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Quantum fluctuations in QCD influence nucleon structure and interactions, with pion production
serving as a key probe of chiral dynamics. In this study, we present a lattice QCD calculation
of multipole amplitudes at threshold, related to both pion electroproduction and weak production
from a nucleon, using two gauge ensembles near the physical pion mass. We develop a technique for
spin projection and construct multiple operators for analyzing the generalized eigenvalue problem
in both the nucleon-pion system in the center-of-mass frame and the nucleon system with nonzero
momentum. The numerical lattice results are then compared with those extracted from experimental
data and predicted by low-energy theorems incorporating one-loop corrections.

INTRODUCTION

Quantum fluctuations are fundamental to modern
physics, shaping many key phenomena. In QCD, gluon
field fluctuations are key to quark confinement and
asymptotic freedom. In the non-perturbative regime,
they influence quark and gluon dynamics within nucle-
ons, affecting their distributions and interactions. These
effects, in turn, shape how nucleons respond to external
probes like photons and weak bosons. When energy al-
lows, quantum fluctuations can manifest as real particles,
such as pions, in electroproduction and weak production.
Pion production is of particular interest, as pions, be-
ing Nambu-Goldstone boson of QCD, reflect spontaneous
chiral symmetry breaking and play a crucial role in chiral
dynamics (see, e.g., [1]).

The study of pion production through electromagnetic
interactions has a long history. Low-energy theorems
(LETs) successfully described charged pion photoproduc-
tion but initially failed for the γp → π0p process [2–7].
Bernard et al. resolved these discrepancies by incorpo-
rating chiral perturbation theory (ChPT) corrections [8–
13], advancing our understanding of QCD chiral dynam-
ics, where quantum fluctuations (i.e, pion loops) are of
prime importance. Increasing beam energies in recent
electron-nucleon experiments have made it more chal-
lenging to probe pion production directly in the threshold
region. The latest photoproduction data from MAMI,
over a decade old [14], only cover energies above the sec-
ond threshold, where the π+n channel opens. For a re-
cent review, see [15]. For electroproduction, where the
photon carries nonzero four-momentum squared, the sit-
uation is less clear. While the extension of the LETs
to electroproduction and the ChPT analyses of exper-

imental data exist [16–20], discrepancies among differ-
ent measurements and deviations from ChPT predictions
persist [21], prompting further theoretical efforts [22–24].
Lattice QCD calculations offer a first-principles approach
to predicting threshold pion electroproduction, enabling
direct comparisons with experiment and ChPT. Such
comparisons are essential for improving our understand-
ing of chiral dynamics in QCD.
Weak pion production is crucial for neutrino os-

cillation experiments, where neutrino-nucleus interac-
tions are a major source of systematic uncertainty.
This impacts both intermediate-energy experiments like
LBNF/DUNE [25], HyperK [26], and JUNO [27], as
well as low-energy coherent neutrino scattering pro-
grams [28, 29]. The DUNE Conceptual Design Report
highlights that uncertainties exceeding 1% for signals and
5% for backgrounds could significantly reduce sensitivity
to CP violation and the neutrino mass hierarchy [25]. A
significant portion of the DUNE neutrino flux lies above
the pion production threshold, making precise theoretical
understanding of pion production processes crucial. To
achieve few-percent overall cross-section uncertainties,
these processes must be understood at the ten-percent
level [30]. New data on neutrino scattering off proton
or deuteron targets would provide valuable constraints.
Theoretically, LETs are detailed in [31]. While lattice
QCD can offer crucial insights, current studies of ma-
trix elements involving nucleon-pion rescattering states
remain exploratory compared to axial form factor cal-
culations. Theoretical and computational advances are
required to deliver results with fully quantified uncer-
tainties.
Lattice QCD calculations involving baryonic multi-

hadron states are inherently challenging due to increased
system complexity, poorer signal-to-noise ratios, and po-
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tentially significant excited-state contamination. Re-
cent studies have explored the excited-state contami-
nation in nucleon matrix elements [32–37]. Building
on our previous studies of nucleon electric polarizabili-
ties [38] and subtraction functions in forward Compton
scattering [39], we present a lattice QCD calculation of
γ∗N → Nπ, W ∗N → Nπ and Z∗N → Nπ matrix ele-
ments at the pion production threshold. Using two gauge
ensembles near the physical pion mass but with differ-
ent lattice spacings, we extract the multipole amplitudes

E0+ and L0+ from pion electroproduction and L
(W )
0+ ,M0+

and H0+ from weak production. A detailed comparison
is conducted between lattice results, experimental data
and LET predictions.

MULTIPOLE AMPLITUDES AT THE PION
PRODUCTION THRESHOLD

Consider the process of γ∗(k)+N(p1) → N(p2)+π(q),
where N represents a nucleon (proton or neutron), π de-
notes a pion, and γ∗ is a virtual photon with spacelike
momenta if k2 < 0. Replacing γ∗ with W ∗ or Z∗ trans-
forms the electromagnetic process to a weak one. The
transition matrix elements for the electromagnetic and
axial weak current are given by

J em
µ = ⟨Nπ∣Jem

µ (0)∣N⟩,
JW (Z),A
µ = ⟨Nπ∣JW (Z),A

µ (0)∣N⟩, (1)

where the currents are defined as

Jem
µ = e(2

3
ūγµu −

1

3
d̄γµd) ,

JW,A
µ = − g2

2
√
2
d̄γµγ5u,

JZ,A
µ = − g2

4 cos θW
(ūγµγ5u − d̄γµγ5d) . (2)

Here, u, d are the up and down quark fields, e and g2
are the electromagentic and weak SU(2)L coupling con-
stants, and θW is the Weinberg angle. The minus sign
associated with the axial vector current reflects the V −A
structure of the weak interaction.

In the Nπ center-of-mass frame at threshold (q⃗ = p⃗2 =
0⃗), the electromagnetic current matrix element can be
expressed in terms of two S-wave multipole amplitudes,
E0+ and L0+ [18]

[J⃗ em]s′,s = αmξ
†
s′ {L0+ k̂(σ⃗ ⋅ k̂) +E0+ [σ⃗ − k̂(σ⃗ ⋅ k̂)]} ξs,

(3)
where αm = 8π i (m +Mπ), with m and Mπ being the
masses of the nucleon and pion, respectively. ξs′,s are
two-component Pauli spinors for the nucleon, normalized
as ξ†s′ξs = δs,s′ , where s and s′ denote the nucleon spin
in the initial and final states. The multipole amplitude
E0+ characterizes the transverse coupling of the virtual

photon to the nucleon spin, while L0+ characterizes the
longitudinal coupling. Eq. (3) applies for k⃗ ≠ 0⃗. At k⃗ = 0⃗,
L0+ and E0+ are equal in magnitude [18], simplifying the

expression to [J⃗ em]s′,s = αmE0+ξ
†
s′ σ⃗ξs. When k⃗ ≠ 0⃗, L0+

can also be extracted from the time component of the
current, J em

0 , using the Ward identity

[J em
0 ]s′,s = αm

∣k⃗∣
k0
ξ†s′ (σ⃗ ⋅ k̂) ξsL0+. (4)

For weak interactions mediated by the W boson, the
axial weak current matrix element is expressed as [31]

[JW,A
0 ]s′,s = αmξ

†
s′ξs (L

(W )
0+ +

k0
m
H0+) ,

[J⃗W,A]s′,s = αmξ
†
s′ (

k⃗

m
H0+ − i (σ⃗ × k̂)M0+) ξs, (5)

where L
(W )
0+ , H0+ and M0+ are the S-wave multipole am-

plitudes. To distinguish between electromagnetic and
weak transitions, the superscript (W ) is added to L0+

for the weak transition. For the Z boson, the matrix el-
ements are defined analogously, with the superscript W
replaced by Z. These multipole amplitudes can also be
expressed in the isospin basis. The relationships between
the multipole amplitudes in the physical and isospin
bases are provided in the Supplemental Material [40].

SPIN PROJECTION FOR CORRELATION
FUNCTIONS

The nucleon-pion operators OI,Iz
Nπ with isospin I = 1

2

and 3
2
are constructed using the isospin-triplet operator

for the pion, OI,Iz
π , and the doublet operator for the nu-

cleon, OI,Iz
N , with appropriate coefficients. More details

of the construction are given in the Supplemental Mate-
rial [40].
To simplify the analysis, we first apply the projection

operator P+ = 1+γ0

2
to the nucleon field, reducing it to a

two-component field. Consequently, the spin structure of
the correlation functions and matrix elements is analyzed
within a 2×2 spin space. The overlap of the interpolating
operators OI,Iz

N and OI,Iz
Nπ with the nucleon and nucleon-

pion ground state is expressed as

⟨0∣OI,Iz
N (p⃗, t)∣N I,Iz , p⃗, s⟩V = L3ZN,L(p⃗)e−Etξs,

⟨0∣OI,Iz
Nπ (p⃗, t)∣(Nπ)

I,Iz ,G−1 , s⟩V = L3ZI
Nπ,L(p⃗)e−E

I
Nπtξs,

(6)

where the operators OI,Iz
N (p⃗, t) and OI,Iz

Nπ (p⃗, t) are defined
as

OI,Iz
N (p⃗, t) = ∑

x⃗

OI,Iz
N (x⃗, t)eip⃗⋅x⃗,

OI,Iz
Nπ (p⃗, t) =

1

NR
∑

R̂∈Oh

∑
x⃗,y⃗

OI,Iz
Nπ (x⃗, y⃗, t)e

iR̂k⃗⋅(x⃗−y⃗), (7)
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with NR = ∑R̂∈Oh
1, and R̂ is an element of the hypercu-

bic group Oh, which describes the rotational symmetry
in a finite volume. The operator OI,Iz

Nπ (p⃗, t) is defined in
the center-of-mass frame, with p⃗ serving only as an in-
dicator of the operator construction. The coordinates x⃗
and y⃗ correspond to the spatial positions of the nucleon
and pion operators, respectively. The factor L3 accounts
for the finite volume, where L represents the lattice size.
The subscript V denotes the states in a finite volume.
E and EI

Nπ represent the energies of the nucleon and
nucleon-pion states, respectively.

The G−1 representation is a two-dimensional irreducible
representation of Oh, with basis states labeled by the
index s, which remain consistent with the spin index in
the infinite-volume limit. The finite-volume states are
normalized by

V ⟨N I,I′z , p⃗′, s′∣N I,Iz , p⃗, s⟩V = 2EL3δIz,I′zδs,s′δp⃗,p⃗′ ,

V ⟨(Nπ)I,I
′
z ,G−1 , s

′∣(Nπ)I,Iz ,G−1 , s⟩V = 2EI
NπL

3δIz,I′zδs,s′ .

(8)

The correlation functions are constructed as

CNπJN(tf , tJ , ti) = ⟨OI′′,I′′z
Nπ (0⃗, tf)J̃

I′,I′z
µ (k⃗, tJ)ŌI,Iz

N (p⃗, ti)⟩,
CNπ(tf , ti) = ⟨OI,Iz

Nπ (0⃗, tf)Ō
I,Iz
Nπ (0⃗, ti)⟩,

CN(tf , ti) = ⟨OI,Iz
N (−p⃗, tf)ŌI,Iz

N (p⃗, ti)⟩. (9)

According to Eq. (6), a typical operator OI,Iz acts as
an annihilation operator, removing a state with isospin
(I, Iz). However, the same operator can also act as a cre-
ation operator, generating a state with isospin (I,−Iz).
To clarify this distinction, we introduce the notation
ÕI,−Iz to represent OI,Iz when it functions as a creation
operator. This convention similarly applies to the current

operator. By using J̃
I′,I′z
µ in the correlation function, we

ensure that the isospin relation Iz +I ′z = I ′′z holds. Specif-
ically, we set (Iz, I ′z) = ( 12 ,0). Other choices of (Iz, I ′z)
can be related to this setup through the Wigner-Eckart
theorem. Additionally, the current’s momentum k⃗ satis-
fies the momentum conservation condition p⃗ + k⃗ = 0⃗.
For the correlation functions CN(tf , ti) and

CNπ(tf , ti), at large time separation tf − ti, we ob-
tain

1

2
Tr[CN(tf , ti)] = L3ZN,L(p⃗)2

2E
e−E(tf−ti),

1

2
Tr[CNπ(tf , ti)] = L3

ZI
Nπ,L(0⃗)2

2EI
Nπ

e−E
I
Nπ(tf−ti). (10)

For the correlation function CNπJN , we use C⃗ and C0 to
distinguish its spatial and temporal components, and de-
note vector and axial-vector current insertions by J = V
and A, respectively. Before applying the trace operator,
we first express

CNπJN = αNπJN ∑
s′,s

ξs′[J ]s′,sξ†s, (11)

where the coefficient is given by

αNπJN = L3
ZI
Nπ,L(0⃗)
2EI

Nπ

e−ENπ(tf−tJ)
ZN,L(p⃗)

2E
e−E(tJ−ti).

(12)

To extract the five multipole amplitudes, we define the
following spin projection operators

PL0+ =
k0

∣k⃗∣
(k̂ ⋅ σ⃗), P⃗E0+ =

1

2
(σ⃗ − (k̂ ⋅ σ⃗)k̂),

P⃗H0+ =
m

∣k⃗∣
k̂, P

L
(W )
0+ ,H0+

= 1, P⃗M0+ =
i

2
(σ⃗ × k̂).(13)

These projection operators are applied to correlation
functions to extract the multipole amplitudes. For ex-
ample,

1

NR
∑

R̂∈Oh

1

2
Tr [PL0+ ⋅C0

NπV N ] ∣
R̂k⃗

= (2µNπ)−
1
2 f
−

1
2

LLαNπJNαmL0+, (14)

where fLL is the Lellouch-Lüscher factor that relates
the finite-volume state to the infinite-volume one, and
µNπ = mMπ

ENπ
is the reduced mass of the nucleon-pion sys-

tem. Other multipole amplitudes can be extracted by
applying the corresponding spin projection operators to
the relevant correlation functions, as summarized in Ta-
ble I. These projection operators are valid for k⃗ ≠ 0⃗. For
k⃗ = 0⃗, E0+ can be extracted by applying P⃗E0+ = σ⃗/3 to
C⃗NπV N .

PL0+ P⃗E0+ P⃗H0+ P
L
(W )
0+ ,H0+

P⃗M0+

C0
NπV N C⃗NπV N C⃗NπAN C0

NπAN C⃗NπAN

L0+ E0+ H0+ L
(W )
0+ +

k0
m
H0+ M0+

Table I: The correspondence between spin projection
operators, correlation functions, and multipole
amplitudes.

Applying the projection operator P⃗L0+ = (k̂ ⋅ σ⃗)k̂ to
C⃗NπV N can also extract L0+, but PL0+ is preferred as it
reduces systematic effects. For instance, if the lattice size
is tuned such that k0 = 0, L0+ should vanish, yet P⃗L0+
fails to ensure this due to systematic uncertainties. In our
study, the factor k0/∣k⃗∣ takes small values of 0.376, 0.170
and 0.063, which helps suppress systematic effects when
using PL0+ . Conversely, we observe significant excited-
state contamination when using P⃗L0+ , leading us to adopt
PL0+ exclusively. Further details on the design of spin
operators and the discussion of Lellouch-Lüscher factor
are provided in the Supplemental Material [40].
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OPERATOR OPTIMIZATION

To reduce excited-state contamination, we use
OI,Iz

Nπ (p⃗, t) with the four lowest momentum modes

p⃗

2π/L = (0,0,0), (0,0,1), (0,1,1), (1,1,1). (15)

These operators are denoted as O
(n)
Nπ , where n = 1,2,3,4

corresponds to increasing momentum modes. For sim-
plicity, we have omitted the isospin index. Using these
operators, we construct a 4×4 correlation function matrix
with elements given by

Mn,m
Nπ (tf − ti) =

1

2
Tr⟨O(n)Nπ(tf)Ō

(m)
Nπ (ti)⟩. (16)

The four lowest states are defined as ∣Nπ,G−1 , s, n⟩V with
n = 1,2,3,4.

By solving the generalized eigenvalue problem
(GEVP), we construct optimized Nπ operators as

ÕNπ = O(1)Nπ + c2O
(2)
Nπ + c3O

(3)
Nπ + c4O

(4)
Nπ, (17)

where the coefficients cm are determined using the stan-
dard GEVP procedure [41, 42]. Assuming that the low-
est four states dominate the correlation function matrix,
with higher excited-state contributions being negligible
compared to the statistical noise, the coefficients cm can
be considered to satisfy the condition

⟨0∣ÕNπ ∣Nπ,G−1 , s, n⟩V = 0, for n = 2,3,4. (18)

For the nucleon operator with nonzero momentum p⃗,
parity is no longer a good quantum number, allowing
mixing with Nπ operators of the same momentum. We
consider three operators

O
(1)
N = ON(p⃗), O

(2)
N = (p̂ ⋅ σ⃗)ON(p⃗)Oπ(0⃗),

O
(3)
N = (p̂ ⋅ σ⃗)ON(0⃗)Oπ(p⃗), (19)

using which, we construct the correlation function matrix

Mn,m
N (tf − ti) =

1

2
Tr⟨O(n)N (tf)Ō

(m)
N (ti)⟩. (20)

It is explained in the Supplemental Material why this
matrix is suitable for GEVP analysis [40]. By solving
the GEVP, we obtain the optimized nucleon operator

ÕN = O(1)N + d2O(2)N + d3O(3)N . (21)

where the coefficients d2,3 satisfy

⟨0∣ÕN ∣N(0⃗)π(p⃗)⟩V = 0, ⟨0∣ÕN ∣N(p⃗)π(0⃗)⟩V = 0. (22)

We construct the correlation function using the opti-
mized operators

C̃NπJN(tf , tJ , ti) = ⟨ÕNπ(tf)J̃µ(tJ) ¯̃ON(ti)⟩, (23)

where we include only terms from CNπJN and those
proportional to the coefficients c2,3,4 and d2,3. Terms
involving products of cmdn are treated as higher-order
corrections and neglected. A challenge in computing

correlation functions like ⟨O(1)Nπ(tf)J̃µ(tJ)Ō
(n)
N (ti)⟩ for

n = 2,3 is the evaluation of five-point correlation func-
tions. Since the disconnected diagrams encapsulate
the contributions from ⟨N(0⃗)∣N(0⃗)⟩⟨π(0⃗)∣J̃µ∣π(p⃗)⟩ and
⟨N(0⃗)∣J̃µ∣N(p⃗)⟩⟨π(0⃗)∣π(0⃗)⟩, which are enhanced by a fac-
tor of spatial volume of the lattice, they dominate the
five-point correlation functions based on the factoriza-
tion approximation

⟨N(0⃗)π(0⃗)∣J̃µ∣N(0⃗)π(p⃗)⟩ ≈ ⟨N(0⃗)∣N(0⃗)⟩⟨π(0⃗)∣J̃µ∣π(p⃗)⟩
⟨N(0⃗)π(0⃗)∣J̃µ∣N(p⃗)π(0⃗)⟩ ≈ ⟨N(0⃗)∣J̃µ∣N(p⃗)⟩⟨π(0⃗)∣π(0⃗)⟩.

Therefore, we compute only the disconnected contri-
butions as approximations to the challenging five-point
functions, which is feasible within current lattice QCD
studies. Though certain simplifications have been made,
they mainly affect corrections for excited-state contami-
nation and are therefore acceptable. Future work to de-
velop methods for handling five-point correlation func-
tions is beneficial.

NUMERICAL ANALYSIS

We used two 2 + 1-flavor domain wall fermion ensem-
bles, 24D and 32Df, from the RBC-UKQCD Collabora-
tion [43], which have similar pion masses (142.6(3) and
142.9(7) MeV [44]), comparable spatial volumes (L = 4.6
fm), the same discretization but different lattice spacings
(a−1 = 1.023(2) and 1.378(5) GeV). For each configura-
tion, we generate 1024 point-source and 1024 smeared-
source propagators at randomly chosen spatiotemporal
locations to compute the correlation functions, using the
random sparsening-field technique [45, 46]. Smeared nu-
cleon operators and local current operators are used, with
renormalization factors provided in Ref. [47]. Additional
details on the computation of four-point correlation func-
tions can be found in Refs. [38, 48, 49].

Taking the 24D ensemble and the I = 3/2 Nπ sys-
tem as an example, we show the GEVP analysis results

in the left panel of Fig. 1. For each operator O
(n)
Nπ ,

we plot its overlap with the state ∣Nπ,G−1 , s,m⟩, de-

fined as cn,m = ∣⟨0∣O(n)Nπ ∣Nπ,G−1 , s,m⟩V ∣, normalized by√
∑m c2n,m. Similarly, for the nucleon system with mo-

mentum ∣p⃗∣ = 2π
L
, the right panel of Fig. 1 presents the

corresponding GEVP results. The overlaps with excited

states for the operators O
(1)
Nπ and O

(1)
N are about 5% and

10%, respectively. Although these overlaps are small,
eliminating excited-state contamination remains crucial,
as discussed below.
Using Eqs. (10) and (14), we extract the effective mul-

tipole amplitude for given time separations tNπ − tJ and
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24D, I = 3
2

O
(1)
N: O

(2)
N: O

(3)
N: O

(4)
N:

0

0.2

0.4

0.6

0.8

1

N:; G!
1 ; n = 1

N:; G!
1 ; n = 2

N:; G!
1 ; n = 3

N:; G!
1 ; n = 4

24D, j~pj = 2:
L

O
(1)
N O

(2)
N O

(3)
N

N(p)
N(p):(0)
N(0):(p)

Figure 1: The overlap of the operators O
(n)
Nπ for

n = 1,2,3,4 (left) and O
(n)
N for n = 1,2,3 (right) with

the eigenstates from the GEVP analysis.

tJ − tN . Since the initial and final state operators dif-
fer significantly, we analyze their time dependence sep-
arately. We first fix tN − tJ and compute the multipole
amplitude as a function of tNπ−tJ to assess excited-state
contamination on the Nπ side. By fitting this depen-
dence, we obtain an effective multipole amplitude depen-
dent only on tN −tJ . We then examine excited-state con-
tamination on the N side and extract the final multipole
amplitude by fitting its tN − tJ dependence.

We take H0+ and L0+ as examples to illustrate the
impact of the GEVP correction on the Nπ and N sides,
respectively. Fig. 2 shows H0+ as a function of tNπ − tJ
for tJ −tN = 0.58 fm, comparing results with and without
GEVP corrections. Here, “with GEVP” refers to the use
of the optimized operator ÕNπ(t), which retains both the
CNπJN term and terms proportional to c2,3,4, whereas
“without GEVP” omits the c2,3,4 corrections. As the

coupling of O
(1)
Nπ with excited states is weak, the GEVP

corrections are not highly significant as shown in Fig 2.
However, they still cause a shift by around 1-3 σ.

Fig. 3 compares L0+ as a function of tJ − tN with
and without GEVP corrections on the N side. Here,
the tJ − tN dependence is analyzed using data that in-
clude the c2,3,4 corrections. The terms “with GEVP”
and “without GEVP” indicate whether the d2,3 terms
are included. The GEVP correction is crucial: before
GEVP, significant excited-state contamination is visi-
ble at small tJ − tN , whereas after correction, a clearer
plateau emerges. The difference can reach 6 σ in the more
precise 24D data. Since nucleon operators with nonzero
momenta are widely used in lattice calculations, such as
for parton distribution functions, removing excited-state
contamination using techniques like GEVP is essential. It
is worth noting that GEVP optimization has only a mild
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1 2
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0 0.5 1 1.5
tN: ! tJ/fm
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I N
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0 0.5 1 1.5
tN: ! tJ/fm
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After GEVP

H0+ # 103m:

32Df 24D

32Df 24D

Figure 2: Effective multipole amplitude H0+ as a
function of tNπ − tJ for tJ − tN = 0.58 fm.

effect on the single-nucleon two-point correlation function
CN(tf , ti). However, for matrix elements extracted from
CNπJN(tf , tJ , ti), the impact of GEVP is significant. A
more detailed discussion is provided in the Supplemental
Material [40]. Figures illustrating the fitting quality for
other multipole amplitudes are also included in [40].
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0 0.5 1 1.5
tJ ! tN/fm
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L0+ # 103m:
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Figure 3: Effective multipole amplitude L0+ as a
function of tJ − tN , obtained from a fit using
GEVP-corrected data on the Nπ side to analyze the
time dependence on the N side, both before and after
GEVP correction on the N side.

RESULTS AND CONCLUSION

Fig. 4 shows the momentum dependence of the multi-
pole amplitudes obtained from fits to both the tNπ − tJ
and tJ − tN dependences. The amplitudes L0+ and E0+

are presented in the physical basis, allowing for a direct
comparison of the lattice results with extractions from
experimental data and predictions from LETs, including
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Figure 4: Comparison between lattice results for L0+

and E0+ with those extracted from experimental data
and predicted by LETs. The lattice value of L0+ at
k2 =M2

π is determined by enforcing the condition
L0+ = E0+ at k⃗ = 0⃗. Experimental data and LET
predictions are available in the spacelike region (k2 < 0),
as reported in Refs. [50] and [18].

O((Mπ/m)2) corrections [18]. Lattice results for other
multipole amplitudes in the isospin basis are provided
in the Supplemental Material [40]. Several partial-wave
analyses based on experimental data exist [50–56]. In
this work, we compare our results with the most recent
analysis within a coupled-channel framework [50]. Note,
however, this analysis does not incorporate matching to
the ChPT amplitude at low energies and momenta, and
only proton target data are analyzed, as the neutron in
the initial state is bound in a deuteron or 3He, making
the theoretical interpretation less clean.

In Fig. 4, the lattice data exhibit a similar trend to
both experimental analyses and LET predictions but
align more closely with the experimental results while de-
viating more from LETs. This discrepancy arises because
LETs omit higher-order corrections within the framework
of ChPT. Although some differences exist between the
lattice and experimental results, the large uncertainties
in the experimental data imply that the lattice and exper-
imental results are either consistent or deviate by around
2-3 σ. Additionally, some deviations between the two lat-
tice ensembles can be observed. While these differences
may arise from lattice artifacts, they could also result
from statistical fluctuations. Further investigation into
these effects, using larger statistics and additional lattice
spacings, would be a valuable direction for future stud-
ies. Improved precision in both lattice calculations and
experiments will enable mutual validation and deepen
our understanding of pion production from a nucleon, a
fundamental quantum fluctuation process.

As the first lattice QCD study of pion production, our
approach to spin projection and multiple operator con-
struction extends techniques developed to study excited-
state effects in nucleon observables and holds promise
for the eventual calculation of shallow inelastic neutrino-
nucleon scattering.
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[55] M. Mai, M. Döring, C. Granados, H. Haberzettl, U.-G.
Meißner, D. Rönchen, I. Strakovsky, and R. Workman
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Supplemental Material – S1

SUPPLEMENTAL MATERIAL

Lattice operator conventions

In this calculation, we use Euclidean lattice interpolat-
ing operators for the pion and nucleon fields, defined as
follows. For the pion fields, the operators are given by

OE
π+ = d̄γE5 u, ŌE

π+ = −ūγE5 d,

OE
π0 =

1√
2
(ūγE5 u − d̄γE5 d), ŌE

π0 = −
1√
2
(ūγE5 u − d̄γE5 d),

OE
π− = ūγE5 d, ŌE

π− = −d̄γE5 u, (S 1)

For the nucleon fields, they are

OE
p = P+ϵabcua(uTb CγE5 dc), OE

n = P+ϵabcda(uTb CγE5 dc),
ŌE

p = ϵabcūa(ūTb CγE5 d̄c)P+, ŌE
n = ϵabcd̄a(ūTb CγE5 d̄c)P+.

(S 2)

In the chiral representation, the charge conjugation ma-
trix C is given by C = iγE2 γE0 . The gamma matrices
in Euclidean space (denoted with a superscript E) are
related to those in Minkowski space (without the super-
script) by the following relations

γE0 = γ0, γEi = −iγi, γE5 = γE0 γE1 γE2 γE3 = γ5. (S 3)

The Minkowski gamma matrices are defined as

γ0 = (0 1
1 0
) , γi = ( 0 σi

−σi 0
) , γ5 = (

−1 0
0 1
) (S 4)

where σi are the standard Pauli matrices.
When applying the projection operator P+ to the

quark field, it acts as

P+u = P+ (
u1
u2
) = 1

2
(u1 + u2
u1 + u2

) . (S 5)

Here, u1 + u2 represents a two-component field. Conse-
quently, we analyze the spin structure of the correlation
functions and matrix elements within a 2 × 2 spin space.

According to the convention of gamma matrices, the
relationship between Euclidean and Minkowski operators
at the origin is given by

OE
π±,0(0) = Oπ±,0(0), OE

p,n(0) = −iOp,n(0). (S 6)

The action of the isospin raising and lowering operators
is defined as

I+d = u, I−u = d, I+ū = −d̄, I−d̄ = −ū. (S 7)

The isospin-triplet operator for the pion, OI,Iz
π , and the

doublet operator for the nucleon, OI,Iz
N , are defined as

O1,1
π = OE

π+ , O1,0
π = −OE

π0 , O1,−1
π = −OE

π− ,

O
1
2 ,

1
2

N = OE
p , O

1
2 ,−

1
2

N = OE
n . (S 8)

The isospin-triplet operators for the vector and axial-
vector currents are given by

V 1,0
µ = − 1√

2
(ūγEµ u − d̄γEµ d),

V 0,0
µ = 1√

2
(ūγEµ u + d̄γEµ d)

A1,1
µ = d̄γEµ γE5 u,

A1,0
µ = −

1√
2
(ūγEµ γE5 u − d̄γEµ γE5 d),

A1,−1
µ = −ūγEµ γE5 d. (S 9)

Using these conventions, the electromagnetic and weak
currents, defined in Eq. (2), can be expressed as

Jem
µ (0) =

e√
2
ηµ (−V 1,0

µ (0) +
1

3
V 0,0
µ (0)) ,

JW,A
µ (0) = − g2

2
√
2
ηµA

1,1
µ (0),

JZ,A
µ (0) = g2

2
√
2 cos θW

ηµA
1,0
µ (0), (S 10)

where ηµ = 1 for µ = 0 and ηµ = −i for µ = 1,2,3.
The nucleon-pion operators in the isospin basis, OI,Iz

Nπ ,
are given by

O
1
2 ,

1
2

Nπ =
√
2√
3
O

1
2 ,−

1
2

N O1,1
π −

1√
3
O

1
2 ,

1
2

N O1,0
π ,

O
1
2 ,−

1
2

Nπ = 1√
3
O

1
2 ,−

1
2

N O1,0
π −

√
2√
3
O

1
2 ,

1
2

N O1,−1
π ,

O
3
2 ,

3
2

Nπ = O
1
2 ,

1
2

N O1,1
π ,

O
3
2 ,

1
2

Nπ = 1√
3
O

1
2 ,−

1
2

N O1,1
π +

√
2√
3
O

1
2 ,

1
2

N O1,0
π ,

O
3
2 ,−

1
2

Nπ =
√
2√
3
O

1
2 ,−

1
2

N O1,0
π +

1√
3
O

1
2 ,

1
2

N O1,−1
π ,

O
3
2 ,−

3
2

Nπ = O
1
2 ,−

1
2

N O1,−1
π . (S 11)

These definitions are consistent with those given in
Ref. [38].

State conventions

The pion decay constant, Fπ, arises from the cou-
pling between the axial vector current and the pion state,
which can be expressed as

⟨0∣Aa
µ(x)∣πb(p)⟩ = −iFπpµδ

abe−ip⋅x, (S 12)

where Aa
µ = ψ̄γµγ5 τa

2
ψ is the axial vector current, and

τa (a = 1,2,3) are the Pauli matrices. Fπ has a value of
∼ 93 MeV. The pion state ∣πa⟩ satisfies the normalization
condition ⟨πb(p′)∣πa(p)⟩ = 2Eδab(2π)2δ(3)(p⃗′ − p⃗).
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The charged and neutral pion states ∣π±,0⟩ are related
to ∣πa⟩ through

∣π±⟩ = 1√
2
(∣π1⟩ ± i∣π2⟩), ∣π0⟩ = ∣π3⟩. (S 13)

These states can further be related to the isospin states
∣πI,Iz ⟩ as

∣π+⟩ = ∣π1,1⟩, ∣π0⟩ = −∣π1,0⟩, ∣π−⟩ = −∣π1,−1⟩. (S 14)

In a finite volume, these states are denoted as ∣πI,Iz ⟩V
and normalized by

V ⟨πI,I′z ∣πI,Iz ⟩V = 2EπL
3δIz,I′z . (S 15)

The charged and neutral weak currents are related to
Aa

µ through

A+µ = A1
µ − iA2

µ = d̄γµγ5u = ηµA1,1
µ

A−µ = A1
µ + iA2

µ = ūγµγ5d = −ηµA1,−1
µ

A0
µ =
√
2A3

µ =
1√
2
(ūγµγ5u − d̄γµγ5d) = −ηµA1,0

µ .(S 16)

Using this convention, we have

⟨0∣A±,0µ (x)∣π±,0(p)⟩ = −i fπpµe−ip⋅x, (S 17)

where fπ =
√
2Fπ ≈ 132 MeV is the decay constant, typi-

cally determined from experiment or lattice QCD.

The same operator AI,Iz
µ can act as either an annihila-

tion operator or a creation operator. To distinguish these
roles, we use ÃI,−Iz

µ to denote the AI,Iz
µ operator when

it functions as a creation operator. This convention also
applies to the vector current.

In Euclidean space, the matrix element for the axial
vector current and the pion state is given by

⟨0∣AI,Iz
µ (x)∣πI,I′z(pE)⟩ = −fπpEµ e−ip

E
⋅x δIz,I′z , (S 18)

where ηµp
E
µ = ipµ or equivalently pE0 = ip0 and pEi = pi

for i = 1,2,3. For the pion operator, we have

⟨0∣OI,Iz
π (x)∣πI,I′z(pE)⟩ = Zπe

−ipE
⋅x δIz,I′z , (S 19)

with Zπ being the corresponding overlap amplitude.

The proton and neutron states can be expressed in
terms of the isospin doublet ∣N I,Iz ⟩ by

∣p⟩ = ∣N 1
2 ,

1
2 ⟩, ∣n⟩ = ∣N 1

2 ,−
1
2 ⟩. (S 20)

Unless otherwise specified, the spin of the state will be
omitted for simplicity.

The isospin states of Nπ system are defined as follows

∣(Nπ) 1
2 ,

1
2 ⟩ =

√
2√
3
∣N 1

2 ,−
1
2π1,1⟩ − 1√

3
∣N 1

2 ,
1
2π1,0⟩,

∣(Nπ) 1
2 ,−

1
2 ⟩ = 1√

3
∣N 1

2 ,−
1
2π1,0⟩ −

√
2√
3
∣N 1

2 ,
1
2π1,−1⟩,

∣(Nπ) 3
2 ,

1
2 ⟩ = 1√

3
∣N 1

2 ,−
1
2π1,1⟩ +

√
2√
3
∣N 1

2 ,
1
2π1,0⟩,

∣(Nπ) 3
2 ,−

1
2 ⟩ =

√
2√
3
∣N 1

2 ,−
1
2π1,0⟩ + 1√

3
∣N 1

2 ,
1
2π1,−1⟩.

(S 21)

The relationship between finite-volume and infinite-
volume states is given by

∣(Nπ)I,Iz ⟩ = (2µNπ)
1
2 f

1
2

LL∣(Nπ)
I,Iz ,Γ⟩V , (S 22)

where the Lellouch-Lüscher factor fLL is defined as [57]

fLL =
2π

k3
(q dϕ

Γ

dq
+ k dδ

dk
) . (S 23)

Here, k satisfies ENπ =
√
m2 + k2 +

√
m2

π + k2 and q =
kL
2π

. The reduced energy µNπ is defined as µNπ = EEπ

ENπ
.

ϕΓ(q) is a known function associated with an irreducible
representation of hypercubic symmetry, denoted by Γ. In
this calculation, we set Γ = G−1 . At threshold, the large-L
expansion of fLL is given by [58]

fLL = L3 [1 + d1
aNπ

L
+ d2 (

aNπ

L
)
2

+O(L−3)] , (S 24)

where aNπ is the S-wave Nπ scattering length, and the
coefficients di are given by

d1 = −2
Z00(1; 0)

π
= 5.674595,

d2 =
Z00(1; 0)2 + 3Z00(2; 0)

π2
= 13.075478. (S 25)

The values of the zeta function Z00(s,0) are provided in
Ref. [59]. The results for aNπ from the two ensembles
used in this calculation have already been reported in
Ref. [38]

Matrix element conventions

The matrix elements involving isospin states and a vec-
tor current insertion are expressed as

⟨(Nπ)I
′′,I′′z ∣Ṽ I′,I′z

µ (0)∣N I,Iz ⟩ = CI′′,I′′z
I,Iz ;I′,I′z

⟨(Nπ)I
′′
∣∣Ṽ I′

µ ∣∣N I⟩
(S 26)

where the Clebsch-Gordan (CG) coefficients are defined
as

C
I′′,I′′z
I,Iz ;I′,I′z

= ⟨I, Iz; I ′, I ′z ∣I ′′, I ′′z ⟩. (S 27)
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To avoid ambiguity, we fix the z-components of the nu-
cleon state and the current {Iz, I ′z} at { 12 ,0} and define
the following matrix elements as

V(1)µ = ⟨(Nπ) 1
2 ,

1
2 ∣Ṽ 1,0

µ (0)∣N
1
2 ,

1
2 ⟩,

V(2)µ = ⟨(Nπ) 3
2 ,

1
2 ∣Ṽ 1,0

µ (0)∣N
1
2 ,

1
2 ⟩,

V(3)µ = ⟨(Nπ) 1
2 ,

1
2 ∣Ṽ 0,0

µ (0)∣N
1
2 ,

1
2 ⟩. (S 28)

Using the CG coefficients, we derive the following rela-
tions

⟨(Nπ) 1
2 ,−

1
2 ∣Ṽ 1,0

µ (0)∣N
1
2 ,−

1
2 ⟩ = −V(1)µ ,

⟨(Nπ) 3
2 ,−

1
2 ∣Ṽ 1,0

µ (0)∣N
1
2 ,−

1
2 ⟩ = V(2)µ ,

⟨(Nπ) 1
2 ,−

1
2 ∣Ṽ 0,0

µ (0)∣N
1
2 ,−

1
2 ⟩ = V(3)µ . (S 29)

For physical states, the matrix elements involving the
electromagnetic current are given by

⟨nπ+∣Jem
µ ∣p⟩ =

e√
6
ηµ (−

√
2V(1)µ − V(2)µ +

√
2

3
V(3)µ ) ,

⟨pπ−∣Jem
µ ∣n⟩ =

e√
6
ηµ (
√
2V(1)µ + V(2)µ +

√
2

3
V(3)µ ) ,

⟨pπ0∣Jem
µ ∣p⟩ =

e√
6
ηµ (−V(1)µ +

√
2V(2)µ + 1

3
V(3)µ ) .(S 30)

Matrix elements involving isospin states and an axial-
vector current insertion are defined similarly

A(1)µ = ⟨(Nπ) 1
2 ,

1
2 ∣Ã1,0

µ (0)∣N
1
2 ,

1
2 ⟩,

A(2)µ = ⟨(Nπ) 3
2 ,

1
2 ∣Ã1,0

µ (0)∣N
1
2 ,

1
2 ⟩. (S 31)

Using CG coefficients, we obtain

⟨(Nπ) 1
2 ,−

1
2 ∣Ã1,−1

µ (0)∣N 1
2 ,

1
2 ⟩ =
√
2A(1)µ ,

⟨(Nπ) 3
2 ,−

1
2 ∣Ã1,−1

µ (0)∣N 1
2 ,

1
2 ⟩ = 1√

2
A(2)µ , (S 32)

For physical states, the matrix elements involving the
weak current are

⟨pπ−∣JW,A
µ ∣p⟩ = − g2

2
√
6
ηµ (2A(1)µ −

1√
2
A(2)µ ) ,

⟨nπ0∣JW,A
µ ∣p⟩ = − g2

2
√
6
ηµ (−

√
2A(1)µ −A(2)µ ) ,

⟨pπ0∣JZ,A
µ ∣p⟩ = g2

2
√
6 cos θW

ηµ (A(1)µ −
√
2A(2)µ ) ,

⟨nπ+∣JZ,A
µ ∣p⟩ = g2

2
√
6 cos θW

ηµ (
√
2A(1)µ +A(2)µ ) .

(S 33)

The multipole amplitudes in the physical and isospin
bases can be related in the same manner. We summarize

the relationship using L0+ and L
(W )
0+ as examples

L0+(γ∗p→ nπ+) = e√
6
(−
√
2L
(1)
0+ −L

(2)
0+ +

√
2

3
L
(3)
0+ ) ,

L0+(γ∗n→ pπ−) = e√
6
(
√
2L
(1)
0+ +L

(2)
0+ +

√
2

3
L
(3)
0+ ) ,

L0+(γ∗p→ pπ0) = e√
6
(−L(1)0+ +

√
2L
(2)
0+ +

1

3
L
(3)
0+ ) ,

L
(W )
0+ (W −∗p→ pπ−) = − g2

2
√
6
(2L(W ),(1)0+ − 1√

2
L
(W ),(2)
0+ ) ,

L
(W )
0+ (W −∗p→ nπ0) = − g2

2
√
6
(−
√
2L
(W ),(1)
0+ −L(W ),(2)0+ ) ,

L
(Z)
0+ (Z0∗p→ pπ0) = g2

2
√
6 cos θW

(L(W ),(1)0+ −
√
2L
(W ),(2)
0+ ) ,

L
(Z)
0+ (Z0∗p→ nπ+) = g2

2
√
6 cos θW

(
√
2L
(W ),(1)
0+ +L(W ),(2)0+ ) .

(S 34)

Spin projection for extracting the multipole
amplitudes

We define the 2 × 2 vector matrix Σ⃗ as

Σ⃗s′,s = ξ†s′ σ⃗ξs. (S 35)

These matrices satisfy the relation

Tr[Σ⃗ ⋅ Σ⃗] = ∑
s,s′

Σ⃗s′,sΣ⃗s,s′ = 6. (S 36)

Based on rotation symmetry, a natural way to extract the
multipole amplitudes is to perform the spin projection as
follows

1

NR
∑

R̂∈Oh

1

2
Tr [(k̂ ⋅ Σ⃗)k̂ ⋅ J⃗ em] ∣

k⃗=R̂l⃗
= αmL0+,

1

NR
∑

R̂∈Oh

1

2
Tr [Σ⃗ ⋅ J⃗ em] ∣

k⃗=R̂l⃗
= αm (2E0+ +L0+) ,

1

NR
∑

R̂∈Oh

1

2
Tr [k0
∣k⃗∣
(k̂ ⋅ Σ⃗)J em

0 ] ∣
k⃗=R̂l⃗

= αmL0+,

1

NR
∑

R̂∈Oh

1

2
Tr [JW,A

0 ] ∣
k⃗=R̂l⃗

= αm (L(W )0+ +
k0
m
H0+) ,

1

NR
∑

R̂∈Oh

1

2
Tr [m
∣k⃗∣
k̂ ⋅ J⃗W,A] ∣

k⃗=R̂l⃗
= αmH0+,

1

NR
∑

R̂∈Oh

1

2
Tr [i(Σ⃗ × k̂) ⋅ J⃗W,A] ∣

k⃗=R̂l⃗
= 2αmM0+,(S 37)

where l⃗ is a typical lattice momentum.
Combining Eq. (S 37) and Eq. (11) yields the formula

for extracting the multipole amplitude from the corre-
lation functions, as given in Eq. (14), up to the finite-
volume corrections.
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Operator construction for GEVP

First, we consider the correlation function of the gen-
eral form

C(Φ, t) = ⟨ON(q⃗)π(q⃗1)⋯π(q⃗m)(t)ŌN(p⃗)π(p⃗1)⋯π(p⃗n)
(0)⟩,
(S 38)

where the composite operator ON(q⃗)π(q⃗1)⋯π(q⃗m) consists
of a nucleon operator and m pion operators, while
ŌN(p⃗)π(p⃗1)⋯π(p⃗n)

contains a nucleon operator and n pion
operators. In total, the momenta involved are given by

Φ = {q⃗, q⃗1,⋯, q⃗m, p⃗, p⃗1,⋯, p⃗n}, (S 39)

where there are m + n + 2 momenta, which satisfy the
constraint

q⃗ +
m

∑
i=1

q⃗m + p⃗ +
n

∑
i=1

p⃗n = 0. (S 40)

The general structure of C(Φ, t) can be expressed as

C(Φ, t) = C(0)(Φ, t) +C(i)(Φ, t)σi. (S 41)

Under cubic symmetry rotations, the nucleon operator
transforms as

ON(q⃗) → Λ 1
2
ON(R−1q⃗), ŌN(p⃗) → ŌN(R−1p⃗)Λ

−1
1
2

(S 42)

where Λ 1
2
is a 2 × 2 matrix satisfying

Λ−11
2
σiΛ 1

2
= Rijσ

j . (S 43)

Accordingly, the correlation function transforms as

C(Φ, t) → Λ 1
2
C(R−1Φ, t)Λ−11

2
, (S 44)

leading to the conditions

C(0)(R−1Φ, t) = C(0)(Φ, t),
C(i)(R−1Φ, t)σi = RijC

(i)(Φ, t)σj . (S 45)

Under parity transformation, the correlation function
satisfies

C(Φ, t) → (−1)m+nC(−Φ, t), (S 46)

which imposes the condition

C(i)(Φ) = (−1)m+nC(i)(−Φ), i = 0,1,2,3. (S 47)

Using Eqs. (S 45) and (S 47), we obtain

⟨ON(−p⃗)ŌN(p⃗)⟩ = f1(p⃗2, t),
⟨ON(−p⃗)ŌN(p⃗)π(0⃗)⟩ = p̂ ⋅ σ⃗f2(p⃗2, t),
⟨ON(−p⃗)ŌN(0⃗)π(p⃗)⟩ = p̂ ⋅ σ⃗f3(p⃗2, t),
⟨ON(−p⃗)π(0⃗)ŌN(p⃗)π(0⃗)⟩ = f4(p⃗2, t),
⟨ON(−p⃗)π(0⃗)ŌN(0⃗)π(p⃗)⟩ = f5(p⃗2, t),
⟨ON(0⃗)π(−p⃗)ŌN(0⃗)π(p⃗)⟩ = f6(p⃗2, t), (S 48)

where the functions fi(p⃗2, t) have a trivial spin struc-
ture, meaning they are proportional to the 2 × 2 iden-
tity matrix in spin space. By multiplying the operators
ON(p⃗)π(0⃗) and ON(0⃗)π(⃗⃗p) by p̂ ⋅ σ⃗ and defining the op-

erators as given in Eq. (19), we demonstrate that each

correlation function Cn,m
N (t) = ⟨O(n)N (t)Ō

(m)
N (0)⟩ has a

trivial spin structure. The trace of the correlation func-
tion, denoted asMn,m

N (t) in Eq. (20), is given by

Mn,m
N (t) = 1

2
{[Cn,m

N (t)]
11
+ [Cn,m

N (t)]
22
}

= ∑
k

⟨0∣O(n)N,1(0)∣k⟩
e−Ekt

2Ek
⟨k∣Ō(m)N,1 (0)∣0⟩,

(S 49)

where ∣k⟩ represents the eigenstate of the QCD Hamilto-

nian in a finite volume, and O
(n)
N,α denotes the αth com-

ponent of the operator O
(n)
N . Through Eq. (S 49), we

establish that the correlation function matrix, whose el-
ements are given byMn,m

N (t), is well-suited for a GEVP
analysis.
For nucleon-pion operator in the G−1 representation, we

introduce the correlation function

Cn,m
Nπ (t) = ⟨O

(n)
Nπ(t)O

(m)
Nπ (0)⟩. (S 50)

The operators O
(n)
Nπ and O

(m)
Nπ are associated with the mo-

menta p⃗ and q⃗, respectively. Under rotational symmetry,
Cn,m

Nπ (t) can, in principle, contain terms proportional to
12×2, p⃗ ⋅ σ⃗, q⃗ ⋅ σ⃗ and ϵijkpjqkσi. However, parity sym-
metry forbids the p⃗ ⋅ σ⃗ and q⃗ ⋅ σ⃗ terms. Furthermore, in
the G−1 representation, the symmetry p⃗→ −p⃗ holds, elim-
inating the ϵijkpjqkσi term as well, leaving only the 12×2
contribution. As a result, we obtain

Cn,m
Nπ (t) = f

n,m(p⃗2, p⃗ ⋅ q⃗, q⃗2, t), (S 51)

where the functions fn,m exhibit a trivial spin structure.
Following a similar procedure as described earlier, we
can demonstrate that the trace of Cn,m

Nπ (t), denoted as
Mn,m

Nπ (t) in Eq. (16), is also suitable for a GEVP analy-
sis.

As nucleon operators with nonzero momentum are
widely used in lattice calculations, it is important to
examine how the GEVP procedure affects the single-
nucleon two-point correlation function. To assess the im-
pact of the GEVP-optimized operator defined in Eq. (21),
we introduce the ratio dmTr[C1,m

N (t)]/Tr[C1,1
N (t)],

where the denominator, Tr[C1,1
N (t)], represents the cor-

relation function without GEVP, while the numerator,
dmTr[C1,m

N (t)], captures the primary effect of GEVP op-
timization. As shown in Fig. S 1, using the 24D ensemble
as an example, GEVP causes only a minor ∼1% change
in the nucleon two-point function. However, the effect of
GEVP is much more pronounced for the correlation func-

tion Cn,m
NπJN(tNπ, tJ , tN) = ⟨O(n)Nπ(tNπ)J̃µ(tJ)O(m)N (tN)⟩.
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Figure S 1: Effect of GEVP optimization. The left panel shows the ratio dmTr[C1,m
N (t)]/Tr[C1,1

N (t)] as a function

of t for m = 2,3. The right panel presents the ratio dmTr[PL0+C
1,m
NπJN ]/Tr[PL0+C

1,1
NπJN ] as a function of tJ − tN ,

with the tNπ − tJ dependence removed through fitting. The results are shown for the 24D ensemble, focusing on the
isospin channel with INπ = 1

2
and IJ = 1 as an example.

By applying the projection operator PL0+ and focus-
ing on the isospin channel with INπ = 1

2
and IJ = 1,

we plot the ratio dmTr[PL0+C
1,m
NπJN ]/Tr[PL0+C

1,1
NπJN ]

as a function of tJ − tN , after removing the tNπ − tJ
dependence through fitting. It is evident that GEVP
has a significant impact on C1,1

NπJN , at the level of

O(100%). This enhancement arises because C1,m
NπJN is

substantially larger than C1,1
NπJN . For example, tak-

ing m = 3 and using a factorization approximation,
C1,3

NπJN ∼ ⟨ON(0⃗)π(0⃗)(tNπ)J̃µ(tJ)ŌN(0⃗)π(p⃗)(tN)⟩ receives
a dominant contribution from

⟨ON(0⃗)(tNπ)ŌN(0⃗)(tN)⟩⟨Oπ(0⃗)(tNπ)J̃µ(tJ)Ōπ(p⃗)(tN)⟩.
(S 52)

This term is significantly larger than C1,1
NπJN =

⟨ON(0⃗)π(0⃗)(tNπ)J̃µ(tJ)ŌN(p⃗)(tN)⟩. The latter requires

the operator J̃µ to create a pion from the nucleon state,
which is highly suppressed due to the substantial momen-
tum redistribution needed for a direct transition from a
single-nucleon state with momentum p⃗ to a nucleon-pion
system at rest. In contrast, in the factorized form in
Eq. (S 52), the nucleon state with zero momentum is al-
ready present, avoiding this suppression.

Multipole amplitudes in the isospin basis

In Fig. S 2, we present the momentum dependence of
the multipole amplitudes in the isospin basis. The left
panel shows L0+ and E0+ from the electromagnetic pion

production, while the right panel displays L
(W )
0+ , H0+ and

M0+ from the weak pion production. The determination
of these multipole amplitudes is discussed in the next sub-

section. We compare the lattice results with predictions
from LETs [18, 31]. These LET predictions include the
O(µ2, ν) corrections but omit higher-order contributions,
where µ = Mπ

m
is the pion-to-nucleon mass ratio, and

ν = k2

m2 represents the ratio of the squared momentum
transfer carried by the currents to the squared nucleon
mass. The lattice data exhibit a trend similar to LET
predictions but show noticeable deviations, highlighting
the importance of incorporating higher-order corrections
in LETs. On the lattice side, further dedicated efforts are
needed to obtain results with a complete error budget.
Given the rapid advancements in the field, such improve-
ments can be anticipated in the near future. It would
be interesting to examine photoproduction at k2 = 0,
where much more precise ChPT predictions and experi-
mental data are available. Achieving an extrapolation to
k2 = 0 requires a careful interplay between lattice QCD
and ChPT.

Extraction of multipole amplitudes

In this section, we present figures illustrating the fitting
procedure used to extract the multipole amplitudes. The
dataset includes various multipole amplitudes, isospin
channels, and momentum modes, resulting in approxi-
mately 40 figures in total. Since the time dependence
is similar across different momentum modes, we display
only the (0,0,1) mode as a representative example to
avoid redundancy.

Fig. S 3 consists of twelve subfigures, all constructed
using GEVP-corrected data for both theNπ andN sides.
Each subfigure contains four plots: the two on the left
correspond to 32Df, while the two on the right corre-
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Figure S 2: Comparison of lattice results for five multipole amplitudes with LET predictions.

spond to 24D. In the upper plots, the x-axis represents
the time separation tJ − tN in units of fm. For each fixed
tJ − tN , the size of the fitting window for tNπ − tJ , de-
fined as tmax − tmin (where tmin and tmax are the starting
and ending points of the fitting window), is set to 0.57
fm for 32Df and 0.58 fm for 24D. We then vary tmin to
examine whether the chosen window effectively controls
excited-state contamination. Different values of tmin are
represented by different colors. For 32Df, tmin ranges
from 0.43 to 1.00 fm, and for 24D, it ranges from 0.39 to

0.96 fm. The results at tJ − tN = 0.72 fm and tmin = 0.72
fm for 32Df, as well as those at tJ − tN = 0.77 fm and
tmin = 0.77 fm for 24D (indicated by the dashed lines),
are found to be generally consistent with those obtained
using smaller or larger tmin values. Thus, we consider the
tmin values marked by the dashed lines to be the optimal
choices for the fit. The corresponding fitting results as a
function of tJ − tN are shown in the lower plots, where
a second fit is performed to extract the final multipole
amplitude results, presented in Figs. 4 and S 2.
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Figure S 3: Fit of various multipole amplitudes for different isospin channels, using the momentum mode (0,0,1) as
an example.
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