by including an additional NNΛ force derived within
the framework of χEFT (Logoteta et al. 2019).

In Fig. 4, Λ-fractions for our three HNM EoSs are

shown. At the given density, the Lambda fraction

from the HNM (III) is the smallest one, further indi-

cating that the EoS for HNM (III) is the stiffest. In

Ref. (Lonardoni et al. 2015), they perform calculations

with NΛ = 1, 2, 14 hyperons and use a phenomenological

hyperon-nucleon potential based on the work of (Bod-

mer et al. 1984). The EoS of HNM is then derived with

an extrapolation function f(ρ, xΛ), which is quadratic

in density and cubic in the Λ-fraction xΛ. Clearly, our

calculations improve upon this by covering the full range

of densities and Λ-fractions relevant to the problem at

hand. In Ref. (Lonardoni et al. 2015), the Λ-fraction

increases at higher densities under their parametriza-

tion (I) of the NNΛ force, predicting a maximum neu-

tron star mass of 1.36(5)M⊙, as shown in Fig. 4. Un-

der their parametrization (II) of the NNΛ force, the

Λ-fraction drops to zero at higher densities, allowing for

neutron star masses above 2M⊙. For comparison, we

also present another result examining the effects of the

NNΛ three-body force on neutron star properties using

the BHF approach (Logoteta et al. 2019). It is notable

that the strongly repulsive three-body hyperonic inter-

actions lead to an increase in the threshold density for

the Λ hyperons and a reduction in the Λ hyperon frac-

tion. It is also important to consider β-stable nuclear

matter for a more realistic depiction of neutron stars, as

the proton fraction can reach approximately 10%-30%

at their cores, depending on the symmetry energy and

density (Tong et al. 2022; Bombaci & Logoteta 2018).

However, incorporating protons introduces additional

constraints from chemical equilibrium among protons,

neutrons, electrons, and muons, as well as charge neu-

trality, which significantly increases the computational

cost of our NLEFT simulations. For this reason, we

have focused on neutrons and Λ hyperons in the present

work, and we will extend our approach to include β-

stable matter in the next step.
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Figure 5. Pressure as a function of energy density. Shown
are the results for PNM as well as the three HNM EoS con-
sidered here.

In Fig. 5, the neutron star EoSs for PNM and for

HNM are displayed. With increasing energy density,

the pressure increases. The threshold energy density

is εthΛ = 318(1)(1) MeV fm−3, 400(1)(1) MeV fm−3,

and 551(1)(1) MeV fm−3 for HNM(I), HNM(II), and

HNM(III), respectively. The introduction of Λ hyper-

ons results in a significant softening of the EoS compared

to PNM, indicating a substantial change in stiffness at

higher densities. As expected, the inclusion of Λ hy-
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perons softens the EoS, with HNM(III) displaying the

stiffest EoS among the hyperonic cases, highlighting dif-

ferences in hyperon interactions across the calculations.

This emphasizes the critical role of hyperons in influenc-

ing the stiffness and stability of neutron star matter at

supra-saturation nuclear densities.
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Figure 6. Neutron star tidal deformability, Λ, as a function
of neutron star mass. Λ(M) is compared to the masses and
tidal deformabilities inferred in Ref. (Fasano et al. 2019) for
the two neutron stars in the merger event GW170817 at the
90% level (open squares) as well as Λ(1.4M⊙) at the 90%
level extracted from GW170817 (Abbott et al. 2018) (open
circle).

In the multimessenger era, another important con-

straint of the canonical neutron star mass (1.4M⊙) is

the tidal deformability Λ1.4M⊙ . In Fig. 6, the tidal de-

formability Λ1.4M⊙ for PNM, HNM(I), HNM(II), and

HNM(III) from the NLEFT are 597(5)(18), 451(5)(31),

587(5)(19), and 597(5)(18), respectively. The HNM(III)

gives the largest value. The initial estimation for

the tidal deformability Λ1.4M⊙ has an upper bound

Λ1.4M⊙ < 800 (Abbott et al. 2017) from the observa-

tion of Binary Neutron Star merger event GW170817.

Then a revised analysis from the LIGO and Virgo col-

laborations gave Λ1.4M⊙ = 190+390
−120 (Abbott et al. 2018).

It is important to underscore that our results are located

in these regions and agree well with the one inferred in

Ref. (Fasano et al. 2019) for the two neutron stars in the

merger event GW170817 at the 90% level.

The integral quantities of a neutron star, such as the

mass, radius, moment of inertia, and quadrupole mo-

ment, depend sensitively on the neutron star’s internal

structure and thus on the EoS (Greif et al. 2020). How-

ever, the universal I-Love-Q relations, which connect

the moment of inertia I, tidal deformability Λ, and the

quadrupole moment Q in a slow rotation approximation,
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Figure 7. Universal relations for PNM and HNM together
within the slow-rotation approximation. The black solid line
is the fitted curve, the bottom panel is the absolute fractional
difference between the fit curves and the numerical results.
(a) I-Love relation, (b) Q-Love relation, (c) I-Q relation.
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Table 3. Numerical coefficients for the fit formula of the I-Love, I-Q, and Q-Love relations.

yi xi ai bi ci di ei

Ī Λ 1.49081× 100 5.93228× 10−2 2.25755× 10−2 −7.05724× 10−4 8.22849× 10−6

Q̄ Λ 1.95541× 10−1 9.42324× 10−2 4.84774× 10−2 −4.45415× 10−3 1.35698× 10−4

Ī Q̄ 1.40552× 100 5.15966× 10−1 4.82729× 10−2 1.69043× 10−2 1.16931× 10−4

have been established for both hadronic EoSs and hy-

peronic EoSs from phenomenological approaches in re-

cent years (Yagi & Yunes 2013b,a, 2017; Sedrakian et al.

2023b). The I-Love relations for neutron star matter

with hyperons from our ab initio calculations are shown

in the Fig. 7(a). The dimensionless moment of inertia Ī

is defined as Ī ≡ I/M3. As suggested in Refs. (Yagi &

Yunes 2013b,a, 2017; Sedrakian et al. 2023b), the uni-

versal relations of Ī and Λ can be explored by using

the ansatz, ln yi = ai + bi lnxi + ci(lnxi)
2 + di(lnxi)

3 +

ei(lnxi)
4, where the coefficients are listed in Table 3.

These coefficients closely resemble those in Ref. (Yagi

& Yunes 2017; Li et al. 2023), where a large number

of EoSs are considered. The bottom panels show the

absolute fractional difference between all the data and

the fit, which remains below 1% across the entire range.

Consequently, these relations are highly insensitive to

whether the input EoSs include hyperons and demon-

strate a high level of accuracy. While the underlying

cause of this universal behavior remains incompletely

understood, its practical utility is promising. By aid-

ing in the constraint of quantities challenging to observe

directly and by eliminating uncertainties related to the

EoS during data analysis, it serves as a valuable tool.

This universal relation enables the extraction of the mo-

ment of inertia of a neutron star with a mass of 1.4M⊙,

denoted as Ī1.4M⊙ , from the tidal deformability Λ1.4M⊙

observed in GW170817. The revised analysis from the

LIGO and Virgo Collaborations, Λ1.4M⊙ = 190+390
−120 (Ab-

bott et al. 2018), leads to Ī1.4M⊙ = 10.25+3.40
−2.10 as shown

in Fig. 7(a). These values are consistent with other re-

sults, such as Ī1.4M⊙ = 11.10+3.64
−2.28 obtained using a large

set of candidate neutron star EoSs based on relativistic

mean-field and Skyrme-Hartree-Fock theory (Landry &

Kumar 2018) and Ī1.4M⊙ = 10.30+3.39
−2.10 from the rela-

tivistic BHF theory in the full Dirac space (Wang et al.

2022). The Q-Love and I-Q relations are also shown in

Fig. 7(b) and Fig. 7(c).

In addition to studying the properties of neutron stars

in static and slow-rotation approximation, exploring

their properties under rapid rotation is also a fascinat-

ing and significant area of research. We evaluate the

effects of uniform rotation on two millisecond pulsars ob-

served by the NICER collaboration: PSR J0030+0451

and PSR J0740+6620, with rotational frequencies of

205 Hz (Vinciguerra et al. 2024), 346 Hz (Salmi et al.

2024) and the most rapid known pulsar PSR J1748-

2446ad observed to date with 716 Hz (Hessels et al.

2006). The effect of rotation on stellar structures plays

a crucial role in determining the neutron star mass at

a given central energy density. Fig. 8 illustrates how

the gravitational mass varies with central energy den-

sity for both static and rotating configurations, using

the EoSs of PNM and HNM from NLEFT calculations.

At a given central energy density, the mass of a neu-

tron star increases with increasing rotational frequency

for both PNM and HNM. This underscores the signif-

icant impact of centrifugal forces on the structure of

neutron stars. Also, for a given non-zero frequency and

central energy density, the neutron star mass obtained

from HNM(III) remains larger than those from HNM(II)

and HNM(I), consistent with the conclusions drawn for

static case. Specifically, for HNM(II), it can support a

neutron star with 2M⊙ when the rotational frequency

reaches 716 Hz.

In Fig. 9, the gravitational masses of both static and

rotating neutron stars from PNM and HNM are plotted

as functions of their equatorial radii. The maximum

masses for PNM, HNM(I), HNM(II), and HNM(III)

are as follows: at ν = 0 Hz, 2.19(1)(1), 1.59(1)(1),

1.94(1)(1), and 2.17(1)(1) M⊙; at ν = 205 Hz,

2.20(1)(1), 1.60(1)(1), 1.95(1)(1), and 2.18(1)(1) M⊙;

at ν = 346 Hz, 2.21(1)(1), 1.61(1)(1), 1.96(1)(1),

and 2.19(1)(1) M⊙; and at ν = 716 Hz, 2.24(1)(1),

1.64(1)(1), 1.99(1)(1), and 2.22(1)(1) M⊙. It can

be observed that uniform rotation at ν = 205 and

346 Hz has negligible effects on the maximum mass

and only a slight impact on intermediate masses. Even

at the largest frequency of ν = 716 Hz, the im-

pact on the maximum mass is minimal, resulting in

an increase of approximately 0.05 M⊙. In addition,

the radii of a 1.4M⊙ neutron star for PNM, HNM(I),

HNM(II), and HNM(III) are as follows: at ν = 0

Hz, R1.4M⊙ = 13.10(1)(7), 12.71(4)(13), 13.09(1)(8),

and 13.10(1)(7) km; at ν = 205 Hz, 13.26(1)(7),

12.89(4)(14), 13.25(1)(8), and 13.26(1)(7) km; at ν =

346 Hz, 13.45(1)(7), 13.10(4)(14), 13.44(1)(8), and

13.45(1)(7) km; and at ν = 716 Hz, 15.09(2)(14),

14.86(5)(15), 15.08(2)(14), and 15.09(2)(14) km. There-

fore, it is noteworthy that neutron stars spinning at

716 Hz exhibit a significant impact on their radii, partic-

ularly for low-mass stars, resulting in an increase of ap-
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Figure 8. Gravitational mass M as a function of central energy density εc. Four cases are shown for constant spin frequencies
ν = 0, 205, 346, 716 Hz. These calculations are based on the EoSs of PNM and HNM from the NLEFT calculations.

proximately 2 km. This increased rotational frequency

leads to a noticeable expansion in the equatorial radii,

altering the overall structure of the star. Such effects

are more pronounced in lower-mass neutron stars, where
the centrifugal forces induced by rapid rotation have

a greater influence on the star’s geometry and stabil-

ity. To further compare our results of mass-radius re-

lations to astrophysical constraints, we also show the

68% and 95% credible regions of joint estimations on

mass and radius for PSR J0437-4715 (Choudhury et al.

2024), PSR J0740+6620 (Salmi et al. 2024), and PSR

J0030+0451 (Vinciguerra et al. 2024) from NICER col-

laboration in Fig. 9. At ν = 0, 205, and 346 Hz,

the neutron star radii predicted by PNM, HNM(III),

and HNM(II) align well with the observations of all

three NICER sources, but the radii predicted by HNM

(I) are consistent only with PSR J0437-4715 and PSR

J0030+0451. For low-mass neutron stars with radii be-

low approximately 18 km in Fig. 9, the spin frequency

of 716 Hz remains below the Kepler frequency, ensur-

ing stability. As the mass decreases further, the spin

frequency approaches the Kepler limit, resulting in in-

stability.

4. SUMMARY

In summary, by utilizing a recently developed aux-

iliary field quantum Monte Carlo algorithm, free from

sign oscillations, we derive the equation of state (EoSs)

through ab initio calculations, incorporating a signifi-

cant number of hyperons. Based on these EoSs from

the Nuclear Lattice Effective Field Theory, we inves-

tigate the structural properties of both non-rotating

and rotating neutron stars. The analysis provides key

physical quantities, including chemical potentials, par-

ticle fractions, pressure, energy density, neutron star

mass, radius, tidal deformability, and the universal I-

Love-Q relation. Notably, our study explores both non-

rotating and rotating configurations for neutron stars.

For a given central energy density, the inclusion of rota-

tion enables a neutron star to achieve a gravitational
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Figure 9. The gravitational mass M as a function of the equatorial radii Req. Four cases are shown for constant spin frequencies
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mass higher than the non-rotating counterpart. The

most rapid spin frequency 716 Hz has a significant im-

pact on the neutron star radii, particularly for low-mass

stars, reflecting significant impact of centrifugal force

that pushes the limits of mass and radius beyond those

of static configurations. Similar patterns in the mass-

radius relations are observed across the four different

EoSs, e.g., PNM, HNM(I), HNM(II), and HNM(III), in-

dicating that the impact of rotational dynamics on the

mass-radius relation is consistent, whether the EoS in-

cludes hyperons or not. By comparing the calculated

astrophysical quantities of both static and rapidly ro-

tating neutron stars with recent astronomical observa-

tions of massive neutron stars, gravitational waves, and

simultaneous mass-radius measurements, our ab initio

predictions are consistent with these observational con-

straints.
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