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Quantum fluctuations in QCD influence nucleon structure and interactions, with pion production
serving as a key probe of chiral dynamics. In this study, we present a lattice QCD calculation
of multipole amplitudes at threshold, related to both pion electroproduction and weak production
from a nucleon, using two gauge ensembles near the physical pion mass. We develop a technique for
spin projection and construct multiple operators for analyzing the generalized eigenvalue problem
in both the nucleon-pion system in the center-of-mass frame and the nucleon system with nonzero
momentum. The numerical lattice results are then compared with those extracted from experimental

data and predicted by low-energy theorems incorporating one-loop corrections.

INTRODUCTION

Quantum fluctuations are fundamental to modern
physics, shaping many key phenomena. In QCD, gluon
field fluctuations are key to quark confinement and
asymptotic freedom. In the non-perturbative regime,
they influence quark and gluon dynamics within nucle-
ons, affecting their distributions and interactions. These
effects, in turn, shape how nucleons respond to external
probes like photons and weak bosons. When energy al-
lows, quantum fluctuations can manifest as real particles,
such as pions, in electroproduction and weak production.
Pion production is of particular interest, as pions, be-
ing Nambu-Goldstone boson of QCD, reflect spontaneous
chiral symmetry breaking and play a crucial role in chiral
dynamics (see, e.g., [1]).

The study of pion production through electromagnetic
interactions has a long history. Low-energy theorems
(LETs) successfully described charged pion photoproduc-
tion but initially failed for the yp — 7% process [2HT].
Bernard et al. resolved these discrepancies by incorpo-
rating chiral perturbation theory (ChPT) corrections [8-
13|, advancing our understanding of QCD chiral dynam-
ics, where quantum fluctuations (i.e, pion loops) are of
prime importance. Increasing beam energies in recent
electron-nucleon experiments have made it more chal-
lenging to probe pion production directly in the threshold
region. The latest photoproduction data from MAMI,
over a decade old [14], only cover energies above the sec-
ond threshold, where the 7#*n channel opens. For a re-
cent review, see [I5]. For electroproduction, where the
photon carries nonzero four-momentum squared, the sit-
uation is less clear. While the extension of the LETSs
to electroproduction and the ChPT analyses of exper-

imental data exist [I6H20], discrepancies among differ-
ent measurements and deviations from ChPT predictions
persist [21], prompting further theoretical efforts [22H24].
Lattice QCD calculations offer a first-principles approach
to predicting threshold pion electroproduction, enabling
direct comparisons with experiment and ChPT. Such
comparisons are essential for improving our understand-
ing of chiral dynamics in QCD.

Weak pion production is crucial for neutrino os-
cillation experiments, where neutrino-nucleus interac-
tions are a major source of systematic uncertainty.
This impacts both intermediate-energy experiments like
LBNF/DUNE [25], HyperK [26], and JUNO [27], as
well as low-energy coherent neutrino scattering pro-
grams [28] 29]. The DUNE Conceptual Design Report
highlights that uncertainties exceeding 1% for signals and
5% for backgrounds could significantly reduce sensitivity
to CP violation and the neutrino mass hierarchy [25]. A
significant portion of the DUNE neutrino flux lies above
the pion production threshold, making precise theoretical
understanding of pion production processes crucial. To
achieve few-percent overall cross-section uncertainties,
these processes must be understood at the ten-percent
level [30]. New data on neutrino scattering off proton
or deuteron targets would provide valuable constraints.
Theoretically, LETs are detailed in [3I]. While lattice
QCD can offer crucial insights, current studies of ma-
trix elements involving nucleon-pion rescattering states
remain exploratory compared to axial form factor cal-
culations. Theoretical and computational advances are
required to deliver results with fully quantified uncer-
tainties.

Lattice QCD calculations involving baryonic multi-
hadron states are inherently challenging due to increased
system complexity, poorer signal-to-noise ratios, and po-



tentially significant excited-state contamination. Re-
cent studies have explored the excited-state contami-
nation in nucleon matrix elements [32437]. Building
on our previous studies of nucleon electric polarizabili-
ties [38] and subtraction functions in forward Compton
scattering [39], we present a lattice QCD calculation of
YN - Nm, W*N - N7 and Z*N — Nm matrix ele-
ments at the pion production threshold. Using two gauge
ensembles near the physical pion mass but with differ-
ent lattice spacings, we extract the multipole amplitudes
FEy, and Lo, from pion electroproduction and L(()KV) , Mo,
and Hy, from weak production. A detailed comparison
is conducted between lattice results, experimental data
and LET predictions.

MULTIPOLE AMPLITUDES AT THE PION
PRODUCTION THRESHOLD

Consider the process of v* (k) + N(p1) > N(p2) +7(q),
where N represents a nucleon (proton or neutron), 7 de-
notes a pion, and ~* is a virtual photon with spacelike
momenta if k% < 0. Replacing v* with W* or Z* trans-
forms the electromagnetic process to a weak one. The
transition matrix elements for the electromagnetic and
axial weak current are given by

T = (Nl JS™(0)|N),
TV A = (N7l 1)V EA(0)|N), (1)

where the currents are defined as
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Here, u,d are the up and down quark fields, e and go
are the electromagentic and weak SU(2)y, coupling con-
stants, and 6y is the Weinberg angle. The minus sign
associated with the axial vector current reflects the V- A
structure of the weak interaction.

In the N7 center-of-mass frame at threshold (G = p =
0), the electromagnetic current matrix element can be
expressed in terms of two S-wave multipole amplitudes,
E0+ and L0+ [18}

[jem]s’,s = amle {LO+ ];5(6 : l%) + Eoy [5— if l; ]} &s)

3)
where ay, = 87i(m+ M), with m and M, being the
masses of the nucleon and pion, respectively. £y o are
two-component Pauli spinors for the nucleon, normalized
as gj,gs = J5.¢, where s and s’ denote the nucleon spin
in the initial and final states. The multipole amplitude
Ey, characterizes the transverse coupling of the virtual

photon to the nucleon spin, while Ly, characterizes the
longitudinal coupling. Eq. applies for k& 0. At k =0,
Lo, and Ejy, are equal in magnitude 18], bunphfylng the
expression to [jem] amE0+§ ,6&5. When k # 0, Lo,
can also be extracted from the time component of the
current, Jy™, using the Ward identity

'k'f* () & Low. (4)

[joem]s’,s =0
For weak interactions mediated by the W boson, the
axial weak current matrix element is expressed as [31]

k
[jOW,A]s’,s = O‘mgllgs (L(()KV) - HO+)
" k ;
[jW’A]s’,s = amgz, (mHO+ -1 (5’ X k) MO+) gsa (5)

where LéKV), Hy, and My, are the S-wave multipole am-
plitudes. To distinguish between electromagnetic and
weak transitions, the superscript (W) is added to Lo,
for the weak transition. For the Z boson, the matrix el-
ements are defined analogously, with the superscript W
replaced by Z. These multipole amplitudes can also be
expressed in the isospin basis. The relationships between
the multipole amplitudes in the physical and isospin
bases are provided in the Supplemental Material [40].

SPIN PROJECTION FOR CORRELATION
FUNCTIONS

The nucleon-pion operators O]I\}f: with isospin I = %
and % are constructed using the isospin-triplet operator
for the pion, OL=
cleon, O]I\}IZ, with appropriate coefficients. More details
of the construction are given in the Supplemental Mate-
rial [40].

To simplify the analysis, we first apply the projection
operator P, = 1”0 to the nucleon field, reducing it to a
two-component ﬁeld Consequently, the spin structure of
the correlation functions and matrix elements is analyzed
within a 2x 2 spln space The overlap of the interpolating
operators O L= and O N = With the nucleon and nucleon-
pion ground state is expressed as

, and the doublet operator for the nu-
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where the operators OJI\}IZ (p,t) and 011\}71: (p,t) are defined

as

ON"(p,t) = ZOL’( 1)eP T,
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with N =Y 4 Reoy, 1 and R is an element of the hypercu-
bic group Oy, Wthh describes the rotatlonal symmetry
in a finite volume. The operator O%; N L= (p,t) is defined in
the center-of-mass frame, with p serving only as an in-
dicator of the operator construction. The coordinates Z
and g correspond to the spatial positions of the nucleon
and pion operators, respectively. The factor L? accounts
for the finite volume, where L represents the lattice size.
The subscript V' denotes the states in a finite volume.
E and E]I\,Tr represent the energies of the nucleon and
nucleon-pion states, respectively.

The G7 representation is a two-dimensional irreducible
representation of Op, with basis states labeled by the
index s, which remain consistent with the spin index in
the infinite-volume limit. The finite-volume states are
normalized by

V(NP S INTT= B s)y = 2BL301 11 84 5085,
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(8)

The correlation functions are constructed as

Cnrin(ty,ts,t)
ONTr(tfytl)
CN(tfﬂti) =

According to Eq. @, a typical operator O'''= acts as
an annihilation operator, removing a state with isospin
(I,1I,). However, the same operator can also act as a cre-
ation operator, generating a state with isospin (I,-1,).
To clarify this distinction, we introduce the notation
O!~I= to represent O''= when it functions as a creation
operator. This convention similarly applies to the current

(ON%(0,t1)O8% (0, 1:)),

operator. By using j,{’l; in the correlation function, we
ensure that the isospin relation I, + I = I holds. Specif-
ically, we set (I.,I.) = (3,0). Other choices of (I.,I})
can be related to this setup through the Wigner-Eckart
theorem. Additionally, the current’s momentum & satis-
fies the momentum conservation condition p + k=0.

For the correlation functions Cn(tf,t;) and
Cnx(ty,t;), at large time separation ty — t;, we ob-
tain

1 ZnL(B)? g,

S TY[On(ts,t:)] = 328 (tr-ts)
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1 VAl . 6 2
= TT[CNw(tf,ti)] - LBLI()E_EJIVﬂ(tf_ti). (10)
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For the correlation function Cy .y, we use C and C° to
distinguish its spatial and temporal components, and de-
note vector and axial-vector current insertions by J =V
and A, respectively. Before applying the trace operator,
we first express

J]s',sﬁl’ (11>

CNraN =anzin Y. Es[

! o
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where the coeflicient is given by
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To extract the five multipole amplitudes, we define the
following spin projection operators

These projection operators are applied to correlation

functions to extract the multipole amplitudes. For ex-
ample,
1 1
~N_ S Ir [PL0+ CNWVN] -
Ngp feon, 2 |Rk
11
= (2unr) ? frlonriNamLoy,  (14)

where fr; is the Lellouch-Liischer factor that relates
the finite-volume state to the infinite-volume one, and
UN7 = "P}y: is the reduced mass of the nucleon-pion sys-
tem. Other multipole amplitudes can be extracted by
applying the corresponding spin projection operators to
the relevant correlation functions, as summarized in Ta-
ble [ These projection operators are valid for k # 0. For
k =0, Eg, can be extracted by applying Pg,, = 3/3 to

CquVN.

pL0+ PE0+ PH(H— ,PLE‘;V) JHox PMO+
. - - L -
CNﬂ'VN CNWVN CNﬂ'AN CNﬂ'AN CN‘rrAN
w k
Lo.  Bor  Ho. LI +%Ho Mo,

Table I: The correspondence between spin projection
operators, correlation functions, and multipole
amplitudes.

Applying the projection operator ’ﬁLm = (/% . 6)/% to
éva N can also extract Loy, but Pr,, is preferred as it
reduces systematic effects. For instance, if the lattice size
is tuned such that ko = 0, Lo, should vanish, yet Py,
fails to ensure this due to systematic uncertainties. In our
study, the factor ko/|k| takes small values of 0.376, 0.170
and 0.063, which helps suppress systematic effects when
using Pr,,. Conversely, we observe significant excited-
state contamination when using Py, , leading us to adopt
Pr,, exclusively. Further details on the design of spin
operators and the discussion of Lellouch-Liischer factor
are provided in the Supplemental Material [40].



OPERATOR OPTIMIZATION

To reduce excited-state contamination, we use
Of\}f: (p,t) with the four lowest momentum modes
—L2_ _(0,0,0), (0,0,1), (0,1,1), (1,1,1).  (15)
2m/L

These operators are denoted as 05\772, where n =1,2,3,4
corresponds to increasing momentum modes. For sim-
plicity, we have omitted the isospin index. Using these
operators, we construct a 4x4 correlation function matrix
with elements given by

wt(w—ﬂ——%@“Wndmm». (16)

The four lowest states are defined as [N7, G7, s,n)y with
n=1,234.
By solving the generalized -eigenvalue problem
(GEVP), we construct optimized N7 operators as
Onn =0 +¢,08

+C3O +C4O(4) (17)

where the coefficients ¢, are determined using the stan-
dard GEVP procedure [41] [42]. Assuming that the low-
est four states dominate the correlation function matrix,
with higher excited-state contributions being negligible
compared to the statistical noise, the coefficients ¢, can
be considered to satisfy the condition

(0|ON«|N7,G7,5,n)y =0, forn=2,34. (18)

For the nucleon operator with nonzero momentum p,
parity is no longer a good quantum number, allowing
mixing with N7 operators of the same momentum. We
consider three operators

0y =0n(@). OF =(5-3)0n(5)0x(0),
0 = (5-3)On ()04 (), (19)

using which, we construct the correlation function matrix
n,m 1 (n) ~(m)
MY (ty = ti) = By Tr(ON"(tr)ON " (ti))- (20)

It is explained in the Supplemental Material why this
matrix is suitable for GEVP analysis [40]. By solving
the GEVP, we obtain the optimized nucleon operator

On = 0 +dy0 + d;0P. (21)
where the coeflicients ds 3 satisfy
{0lONIN(0)7(7))v =0, (0ONIN(B)7(0))v =0. (22)

We construct the correlation function using the opti-
mized operators

Cnman(trotr,t:) = (Onr(tp) Ju(t)On(t:)),  (23)

where we include only terms from Cpy,;y and those
proportional to the coefficients c2 34 and da3. Terms
involving products of ¢,,d, are treated as higher-order
corrections and neglected. A challenge in computing
correlation functions like (O(l)(tf)J (tJ)O(n)(t )) for
n = 2,3 is the evaluation of five-point correlation func-
tions.  Since the disconnected diagrams encapsulate
the contributions from (N (0)|N(0)){(m(0)|J,|7(p)) and
(N(0)[J,|N(5)){m(0)|r(0)), which are enhanced by a fac-
tor of spatial volume of the lattice, they dominate the
five-point correlation functions based on the factoriza-
tion approximation

(N (0)7(0)|Tu|N (0)m () » (N (O)N ()} (0)] Tl ()
(N (0)m(0)]Ju|N (5)7(0)) » (N (0)|Jul N (5))(m (0) | (0)).

Therefore, we compute only the disconnected contri-
butions as approximations to the challenging five-point
functions, which is feasible within current lattice QCD
studies. Though certain simplifications have been made,
they mainly affect corrections for excited-state contami-
nation and are therefore acceptable. Future work to de-
velop methods for handling five-point correlation func-
tions is beneficial.

NUMERICAL ANALYSIS

We used two 2 + 1-flavor domain wall fermion ensem-
bles, 24D and 32Df, from the RBC-UKQCD Collabora-
tion [43], which have similar pion masses (142.6(3) and
142.9(7) MeV [44]), comparable spatial volumes (L = 4.6
fm), the same discretization but different lattice spacings
(a7 =1.023(2) and 1.378(5) GeV). For each configura-
tion, we generate 1024 point-source and 1024 smeared-
source propagators at randomly chosen spatiotemporal
locations to compute the correlation functions, using the
random sparsening-field technique [45] 46]. Smeared nu-
cleon operators and local current operators are used, with
renormalization factors provided in Ref. [47]. Additional
details on the computation of four-point correlation func-
tions can be found in Refs. [38], 48] [49].

Taking the 24D ensemble and the I = 3/2 N7 sys-
tem as an example, we show the GEVP analysis results
in the left panel of Fig. For each operator 01(\7,2,
we plot its overlap with the state |Nw,G7,s,m), de-
fined as c¢pm = [0 |O(n)|N7T G1,s,m)y|, normalized by
N Similarly, for the nucleon system with mo-
mentum [p| = <&, the right panel of Fig. |1 prebentb the
corresponding GEVP results. The overlaps with excited
states for the operators OE\BT and OS) are about 5% and
10%, respectively. Although these overlaps are small,
eliminating excited-state contamination remains crucial,
as discussed below.

Using Eqgs. and , we extract the effective mul-
tipole amplitude for given time separations ¢y, —t; and
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Figure 1: The overlap of the operators 05\772 for
n=1,2,3,4 (left) and OJ(\?) for n=1,2,3 (right) with
the eigenstates from the GEVP analysis.

ty —tny. Since the initial and final state operators dif-
fer significantly, we analyze their time dependence sep-
arately. We first fix ¢ty —t; and compute the multipole
amplitude as a function of ¢ —t; to assess excited-state
contamination on the N side. By fitting this depen-
dence, we obtain an effective multipole amplitude depen-
dent only on ¢t —t;. We then examine excited-state con-
tamination on the IV side and extract the final multipole
amplitude by fitting its ¢y —t; dependence.

We take Hp, and Lo, as examples to illustrate the
impact of the GEVP correction on the N7 and N sides,
respectively. Fig. [2] shows Hy, as a function of ¢y, -t
for ty—tx = 0.58 fm, comparing results with and without
GEVP corrections. Here, “with GEVP” refers to the use
of the optimized operator Oy (t), which retains both the
Cnrjn term and terms proportional to ¢y 3.4, whereas
“without GEVP” omits the ¢y 34 corrections. As the

coupling of OE\BT with excited states is weak, the GEVP
corrections are not highly significant as shown in Fig
However, they still cause a shift by around 1-3 o.

Fig. 3] compares Lo, as a function of ¢; — tx with
and without GEVP corrections on the N side. Here,
the t; — tny dependence is analyzed using data that in-
clude the cp 34 corrections. The terms “with GEVP”
and “without GEVP” indicate whether the ds 3 terms
are included. The GEVP correction is crucial: before
GEVP, significant excited-state contamination is visi-
ble at small t; — t, whereas after correction, a clearer
plateau emerges. The difference can reach 6 o in the more
precise 24D data. Since nucleon operators with nonzero
momenta are widely used in lattice calculations, such as
for parton distribution functions, removing excited-state
contamination using techniques like GEVP is essential. It
is worth noting that GEVP optimization has only a mild
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Figure 2: Effective multipole amplitude Hy, as a
function of tn, —ty for t; —tny = 0.58 fm.

effect on the single-nucleon two-point correlation function
Cn(ty,t;). However, for matrix elements extracted from
Cnran(tg,ts,t;), the impact of GEVP is significant. A
more detailed discussion is provided in the Supplemental
Material [40]. Figures illustrating the fitting quality for
other multipole amplitudes are also included in [40].
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Figure 3: Effective multipole amplitude Ly, as a
function of t; — ¢, obtained from a fit using
GEVP-corrected data on the N side to analyze the
time dependence on the N side, both before and after
GEVP correction on the N side.

RESULTS AND CONCLUSION

Fig. [4] shows the momentum dependence of the multi-
pole amplitudes obtained from fits to both the ¢y, —ts
and ty -ty dependences. The amplitudes Lo, and Fy.,
are presented in the physical basis, allowing for a direct
comparison of the lattice results with extractions from
experimental data and predictions from LETSs, including
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Figure 4: Comparison between lattice results for Lo,
and Fy, with those extracted from experimental data
and predicted by LETs. The lattice value of Ly, at

k? = M2 is determined by enforcing the condition

Lo, = Ep, at k =0. Experimental data and LET
predictions are available in the spacelike region (k2 < 0),
as reported in Refs. [50] and [I8].

O((M,/m)?) corrections [I8]. Lattice results for other
multipole amplitudes in the isospin basis are provided
in the Supplemental Material [40]. Several partial-wave
analyses based on experimental data exist [50H56]. In
this work, we compare our results with the most recent
analysis within a coupled-channel framework [50]. Note,
however, this analysis does not incorporate matching to
the ChPT amplitude at low energies and momenta, and
only proton target data are analyzed, as the neutron in
the initial state is bound in a deuteron or *He, making
the theoretical interpretation less clean.

In Fig. the lattice data exhibit a similar trend to
both experimental analyses and LET predictions but
align more closely with the experimental results while de-
viating more from LETs. This discrepancy arises because
LETSs omit higher-order corrections within the framework
of ChPT. Although some differences exist between the
lattice and experimental results, the large uncertainties
in the experimental data imply that the lattice and exper-
imental results are either consistent or deviate by around
2-3 0. Additionally, some deviations between the two lat-
tice ensembles can be observed. While these differences
may arise from lattice artifacts, they could also result
from statistical fluctuations. Further investigation into
these effects, using larger statistics and additional lattice
spacings, would be a valuable direction for future stud-
ies. Improved precision in both lattice calculations and
experiments will enable mutual validation and deepen
our understanding of pion production from a nucleon, a
fundamental quantum fluctuation process.

As the first lattice QCD study of pion production, our
approach to spin projection and multiple operator con-
struction extends techniques developed to study excited-
state effects in nucleon observables and holds promise
for the eventual calculation of shallow inelastic neutrino-
nucleon scattering.
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SUPPLEMENTAL MATERIAL

Lattice operator conventions

In this calculation, we use Euclidean lattice interpolat-
ing operators for the pion and nucleon fields, defined as
follows. For the pion fields, the operators are given by

OE, =dyFu, OF

T+ = _’H’WSECL
(wyFu—-dyEd),

(S1)

&\H

1
Oﬂ_o = 7(71’)/ u— d"}/ d), Oﬂ.o = -
OF —unFd, OF =-dvEu

For the nucleon fields, they are

Of = ’P+eabcua(u507£d0), Of = 73+eabcda(u1?07£dc),
OF = eavclia(ty, CYYde)Pe,  OF = €apeda( Cy2 de) Py
(52)

In the chiral representation, the charge conjugation ma-
trix C is given by C = iy&yf’. The gamma matrices
in Euclidean space (denoted with a superscript E) are
related to those in Minkowski space (without the super-
script) by the following relations

V=N = (S3)

% =" A =i,

The Minkowski gamma matrices are defined as

o_(01 i [0 ol (-1 0
Y _(1 O)ﬂ ’y_(_o.i 0)7 75_(0 1) (84)

where o’ are the standard Pauli matrices.
When applying the projection operator P, to the
quark field, it acts as

_ uy\ _ 1 Ul + U2
Pru =Py (Uz) 2 (Ul + Uz) '
Here, u; + us represents a two-component field. Conse-
quently, we analyze the spin structure of the correlation
functions and matrix elements within a 2 x 2 spin space.
According to the convention of gamma matrices, the

relationship between Euclidean and Minkowski operators
at the origin is given by

OF. ,(0) = 0,40 (0),

(S5)

0,,(0) = =i0pn(0).  (S6)

The action of the isospin raising and lowering operators
is defined as

ILd=u, Iu=d, ILu=-d, I.d=-u. (ST)

The isospin-triplet operator for the pion, OL7: and the
doublet operator for the nucleon, O]I\}Iz, are defined as

O}rl Ol -1 _OE

1
05*5
N

oL,
E
= Op 5

1,0
Oz
1 _
1,
Ox

-0k,

s

=0F.

Wl ||

(S8)
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The isospin-triplet operators for the vector and axial-
vector currents are given by

1,0

1
v, :_T(Iwuu d’yud)

V£’0 \/_(’U/)/H u+ d’y d)

A;l;l: 7#75“’

1 _
1,0 _ _E E E_E
AH __\/§(u7u75u_d7/tv5 d)7

ATt = —ayAEd. (S9)

Using these conventions, the electromagnetic and weak
currents, defined in Eq. , can be expressed as

Jm0) = %m (—v;’0<0) - SV20).
J:L/V,A(O) = \/— /J« H (0)
TZA) - o). 10

2\/_0050

where 7, = 1 for =0 and 7, = i for u=1,2,3.
The nucleon-pion operators in the isospin basis, O]I\}frz,

are given by

11 V2 11 1 11
022 = 02 2071771_ 02720_}r0
Nm \/g N \/g N 9
01%’7% — 1 01%’7%0170 _ \/501%\/%01,—1
™ T k)

T V3

3 1 1

202 _ 2532 171
22 = 020!}

3 1 1,1 11
272 — 2’ 2 272
27 = 7_0 oL +—0N oL

31 V2 1.0 11y
okt - 2ot toro, Lotign
™ \/_ \/_ N
037 = 0370, (S11)

These definitions are consistent with those given in
Ref. [38].

State conventions

The pion decay constant, F,, arises from the cou-
pling between the axial vector current and the pion state,
which can be expressed as

{0145, (2)I=" (p)) =

~i Fyep6°e™ P (S12)
where A% = 1,75 T4 is the axial vector current, and
7% (a =1,2,3) are the Pauli matrices. Fj; has a value of
~ 93 MeV. The pion state |r%) satisfies the normalization

condition (7°(p)|7%(p)) = 2E6°°(27)26G) (' - p).



The charged and neutral pion states |7*°) are related
to |7®) through

_ L
V2

These states can further be related to the isospin states
|ml1=) as

) (i) 2iln®)),  |7°) = [x®). (513)

[m*y = |t 7y = =fat0), ) = —|xh ).

(S14)

In a finite volume, these states are denoted as |7f1=)y,
and normalized by

V(ﬂ'I’I; |7TI’IZ >V = 2E7TL3(512,[;. (S 15)

The charged and neutral weak currents are related to
A7, through

A = At - iAi = dy,Ysu = nMAlljl
AL = A +i A2 =ty ysd = - Ay

1 _
A?L = \/iAi = ﬁ(ﬂq/#%u = dyuysd) = _nﬂAllL(gw)

Using this convention, we have

(01A%° () |7 (D)) = =i frpue ™, (517)
where fr = /2F, ~ 132 MeV is the decay constant, typi-
cally determined from experiment or lattice QCD.

The same operator A{jl = can act as either an annihila-
tion operator or a creation operator. To distinguish these
roles, we use Afb"fz to denote the A/Ifz operator when
it functions as a creation operator. This convention also
applies to the vector current.

In Euclidean space, the matrix element for the axial
vector current and the pion state is given by

4 —ipPx
(Ol AL (@)a "= (7)) = = fapie™ Tér1,  (S18)

where nupf = ip, or equivalently p¥ =ip® and pP = p
for i =1,2,3. For the pion operator, we have
7 _inE.
(007" (@) 7" (7)) = Zne ™ 611, (S19)
with Z; being the corresponding overlap amplitude.

The proton and neutron states can be expressed in
terms of the isospin doublet |[NT:/=) by

(S 20)

Unless otherwise specified, the spin of the state will be
omitted for simplicity.
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The isospin states of N7 system are defined as follows

S

2 1_1

(Nm)=3) = SN e Erhl) - N e i)

(S21)

The relationship between finite-volume and infinite-
volume states is given by

(N7 5) = (2pna)® 2 (N7 Ty,

where the Lellouch-Liischer factor frr, is defined as [57]

21 [ dot  dS
=—|g—=—+k—].
fro 13 (q dq + dk)

(S22)

(S23)

Here, k satisfies Enr = Vm2 + k2 + \/mi +k2 and ¢q =
kL EEx

2m " Enx’
#" (q) is a known function associated with an irreducible
representation of hypercubic symmetry, denoted by I'. In
this calculation, we set I' = G7. At threshold, the large-L

expansion of fr, is given by [58]

The reduced energy pun, is defined as pun, =

2
fro =L3[1+d1azﬂ +d2(C”LV”) +O(L‘3)], (S 24)

where apy, is the S-wave N scattering length, and the
coeflicients d; are given by

Zoo(1;
dy = —2M:5.674595,
™
Z0o(1;0)2 +3Z00(2:0
gy = ZooE07*820(20) 3005 475 (525
Vs

The values of the zeta function Zyg(s,0) are provided in
Ref. [59]. The results for ay, from the two ensembles
used in this calculation have already been reported in
Ref. [38]

Matrix element conventions

The matrix elements involving isospin states and a vec-
tor current insertion are expressed as

"oy NI’,I; T\ I”)I;’ "o~ s
((Nm) V= (0)INT) = O o AN IV, INT)
(S26)
where the Clebsch-Gordan (CG) coefficients are defined
as

Cp = (LI LI I, (S27)



To avoid ambiguity, we fix the z-components of the nu-
cleon state and the current {I.,I.} at {3,0} and define
the following matrix elements as
VD = (Nm) 22|V (0)|N =2),
VI = (Nm) 22|V (0)|N =2),
VI = ((Nm) =2 VR0 (0)IN=3). (28

[N

Using the CG coefficients, we derive the following rela-
tions

(Nm)= 2|V 00) N2 = -y,
(Nm) 22|V 0)N#72) = VP,
(Nm)= 2| V20N 72) = VP, (529)
For physical states, the matrix elements involving the
electromagnetic current are given by

em e V2
(|5 lp) - ﬁnu(—\/iV,ﬁl)—VfH?) v).
~| jem e V2.
(o) = %m(ﬂvywyug vff>),
em € 1
(pr°lJ"p) = 76%(—1/,5”+¢§V,§2)+§V;3))(S30)

Matrix elements involving isospin states and an axial-
vector current insertion are defined similarly

AD = (Nm)33|AL0(0)|N?3),
AP = (Nm)BE|ALO(0)N22).  (S31)

Using CG coefficients, we obtain

(Nm)=72|A

ALTHO)INE2) = V2AD,
3 _1 1 1
(V)BT OV ) = S5 AR, (332)

For physical states, the matrix elements involving the
weak current are

(pr |7, A p) = _297\;677“ (2A,(}) fA’(*Q))’
(mr0|Jl‘f’,A|p> - _297\5677# (_\/iA,(Ll)—A/(f)),
erlE ) = 5 (A - V2AR).
(nt T2 A ) = Qﬁc’ﬁm (V2AD +A@).
(S33)

The multipole amplitudes in the physical and isospin
bases can be related in the same manner. We summarize
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the relationship using L, and L(()KV) as examples

Los(y'p > n7*) =

2
(Ve -1+ 1)),

%\m

Lo.(y'n—pr7) =

1 2 \/§ 3
(\/§L6+) + L((J+) + L(()+)) ’
( I +var® 4 L(a))’

92 (2L<W>,<1> L), <2>),

Lo+ (v*p » pr°) =

7 &\m\

L(()W)(W p—>pr

2\/6 0+ \/—O+

L(()‘_:_V)(Wi*p N n,/TO) _ ( \/_L(W) (1) L[():/_V)’@)),

2f
. g , :
L (2% p - pr®) = 2\/60;9 (L0 - oL @),
w
LO(2%p - nr VELIMW | [ N).@)
(Z7p )= 2\/6(:05914/ ( )
(S34)

Spin projection for extracting the multipole
amplitudes

We define the 2 x 2 vector matrix 3 as
Sy = ELGEs. (S35)

These matrices satisfy the relation

T[S 8] = 5y s 0 = 6. (S 36)

s,s’

Based on rotation symmetry, a natural way to extract the
multipole amplitudes is to perform the spin projection as
follows

1 1 A e a o
— “Tr[(k-2)k-T™]|. . =am Los,
Np ReOy, 2 k=Rl
i Z 1Tl“[i jem] . =am (2E0s + Loy ),
Ngp feOn 2 E=RI
1 1 ko ,» =
— Z Tr[ﬁ(kE)JOem] N ,—amLOJm
Ngr feOn K| ‘k:Rl
1 1 W, A w) ko )
R — T j ’ I 6 75% L +*H 5
Nr REZ(:)’L 2 [ 0 ”k: I o+ m o
Lovly m;;.jWA]‘ ay, Ho.

- - - m bl
Np £eOn 2 |k| k=RI
1 1 oAl =
— —Tre[i(E xk)- TV =2a,, My(S37
Ng Rezo:h 2 [ ( ) ]|k=Rl of )

where [ is a typical lattice momentum.

Combining Eq. and Eq. yields the formula
for extracting the multipole amplitude from the corre-
lation functions, as given in Eq. , up to the finite-
volume corrections.



Operator construction for GEVP

First, we consider the correlation function of the gen-
eral form
C(2,1) = (ON(@)r(a1)(dm) DON @) (31)n(5.) (0));
(S38)
where the composite operator Oy (gyr (g, ) (gG,,) CONSiSts
of a nucleon operator and m pion operators, while
ON(ﬁ)ﬂ(ﬁl)...W(ﬁn) contains a nucleon operator and n pion
operators. In total, the momenta involved are given by

(I) = {(._ia qla”

where there are m + n + 2 momenta, which satisfy the
constraint

'767m7ﬁ7ﬁ17"'u5n}7 (839)

(S 40)

The general structure of C'(®,t) can be expressed as
C(®,t) = CO(®,t) + CO (D, )0’ (S41)

Under cubic symmetry rotations, the nucleon operator
transforms as

ON(q) - A%ON(R—lq), ON(ﬁ) — ON(R—Iﬁ)A%l (S42)
where A% is a 2 x 2 matrix satisfying
A;UZA% = Rjo’. (S43)

Accordingly, the correlation function transforms as

C(®,t) - A%C(R‘lé,t)A‘%l, (S44)
leading to the conditions
CO(R1D,t) = O (®,1),
CO(R®,t)o" = R;;CD(®,t)0?.  (S45)

Under parity transformation, the correlation function

satisfies
C(®,1) = (~1)™*"C(~0,1), (546)
which imposes the condition
CO(@) = (~1)™"CD(—d), i=0,1,2,3. (S47)
Using Egs. and , we obtain
(On @) = [P0,
<O (p)w(6)>=ﬁ'0f2(232>?5)7
(O N(ﬁ)rr(;ﬁ)) =p-5f3(5°,1),
(O p)w(O)ON(pw )= f1(5, 1),
(OnCpyn@OnGym) = [ 1),
(On@n-»On@mm) = 6P 1), (S48)
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where the functions f;(p%,¢) have a trivial spin struc-
ture, meaning they are proportional to the 2 x 2 iden-
tity matrix in spin space. By multiplying the operators
ON(ﬁ)‘/r(ﬁ) and ON((-))W@) by p - and defining the op-
erators as given in Eq. , we demonstrate that each
correlation function C'"™(t) = (O%l)(t)(_)gvm)(O)) has a
trivial spin structure. The trace of the correlation func-
tion, denoted as M’y (¢) in Eq. , is given by

Alewmol,,

= Z<0|o<"><o>|k>

ME™ ()

[O}&””(t)] o)
<k|0“"><0)|o>
(S 49)

where |k) represents the eigenstate of the QCD Hamilto-

nian in a finite volume, and OJ(\;L)Q denotes the ay, com-

ponent of the operator 05\7). Through Eq. 1' we
establish that the correlation function matrix, whose el-

ements are given by My (t), is well-suited for a GEVP
analysis.

For nucleon-pion operator in the G7 representation, we
introduce the correlation function

Ca (1) = (0 (DO (0)). (850)
The operators O( ) and O( ) are associated with the mo-
menta p and ¢, respectlvely Under rotational symmetry,
C;m(t) can, in principle, contain terms proportional to
lows, p-6, G-6 and €7*pigFot. However, parity sym-
metry forbids the p-& and G- & terms. Furthermore, in
the G7 representation, the symmetry p — —p holds, elim-
inating the €7%pig¥o® term as well, leaving only the 1oy
contribution. As a result, we obtain

C;zf’::b(t) = fnﬂn(ﬁgaﬁ' d? 627t)a

where the functions f™™ exhibit a trivial spin structure.
Following a similar procedure as described earlier, we
can demonstrate that the trace of C};""(t), denoted as
MG (t) in Eq. (16)), is also suitable for a GEVP analy-
sis.

As nucleon operators with nonzero momentum are
widely used in lattice calculations, it is important to
examine how the GEVP procedure affects the single-
nucleon two-point correlation function. To assess the im-
pact of the GEVP-optimized operator defined in Eq. .,
we introduce the ratio d,, TI‘[Cl m(t)]/Tr[C’l Y1),
where the denominator, Tr[Cy' (t)], represents the cor-
relation function without GEVP, while the numerator,
dm Tr[Cllv’m (t)], captures the primary effect of GEVP op-
timization. As shown in Fig. using the 24D ensemble
as an example, GEVP causes only a minor ~1% change
in the nucleon two-point function. However, the effect of
GEVP is much more pronounced for the correlation func-

tion CH™ \(tnm trstn) = (O (tna) T (£)OS (Ex)).-

(S51)
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dy,Tr [PL0+ C}\}ZLJN} /TI‘ [PL0+ 011\}711']]\]]
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Figure S 1: Effect of GEVP optimization. The left panel shows the ratio d,, ’I‘r[C’Jl\;m(t)]/Tr[C’]l\;l(t)] as a function

1,m

of t for m =2,3. The right panel presents the ratio d,,, Tr[Pr,, Cnojn1/ Tt[PL,, C}\;}TJN] as a function of t; —ty,
with the ty, —t; dependence removed through fitting. The results are shown for the 24D ensemble, focusing on the

isospin channel with Iy, = % and I; =1 as an example.

By applying the projection operator Pr,, and focus-
ing on the isospin channel with Iy, = % and Iy = 1,
we plot the ratio d,, Tr[PLmC']l\;;"JN]/Tr[PLmC}V’}TJN]
as a function of t; — ¢y, after removing the ¢y, — ts
dependence through fitting. It is evident that GEVP
has a significant impact on lev’erNv at the level of
0(100%). This enhancement arises because CN™,y is
substantially larger than Cll\/'71'r sn- For example, tak-
ing m = 3 and using a factorization approximation,

L3 7 ~ N
CNT(JN ~ (ON(ﬁ)ﬂ'(())(tNT")JH(tJ)ON(G)ﬂ'(ﬁ)(tN)> recelives
a dominant contribution from

{On oy (tnr) Oy (EN) N O ) (tnw)du(t1)Ony (EN))-
(S52)

This term is §igniﬁcantly larger than 011\771\' JN =
(ON@yn (o) (EN7)Ju(tr)Onpy (tn)).  The latter requires
the operator j# to create a pion from the nucleon state,
which is highly suppressed due to the substantial momen-
tum redistribution needed for a direct transition from a
single-nucleon state with momentum p to a nucleon-pion
system at rest. In contrast, in the factorized form in
Eq. , the nucleon state with zero momentum is al-
ready present, avoiding this suppression.

Multipole amplitudes in the isospin basis

In Fig. we present the momentum dependence of
the multipole amplitudes in the isospin basis. The left
panel shows Ly, and Ey; from the electromagnetic pion
production, while the right panel displays L(()KV), Hp, and
My, from the weak pion production. The determination
of these multipole amplitudes is discussed in the next sub-

section. We compare the lattice results with predictions
from LETs [I8|, [31]. These LET predictions include the
O(p?,v) corrections but omit higher-order contributions,
where p = % is the pion-to-nucleon mass ratio, and
v = 7%22 represents the ratio of the squared momentum
transfer carried by the currents to the squared nucleon
mass. The lattice data exhibit a trend similar to LET
predictions but show noticeable deviations, highlighting
the importance of incorporating higher-order corrections
in LETs. On the lattice side, further dedicated efforts are
needed to obtain results with a complete error budget.
Given the rapid advancements in the field, such improve-
ments can be anticipated in the near future. It would
be interesting to examine photoproduction at k? = 0,
where much more precise ChPT predictions and experi-
mental data are available. Achieving an extrapolation to

k? = 0 requires a careful interplay between lattice QCD
and ChPT.

Extraction of multipole amplitudes

In this section, we present figures illustrating the fitting
procedure used to extract the multipole amplitudes. The
dataset includes various multipole amplitudes, isospin
channels, and momentum modes, resulting in approxi-
mately 40 figures in total. Since the time dependence
is similar across different momentum modes, we display
only the (0,0,1) mode as a representative example to
avoid redundancy.

Fig. [S3] consists of twelve subfigures, all constructed
using GEVP-corrected data for both the N7 and N sides.
Each subfigure contains four plots: the two on the left
correspond to 32Df, while the two on the right corre-
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Figure S2: Comparison of lattice results for five multipole amplitudes with LET predictions.

spond to 24D. In the upper plots, the z-axis represents
the time separation ¢y —ty in units of fm. For each fixed
ty —ty, the size of the fitting window for ty, — ¢y, de-
fined as tmax — tmin (Where timin and tynax are the starting
and ending points of the fitting window), is set to 0.57
fm for 32Df and 0.58 fm for 24D. We then vary ¢, to
examine whether the chosen window effectively controls
excited-state contamination. Different values of t,,;, are
represented by different colors. For 32Df, t.;, ranges
from 0.43 to 1.00 fm, and for 24D, it ranges from 0.39 to

0.96 fm. The results at t; —tny =0.72 fm and ¢,;, = 0.72
fm for 32Df, as well as those at t; —ty = 0.77 fm and
tmin = 0.77 fm for 24D (indicated by the dashed lines),
are found to be generally consistent with those obtained
using smaller or larger ¢,,;, values. Thus, we consider the
tmin values marked by the dashed lines to be the optimal
choices for the fit. The corresponding fitting results as a
function of t; — t)y are shown in the lower plots, where
a second fit is performed to extract the final multipole
amplitude results, presented in Figs. [ and
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Figure S 3: Fit of various multipole amplitudes for different isospin channels, using the momentum mode (0,0, 1) as
an example.
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