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Abstract

The equation of state (EOS) of neutron matter plays a decisive role in understanding the neutron star properties and
the gravitational waves from neutron star mergers. At sufficient densities, the appearance of hyperons generally
softens the EOS, leading to a reduction in the maximum mass of neutron stars well below the observed values of
about 2 Me. Even though repulsive three-body forces are known to solve this so-called “hyperon puzzle,” so far
performing ab initio calculations with a substantial number of hyperons for neutron star properties has remained
elusive. Starting from the newly developed auxiliary field quantum Monte Carlo algorithm to simulate
hyperneutron matter without any sign oscillations, we derive three distinct EOSs by employing the state-of-the-art
nuclear lattice effective field theory. We include NΛ, ΛΛ two-body forces, NNΛ, and NΛΛ three-body forces.
Consequently, we determine essential astrophysical quantities such as the neutron star mass, radius, tidal
deformability, and universal I–Love–Q relation. The maximum mass, radius, and tidal deformability of a 1.4Me
neutron star are predicted to be 2.17(1)(1) Me, R1.4Me = 13.10(1)(7) km, and  ( )( )L = 597 5 18M1.4 , respectively,
based on our most realistic EOS. These predictions are in good agreement with the latest astrophysical constraints
derived from observations of massive neutron stars, gravitational waves, and joint mass–radius measurements. In
addition, for the first time in ab initio calculations, we investigate both nonrotating and rotating neutron star
configurations. The results indicate that the impact of rotational dynamics on the maximum mass is small,
regardless of whether hyperons are present in the EOS or not.

Unified Astronomy Thesaurus concepts: Nuclear physics (2077)

1. Introduction

Neutron stars arguably emerge as the most captivating and
enigmatic astrophysical objects in the era of multimessenger
astronomy (B. P. Abbott et al. 2017, 2018; H. Tong et al. 2020;
S. Huth et al. 2022; R. Kumar et al. 2024; A. Marino et al.
2024; C. Y. Tsang et al. 2024). They are composed of the
densest form of baryonic matter observed in the Universe, and
their interiors may harbor exotic and previously unknown
forms of matter (J. M. Lattimer & M. Prakash 2004; A. Gal
et al. 2016; G. F. Burgio et al. 2021). The recent various
neutron star observations, including gravitational waves,
electromagnetic radiation, and X-ray bursts, have opened new
frontiers for studying the neutron star properties. These
observations are expected to provide crucial insights into the
mysterious dense matter at the core of neutron stars,
illuminating the fundamental interactions and behavior of
matter at suprasaturation nuclear densities.

The recent precise measurements of neutron star masses
offer valuable constraints on the equation of state (EOS) of
neutron star matter (P. B. Demorest et al. 2010; J. Antoniadis
et al. 2013; E. Fonseca et al. 2016, 2021; Z. Arzoumanian et al.
2018; H. T. Cromartie et al. 2020), which is essential for

refining theoretical models of their internal composition and
behavior. However, the discovery of neutron stars with masses
exceeding 2 Me challenges many previous theoretical predic-
tions involving exotic nonnucleonic components, such as
hyperons. This has led to the emergence of the “hyperon
puzzle,” a long-standing issue in the field of nuclear physics
and astrophysics (J. Schaffner-Bielich 2008; T. Takatsuka et al.
2008; H. Dapo et al. 2010; H. J. Schulze & T. Rijken 2011;
I. Vidana et al. 2011; S. Weissenborn et al. 2012; Y. Yamam-
oto et al. 2013; A. V. Astashenok et al. 2014; D. Lonardoni
et al. 2015; K. A. Maslov et al. 2015; D. Chatterjee &
I. Vidaña 2016; K. Masuda et al. 2016; J. Haidenbauer et al.
2017; D. Logoteta et al. 2019; D. Gerstung et al. 2020;
E. Friedman & A. Gal 2023). The appearance of hyperons at
higher densities typically softens the EOS, resulting in a
reduction in the maximum mass of neutron stars, which
conflicts with observations of massive neutron stars. Resolving
this puzzle is crucial not only for advancing our understanding
of neutron star physics but also for comprehending the complex
interplay between strong nuclear forces and the behavior of
dense matter under extreme conditions, including the onset of
hyperons, kaons, or other exotic particles. Furthermore, neutron
stars, due to their extreme compactness, exhibit remarkably
high rotational speeds compared to other astrophysical objects.
PSR J1748–2446ad, with a rotational frequency of 716 Hz, is
the fastest known pulsar (J. W. T. Hessels et al. 2006). At such
extreme speeds, neutron stars experience significant centrifugal

The Astrophysical Journal, 982:164 (12pp), 2025 April 1 https://doi.org/10.3847/1538-4357/adba47
© 2025. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-9666-6098
https://orcid.org/0000-0002-9666-6098
https://orcid.org/0000-0002-9666-6098
https://orcid.org/0000-0002-7951-1991
https://orcid.org/0000-0002-7951-1991
https://orcid.org/0000-0002-7951-1991
https://orcid.org/0000-0003-1254-442X
https://orcid.org/0000-0003-1254-442X
https://orcid.org/0000-0003-1254-442X
mailto:htong@uni-bonn.de
mailto:meissner@hiskp.uni-bonn.de
mailto:selhatisari@gmail.com
http://astrothesaurus.org/uat/2077
https://doi.org/10.3847/1538-4357/adba47
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/adba47&domain=pdf&date_stamp=2025-03-27
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/adba47&domain=pdf&date_stamp=2025-03-27
https://creativecommons.org/licenses/by/4.0/


forces, leading to an oblate shape that deviates from spherical
symmetry. It can be modeled as axisymmetric, rigidly rotating
bodies under Einstein’s general relativity. These rapid rotations
give rise to unique phenomena that are pivotal for imposing
tighter constraints on the EOS (H. Komatsu et al. 1989; F. Weber
& N. K. Glendenning 1991; N. Stergioulas & J. L. Friedman
1995; N. K. Glendenning et al. 1997; J. W. T. Hessels et al. 2006;
A. Li et al. 2016; X. Qu et al. 2025).

On the theoretical side, the EOS can be derived through
various nuclear many-body theories (M. Oertel et al. 2017;
G. F. Burgio et al. 2021; H. Tong et al. 2022; A. Sedrakian
et al. 2023). Especially, ab initio methods using realistic
nucleon–nucleon (NN) interactions stand out for their pre-
dictive power, free from the uncertainties of adjustable
parameters. Among these, the state-of-the-art nuclear lattice
effective field theory (NLEFT) combines the theoretical
principles of effective field theory (EFT) with advanced
numerical techniques, offering a powerful approach to solving
quantum many-body systems (D. Lee 2009; T. A. Lähde &
U.-G. Meißner 2019). This method has been used to describe
the atomic nuclei (B. Borasoy et al. 2006) and neutron matter
(D. Lee & T. Schäfer 2005) in pionless EFT at leading order
(LO), the Hoyle state in 12C (E. Epelbaum et al. 2011), and
α–α scattering (S. Elhatisari et al. 2015) in chiral EFT at next-
to-next-to-leading order (N2LO). More recently, it was
extended to the properties of atomic nuclei and the EOS of
neutron and symmetric nuclear matter in chiral EFT at next-to-
next-to-next-to-leading order (N3LO; S. Elhatisari et al. 2024).
In addition, this method has been used to formulate an EFT
with only four parameters and built on Wigner’s SU(4) spin–
isospin symmetry (E. Wigner 1937). This EFT can reproduce
light- and medium-mass nuclei and neutron matter EOSs with
percent-level accuracy (B.-N. Lu et al. 2019). Applications
include nuclear thermodynamics (B.-N. Lu et al. 2020), cluster
studies in hot dilute matter (Z. Ren et al. 2024), the geometry of
12C states (S. Shen et al. 2021, 2023), and resolving the alpha-
particle monopole transition form factor puzzle (U.-G. Meißner
et al. 2024). The first exploration of ΛN scattering was
performed on the lattice in S. Bour (2009). The Λ particle was
included in the NLEFT framework in D. Frame et al. (2020)
using the impurity lattice Monte Carlo (ILMC) method
(S. Elhatisari & D. Lee 2014). This study focused on
calculating the binding energies of light hypernuclei, specifi-
cally L

3 H, L
4H, and L

5He. The ILMC method was also extended
to study the systems containing two impurities (F. Hildenbrand
et al. 2022). Recently, a novel auxiliary field quantum Monte
Carlo (AFQMC) algorithm was introduced to efficiently
investigate hyperneutron systems with an arbitrary number of
hyperons (H. Tong et al. 2025). Based on the achievements of
EFT within Wigner’s SU(4) spin–isospin symmetry, referred to
as the minimal nuclear interaction, and the newly developed
AFQMC algorithm for hypernuclear systems without any sign
oscillations (H. Tong et al. 2025), we employ pionless EFT at
LO for nucleons (S. König et al. 2017) throughout this work.
This approach leverages the minimal nuclear interaction as a
foundation for our hyperneutron matter (HNM) EOS calcula-
tions. We also utilize minimal interactions for the hyperon–
nucleon and hyperon–hyperon interactions.

In this work, it is timely and interesting to study the EOS and
the properties of nonrotating and rotating neutron stars with
hyperons from the NLEFT. This paper is arranged as follows:
The theoretical framework of NLEFT, the EOS, and neutron

star properties are briefly introduced in Section 2. In Section 3,
the properties of neutron stars and related discussions are
presented. The summary is given in Section 4.

2. Theoretical Framework

2.1. Nuclear Lattice Effective Field Theory

We map the four-dimensional spacetime on a finite volume
with spatial length L in all three directions and temporal length
Lt in the Euclidean time direction. We further discretize the
space and time directions in terms of a spatial and temporal
lattice spacing a and at, respectively. Our basic degrees of
freedom are nucleons; so as not to resolve their inner structure,
a  1 is required. The spatial coordinates on the lattice are
given by a three-vector ( )=n n n n, ,x y z with nx, ny, nz integers.
The temporal lattice spacing is usually taken to be much
smaller. For more details, the reader is referred to T. A. Lähde
& U.-G. Meißner (2019).
The Hamiltonian for the hypernuclear system is defined as

[ ˜( )] [ ˜ ( )]
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where Hfree is the kinetic energy term defined by using fast
Fourier transforms to produce the exact dispersion relations
EN = p2/(2mN) and EΛ = p2/(2mΛ) with nucleon mass
mN = 938.92MeV and hyperon mass mΛ = 1115.68MeV,
respectively; the :: symbol indicates normal ordering; cNN is the
coupling constant of the SU(4) symmetric short-range two-
nucleon interaction; cNN

T is the coupling constant of the isospin-
dependent short-range two-nucleon interaction, which breaks
SU(4) symmetry; cNΛ (cΛΛ) is the coupling constant of the
spin-symmetric short-ranged hyperon–nucleon (hyperon–
hyperon) interaction; and r̃ (x̃) is the nucleon (hyperon)
density operator, which is smeared both locally and nonlocally
(S. Elhatisari et al. 2016),
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The smeared annihilation and creation operators, ã (b̃) and ˜†a
( ˜†b ) for nucleons (hyperons), have with spin i= 0, 1 (up, down)
and isospin j= 0, 1 (proton, neutron) indices,
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In Equation (1), VCoulomb represents the Coulomb interaction
(N. Li et al. 2018). VNN

GIR , LVN
GIR , and LLV GIR , denote the Galilean

invariance restoration interactions for the NN, nucleon–
hyperon, and hyperon–hyperon interactions, respectively
(N. Li et al. 2019). VNNN, VNNΛ, and VNΛΛ are the three-
baryon interactions. The three-baryon interactions are defined
with two different choices of local smearing,
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where the parameter di denotes the range of local smearing with
0� d1 < d2� 3 (in lattice units). Similarly, the three-baryon
interactions consisting of two nucleons and one hyperon are
defined with two different choices of local smearing,
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and the interactions involving one nucleon and two hyperons
are also expressed by two different choices of local smearing,
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where ρ (ξ) is the purely locally smeared nucleon (hyperon)
density operator with annihilation and creation operators, a (b)
and a† (b†) for nucleons (hyperons),
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Here the parameter d gives the range of local smearing, and sL
3B

defines the strength of the local smearing.
In our lattice simulations, we use the AFQMC method,

which effectively suppresses sign oscillations. The following
discussion begins with a discrete auxiliary field formulation for
the SU(4) symmetric short-ranged two-nucleon interaction
given in Equation (1),
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where at is the temporal lattice spacing. From a Taylor
expansion of Equation (12), we determine the constants sk and
wk as = - =s s 31 3 , s2 = 0, w1 = w3 = 1/6, and w2 = 2/3.
Since we use minimal interactions for the hyperon–nucleon
and hyperon–hyperon interactions, the spin- and isospin-
independent two-baryon interaction in Equation (1) is

expressed as
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and it can be rewritten in the following form:
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where ̸̃r is defined as
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In hypernuclear systems, the NN interaction strength cNN is
significantly stronger than the nucleon–hyperon interaction
strength cNΛ. As a result, the overall interaction strength of the
second term in Equation (14) is naturally weak. Consequently,
we treat the first term in Equation (14) nonperturbatively, while
the second term is computed using first-order perturbation
theory.
Employing a Hubbard–Stratonovich transformation for the

first term in Equation (14) enables the simulations of systems
consisting of both an arbitrary number of nucleons and an
arbitrary number of Λ hyperons with a single auxiliary field,
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It is evident that the solution for the auxiliary field variables sk
and weights wk is consistent with systems containing only
nucleons. For the two-nucleon interaction ~cNN

T , known to
break SU(4) symmetry and to induce significant sign oscilla-
tions, which was previously disregarded in minimal nuclear
interaction studies (B.-N. Lu et al. 2019, 2020; S. Shen et al.
2021, 2023; U.-G. Meißner et al. 2024; Z. Ren et al. 2024), we
also employ a Hubbard–Stratonovich transformation and
introduce a discrete auxiliary field. Note that this term is
required to obtain a good description of nuclear matter as
discussed below.

2.2. Neutron Star EOS and Neutron Star Properties

Hyperneutron matter consists of neutrons and a fraction of Λ
hyperons defined as xΛ = ρΛ/ρ, where ρ = ρN + ρΛ represents
the total baryon density of the system. Therefore, the neutron
and hyperon densities are written as ρN = (1 − xΛ)ρ and
ρΛ = ρxΛ, respectively. The HNM energy per particle can be
expressed as

( )

( ) ( )

( )r =

+ - +

r
L

L L L
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m x m x
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1 , 17

E x

N

N
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where EHNM(ρ, xΛ) and Ntot= NN+ NΛ denotes the total energy of
HNM and the total number of baryons, respectively. Now, our
objective is to compute eHNM(ρ, xΛ) and subsequently calculate the
energy density εHNM, defined as εHNM = ρeHNM. The chemical

3
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potentials for neutrons and hyperons, denoted by μN(ρ, xΛ) and
μΛ(ρ, xΛ), respectively, are then evaluated using the expressions
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The hyperon fraction as a function of the baryon density, xΛ(ρ),
is determined by imposing the condition μΛ = μN, which yields
the threshold density rL

th, which is marking the point at which
xΛ(ρ) first deviates from zero. Finally, the pressure P(ρ) of
HNM is obtained from the energy density,
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Once the EOS of pure neutron matter (PNM) and HNM in the
form P(ε) is obtained in Equation (19), the mass and radius of a
neutron star can be described by the Tolman–Oppenheimer–
Volkoff (TOV) equations (J. R. Oppenheimer & G. M. Volkoff
1939; R. C. Tolman 1939)
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where P(r) is the pressure at radius r and M(r) is the total mass
inside a sphere of radius r. Furthermore, to solve the TOV
equations, the EOS must cover the entire structure of the
neutron star, from the crust to the core. In this work, we mainly
focus on discussing the core region within the NLEFT. For the
crust, we adopt the well-established EOSs formulated by
Baym, Pethick, and Sutherland (BPS; G. Baym et al. 1971b)
and by Baym, Bethe, and Pethick (BBP; G. Baym et al. 1971a).

Besides the masses and radii, another important property of
neutron star, the tidal deformability Λ, is defined as

( )L = -k C
2

3
, 212

5

which represents the mass quadrupole moment response of a
neutron star to the strong gravitational field induced by its
companion. Further, C = M/R is the compactness parameter;
M and R are the neutron star mass and radius, respectively; and
k2 is the second Love number
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where yR = y(R) can be calculated by solving the following
differential equation:
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The differential Equation (23) can be integrated together
with the TOV equations with the boundary condition y(0) = 2.
The moment of inertia is calculated under the slow-rotation

approximation pioneered by Hartle and Thorne (J. B. Hartle 1967;
J. B. Hartle & K. S. Thorne 1968), where the frequency Ω of a
uniformly rotating neutron star is significantly lower than the
Kepler frequency at the equator,   /W W M Rmax

3 . In the
slow-rotation approximation, the moment of inertia of a uniformly
rotating, axially symmetric neutron star is given by the following
expression (F. J. Fattoyev & J. Piekarewicz 2010):
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The quantity ν(r) is a radially dependent metric function and is
defined as
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The frame-dragging angular velocity w̄ is usually obtained by
the dimensionless relative frequency ˜ ¯ /w wº W, which satisfies
the following second-order differential equation:
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where ( ) ( )( ) /= -n-j r e M r r1 2r for r� R. The relative
frequency ˜ ( )w r is subject to the following two boundary
conditions:
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It should be noted that under the slow-rotation approx-
imation the moment of inertia is independent of the stellar
frequency Ω.
The quadrupole moment describes how much a neutron star is

deformed away from sphericity owing to rotation. It can be
computed by numerically solving for the interior and exterior
gravitational field of a neutron star in a slow-rotation approx-
imation (J. B. Hartle 1967; J. B. Hartle & K. S. Thorne 1968) and
a small-tidal-deformation approximation (T. Hinderer 2008;
T. Hinderer et al. 2010). The quadrupole moment in this work
is calculated by following the detailed instructions described in
K. Yagi & N. Yunes (2013a). To explore the universal I–Love–Q
relations, the following dimensionless quantities are introduced:

¯ ¯
( )

( )º º -
W

I
I

M
Q

QM

I
, . 29

3 2

In addition, to describe the rapidly rotating and axisymmetric
neutron star configurations in general relativity, we treat the stellar
matter as a perfect fluid, characterized by the energy–momentum
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tensor:

( ) ( )e= + -mn m n mnT P u u g P, 30

where ε, P, and uμ are the energy density, pressure, and the
fluid’s four-velocity, respectively. We solve the Einstein field
equations for an axisymmetric and stationary spacetime with
the metric

( )
( ) ( )

q
q f w

=- + +
+ -

g r a

g r

+

-

ds e dt e dr r d

e r d dtsin , 31

2 2 2 2 2 2

2 2 2

where the metric potentials γ, ρ, α, and ω are functions of the
radial coordinates r and the polar angle θ. To numerically
integrate the equilibrium equations, we employ the RNS code
(N. Stergioulas & J. L. Friedman 1995; V. Paschalidis &
N. Stergioulas 2017) to calculate the equilibrium configurations
of rotating neutron stars, determining their masses and radii for
a given central energy density.

3. Numerical Results and Discussion

The coupling constants for the NN interaction are determined
by fitting to the two S-wave phase shifts of NN scattering. The
results are = - ´ -c 1.21 10S

71
0 MeV−2 and = - ´c 1.92S3

1
-10 7 MeV−2, corresponding with the spin-singlet, isospin-triplet

channel and the spin-triplet, isospin-singlet channel, which are
related to the low-energy constants (LECs) given in Equation (1)
via ( ) ( )/ /= + = -c c c c c c3 4, 4NN NN

T
S S S S1

0
3

1
1

0
3

1 . The two
LECs of the three-nucleon forces given in Equation (7) are
determined by fitting to the saturation properties of symmetric
nuclear matter. This procedure involves considering all possible
combinations of three-nucleon forces with d1 and d2 such that
0� d1 < d2� 3. These combinations and the corresponding
energies per nucleon at the saturation density of symmetric
nuclear matter are presented in Table 1. The energy per nucleon at
the saturation point is −16.90(0.02)(0.25)MeV, where the first set
of parentheses represent the statistical error and the second set of
parentheses denote the theoretical uncertainty arising from
different three-nucleon force combinations. This result is in good
agreement with the empirical value. The parameters of the NΛ and
ΛΛ interactions are determined by fitting them to experimental
data (G. Alexander et al. 1968; B. Sechi-Zorn et al. 1968;
J. A. Kadyk et al. 1971; J. M. Hauptman et al. 1977) and the
ΛΛ1S0 scattering phase shift from chiral EFT (J. Haidenbauer
et al. 2016). The NNΛ and NΛΛ forces are further constrained by
the separation energies of single- and double-Λ hypernuclei
spanning systems from L

5He to LL
6Be and the Λ threshold densities

rL
th around (2–3)ρ0 simultaneously, denoted as HNM(I), HNM(II),
and HNM(III), respectively. In our calculations we use a spatial
lattice spacing of a= 1.1 fm and a temporal lattice spacing of
at = 0.2 fm. The local smearing parameter sL = 0.06, and the
nonlocal smearing parameter sNL = 0.6. For the three-baryon
interaction, the local smearing parameter is =s 0.06L

3B . We
perform our calculations at different finite Euclidean time steps and
extrapolate to the infinite Euclidean time limit using a single- and
double-exponential ansatz (T. A. Lähde & U.-G. Meißner 2019).
Furthermore, for the computation of PNM and HNM energies we
use lattices with a length of 6.6 fm and impose the average twisted
boundary conditions to efficiently eliminate finite-volume effects.
First, we compare our calculations with a few others that we

consider as benchmarks, focusing exclusively on purely
nucleonic scenarios. We predict the ground-state energies of
several light nuclei with A = 3–16 based on our interaction,
and the results are summarized in Table 2. These results are
consistent with those reported in B.-N. Lu et al. (2019), except
for 3H and 4He, which were used to constrain the 3N force
therein.
Then, we compare our results for PNM with those of

A. Lovato et al. (2022) in the left panel of Figure 1. They
presented the neutron matter EOS as derived from three
independent many-body methods: Brueckner–Hartree–Fock
(BHF), Fermi hypernetted chain (FHNC), and auxiliary field
diffusion Monte Carlo (AFDMC). Our results are consistent
with theirs where the AV18 two-nucleon and Urbana IX (UIX)
three-nucleon forces were employed. Only at densities higher
than approximately 0.24 fm−3 are the energies from the FHNC
method lower than our results. It should be emphasized that the
uncertainty in our calculation for PNM is quite small. In the
right panel of Figure 1, we compare our work to the pioneering
calculations of D. Lonardoni et al. (2015). They perform
AFDMC simulations with Nn = 38, 54, and 66 neutrons. For
the nucleonic sector, they use the phenomenological well-
motivated Argonne V8’ (AV8’) and UIX two- and three-body
forces. Notably, their PNM EOS is stiffer compared to our
results and exceeds the causality limit for the speed of sound at
densities above ρ ; 0.68 fm−3. Although PNM is an idealized
system that does not directly exist in neutron stars, it serves
as a theoretical benchmark for modeling dense matter
(A. Lovato et al. 2022). Since the neutron star EOS can
exhibit stiffness trends similar to or even stiffer than those of
PNM (P. G. Krastev & F. Sammarruca 2006), maintaining
causality in the PNM EOS ensures its physical reliability and
strengthens its applicability to astrophysical scenarios. A
violation of causality in PNM may indicate potential issues
with the underlying nuclear interactions or many-body
methods, making the model unreliable at high densities.

Table 1
The Coupling Constants of the NNN Interaction for All Possible Combinations

of d1 and d2 with 0 � d1 < d2 � 3 in Equation (7), Along with the
Corresponding Binding Energy per Nucleon at the Saturation Density of

Symmetric Nuclear Matter

Coupling Constants ( )cNNN
di Binding Energy E/A

(MeV−5) (MeV)
( )=cNNN
d 01 = −3.78 × 10−11, ( )=cNNN

d 12 = 3.12 × 10−11 −17.42(2)
( )=cNNN
d 01 = 2.11 × 10−12, ( )=cNNN

d 22 = 4.42 × 10−12 −16.90(2)
( )=cNNN
d 01 = 7.27 × 10−12, ( )=cNNN

d 32 = 2.09 × 10−12 −16.63(2)
( )=cNNN
d 11 = 1.55 × 10−12, ( )=cNNN

d 22 = 4.23 × 10−12 −16.89(2)
( )=cNNN
d 11 = 4.96 × 10−12, ( )=cNNN

d 32 = 1.78 × 10−12 −16.71(2)
( )=cNNN
d 21 = 6.01 × 10−12, ( )=cNNN

d 32 = −7.08 × 10−13 −16.89(2)

Table 2
Calculated Ground-state Energies of Some Light Nuclei with A = 3–16

Compared to the Empirical Values (in MeV)

Nucleus NLEFT Exp.

3H −9.21(4)(1) −8.48
4He −29.38(1)(4) −28.3
8Be −58.38(3)(7) −56.5
12C −87.08(12)(11) −92.2
16O −121.84(28)(52) −127.6

Note. The first (second) set of parentheses denote the statistical (systematic)
error.
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The energy densities ε by using the two-body interactions
(NN, NΛ, ΛΛ) and the three-body interactions (NNN, NNΛ, NΛΛ)
are shown in Figure 2 for different numbers of Λ hyperons. The
differences between HNM(I), HNM(II), and HNM(III) are the
three-body NNΛ and NΛΛ interactions. The shaded regions
represent the uncertainty from the three-baryon forces and Monte
Carlo errors. The given density of ρ = 0.8 fm−3, which is about
five times the empirical nuclear matter saturation density, ρ0, can
be encountered in the core of a neutron star. It should be noted
that the quantity of Λ hyperons corresponding to the lowest
energy density is intricately linked to accurately determining the
chemical equilibrium conditions. In contrast to the groundbreak-
ing study (D. Lonardoni et al. 2015) where the number of Λ
hyperons was varied from 1 to 14, the present study indicates that
the number of required Λ hyperons is comparable to the number
of neutrons, especially at higher densities. For instance, as
depicted in Figure 2, to fulfill the equilibrium condition μN = μΛ
at ρ = 0.8 fm−3, 102, 92, and 32 Λ hyperons are required to
obtain the lowest energy density for HNM(I), HNM(II), and
HNM(III), respectively. Similarly, at ρ= 0.7 fm−3, 76, 60, and 18
hyperons are needed for the same purpose in HNM(I), HNM(II),
and HNM(III), respectively.

The chemical potentials for neutrons and Λ hyperons are
shown in Figure 3. When the density is below the threshold
value, the chemical potential of the Λ hyperon exceeds that of
the neutron. Once the density reaches and is above the
threshold value, the chemical potentials of both particles
become equal. Moreover, HNM(III) gives the largest chemical
potential among our three HNM systems. We also compare our
work with that of D. Gerstung et al. (2020). For the ΛN
interaction, they consider two next-to-leading-order chiral EFT
representations, called NLO13 (J. Haidenbauer et al. 2013) and
NLO19 (J. Haidenbauer et al. 2020). For the three-body forces,
they use the leading ΛNN representation based on chiral EFT
(contact terms, one-pion and two-pion exchanges) with the
inclusion of the ΛNN ↔ ΣNN transition (S. Petschauer et al.
2016) in an effective density-dependent two-body approx-
imation (S. Petschauer et al. 2017). The pertinent LECs are
given in terms of decuplet resonance saturation and leave one
with two B

*

BBB couplings, where B denotes the baryon octet
and B

*

the decuplet. If one only considers the ΛNN force, these

two LECs appear in the combination = +¢H H H1 2. No ΛΛN
force was considered in D. Gerstung et al. (2020). The LECs
H1 and H2 were constrained in D. Gerstung et al. (2020) so that
the Λ single-particle potential in infinite matter is
UΛ(ρ ; ρ0) = −30MeV (A. Gal et al. 2016). Due to
numerical instabilities in calculation of the Brueckner
G-matrix, the computation can only be done up to densities
ρ ; 3.5ρ0. The authors of D. Gerstung et al. (2020) then use a
quadratic polynomial to extrapolate to higher densities. They
calculate the chemical potential for the neutrons and Λs from
the Gibbs–Duhem relation using a microscopic EOS computed
from a chiral nucleon–meson field theory in combination with
functional renormalization group methods. The parameter
combinations (H1, H2) were chosen so that the Λ single-
particle potential becomes maximally repulsive at higher
densities. The resulting chemical potentials are displayed in

Figure 1. Left panel: neutron matter EOS as obtained from the NLEFT. The red shaded band represents our results with the uncertainty from three-nucleon forces and
Monte Carlo errors, while the red solid curve denotes the mean value. The results obtained with other many-body methods (A. Lovato et al. 2022) are also shown,
including the BHF theory, FHNC, and AFDMC using the AV18 two-nucleon and UIX three-nucleon forces. Right panel: speed of sound as a function of density for
the PNM. The blue dashed curve is calculated with the AV8’ and the UIX forces from the AFDMC (D. Lonardoni et al. 2015). The dotted–dashed line represents the
causality limit =c 1s

2 .

Figure 2. Energy density for HNM. The energy density ε as a function of
different numbers for Λ hyperons is shown for densities ρ = 0.8 and 0.7 fm−3

(inset). The blue triangles, green circles, and red squares represent the energy
density ε of HNM with hyperons interacting via the two-body interactions and
the three-body interactions. The differences between HNM(I), HNM(II), and
HNM(III) are the three-body NNΛ and NΛΛ interactions. The shaded regions
represent the uncertainty from the three-baryon forces and Monte Carlo errors.
The arrows and the filled triangle, circle, and square denote the lowest energy
density.
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Figure 3 for the NLO19 ΛN forces. These agree well with the
HNM(III) chemical potentials up to ρ ; 2.5ρ0 but show,
different from what we find, no crossing. Note that the forces
discussed in D. Gerstung et al. (2020) have not been applied to
finite nuclei.

In Figure 4, Λ-fractions for our three HNM EOSs are shown.
At the given density, the Lambda fraction from the HNM(III) is
the smallest one, further indicating that the EOS for HNM(III)
is the stiffest. In D. Lonardoni et al. (2015), they perform
calculations with NΛ = 1, 2, and 14 hyperons and use a
phenomenological hyperon–nucleon potential based on the
work of A. R. Bodmer et al. (1984). The EOS of HNM is then
derived with an extrapolation function f (ρ, xΛ), which is
quadratic in density and cubic in the Λ-fraction xΛ. Clearly, our
calculations improve on this by covering the full range of
densities and Λ-fractions relevant to the problem at hand. In
D. Lonardoni et al. (2015), the Λ-fraction increases at higher
densities under their parameterization (I) of the NNΛ force,
predicting a maximum neutron star mass of 1.36(5) Me, as
shown in Figure 4. Under their parameterization (II) of the
NNΛ force, the Λ-fraction drops to zero at higher densities,
allowing for neutron star masses above 2 Me. For comparison,
we also present another result examining the effects of the NNΛ
three-body force on neutron star properties using the BHF
approach (D. Logoteta et al. 2019). It is notable that the
strongly repulsive three-body hyperonic interactions lead to an
increase in the threshold density for the Λ hyperons and a
reduction in the Λ hyperon fraction. It is also important to
consider β-stable nuclear matter for a more realistic depiction
of neutron stars, as the proton fraction can reach approximately
10%–30% at their cores, depending on the symmetry energy
and density (I. Bombaci & D. Logoteta 2018; H. Tong et al.
2022). However, incorporating protons introduces additional
constraints from chemical equilibrium among protons, neu-
trons, electrons, and muons, as well as charge neutrality, which
significantly increases the computational cost of our NLEFT
simulations. For this reason, we have focused on neutrons and
Λ hyperons in the present work, and we will extend our
approach to include β-stable matter in the next step.

In Figure 5, the neutron star EOSs for PNM and for HNM
are displayed. With increasing energy density, the pressure
increases. The threshold energy density is ( )( )e =L 318 1 1th , 400
(1)(1), and 551(1)(1)MeV fm−3 for HNM(I), HNM(II), and
HNM(III), respectively. The introduction of Λ hyperons results
in a significant softening of the EOS compared to PNM,
indicating a substantial change in stiffness at higher densities.
As expected, the inclusion of Λ hyperons softens the EOS, with
HNM(III) displaying the stiffest EOS among the hyperonic
cases, highlighting differences in hyperon interactions across
the calculations. This emphasizes the critical role of hyperons
in influencing the stiffness and stability of neutron star matter at
suprasaturation nuclear densities.
In the multimessenger era, another important constraint of

the canonical neutron star mass (1.4 Me) is the tidal
deformability L M1.4 . In Figure 6, the tidal deformability

L M1.4 for PNM, HNM(I), HNM(II), and HNM(III) from the
NLEFT are 597(5)(18), 451(5)(31), 587(5)(19), and 597(5)

Figure 3. The chemical potentials for neutrons and Λ hyperons. The Λ

threshold densities rL
th are marked by open circles. The chemical equilibrium

conditions, μΛ = μn, are fulfilled above rL
th. The gray shaded area indicates the

values by using the chiral SU(3) interactions NLO19 with two- and three-body
forces (NΛ + NNΛ; D. Gerstung et al. 2020).

Figure 4. Λ-fractions for our three HNM EOSs and the one from AFDMC
(D. Lonardoni et al. 2015). The gray circles denote a different number of
neutrons (Nn = 66, 54, 38) and hyperons (NΛ = 1, 2, 14) in the simulation box
giving momentum closed shells in AFDMC. The black dashed–dotted–dotted
curve is calculated using nonrelativistic BHF theory with only the NΛ
interaction, specifically Nijmegen Soft-Core 97 (NSC97). The black loosely
dashed curve is calculated by including an additional NNΛ force derived within
the framework of χEFT (D. Logoteta et al. 2019).

Figure 5. Pressure as a function of energy density. Shown are the results for
PNM and the three HNM EOSs considered here.
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(18), respectively. The HNM(III) gives the largest value. The
initial estimation for the tidal deformability L M1.4 has an upper
bound L < 800M1.4 (B. P. Abbott et al. 2017) from the
observation of binary neutron star merger event GW170817.
Then, a revised analysis from the LIGO and Virgo Collabora-
tions gave L = -

+190M1.4 120
390 (B. P. Abbott et al. 2018). It is

important to underscore that our results are located in these
regions and agree well with the one inferred in M. Fasano et al.
(2019) for the two neutron stars in the merger event
GW170817 at the 90% level.

The integral quantities of a neutron star, such as the mass,
radius, moment of inertia, and quadrupole moment, depend
sensitively on the neutron star’s internal structure and thus on
the EOS (S. K. Greif et al. 2020). However, the universal
I–Love–Q relations, which connect the moment of inertia I, tidal
deformability Λ, and quadrupole moment Q in a slow-rotation
approximation, have been established for both hadronic EOSs and
hyperonic EOSs from phenomenological approaches in recent
years (K. Yagi & N. Yunes 2013a, 2013b, 2017; A. Sedrakian
et al. 2023). The I–Love relations for neutron star matter with
hyperons from our ab initio calculations are shown in Figure 7(a).
The dimensionless moment of inertia Ī is defined as ¯ /ºI I M3.
As suggested in K. Yagi & N. Yunes (2013a, 2013b, 2017) and
A. Sedrakian et al. (2023), the universal relations of Ī and Λ
can be explored by using the ansatz, = + +y a b xln lni i i i

( ) ( ) ( )+ +c x d x e xln ln lni i i i i i
2 3 4 , where the coefficients are

listed in Table 3. These coefficients closely resemble those in
K. Yagi & N. Yunes (2017) and J. J. Li et al. (2023), where a
large number of EOSs are considered. The bottom panels show
the absolute fractional difference between all the data and the fit,
which remains below 1% across the entire range. Consequently,
these relations are highly insensitive to whether the input
EOSs include hyperons and demonstrate a high level of accuracy.
While the underlying cause of this universal behavior remains
incompletely understood, its practical utility is promising. By
aiding in the constraint of quantities challenging to observe
directly and by eliminating uncertainties related to the EOS during
data analysis, it serves as a valuable tool. This universal relation
enables the extraction of the moment of inertia of a neutron
star with a mass of 1.4 Me, denoted as Ī M1.4 , from the tidal

deformability L M1.4 observed in GW170817. The revised
analysis from the LIGO and Virgo Collaborations, L =M1.4

-
+190 120

390 (B. P. Abbott et al. 2018), leads to 
¯ = -

+I 10.25M1.4 2.10
3.40 as

shown in Figure 7(a). These values are consistent with other
results, such as 

¯ = -
+I 11.10M1.4 2.28

3.64 obtained using a large set of
candidate neutron star EOSs based on relativistic mean field and
Skyrme–Hartree–Fock theory (P. Landry & B. Kumar 2018) and


¯ = -

+I 10.30M1.4 2.10
3.39 from the relativistic BHF theory in the full

Dirac space (S. Wang et al. 2022). The Q–Love and I–Q relations
are also shown in Figures 7(b) and 7(c).
In addition to studying the properties of neutron stars in static

and slow-rotation approximation, exploring their properties under
rapid rotation is also a fascinating and significant area of research.
We evaluate the effects of uniform rotation on two millisecond
pulsars observed by the NICER Collaboration: PSR J0030+0451
and PSR J0740+6620, with rotational frequencies of 205Hz
(S. Vinciguerra et al. 2024) and 346Hz (T. Salmi et al. 2024), and
the most rapid known pulsar PSR J1748–2446ad observed to date
with 716Hz (J. W. T. Hessels et al. 2006). The effect of rotation
on stellar structures plays a crucial role in determining the neutron
star mass at a given central energy density. Figure 8 illustrates
how the gravitational mass varies with central energy density for
both static and rotating configurations, using the EOSs of PNM
and HNM from NLEFT calculations. At a given central energy
density, the mass of a neutron star increases with increasing
rotational frequency for both PNM and HNM. This underscores
the significant impact of centrifugal forces on the structure of
neutron stars. In addition, for a given nonzero frequency and
central energy density, the neutron star mass obtained from HNM
(III) remains larger than those from HNM(II) and HNM(I),
consistent with the conclusions drawn for the static case.
Specifically, for HNM(II), it can support a neutron star with
2 Me when the rotational frequency reaches 716 Hz.
In Figure 9, the gravitational masses of both static and rotating

neutron stars from PNM and HNM are plotted as functions of
their equatorial radii. The maximum masses for PNM, HNM(I),
HNM(II), and HNM(III) are as follows: at ν = 0 Hz, 2.19(1)(1),
1.59(1)(1), 1.94(1)(1), and 2.17(1)(1) Me; at ν = 205Hz, 2.20(1)
(1), 1.60(1)(1), 1.95(1)(1), and 2.18(1)(1)Me; at ν= 346Hz, 2.21
(1)(1), 1.61(1)(1), 1.96(1)(1), and 2.19(1)(1) Me; and at ν =
716 Hz, 2.24(1)(1), 1.64(1)(1), 1.99(1)(1), and 2.22(1)(1) Me.
It can be observed that uniform rotation at ν = 205 and 346Hz
has negligible effects on the maximum mass and only a slight
impact on intermediate masses. Even at the largest frequency of
ν = 716 Hz, the impact on the maximum mass is minimal,
resulting in an increase of approximately 0.05Me. In addition, the
radii of a 1.4 Me neutron star for PNM, HNM(I), HNM(II), and
HNM(III) are as follows: at ν = 0Hz, R1.4Me = 13.10(1)(7),
12.71(4)(13), 13.09(1)(8), and 13.10(1)(7) km; at ν = 205 Hz,
13.26(1)(7), 12.89(4)(14), 13.25(1)(8), and 13.26(1)(7) km; at
ν = 346 Hz, 13.45(1)(7), 13.10(4)(14), 13.44(1)(8), and 13.45(1)
(7) km; and at ν = 716Hz, 15.09(2)(14), 14.86(5)(15), 15.08(2)
(14), and 15.09(2)(14) km. Therefore, it is noteworthy that neutron
stars spinning at 716Hz exhibit a significant impact on their radii,
particularly for low-mass stars, resulting in an increase of
approximately 2 km. This increased rotational frequency leads
to a noticeable expansion in the equatorial radii, altering the
overall structure of the star. Such effects are more pronounced in
lower-mass neutron stars, where the centrifugal forces induced by
rapid rotation have a greater influence on the star’s geometry and
stability. To further compare our results of mass–radius relations
to astrophysical constraints, we also show the 68% and 95%

Figure 6. Neutron star tidal deformability, Λ, as a function of neutron star
mass. Λ(M) is compared to the masses and tidal deformabilities inferred in
M. Fasano et al. (2019) for the two neutron stars in the merger event
GW170817 at the 90% level (open squares), as well as Λ(1.4Me) at the 90%
level extracted from GW170817 (B. P. Abbott et al. 2018; open circle).

8

The Astrophysical Journal, 982:164 (12pp), 2025 April 1 Tong, Elhatisari, & Meißner



(a)

(b)

(c)

Figure 7. Universal relations for PNM and HNM together within the slow-rotation approximation. The black solid line is the fitted curve; the lower panel is the
absolute fractional difference between the fit curves and the numerical results. (a) I–Love relation; (b) Q–Love relation; (c) I–Q relation.

Table 3
Numerical Coefficients for the Fit Formula of the I–Love, I–Q, and Q–Love Relations

yi xi ai bi ci di ei

Ī Λ 1.49081 × 100 5.93228 × 10−2 2.25755 × 10−2 −7.05724 × 10−4 8.22849 × 10−6

Q̄ Λ 1.95541 × 10−1 9.42324 × 10−2 4.84774 × 10−2 −4.45415 × 10−3 1.35698 × 10−4

Ī Q̄ 1.40552 × 100 5.15966 × 10−1 4.82729 × 10−2 1.69043 × 10−2 1.16931 × 10−4
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credible regions of joint estimations on mass and radius for
PSR J0437–4715 (D. Choudhury et al. 2024), PSR J0740+6620
(T. Salmi et al. 2024), and PSR J0030+0451 (S. Vinciguerra et al.
2024) from the NICER Collaboration in Figure 9. At ν = 0, 205,
and 346Hz, the neutron star radii predicted by PNM, HNM(III),
and HNM(II) align well with the observations of all three
NICER sources, but the radii predicted by HNM(I) are consistent
only with PSR J0437–4715 and PSR J0030+0451. For low-
mass neutron stars with radii below approximately 18 km in
Figure 9, the spin frequency of 716Hz remains below the
Kepler frequency, ensuring stability. As the mass decreases
further, the spin frequency approaches the Kepler limit, resulting
in instability.

4. Summary

In summary, by utilizing a recently developed auxiliary field
quantum Monte Carlo algorithm, free from sign oscillations,
we derive the EOSs through ab initio calculations, incorporat-
ing a significant number of hyperons. Based on these EOSs
from the NLEFT, we investigate the structural properties of
both nonrotating and rotating neutron stars. The analysis

provides key physical quantities, including chemical potentials,
particle fractions, pressure, energy density, neutron star mass,
radius, tidal deformability, and the universal I–Love–Q
relation. Notably, our study explores both nonrotating and
rotating configurations for neutron stars. For a given central
energy density, the inclusion of rotation enables a neutron star
to achieve a gravitational mass higher than the nonrotating
counterpart. The most rapid spin frequency 716 Hz has a
significant impact on the neutron star radii, particularly for low-
mass stars, reflecting the significant impact of centrifugal force
that pushes the limits of mass and radius beyond those of static
configurations. Similar patterns in the mass–radius relations are
observed across the four different EOSs, e.g., PNM, HNM(I),
HNM(II), and HNM(III), indicating that the impact of
rotational dynamics on the mass–radius relation is consistent,
whether the EOS includes hyperons or not. By comparing the
calculated astrophysical quantities of both static and rapidly
rotating neutron stars with recent astronomical observations of
massive neutron stars, gravitational waves, and simultaneous
mass–radius measurements, our ab initio predictions are
consistent with these observational constraints.

Figure 8. Gravitational mass M as a function of central energy density εc. Four cases are shown for constant spin frequencies ν = 0, 205, 346, 716 Hz. These
calculations are based on the EOSs of PNM and HNM from the NLEFT calculations.
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