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Quantum fluctuations in QCD influence nucleon structure and interactions, with pion production serving
as a key probe of chiral dynamics. In this Letter, we present a lattice QCD calculation of multipole
amplitudes at threshold, related to both pion electroproduction and weak production from a nucleon, using
two gauge ensembles near the physical pion mass. We develop a technique for spin projection and construct
multiple operators for analyzing the generalized eigenvalue problem in both the nucleon-pion system in the
center-of-mass frame and the nucleon system with nonzero momentum. The numerical lattice results are
then compared with those extracted from experimental data and predicted by low-energy theorems

incorporating one-loop corrections.
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Introduction—Quantum fluctuations are fundamental to
modern physics, shaping many key phenomena. In QCD,
gluon field fluctuations are key to quark confinement and
asymptotic freedom. In the nonperturbative regime, they
influence quark and gluon dynamics within nucleons,
affecting their distributions and interactions. These effects,
in turn, shape how nucleons respond to external probes like
photons and weak bosons. When energy allows, quantum
fluctuations can manifest as real particles, such as pions, in
electroproduction and weak production. Pion production is
of particular interest, as pions, being Nambu-Goldstone
boson of QCD, reflect spontaneous chiral symmetry break-
ing and play a crucial role in chiral dynamics (see, e.g., [1]).
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The study of pion production through electromagnetic
interactions has a long history. Low-energy theorems
(LETs) successfully described charged pion photoproduc-
tion but initially failed for the yp — z°p process [2-7].
Bernard et al. resolved these discrepancies by incorporating
chiral perturbation theory (ChPT) corrections [8—13],
advancing our understanding of QCD chiral dynamics,
where quantum fluctuations (i.e., pion loops) are of prime
importance. Increasing beam energies in recent electron-
nucleon experiments have made it more challenging to
probe pion production directly in the threshold region. The
latest photoproduction data from MAMI, over a decade old
[14], only cover energies above the second threshold,
where the zn channel opens. For a recent review, see
[15]. For electroproduction, where the photon carries
nonzero four-momentum squared, the situation is less clear.
While the extension of the LETs to electroproduction and
the ChPT analyses of experimental data exist [16-20],
discrepancies among different measurements and devia-
tions from ChPT predictions persist [21], prompting further
theoretical efforts [22-24]. Lattice QCD calculations offer
a first-principles approach to predicting threshold pion
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electroproduction, enabling direct comparisons with
experiment and ChPT. Such comparisons are essential
for improving our understanding of chiral dynamics
in QCD.

Weak pion production is crucial for neutrino oscillation
experiments, where neutrino-nucleus interactions are a
major source of systematic uncertainty. This impacts both
intermediate-energy experiments like LBNF/DUNE [25],
HyperK [26], and JUNO [27], as well as low-energy
coherent neutrino scattering programs [28,29]. The
DUNE Conceptual Design Report highlights that uncer-
tainties exceeding 1% for signals and 5% for backgrounds
could significantly reduce sensitivity to CP violation and
the neutrino mass hierarchy [25]. A significant portion of
the DUNE neutrino flux lies above the pion production
threshold, making precise theoretical understanding of pion
production processes crucial. To achieve few-percent over-
all cross-section uncertainties, these processes must be
understood at the 10% level [30]. New data on neutrino
scattering off proton or deuteron targets would provide
valuable constraints. Theoretically, LETs are detailed in
[31]. While lattice QCD can offer crucial insights, current
studies of matrix elements involving nucleon-pion re-
scattering states remain exploratory compared to axial
form factor calculations. Theoretical and computational
advances are required to deliver results with fully quanti-
fied uncertainties.

Lattice QCD calculations involving baryonic multi-
hadron states are inherently challenging due to increased
system complexity, poorer signal-to-noise ratios, and po-
tentially significant excited-state contamination. Recent
studies have explored the excited-state contamination in
nucleon matrix elements [32-37]. Building on our previous
studies of nucleon electric polarizabilities [38] and sub-
traction functions in forward Compton scattering [39],
we present a lattice QCD calculation of y*N — N,
W*N — Nz, and Z*N — Nz matrix elements at the pion
production threshold. Using two gauge ensembles near the
physical pion mass but with different lattice spacings, we
extract the multipole amplitudes E,, and L, from pion

electroproduction and Lévp, Mg,, and Hj, from weak
production. A detailed comparison is conducted between
lattice results, experimental data and LET predictions.

Multipole amplitudes at the pion production threshold—
Consider the process of y*(k) + N(p;) = N(p,) + z(q),
where N represents a nucleon (proton or neutron), 7z
denotes a pion, and y* is a virtual photon with spacelike
momenta if k> < 0. Replacing y* with W* or Z* transforms
the electromagnetic process to a weak one. The transition
matrix elements for the electromagnetic and axial weak
current are given by

em — (NzlJgm(0)|N),
Ve ’ = (NzlJ) 7 (0)|N), (1)

where the currents are defined as

2 1-
Jy :e<§uyﬂu—§dyﬂd>,
WA _
; 2= d u,
" 2\/— 7//4},5
JZA _

(it ysu — dy,ysd). (2)

" 4cos 0
Here, u, d are the up and down quark fields, e and g, are the
electromagentic and weak SU(2), coupling constants, and
Oy is the Weinberg angle. The minus sign associated with
the axial vector current reflects the V — A structure of the
weak interaction. .
In the Nz center-of-mass frame at threshold (g = p, = 0),
the electromagnetic current matrix element can be expressed
in terms of two S-wave multipole amplitudes, E,, and
Lo, [18]

(T = anél { Lo k(G-0)+ B, [6-R(E-B)] & (3)

where a,, = 8zi(m+ M,), with m and M, being the
masses of the nucleon and pion, respectively. &y are
two-component Pauli spinors for the nucleon, normalized
as tfz,tfs = J,., where s and s’ denote the nucleon spin in
the initial and final states. The multipole amplitude Ej,
characterizes the transverse coupling of the virtual photon
to the nucleon spin, while L, characterizes the longi-
tudinal coupling. Equation (3) applies for k # 0. Atk = 6,
Ly, and E,, are equal in magnitude [18], simplifying the
expression to [J"], , = @, Eo,£L5E,. When k #0, Lo,
can also be extracted from the time component of the
current, J§", using the Ward identity

k|

(T§" s = an €0(G R)E Loy “)
0

For weak interactions mediated by the W boson, the axial
weak current matrix element is expressed as [31]

y k
[jg/'A]s’,s = (lmfl’é“< (()+) + . H0+>

- k .
[jW'A]s’,s = amézf (ZH0+ - l(G X k)M0+>553 (5)

where L(()‘f), Hy,, and M,, are the S-wave multipole
amplitudes. To distinguish between electromagnetic and
weak transitions, the superscript (W) is added to L, for the
weak transition. For the Z boson, the matrix elements are
defined analogously, with the superscript W replaced by Z.
These multipole amplitudes can also be expressed in the
isospin basis. The relationships between the multipole
amplitudes in the physical and isospin bases are provided
in the Supplemental Material [40].

Spin projection for correlation functions—The nucleon-

. I 1 3
pion operators Oy, * with isospin I = 5 and 3 are constructed
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using the isospin-triplet operator for the pion, Of,’lf, and the
doublet operator for the nucleon, O,I\’,IZ, with appropriate
coefficients. More details of the construction are given in
the Supplemental Material [40].

To simplify the analysis, we first apply the projection
operator P, = [(1 + y,)/2] to the nucleon field, reducing
it to a two-component field. Consequently, the spin
structure of the correlation functions and matrix elements
is analyzed within a 2 X 2 spin space The overlap of the

interpolating operators on N “and OF Nﬂ * with the nucleon and
nucleon-pion ground state is expressed as

(0105 (B OIN™:. Bus)y = L'Zy . (F)e .
(005 (B.) (N2 G 5)y = L3Zhye 1 (F)e P48, (6)

where the operators O (. 1) and 011\,; (p, t) are defined as

2011 i,

Rkeoh X,y

with Np =3 zcp, 1, and R is an element of the hyper-
cubic group Oj,, which describes the rotational symmetry in

a finite volume. The operator Ofvi(ﬁ t) is defined in the
center-of-mass frame, with p serving only as an indicator of
the operator construction. The coordinates X and y corre-
spond to the spatial positions of the nucleon and pion
operators, respectively. The factor L* accounts for the finite
volume, where L represents the lattice size. The subscript V
denotes the states in a finite volume. E and E% represent
the energies of the nucleon and nucleon-pion states,
respectively.

The G7 representation is a two-dimensional irreducible
representation of Oy, with basis states labeled by the index
s, which remain consistent with the spin index in the
infinite-volume limit. The finite-volume states are normal-
ized by

V<NI‘I; ’517 s/’NI’IZ’ﬁ’S>V = 2EL35[ZJ' 5? s’5ﬁ P
AND) Gy (N, G s)y = 2B}, L8 3. (8)

The correlation functions are constructed as

Crvan (. 15.11) = (085 (0, 1) 707" (k. 1,) O3 (. 1:)).
Cralty ;) = (O35 (0,1,) Oy <6 ),
Cu(tp.t;) = (04 (=B.17) Oy (p. 1,)). 9)

According to Eq. (6), a typical operator Oz acts as an
annihilation operator, removing a state with isospin (7, 1.).
However, the same operator can also act as a creation
operator, generating a state with isospin (7, —1,). To clarify
this distinction, we introduce the notation Oz to

represent O'!= when it functions as a creation operator.
This convention similarly applies to the current operator.

By using J ,[4/'[; in the correlation function, we ensure that the
isospin relation I, + I’ = I’ holds. Specifically, we set
(I..1}) = (3.0). Other choices of (., I.) can be related
to this setup through the Wigner-Eckart theorem.
Additionally, the current’s momentum k satisfies the

-

momentum conservation condition p + k = 0.
For the correlation functions Cy (¢, #;) and Cy, (. 1;), at
large time separation 7, — f;, we obtain

! Zni(P) gy
ETT[CN(tﬂ t)] = L3T6 Ety=t:)

1 Z{VJTL((_)))Z —E! —t;
ETr[CNn(tﬂ t)] = LBT]IVHe Eng(t5=1) | (10)

For the correlation function Cy, y, We use C and C° to
distinguish its spatial and temporal components, and denote
vector and axial-vector current insertions by J = V and A,
respectively. Before applying the trace operator, we first
express

Crmin = aNﬂJNZé:s’ [j]‘f’,sél (11)
s'.s
where the coefficient is given by
Zhias©) g o Zna(P) gy
aNﬂ'JN L3#11Vﬂ3 ENzr([f tJ)Te E(’I tr)‘ (12)

To extract the five multipole amplitudes, we define the
following spin projection operators

ko - o
Lo, ﬁ(k'd), o 5(0—(/{-6)1{),
5 my N P
PH(H*“; k, Lé”f),Hw:l’ 73M0+:5(6Xk). (13)

These projection operators are applied to correlation
functions to extract the multipole amplitudes. For example,
1 1

Np
RReoh

Tr[PL(H : C%nvzv] RE

= (2.“Nr:)_%fZ§LaN7rJNamLO+7 (14)

where f;; is the Lellouch-Liischer factor that relates the
finite-volume state to the infinite-volume one, and uy, =
(mM,/Ey,) is the reduced mass of the nucleon-pion
system. Other multipole amplitudes can be extracted by
applying the corresponding spin projection operators to the
relevant correlation functions, as summarized in Table L.
These projection operators are valid for k # 0. For k = 6
E,, can be extracted by applying PE =c/3 to C NZVN-
B Applying the projection operator PL+ = (k-6)k to
Cnzvy can also extract Loy, but Pp is preferred as it
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TABLE I. The correspondence between spin projection oper-
ators, correlation functions, and multipole amplitudes.

PLD+ PE(H PH()+ ,PL(()VX)‘H(H PM0+
CON;:VN (_jNﬂVN (_jNﬂAN CR/;:AN 6N7[AN
Lo, Eo, Ho., Lgvp + (ko/m)Ho, Moy

reduces systematic effects. For instance, if the lattice size
is tuned such that ky = 0, L, should vanish, yet 75L0+ fails
to ensure this due to systematic uncertainties. In our Letter,
the factor ko/|k| takes small values of 0.376, 0.170,

and 0.063, which helps suppress systematic effects when
using P .. Conversely, we observe significant excited-

state contamination when using 73L0+, leading us to adopt
Pr,. exclusively. Further details on the design of spin
operators and the discussion of Lellouch-Liischer factor are
provided in the Supplemental Material [40].

Operator optimization—To reduce excited-state con-

SR 1.1, - .

tamination, we use O\ (p. t) with the four lowest momen-
tum modes

-

P
2z/L

=(0,0,0),(0,0,1),(0,1,1),(1,1,1). (15)

These operators are denoted as 0](\',1,2 where n =1, 2, 3, 4
corresponds to increasing momentum modes. For simplic-
ity, we have omitted the isospin index. Using these
operators, we construct a 4 x 4 correlation function matrix
with elements given by

n,m 1 n \mn
Mty = 1) = 5 Te(O (1) 0N, (). (16)

The four lowest states are defined as |Nz, G, s, n), with
n=1,2,3,4.

By solving the generalized eigenvalue problem (GEVP),
we construct optimized Nz operators as

Oy, = 05\2 + 0205\2 + 0301(\2 + 6401(\2’ (17)

where the coefficients c,, are determined using the standard
GEVP procedure [44,45]. Assuming that the lowest four
states dominate the correlation function matrix, with higher
excited-state contributions being negligible compared to
the statistical noise, the coefficients ¢, can be considered to
satisfy the condition
(0|OngIN7,GT.5,n)y =0, forn=2,34. (18)

For the nucleon operator with nonzero momentum p,
parity is no longer a good quantum number, allowing
mixing with Nz operators of the same momentum. We
consider three operators

oy =0n(p).  OF = (p-5)0n(P)O,(0),
0 = (p-5)0x(0)0,(p). (19)

using which, we construct the correlation function matrix
n,m 1 n ~lm
My (tp = 1) = 5 Te(0Y (1) 03 (). (20)

It is explained in the Supplemental Material [40] why this
matrix is suitable for GEVP analysis [40]. By solving the
GEVP, we obtain the optimized nucleon operator

Oy =0\ +d,0¢ + d;0Y. 1)
where the coefficients d, 5 satisfy

(O1ONIN©O)x(7))y =0, (O]ONIN(F)x(0))y=0.  (22)

We construct the correlation function using the opti-
mized operators

éNnJN(tfth’ti) = <6Nﬂ<tf)ju(t1)5N(ti>>’ (23)

where we include only terms from Cy,;y and those
proportional to the coefficients ¢34 and d,;. Terms
involving products of c,d, are treated as higher-order
corrections and neglected. A challenge in computing

correlation functions like (0%;(tf)7ﬂ(tj)0,(\7)(ti)> for
n =2, 3 is the evaluation of five-point correlation func-
tions. Since the disconnected diagrams encapsulate the

contributions ~ from  (N(0)|N(0))(z(0)|7,|z(p)) and
(N(0)|7,|N(p))(z(0)|(0)), which are enhanced by a
factor of spatial volume of the lattice, they dominate the

five-point correlation functions based on the factorization
approximation

(N(0)z(0)|7,,IN(0)z()) ~ (N(0)|N(0))(z(0)|7,|(B)).
(N(0)z(0)|7,,IN(5)x(0)) ~ (N(0)|7,|N(p))(x(0)|z(0)).

Therefore, we compute only the disconnected contributions
as approximations to the challenging five-point functions,
which is feasible within current lattice QCD studies.
Though certain simplifications have been made, they
mainly affect corrections for excited-state contamination
and are therefore acceptable. Future work to develop
methods for handling five-point correlation functions is
beneficial.

Numerical analysis—We used two 2 + 1-flavor domain
wall fermion ensembles, 24D and 32Df, from the RBC-
UKQCD Collaboration [46], which have similar pion masses
[142.6(3) and 142.9(7) MeV [47]], comparable spatial
volumes (L = 4.6 fm), the same discretization but different
lattice spacings [a~! = 1.023(2) and 1.378(5) GeV]. For each
configuration, we generate 1024 point-source and 1024
smeared-source propagators at randomly chosen spatiotem-
poral locations to compute the correlation functions, using the
random sparsening-field technique [48,49]. Smeared nucleon
operators and local current operators are used, with renorm-
alization factors provided in Ref. [50]. Additional details on
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24D, I =3 ) 24D, |p] = &
=) - (7)
™ Grn =
= =0
1 I
0.8 4
0.6 1
0.44
0.2 4
0- y
oY o ol ol oy of o
FIG. 1. The overlap of the operators 01(62 forn = 1,2, 3,4 (left)

and 0,(\;') for n =1, 2, 3 (right) with the eigenstates from the
GEVP analysis.

the computation of four-point correlation functions can be
found in Refs. [38,51,52].

Taking the 24D ensemble and the I = 3/2 Nz system as
an example, we show the GEVP analysis results in the

left panel of Fig. 1. For each operator 05\',1),, we plot its

overlap with the state [Nz, Gy, s, m), defined as c,, =

|(0|01(\',1,i|N7r,G1_,s,m>V|, normalized by />, ¢2..

Similarly, for the nucleon system with momentum
|p| = (2z/L), the right panel of Fig. 1 presents the
corresponding GEVP results. The overlaps with excited

states for the operators 05\}7)1 and 01(\}) are about 5% and
10%, respectively. Although these overlaps are small,
eliminating excited-state contamination remains crucial,
as discussed below.

Using Egs. (10) and (14), we extract the effective
multipole amplitude for given time separations fy, — f;
and ¢; — ty. Since the initial and final state operators differ
significantly, we analyze their time dependence separately.
We first fix ty — #; and compute the multipole amplitude as
a function of #5, — ¢, to assess excited-state contamination
on the Nz side. By fitting this dependence, we obtain an
effective multipole amplitude dependent only on 7y — ¢,.
We then examine excited-state contamination on the N side
and extract the final multipole amplitude by fitting its
ty — t; dependence.

We take H), and L, as examples to illustrate the impact
of the GEVP correction on the Nz and N sides, respec-
tively. Figure 2 shows H,, as a function of ty, — ¢, for
t; —ty = 0.58 fm, comparing results with and without
GEVP corrections. Here, “with GEVP” refers to the use
of the optimized operator Oy,(f), which retains both the
Cyzyy term and terms proportional to c¢;34, Whereas
“without GEVP” omits the ¢34 corrections. As the

coupling of 0](\},)[ with excited states is weak, the GEVP

H0+ X 103m7r

T [3201 i l 24D
L ]
‘\7 0 . =g s 3% T b s E _ -
i T3 11153
I—=
I } = T
 -100 - § Before GEVP| T 2
oz I After GEVP
0
I 32Df 11 24D
-50 _
= s888e3 7+ " e )
S { FHEFY 1t
Il 150 . . ¥
x SRR
5 200
0 0.5 1 150 0.5 1 15
tNﬂ_tJ/fm tNﬂ-—tJ/fm

FIG. 2. Effective multipole amplitude H,, as a function of
tN;[ - l‘] for tJ — Iy = 0.58 fm.

corrections are not highly significant as shown in Fig. 2.
However, they still cause a shift by around 1-36.

Figure 3 compares L, as a function of #; — ¢ with and
without GEVP corrections on the N side. Here, the ¢; —
dependence is analyzed using data that include the ¢34
corrections. The terms with GEVP and without GEVP
indicate whether the d,; terms are included. The GEVP
correction is crucial: before GEVP, significant excited-state
contamination is visible at small ¢; — ty, whereas after
correction, a clearer plateau emerges. The difference can
reach 60 in the more precise 24D data. Since nucleon
operators with nonzero momenta are widely used in lattice
calculations, such as for parton distribution functions,
removing excited-state contamination using techniques like
GEVP is essential. It is worth noting that GEVP optimi-
zation has only a mild effect on the single-nucleon
two-point correlation function Cy(t;,t;). However, for
matrix elements extracted from Cy,,y (2. 1,.1;), the impact
of GEVP is significant. A more detailed discussion is

Lo, x 103m,

T 32Df 24D % Before GEVP
- 0} e - £ After GEVP
~ . _ - -E -
=10 L) ii T * 4

I . i £ 5 % T T o
« -20 I I I I = = R
S L

~

—

I o 32Df 24D

= - I ® .

_3
™ 2
R N
o =)
[
2!
2 gl
B e
)
B
> He
——e——1
B
2]
[ ] [ ]
ﬁ
y
Fo—+—

0 0.5 1 1.5 0 0.5 1 15
tJ—tN/fm tJ—tN/fm
FIG. 3. Effective multipole amplitude Ly, as a function of

t; — ty, obtained from a fit using GEVP-corrected data on the Nz
side to analyze the time dependence on the N side, both before
and after GEVP correction on the N side.
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FIG. 4. Comparison between lattice results for Ly, and Eg,
with those extracted from experimental data and predicted by
LETs. The lattice value of Ly, at k*> = M2 is determined by
enforcing the condition Ly, = Ey, at k=0. Experimental data
and LET predictions are available in the spacelike region
(k> < 0), as reported in Refs. [18,53].

provided in the Supplemental Material [40]. Figures
illustrating the fitting quality for other multipole amplitudes
are also included in [40].

Results and conclusion—Figure 4 shows the momentum
dependence of the multipole amplitudes obtained from fits
to both the ty, —t; and 7; — ty dependences. The ampli-
tudes Ly, and E,, are presented in the physical basis,
allowing for a direct comparison of the lattice results with
extractions from experimental data and predictions from
LETs, including O[(M,/m)?* corrections [18]. Lattice
results for other multipole amplitudes in the isospin basis
are provided in the Supplemental Material [40]. Several
partial-wave analyses based on experimental data exist
[53-59]. In this Letter, we compare our results with the
most recent analysis within a coupled-channel framework
[53]. Note, however, this analysis does not incorporate
matching to the ChPT amplitude at low energies and
momenta, and only proton target data are analyzed, as
the neutron in the initial state is bound in a deuteron or *He,
making the theoretical interpretation less clean.

In Fig. 4, the lattice data exhibit a similar trend to both
experimental analyses and LET predictions but align more
closely with the experimental results while deviating more
from LETs. This discrepancy arises because LETs omit
higher-order corrections within the framework of ChPT.
Although some differences exist between the lattice and
experimental results, the large uncertainties in the exper-
imental data imply that the lattice and experimental results
are either consistent or deviate by around 2-3c.
Additionally, some deviations between the two lattice
ensembles can be observed. While these differences may

arise from lattice artifacts, they could also result from
statistical fluctuations. Further investigation into these
effects, using larger statistics and additional lattice spac-
ings, would be a valuable direction for future studies.
Improved precision in both lattice calculations and experi-
ments will enable mutual validation and deepen our under-
standing of pion production from a nucleon, a fundamental
quantum fluctuation process.

As the first lattice QCD study of pion production, our
approach to spin projection and multiple operator con-
struction extends techniques developed to study excited-
state effects in nucleon observables and holds promise for
the eventual calculation of shallow inelastic neutrino-
nucleon scattering.
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