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We present a systematic ab initio study of the low-lying states in beryllium isotopes from 7Be to 12Be using
nuclear lattice effective field theory with the N3LO interaction. Our calculations achieve good agreement with
experimental data for energies, radii, and electromagnetic properties. We introduce a novel, model-independent
method to quantify nuclear shapes, uncovering a distinct pattern in the interplay between positive and negative
parity states across the isotopic chain. By combining Monte Carlo sampling of the many-body density operator
with a novel nucleon-grouping algorithm, the prominent two-center cluster structures, the emergence of one-
neutron halo, complex nuclear molecular dynamics such as π-orbital and σ-orbital, emerge naturally.

INTRODUCTION

Beryllium isotopes are pivotal in nuclear structure studies
due to their diverse phenomena, including clustering, halo
structures, and the breakdown of conventional shell closures.
For instance, 7Be plays a significant role in Big Bang nucle-
osynthesis and nuclear astrophysics by influencing the primor-
dial abundances of light elements [1, 2]. The unbound 8Be,
which decays into two alpha particles with a long lifetime,
exemplifies nuclear instability and clustering effects. Moving
along the isotopic chain, 9Be and 10Be are renowned for their
pronounced molecular-like structures [3]. The neutron-rich
11Be is particularly notable for its ground-state parity inver-
sion and halo structure, challenging traditional shell-model
predictions and providing insights into weakly bound sys-
tems [4, 5]. Similarly, 12Be exhibits the disappearance of the
N = 8 shell closure, highlighting the role of intruder config-
urations and shape coexistence [6–9]. These rich and varied
phenomena underscore the need for comprehensive theoreti-
cal frameworks capable of capturing the complex interplay of
clustering, shell evolution, and continuum effects in beryllium
isotopes.

A variety of theoretical approaches have been employed
to study these isotopes, with significant emphasis on clus-
ter structures, such as Antisymmetrized Molecular Dy-
namics (AMD) [10, 11], Fermionic Molecular Dynam-
ics (FMD) [12], molecular-orbital models [13, 14], the
Tohsaki–Horiuchi–Schuck–Röpke (THSR) wave function ap-
proach [15–17], and other cluster models [18–22]. These
methods have effectively captured cluster structures, molec-
ular configurations, and the influence of valence neutrons in
beryllium isotopes. See also the recent reviews [23–25]. In
parallel, density functional theory has been employed to pre-
dict the formation of alpha clusters bonded by excess neu-

trons, highlighting the significant role of clustering in these
systems [26–28]. Ab initio methods such as the Gamow
shell model [29], Green’s function Monte Carlo [30–32],
the resonating group method [33], Monte Carlo shell model
(MCSM) [34, 35], and no-core shell model (NCSM) [4, 36–
39] have been instrumental in providing a microscopic under-
standing of nuclear structure, clustering, and reaction dynam-
ics in beryllium isotopes.

Comprehensive reviews have highlighted the importance
of clustering phenomena in light nuclei and their impact on
nuclear structure, reaction dynamics, and astrophysics [40–
44]. These works emphasize the coexistence of cluster and
shell-model features in neutron-rich isotopes and discuss the
challenges in fully understanding the underlying mechanisms.
While these theoretical methods have significantly advanced
our understanding, a systematic ab initio study encompass-
ing energies, radii, electromagnetic properties, and geometric
structures across the beryllium isotopes is still lacking. More-
over, the identification of cluster structure and molecular or-
bitals from the full A-body wave function remains a question.

Recent advancements in nuclear lattice effective field the-
ory (NLEFT) offer promising avenues for such comprehen-
sive investigations. The introduction of wavefunction match-
ing techniques within NLEFT, combined with state-of-the-art
next-to-next-to-next-to-leading order (N3LO) chiral interac-
tions, has led to remarkable agreement with experimental data
across a range of nuclei [45]. Moreover, NLEFT has success-
fully described the structure of the Hoyle state in 12C [46, 47],
α-α scattering processes [48], geometric configurations of the
12C spectrum [49], nuclear thermodynamics [50], clustering
in hot dilute matter [51], structure factors for hot neutron mat-
ter [52], hyper-neutron matter [? ], and hypernuclei [53]. In
this work, we present a systematic ab initio study of the p-
shell beryllium isotopes using NLEFT with the N3LO inter-
action, including energies, radii, electromagnetic properties,
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and the geometric structures.

FORMALISM

We use the wavefunction matching method [45] to mitigate
the Monte Carlo sign problem associated with high-fidelity
N3LO chiral interactions. This method unitarily transforms
the original Hamiltonian, H , into a new high-fidelity Hamil-
tonian, H ′, such that its wave functions match those of a com-
putationally simple Hamiltonian, HS, up to a given radius.
This transformation ensures that the expansion in powers of
the differenceH ′−HS converges rapidly. For more details see
Ref. [45]. For comparison, we also employ a simple SU(4)-
symmetric interaction for the study of 12C [49].

In the NLEFT framework [54, 55], observables are calcu-
lated as

⟨O⟩ = lim
τ→∞

⟨Ψ0|MLt/2OMLt/2|Ψ0⟩
⟨Ψ0|MLt |Ψ0⟩

, (1)

where Ψ0 is the initial wave function, M is the normal-
ordered transfer matrix operator : e−HS at : with temporal
lattice spacing at, and Lt is the total number of temporal lat-
tice steps.

To study the nuclear geometrical properties, we employ
the pinhole algorithm [56] and its perturbative extension [57].
The method samples the positions of A-nucleons, denoted as
ni, on the lattice (spin and isospin indices have been omited)
according to the following amplitude

Z = ⟨Ψ0|MLt/2 ρ(n1,n2, . . . ,nA)M
Lt/2|Ψ0⟩, (2)

where ρ(n1,n2, . . . ,nA) is the normal-ordered product of
single-nucleon density operators ρ(ni) = a†(ni)a(ni). Let
Npin represent the total number of sampled pinhole configu-
rations. These configurations can be written as{

N(k) =
(
n
(k)
1 ,n

(k)
2 , . . . ,n

(k)
A

)}Npin

k=1
. (3)

where Npin typically reaches several millions for the current
study of beryllium isotopes. Each configuration then can be
transformed into the A-nucleon center-of-mass (c.m.) coordi-
nate, ri, [56]:{

R(k) =
(
r
(k)
1 , r

(k)
2 , . . . , r

(k)
A

)}Npin

k=1
. (4)

To account for the finite nucleon size (0.84fm) [58], a random
Gaussian smearing is applied.

The quadrupole moment for a given configuration can then
be calculated as (the denominator required for normalization
has been omitted)

⟨Q⟩ = e

Npin∑
k=1

(−1)sk
Z∑

i=1

[
r
(k)
i

]2 (
3 cos2 θ

(k)
i − 1

)
, (5)

with sk = 0 or 1 for the sign due to importance sampling to
the absolute amplitude of |Z| [55, 56], and the summation is
over protons. The reduced transition probability is

⟨B(Eλ; I1 → I2)⟩ = e2
∑
µM2

∣∣∣∣Npin∑
k=1

(−1)sk
Z∑

i=1

rλi Yλµ(r̂i)

∣∣∣∣2.
(6)

The deformation parameters [59] for a given pinhole configu-
ration (k) are

a
(k)
20 =

4π

3AR2
0

√
5

16π

A∑
i=1

(
3
[
z
(k)
i

]2
−

[
r
(k)
i

]2)
, (7a)

a
(k)
22 =

4π

3AR2
0

√
15

32π

A∑
i=1

([
x
(k)
i

]2
−
[
y
(k)
i

]2
+ ix

(k)
i y

(k)
i

)
,

(7b)

with R0 = 1.2 fm A1/3. The Hill-Wheeler coordinates [60]
β, γ can be calculated with:

a
(k)
20 = β(k) cos γ(k), a

(k)
22 =

1√
2
β(k) sin γ(k). (8)

By a suitable rotation, the expectation value of ⟨xy⟩ vanishes.
The statistically average over Npin configurations will give
us a deformation distribution for a given state of nucleus. To
distinguish it from single determinant deformation, we label
it as βpin and γpin.

Note that the expressions in Eqs. (4-7) have no explicit
left ⟨L| and right |R⟩ states information, they are encoded in
Eq. (2). For transition obsevables (6) a multichannel calcula-
tion with different bra and ket states will be performed.

RESULTS AND DISCUSSION

The N3LO interaction described in Ref. [45] and SU(4)-
symmetric interaction in Ref. [49] are defined on lattices with
spatial spacings a = 1.32 fm and 1.64 fm, respectively, which
correspond to momentum cutoffs Λ = π/a ≃ 471 MeV and
377 MeV. Additionally, the temporal lattice spacings for these
interactions are defined as at = 0.20 fm and at = 0.55 fm,
respectively, for these interactions. We perform our lattice
calculation in a periodic cubic box with length L = 13.2 fm
for the N3LO interaction and 14.8 fm for the SU(4)-symmetric
interaction. See Ref. [61] for the details on the configurations
of the initial wave functions.

Fig. 1 displays the low-lying energy spectra of 7Be to 12Be
calculated using NLEFT with the N3LO interaction, com-
pared to experimental data [62–67]. The trends of the theoret-
ical predictions agree with the experimental results, affirming
the effectiveness of the N3LO interaction in reproducing both
ground and excited states of beryllium isotopes. Numerical
challenges such as Euclidean time extrapolation and finite vol-
ume effects become more pronounced for excited states [61],
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TABLE I. Energies of states in 7Be and 10Be calculated by NLEFT
that have not been identified by experiments. For 7Be some results
from NCSM calculations [38] are listed for comparison.

NLEFT, N3LO NLEFT, SU(4) NCSM
7Be , ( 3

2

+
) −30.5(8) −29.9(3) −24.7

7Be , ( 1
2

+
) −28.8(1) −31.9(2) −27.8

7Be , ( 5
2

+
) −26.5(7) −26.5(1)

10Be, A+
1 (3) −56.1(7) −58.4(9)

making it more difficult to maintain the same level of accu-
racy as for ground states. Addressing these challenges will
require further optimization of computational algorithms and
fine-tuning of three-body forces. Despite these challenges, the
successful application of NLEFT to beryllium isotopes under-
scores its potential for accurately capturing the complex dy-
namics of light nuclei.
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FIG. 1. Low-lying spectrum from 7Be to 12Be calculated by NLEFT
using N3LO interaction [45] and SU(4) interaction [49], compared to
the data [62–67]. The error bars correspond to one standard deviation
errors include stochastic errors and uncertainties in the Euclidean
time extrapolation. The two α threshhold is denoted by horizontal
dashed line.

It is noteworthy that the simple SU(4)-symmetric interac-
tion [49] also provides an accurate description of most of the
states, especailly 11Be. The ground state of 11Be has long
posed a challenge to nuclear structure theory due to its in-
verted parity ordering, where the 1/2+ state lies below the
1/2− state, contrary to shell-model predictions [4, 39, 43].
Using only the SU(4)-symmetric interaction, we success-
fully reproduce this ordering with high precision: E( 12

+
) =

−64.6(1) MeV and E( 12
−
) = −64.1(1) MeV, compared to

the experimental values of −65.5 MeV and −65.2 MeV, re-
spectively. This result underscores the importance of many-
body correlations in achieving accurate nuclear structure de-
scriptions.

By exploring various configurations, we identify states in
beryllium isotopes that have not yet been observed experimen-
tally, as listed in Table I. The existence of positive-parity states
in 7Be has been a subject of long-standing debate [68, 69].
Using shell-model wave functions with one proton excited to
the sd shell, our calculations yield lower energies compared
to the NCSM results [38].

For 10Be, a three-channel 0+ calculation with irrepA+
1 pro-

jection [70, 71] reveals that the ground state is a mixture of
1p3/2 and 1p1/2 channels, the second 0+ state is predominant
by sd-shell, and the third state also comprises a mixture of
1p3/2 and 1p1/2. While the 0+2 state with sd-shell or σ-orbital
characteristics is well established [25, 42], the nature of the
third A+

1 state remains unclear. Although it could correspond
to a 4+ state, its calculated energy (−56 ∼ −58 MeV) is sig-
nificantly lower than the experimental 4+1 at −53.2 MeV and
the −49 MeV obtained from similar Jz = 4 calculations.
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FIG. 2. Radii from 7Be to 12Be calculated by NLEFT using
N3LO interaction [45] and SU(4) interaction [49], compared to the
data [12, 72–74] and other theoretical calculations [10, 12, 15–17].
For Refs. [10, 15, 17] proton size, neutron size, and relativistic cor-
rection are added. (Upper panel) charge radii; (lower panel) point
matter radii.

Fig. 2 displays the charge radii and point matter radii of
beryllium isotopes with available experimental data [12, 72–
74]. Our theoretical results, compared to calculations from
AMD [10], FMD [12], and THSR [15–17], agree with exper-
imental values within approximately 6% and follow the same
trend. Notably, the halo structure of 11Be is accurately repro-
duced using the N3LO interaction.

We present the calculated quadrupole moments and transi-
tion rates for 7Be to 12Be in Table II. These transition cal-
culations are challenging due to slow convergence in Eu-
clidean time and complex multichannel dynamics [80]. To
address this, Euclidean time extrapolation has been employed,
see [61]. Our results generally agree with the experimental
data, with deviations observed in some cases. Given that elec-
tromagnetic observables are highly sensitive to nuclear geo-
metric structures, achieving precise reproduction is inherently
ambitious. Many theoretical studies (see Table II and [81–92])
have examined these electromagnetic properties, and we com-
pare their findings in [61]. Additionally, we are developing a
new method that combines second-order perturbative Monte
Carlo [93] with a trimmed sampling algorithm [94] to study
transitions involving second 0+ and 2+ states using the N3LO
interaction.
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FIG. 3. Probability distribution of the deformation parameter βpin and γpin in Eq. (8) through sampling of pinhole configuration by NLEFT
using N3LO interaction, with red color represent a higher probability and blue color lower. The third component of total spin is fixed at
Jz = J .

TABLE II. The quadrupole moment and transition rates of Be iso-
topes calculated by NLEFT using the N3LO interaction [45] and
SU(4) interaction [49], in comparison with experiment. Units for
Q and m(E0) are efm2, for B(E1) are e2fm2, and for B(E2) are
e2fm4.

SU(4) N3LO Exp.
7Be E2, 3

2

− → 1
2

− 16.0(2) 15.2(5) 26(6)(3) [75]
9Be Q( 3

2

−
) 7.3(1) 7.4(1.0) 5.29(4) [76]

E1, 1
2

+ → 3
2

− 0.131(3) 0.060(15) 0.136(2) [77]
E1, 5

2

+ → 3
2

− 0.045(14) 0.049(5) 0.010(8) [66]
E2, 5

2

− → 3
2

− 35.7(1.8) 27.8(1.9) 27.1(2.0) [66]
E2, 7

2

− → 3
2

− 11.6(2.5) 5.3(8) 9.5(4.1) [66]
10Be E1, 3−1 → 2+1 0.026(2) 0.004(3) 0.009(1) [66]

E2, 2+1 → 0+1 10.6(4) 8.5(9) 9.2(3) [31]
11Be E1, 1

2

− → 1
2

+ 0.023(3) 0.038(3) 0.102(2) [78]
12Be E1, 0+1 → 1−1 0.049(2) 0.056(26) 0.051(13) [79]

E2, 2+1 → 0+1 7.8(1.1) 9.0(3.1) 14.2(1.0)(2.0) [6]

Recent experimental advancements, such as the collective-
flow-assisted nuclear shape-imaging technique introduced by
STAR [95], have provided unprecedented insights into the
shapes of atomic nuclei, highlighting the need for comple-
mentary theoretical approaches. In Fig. 3, we present the
probability distributions of the deformation parameters βpin

and γpin for the beryllium isotopes. This model-independent
analysis offers a statistical representation of the relative posi-
tions of all nucleons, distinguishing it from traditional energy
surface plots based on single Slater determinants. Our results
demonstrate that the occupation of different valence neutron
orbitals—specifically π- or σ-orbitals significantly alters the
nuclear shape. In particular, valence neutrons occupying σ-
orbitals lead to more prolate deformations, whereas the occu-
pation of π-orbitals results in more spherical shapes. These
findings are consistent with the nuclear molecular framework
[25, 30, 34, 96].

Finally, we present intrinsic density plots of selected states
in beryllium isotopes in Fig. 4. To obtain these intrinsic den-
sities, we adopt the strategy from Ref. [49], which groups the
closest two protons and two neutrons and randomly aligns the
clusters along the ±z-axis. This method ensures a balanced
representation of nuclear shapes, avoiding the overemphasis
of any single axis that occurs when aligning configurations
based on the principal axis [32, 61].

Panels (a)–(d) display the total density for 8Be, 10Be, and
11Be (1/2− and 1/2+ states). 8Be clearly shows a strong two-
alpha cluster structure as expected. Adding valence neutrons
in 10Be and 11Be slightly diminishes the cluster formation
while enhancing the neck region between clusters. Compar-
ing the 1/2− and 1/2+ states of 11Be, we observe signifi-
cantly different shapes: the π-orbital occupation results in a
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FIG. 4. Intrinsic density at x = 0 plane of selected states of beryl-
lium isotopes obtained by NLEFT using N3LO interaction. The third
component of total spin is fixed at Jz = J .

more rounded nucleus, whereas the σ-orbital induces a pro-
nounced prolate deformation, consistent with nuclear molec-
ular dynamics in other studies [25, 30, 34, 96].

Panels (e)–(h) illustrate the valence neutron densities,
scaled by a constant factor of 5 or by r2. In panel (e), the
π-orbital in 11Be naturally emerges from the N3LO interac-
tion, displaying a distinct distribution. For the 1/2+ state in
panel (f), one neutron occupies the σ-orbital, reducing the π-
orbital density. Applying an r2 scaling in panels (g) and (h)
reveals the large spatial extension of the last neutron in the
1/2+ state, characteristic of a halo nucleus. This extended
distribution aligns with other models [11, 25], showing en-
hanced density around r ∼ 0 and along the ±z-axis, alongside
shell-model sd characteristics indicative of a halo structure.

The concept of nuclear molecular orbitals has been exten-
sively discussed in cluster models [25], but it remains less
straightforward in the context of ab initio calculations. The
primary challenge lies in identifying the clusters and valence
particles within the full many-body correlated wave function
Ψ(r1, r2, . . . , rA). The current work offers new insights into
this task. By performing Monte Carlo sampling of the many-

body density operator, the pinhole algorithms provide config-
urations of the A-particle coordinates in space. Furthermore,
by grouping the closest 2 protons and 2 neutrons together, the
remaining particles are automatically categorized as valence
particles. In the Supplemental Material, we describe in de-
tail the grouping algorithm used, and we also explicitly con-
struct a simple model for the π and σ molecular orbitals that
is able to reproduce the ab initio nucleonic densities seen for
the 3/2− and 1/2+ states of 9Be as well as the ground states
of 10Be, 11Be, and 12Be [61]. This effectively reveals the nu-
clear molecular orbitals directly from the full wave function
Ψ(r1, r2, . . . , rA), offering an ab initio description of these
orbitals.

SUMMARY AND DISCUSSION

We have systematically studied the p-shell beryllium iso-
topes using nuclear lattice effective field theory (NLEFT) with
both the N3LO interaction [45] and a simple SU(4)-symmetric
interaction [49]. Our calculations for the low-lying spectra,
radii, and electromagnetic observables show good agreement
with experimental data. We have investigated the halo struc-
ture of 11Be, the geometric differences between negative- and
positive-parity states, and intrinsic density distributions. By
identifing clusters and valence neutrons from the pinhole al-
gorithm, nuclear molecular orbitals, e.g. π- and σ-orbitals,
emerge naturally. These findings demonstrate the efficiency
of NLEFT in capturing the intricate dynamics of light nuclei,
highlighting the potential of unified ab initio approaches in
elucidating complex nuclear behaviors such as the nature and
details of the molecular orbitals in nuclei with clustering.
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SUPPLEMENTAL MATERIAL

We give further information on the initial wave configuarations, table of numerical values, various numerical checks such as
Euclidean time extrapolation, box size, the breaking of cubic irrepresentation, and more intrinsic density information. All the
results below are obtained by full N3LO interaction if not stated differently.

Euclidean time extrapolation

We use one exponential formulas for the extrapolation of observables. For the nonperturbative energy E0 of the channel i,
this reads:

E
(i)
0 (τ) =

E
(i)
∞ + (E

(i)
∞ + d(i))c(i)e−d(i)τ

1 + c(i)e−d(i)τ
, (S1)

with E∞, c, and d the fit parameters.
For other observables, such as the energy and radius, we use

O(i)(τ) =
O

(i)
∞ +O

(i)
1 e−d(i)τ/2 +O

(i)
2 e−d(i)τ

1 + c(i)e−d(i)τ
, (S2)

with O∞, O1, and O2 as new fit parameters, while the parameters c and d will be fitted together with Eq. (S1). For observables
with mixed channels such as transitions, the extrapolation formula is extended to

O(ij)(τ) =
O

(ij)
∞ +O

(i)
1 e−d(i)τ/2 +O

(j)
1 e−d(j)τ/2[

1 + c(i)e−d(i)τ
]1/2 [

1 + c(j)e−d(j)τ
]1/2 . (S3)

Similarly to the above, theparameters c and d will be fitted together with Eq. (S1).
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FIG. S1. (Left panel) Extrapolation of the nonperturbative energy of the 0+1 (red squares and lines) and 2+1 (blue circles and lines) states in
10Be calculated in NLEFT. (Right panel) Extrapolation of B(E2, 2+1 → 0+1 ). The gray bands indicate the error of the parameters E∞ and
O∞.

As an example, in Fig. S1, we show the Euclidean time extrapolation of the nonperturbative energies and transition
B(E2, 2+1 → 0+1 ) in 10Be. The sign problem and computational complexity increase dramatically as the projection time τ
increases, and therefore we will limit our resources to a reasonable range where the simulation gives reliable results. A multi-
exponential extrapolation formula is not chosen to avoid overfitting.
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Finite volume effect

We use two states that have a large spatial extension to show the finite volume effect: the first is the high-lying resonance 3
2

+

in 7Be and the second is the neutron halo state of 1
2

+ in 11Be.

L [fm] 7Be, E( 3
2

+
) [MeV] 11Be, E( 1

2

+
) [MeV]

13.2 −31.6(6) 65.4(3)

15.7 −28.2(1.8) 65.3(6)

TABLE S1. Selected energies calculated at different box sizes L. The error bars indicate stochastic errors.

In Table S1 we show the results calculated at Lt = 500 for different box sizes. It can be seen for bound halo structure, the
box size L = 13.2 fm issufficient; while for unbound resonances, a mild finite volmue effect can be seen. This can be improved
in the future by better methods to address such type of states.

Rotational irrepresentation on lattice

Rotational symmetry including spin-1/2 particles on the lattice can be expressed by 8 irreducible representations (irreps):
A1, A2, E, T1, T2, G1, G2, H [1, 2]. Here we check how much the results are affected by the breaking of different irreps. We
take the example of 2+1 in 10Be, with initial wave function of Jπ

z = 2+ shell-model wave function and can be both irreps of E+

and T+
2 . For energies the results are obtained at Lt = 200, and for B(E2) at Lt = 150 due to large computational complexity.

The comparison of two irreps E+ and T+
2 are listed in Table S2

irrep E(2+1 ) [MeV] B(E2, 2+1 → 0+1 ) [e2fm4]
E+ −61.6(3) 2.72(49)

T+
2 −58.4(7) 1.95(61)

TABLE S2. Energy and B(E2) transition of 2+1 in 10Be for different irreps. The error bars indicate stochastic errors.

It can be seen the error due to breaking of different irreps is about 1.6 MeV in the energy and 0.38 e2fm4 in the B(E2)
transitions. The results presented in the paper are obtained using Jz = 2 initial wave function without doing any irrep projection,
therefore the two irreps are automatically averaged.

Initial wave function

A single Slater determinant composed of shell-model wave functions has been used as the initial wave function |Ψ0⟩ through-
out this paper. Comparing with cluster wave function, the main advantage of using shell-model wave function is that a good
quantum number Jz can be constructed and this helps to identify the total spin of the final state. With cluster wave function a
projection into irreps is necessary and this often causes a severe sign problem.

In Table S3 we list the configurations we use for the initial wave function for different states. Note that the first 2 protons and
neutrons always occupy the 1s1/2 orbital and therefore they are not listed. In some cases the order is not natural but is chosen
for a numerical advantage (e.g. smaller error or lower energy), and since this is only a initial wave function, such change will
not modify the final results. Furthermore, as there is no requirement of exact orthogonality, the single-particle wave function for
each nucleon can be slightly adjusted to achieve a faster convergence such as using different harmonic oscillator strength.
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TABLE S3: Proton (pi, i = 3, 4) and neutron (ni, i = 3, . . . , N ) configura-
tion of initial wave functions in NLEFT calculation for beryllium isotopes. The
notation ljzj is used to denote the three quantum numbers l, j, jz (orbital angu-
lar momentum, total angular momentum, projection of total angular momentum
onto z-axis). The radial quantum number n is omitted to save space, for all p and
d orbitals n = 1 , while for all s orbitals n = 2. Projection of the total spin onto
thez-axis and parity (Jπ

z ) are listed in the last column.
p3 p4 n3 n4 n5 n6 n7 n8 Jπ

z
7Be , 3

2

−
p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2
3
2

−

7Be , 1
2

−
p
+1/2

3/2 p
−1/2

3/2 p
+1/2

1/2
1
2

−

7Be , 7
2

−
p
+1/2

1/2 p
+3/2

3/2 p
+3/2

3/2
7
2

−

7Be ,( 1
2
)+ s

+1/2

1/2 p
−1/2

3/2 p
+1/2

3/2
1
2

+

7Be ,( 3
2
)+ p

+1/2

3/2 s
+1/2

1/2 p
+1/2

3/2
3
2

+

7Be ,( 5
2
)+ s

+1/2

1/2 p
+3/2

3/2 p
+1/2

3/2
5
2

+

8Be ,0+1 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 0+

8Be ,2+1 p
+1/2

3/2 p
+3/2

3/2 p
+1/2

3/2 p
−1/2

3/2 2+

8Be ,4+1 p
+1/2

3/2 p
+3/2

3/2 p
+1/2

3/2 p
+3/2

3/2 4+

8Be ,2−1 p
+1/2

3/2 s
−1/2

1/2 p
+1/2

3/2 p
−1/2

3/2 0−

9Be , 3
2

−
p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2
3
2

−

9Be , 1
2

+
p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 s
+1/2

1/2
1
2

+

9Be , 5
2

−
p
+3/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2
5
2

−

9Be , 1
2

−
p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

1/2
1
2

−

9Be , 5
2

+
p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 d
+5/2

5/2
5
2

+

9Be , 3
2

+
p
+3/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 d
+1/2

5/2
3
2

+

9Be , 7
2

−
p
+1/2

3/2 p
+3/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2
7
2

−

10Be,0+1 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 0+

10Be,2+1 p
+1/2

3/2 p
+3/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 2+

10Be,2+2 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
+1/2

1/2 2+

10Be,1−1 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

1/2 s
+1/2

1/2 1−

10Be,0+2 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 s
+1/2

1/2 s
−1/2

1/2 0+

10Be,2−1 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 s
+1/2

1/2 2−

10Be,3−1 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 d
+5/2

5/2 p
+3/2

3/2 p
+3/2

3/2 3−

10Be,A+
1 (3) p

+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

1/2 p
−1/2

1/2 0+

10Be,2+3 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 s
−1/2

1/2 p
+3/2

3/2 s
+1/2

1/2 2+

10Be,(4−1 ) p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 d
+5/2

5/2 4−

11Be 1
2

+
p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 s
+1/2

1/2
1
2

+

11Be 1
2

−
p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 p
+1/2

1/2
1
2

−

11Be 5
2

+
p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 d
+5/2

5/2
5
2

+

11Be 3
2

−
p
+3/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 p
+1/2

1/2
3
2

−

11Be ( 3
2

+
) p

+1/2

3/2 p
+3/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 s
−1/2

1/2
3
2

+

11Be 5
2

−
p
+1/2

3/2 p
+3/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 p
+1/2

1/2
5
2

−

12Be,0+1 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 p
+1/2

1/2 p
−1/2

1/2 0+

12Be,2+1 p
+1/2

3/2 p
+3/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 p
+1/2

1/2 p
−1/2

1/2 2+

12Be,0+2 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 s
+1/2

1/2 s
−1/2

1/2 0+

12Be,1−1 p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 p
+1/2

1/2 s
+1/2

1/2 1−

12Be,(2−1 ) p
+1/2

3/2 p
−1/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 p
+1/2

1/2 d
+3/2

5/2 2−

12Be,(2+2 ) p
+1/2

3/2 p
+3/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 s
+1/2

1/2 s
−1/2

1/2 2+

12Be,(3−1 ) p
+1/2

3/2 p
+3/2

3/2 p
+1/2

3/2 p
−1/2

3/2 p
+3/2

3/2 p
−3/2

3/2 p
+1/2

1/2 s
+1/2

1/2 3−
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Table of numerical values

Energies

In Table S4 we listed the numerical values of energies obtained by NLEFT using N3LO interaction [3] and SU(4) interac-
tion [4].

TABLE S4: Energies of Be isotopes calculated by NLEFT using the SU(4) inter-
action [4] and N3LO interaction [3],compared to experiment [5–10]. All energies
are in MeV. The error bars of NLEFT results are one standard deviation estimates
due to stochastic errors and Euclidean time extrapolation.

SU(4) N3LO Exp.
7Be , 3

2

− −39.5(1) −38.5(1) −37.6
7Be , 1

2

− −39.4(1) −37.8(4) −37.2
7Be , 7

2

− −32.0(1) −32.0(1.2) −33.0
7Be , ( 1

2
)+ −31.9(2) −28.8(1) –

7Be , ( 3
2
)+ −29.9(3) −30.5(8) –

7Be , ( 5
2
)+ −26.5(1) −26.5(7) –

8Be , 0+1 −56.8(1) −56.7(4) −56.5
8Be , 2+1 −53.1(1) −53.6(7) −53.5
8Be , 4+1 −45.8(1.3) −45.8(1.6) −45.1
8Be , 2−1 −39.3(3) −39.7(4) −37.6
9Be , 3

2

− −56.1(1) −57.6(3) −58.2
9Be , 1

2

+ −56.4(1) −58.2(1) −56.5
9Be , 5

2

− −54.0(1) −55.2(4) −55.7
9Be , 1

2

− −55.9(2) −56.4(1) −55.4
9Be , 5

2

+ −52.9(1) −55.1(2) −55.1
9Be , 3

2

+ −51.4(4) −53.1(7) −53.5
9Be , 7

2

− −49.1(1) −52.6(8) −51.8
10Be, 0+1 −64.0(1) −63.7(3) −65.0
10Be, 2+1 −60.2(1) −62.6(1.2) −61.6
10Be, 2+2 −59.1(1) −61.4(3) −59.0
10Be, 1−1 −56.7(2) −58.0(6) −59.0
10Be, 0+2 −57.6(2) −60.5(1.0) −58.8
10Be, 2−1 −56.1(1) −59.5(3) −58.7
10Be, 3−1 −54.6(3) −57.6(8) −57.6
10Be, 2+3 −57.0(1) −59.9(8) −57.4
10Be, A+

1 (3) −56.1(7) −58.4(9) –
10Be, (4−1 ) −52.6(1) −54.4(3) −55.7
11Be , 1

2

+ −64.6(1) −65.6(3) −65.5
11Be , 1

2

− −64.1(1) −63.9(1) −65.2
11Be , 5

2

+ −60.5(2) −61.9(3) −63.7
11Be , 3

2

− −62.3(2) −62.7(1.0) −62.8
11Be ,( 3

2

+
) −59.9(1) −61.6(2) −62.11

11Be , 5
2

− −60.5(3) −59.3(8) −61.6
12Be, 0+1 −72.1(1) −67.9(4) −68.6
12Be, 2+1 −67.9(3) −65.9(1.6) −66.5
12Be, 0+2 −66.8(2) −65.7(4) −66.4
12Be, 1−1 −65.2(1) −66.6(1) −65.9
12Be, (2−1 ) −61.9(4) −61.8(9) −64.2
12Be, (2+2 ) −64.1(3) −62.5(8) −63.8
12Be, (3−1 ) −60.9(1) −61.7(1.4) −62.92

1 For Exp., ( 3
2

+
, 3
2

−
) 2 For Exp., (4+, 2+, 3−)
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Radii

In Table S5, we give the values of the calculated charge and matter radii in comparison to experiment.

TABLE S5. Energies of Be isotopes calculated by NLEFT using the SU(4) interaction [4] and N3LO interaction [3],compared to experiment.
All energies are in MeV and radii in fm. For the NLEFT results, the error bars are one standard deviation estimates due to stochastic errors
and Euclidean time extrapolation.

rc (fm) SU(4) N3LO Exp. [11, 12]
7Be 2.557(3) 2.580(18) 2.647(17)
9Be 2.576(8) 2.552(16) 2.519(12)
10Be 2.466(5) 2.511(37) 2.357(18)
11Be 2.576(4) 2.543(41) 2.463(16)
12Be 2.352(2) 2.579(34) 2.503(15)
rm (fm) NLEFT, SU(4) NLEFT, N3LO Exp. [13, 14]
7Be 2.37(1) 2.39(1) 2.42(4)
9Be 2.60(1) 2.52(1) 2.38(1)
10Be 2.48(1) 2.53(2) 2.30(2)
11Be 3.14(1) 2.86(1) 2.91(5)
12Be 2.45(1) 2.63(1) 2.59(6)

Comparison of transition properties

In Table S6, we give the values of the calculated transition properties in comparison to experiment.

7Be Exp. [15] N3LO SU(4) NCSMC [16] NCFC [17] GFMC [18, 19]
E2, 3

2

− → 1
2

− 26(6)(3) 15.2(5) 16.0(2) 20.0 19.3 22.2(11)−27.5(8)
9Be Exp. [9] NLEFT SU(4) CSM [20] AMD [21] GFMC [19, 22] NCSM [23] MMM [24]
Q( 3

2

−
) 5.29(4) [25] 7.4(1.0) 7.3(1) 5.30 5.0(3)−8.5(3)

E1, 1
2

+ → 3
2

− 0.136(2) [26] 0.060(15) 0.131(3) 0.048 0.002 0.033 0.061
E1, 5

2

+ → 3
2

− 0.010(8) 0.049(5) 0.045(14) 0.005 0.013 0.006 0.025
E2, 5

2

− → 3
2

− 27.1(2.0) 27.8(1.9) 35.7(1.8) 23.9 25.6(6) 17.6(6)
E2, 7

2

− → 3
2

− 9.5(4.1) 5.3(8) 11.6(2.5) 10.0
10Be Exp. [9] NLEFT SU(4) Multicool [27] GCM [28] NCSM [29] MCSM [30] GFMC [31] MO [32]
E1, 3−1 → 2+1 0.009(1) 0.004(3) 0.026(2)
E2, 2+1 → 0+1 9.2(3) [31] 8.5(9) 10.6(4) 7.9 5.66 9.8 9.3 8.1(3)−17.9(5) 11.26
11Be Exp. [33] NLEFT SU(4) NCSMC [34] AMD [35] GCM [28]
E1, 1

2

− → 1
2

+ 0.102(2) 0.038(3) 0.023(3) 0.117-0.146 0.61-0.73 0.002
12Be Exp. NLEFT SU(4) FMD [11] GCM [36] NCSM [36] HAEM [37] AMD [38]
E1, 0+1 → 1−1 0.051(13)[39] 0.056(26) 0.049(2) 0.046−0.064
E2, 2+1 → 0+1 14.2(1.0)(2.0)[40] 9.0(3.1) 7.8(1.1) 8.75 12.6 3.5−4.6 3.04−3.93 14

TABLE S6. Quadrupole moments and transition rates of Be isotopes calculated using NLEFT with the N3LO interaction [3] and the SU(4)
interaction [4], compared to experimental data and other theoretical models. Units: Q and m(E0) in efm2, B(E1) in e2fm2, and B(E2) in
e2fm4. For results presented as ranges, the ranges reflect variations from different interactions and numerical methods.

Intrinsic density

There is no fixed definition of the one-body intrinsic density, ρ(r), derived from the many-body density, ρ(r1, r2, . . . , rA). A
common approach is to align each configuration along the principal axis [41]. However, this alignment can artificially enhance
the prominence of the principal axis. In our study of neutron-rich Beryllium isotopes, we observe that this method tends to
position the valence neutrons along the long principal axis, as they are often located far from the center.

Building on our previous work with 12C [4], we introduce an α-cluster-view intrinsic density, illustrated in schematic Fig-
ure S2. Similar to Ref. [4], we first group the nucleons into Nα clusters by considering all possible permutations of protons
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and neutrons and selecting the arrangement that minimizes the sum of inter-nucleon distances. We then determine the symmetry
axis for each configuration; however, this axis is not uniquely defined and depends on the specific system under investigation.
For example, in 8Be, identifying the symmetry axis as the z-axis is straightforward because the two clusters always align lin-
early. In contrast, for 9Be, the presence of a valence neutron introduces an angle between the clusters, resulting in a angle
(α1, 0, α2) < 180◦. This approach can be generalized to other nuclei, such as the ground state of 12C, where the symmetry axis
is defined based on an equilateral triangular arrangement of three clusters [4]. However, in each configuration, two clusters are
typically closer together than the third, allowing the symmetry axis to also be defined based on an acute triangular arrangement
rather than an equilateral one. Therefore, the choice of symmetry axis depends on the specific problem and the perspective
adopted. In this study, we consistently define the symmetry axis of Beryllium isotopes as the z-axis and randomly select one
cluster to align along the positive or negative z direction.

1

5

42 3

6 7 8 9 10

FIG. S2. Schematic show of grouping clusters and the intrinsic density from the view of cluster.

In Figure S3, we present the total density derived using the previously introduced α-cluster-view intrinsic density. The
general features observed from 8Be to 12Be have been discussed in the main text and show good agreement with results from
other studies. Specifically, for 7Be, the characteristic 4He plus 3He clustering is effectively captured by the α-cluster-view
intrinsic density. In the case of the ambiguous positive-parity state of 7Be, one proton is excited out of the 3He cluster. This
excitation disrupts the small cluster, leading to significant shape deformation and spatial extension, as illustrated by the βpin and
γpin plots in the main text. Similarly, for the 2−1 state of 8Be, one proton is excited out of the α cluster. This results in a very
high excitation energy and a substantial change in the nuclear shape. In the present study, the third component of the total spin
is fixed at Jz = J . Exploring the Jz-dependence of the structure would be an interesting avenue for future investigation.
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FIG. S3. Intrinsic density at x = 0 plane of selected states of beryllium isotopes obtained by NLEFT using N3LO interaction. The third
component of total spin is fixed at Jz = J .

In Figure S4, we display the density distributions of valence particles obtained using the previously introduced α-cluster-view
intrinsic density. For 7Be, these valence particles consist of two protons and one neutron that are not grouped into the α cluster.
In contrast, for the other isotopes, the valence particles are neutrons. To maintain a consistent color scale across all panels, we
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normalized the density distributions differently for each case. For example, in the 7Be 3/2− state, the 3He cluster exhibits a
much higher concentration, necessitating division by a larger normalization factor. The features of the π and σ orbitals, which
are discussed in detail in the main text, are more clearly observable in the 9Be case, as shown in panels (b) and (d). The
low probability regions at small z and large y coordinates may be attributed to the finite Euclidean time projection used in
our calculations. Due to the sign problem, the computations cannot extend to larger Lt values and are limited to Lt = 300.
Remarkably, starting from a common shell-model initial wavefunction, distinct nuclear molecular orbitals emerge automatically.
The severity of the sign problem generally increases with the number of nucleons and for states with unnatural parity, resulting
in larger errors in the valence particle densities compared to the total densities. Consequently, the uneven density distributions
plotted, such as those in panel (j) of Fig. S4, are purely due to statistical errors.
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FIG. S4. Intrinsic density at x = 0 plane of selected states of beryllium isotopes obtained by NLEFT using N3LO interaction. The third
component of total spin is fixed at Jz = J .

Molecular orbitals

In atomic and molecular physics, the molecular orbital describes how electrons moves around the composite atoms of a
molecule. Due to the strong binding character, the α particle behaves like an atom and several α particles can form a similar
structure of a ’nuclear molecule’ with extra nucleons move around in ’molecular orbitals’. The Beryllium isotopes is a classical
example of showing this picture [42]. While the two α particles do not form a bound nucleus of 8Be, adding an extra neutron in
a π orbital inbetween brings the two α particles together and forms a bound nucleus of 9Be.

Here we would like to take a simple toy model to show the basic features of those molecular orbitals, in comparison with
our ab initio findings. We assume two α particles located at z = ±1.6 fm with 4 Gaussian wave packets each. The following
single-particle orbitals are then added

ψπ = e−c1(r−rz)
2

(x+ iy) + e−c1(r+rz)
2

(x+ iy), (S4a)

ψσ = c2e
−c3r

2

+ c4e
−c1(r−rz)

2

(z − |rz|)− c4e
−c1(r+rz)

2

(z + |rz|), (S4b)

with rz , c1 to c4 are parameters to adjust to better agree with ab initio results. Using pinhole algorithm we can obtain the
densities of the system made up of these wave functions with proper orthonormalization condition. From panel (a) to (e) in
Fig. S5, orbitals of 1π, 1σ, 2π, 2π+1σ, and 2π+2σ are added respectively. The total density are plotted to be compared to 9Be
3
2

−, 9Be 1
2

+, 10Be 0+, 11Be 1
2

+, and 12Be 0+ in Fig. S3. From panel (f) to (j) in Fig. S5, the densities of corresponding valence
orbitals normalized to 1 are plotted to be compared to those in Fig. S4.

With the simplified setup we can already observe many basic features of the ab initio results in Fig. S3 and S4 such as the
two-center clustering, π-orbital, and σ-orbital. For more detailed information of nuclear moleculars the readers are refered to
Ref. [43]. While the molecular orbitals can be separated easily in such simple toy models, it is not trivial to identify them given
a full many-body correlated wave function Ψ(r1, r2, . . . , rA). The combination of pinhole algorithm and the identification of α
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FIG. S5. Schematic show of density plot of π and σ orbitals by adding single-particle orbitals around two α clusters. Panel (a) to (e) are total
densities, and (f) to (j) are densities of corresponding valence orbitals. See text for detail description.

clusters and valence particles provides a powerful way to achieve this goal. In this way there is no need to assume clusters and
valence particles in the beginning, they emerged naturally from the full wave function Ψ(r1, r2, . . . , rA). The ab initio density
plots can be used in this manner to deduce the nature and details of the molecular orbitals in nuclei with clustering.
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