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Quantum fluctuations in QCD influence nucleon structure and interactions, with pion production serving
as a key probe of chiral dynamics. In this Letter, we present a lattice QCD calculation of multipole
amplitudes at threshold, related to both pion electroproduction and weak production from a nucleon, using
two gauge ensembles near the physical pion mass. We develop a technique for spin projection and construct
multiple operators for analyzing the generalized eigenvalue problem in both the nucleon-pion system in the
center-of-mass frame and the nucleon system with nonzero momentum. The numerical lattice results are
then compared with those extracted from experimental data and predicted by low-energy theorems
incorporating one-loop corrections.
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Introduction—Quantum fluctuations are fundamental to
modern physics, shaping many key phenomena. In QCD,
gluon field fluctuations are key to quark confinement and
asymptotic freedom. In the nonperturbative regime, they
influence quark and gluon dynamics within nucleons,
affecting their distributions and interactions. These effects,
in turn, shape how nucleons respond to external probes like
photons and weak bosons. When energy allows, quantum
fluctuations can manifest as real particles, such as pions, in
electroproduction and weak production. Pion production is
of particular interest, as pions, being Nambu-Goldstone
boson of QCD, reflect spontaneous chiral symmetry break-
ing and play a crucial role in chiral dynamics (see, e.g., [1]).

The study of pion production through electromagnetic
interactions has a long history. Low-energy theorems
(LETs) successfully described charged pion photoproduc-
tion but initially failed for the γp → π0p process [2–7].
Bernard et al. resolved these discrepancies by incorporating
chiral perturbation theory (ChPT) corrections [8–13],
advancing our understanding of QCD chiral dynamics,
where quantum fluctuations (i.e., pion loops) are of prime
importance. Increasing beam energies in recent electron-
nucleon experiments have made it more challenging to
probe pion production directly in the threshold region. The
latest photoproduction data from MAMI, over a decade old
[14], only cover energies above the second threshold,
where the πþn channel opens. For a recent review, see
[15]. For electroproduction, where the photon carries
nonzero four-momentum squared, the situation is less clear.
While the extension of the LETs to electroproduction and
the ChPT analyses of experimental data exist [16–20],
discrepancies among different measurements and devia-
tions from ChPT predictions persist [21], prompting further
theoretical efforts [22–24]. Lattice QCD calculations offer
a first-principles approach to predicting threshold pion
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electroproduction, enabling direct comparisons with
experiment and ChPT. Such comparisons are essential
for improving our understanding of chiral dynamics
in QCD.
Weak pion production is crucial for neutrino oscillation

experiments, where neutrino-nucleus interactions are a
major source of systematic uncertainty. This impacts both
intermediate-energy experiments like LBNF/DUNE [25],
HyperK [26], and JUNO [27], as well as low-energy
coherent neutrino scattering programs [28,29]. The
DUNE Conceptual Design Report highlights that uncer-
tainties exceeding 1% for signals and 5% for backgrounds
could significantly reduce sensitivity to CP violation and
the neutrino mass hierarchy [25]. A significant portion of
the DUNE neutrino flux lies above the pion production
threshold, making precise theoretical understanding of pion
production processes crucial. To achieve few-percent over-
all cross-section uncertainties, these processes must be
understood at the 10% level [30]. New data on neutrino
scattering off proton or deuteron targets would provide
valuable constraints. Theoretically, LETs are detailed in
[31]. While lattice QCD can offer crucial insights, current
studies of matrix elements involving nucleon-pion re-
scattering states remain exploratory compared to axial
form factor calculations. Theoretical and computational
advances are required to deliver results with fully quanti-
fied uncertainties.
Lattice QCD calculations involving baryonic multi-

hadron states are inherently challenging due to increased
system complexity, poorer signal-to-noise ratios, and po-
tentially significant excited-state contamination. Recent
studies have explored the excited-state contamination in
nucleon matrix elements [32–37]. Building on our previous
studies of nucleon electric polarizabilities [38] and sub-
traction functions in forward Compton scattering [39],
we present a lattice QCD calculation of γ�N → Nπ,
W�N → Nπ, and Z�N → Nπ matrix elements at the pion
production threshold. Using two gauge ensembles near the
physical pion mass but with different lattice spacings, we
extract the multipole amplitudes E0þ and L0þ from pion

electroproduction and LðWÞ
0þ , M0þ, and H0þ from weak

production. A detailed comparison is conducted between
lattice results, experimental data and LET predictions.
Multipole amplitudes at the pion production threshold—

Consider the process of γ�ðkÞ þ Nðp1Þ → Nðp2Þ þ πðqÞ,
where N represents a nucleon (proton or neutron), π
denotes a pion, and γ� is a virtual photon with spacelike
momenta if k2 < 0. Replacing γ� withW� or Z� transforms
the electromagnetic process to a weak one. The transition
matrix elements for the electromagnetic and axial weak
current are given by

J em
μ ¼ hNπjJemμ ð0ÞjNi;

JWðZÞ;A
μ ¼ hNπjJWðZÞ;A

μ ð0ÞjNi; ð1Þ

where the currents are defined as

Jemμ ¼ e
�
2

3
ūγμu −

1

3
d̄γμd

�
;

JW;A
μ ¼ −

g2
2

ffiffiffi
2

p d̄γμγ5u;

JZ;Aμ ¼ −
g2

4 cos θW
ðūγμγ5u − d̄γμγ5dÞ: ð2Þ

Here, u, d are the up and down quark fields, e and g2 are the
electromagentic and weak SUð2ÞL coupling constants, and
θW is the Weinberg angle. The minus sign associated with
the axial vector current reflects the V − A structure of the
weak interaction.
In theNπ center-of-mass frame at threshold (q⃗ ¼ p⃗2 ¼ 0⃗),

the electromagnetic current matrix element can be expressed
in terms of two S-wave multipole amplitudes, E0þ and
L0þ [18]

½J⃗ em�s0;s¼ αmξ
†
s0

n
L0þk̂ðσ⃗ · k̂ÞþE0þ

�
σ⃗− k̂ðσ⃗ · k̂Þ�oξs; ð3Þ

where αm ¼ 8π iðmþMπÞ, with m and Mπ being the
masses of the nucleon and pion, respectively. ξs0;s are
two-component Pauli spinors for the nucleon, normalized
as ξ†s0ξs ¼ δs;s0 , where s and s0 denote the nucleon spin in
the initial and final states. The multipole amplitude E0þ
characterizes the transverse coupling of the virtual photon
to the nucleon spin, while L0þ characterizes the longi-
tudinal coupling. Equation (3) applies for k⃗ ≠ 0⃗. At k⃗ ¼ 0⃗,
L0þ, and E0þ are equal in magnitude [18], simplifying the
expression to ½J⃗ em�s0;s ¼ αmE0þξ

†
s0 σ⃗ξs. When k⃗ ≠ 0⃗, L0þ

can also be extracted from the time component of the
current, J em

0 , using the Ward identity

½J em
0 �s0;s ¼ αm

jk⃗j
k0

ξ†s0 ðσ⃗ · k̂ÞξsL0þ: ð4Þ

For weak interactions mediated by theW boson, the axial
weak current matrix element is expressed as [31]

½JW;A
0 �s0;s ¼ αmξ

†
s0ξs

�
LðWÞ
0þ þ k0

m
H0þ

�
;

½J⃗W;A�s0;s ¼ αmξ
†
s0

�
k⃗
m
H0þ − iðσ⃗ × k̂

�
M0þ

�
ξs; ð5Þ

where LðWÞ
0þ , H0þ, and M0þ are the S-wave multipole

amplitudes. To distinguish between electromagnetic and
weak transitions, the superscript (W) is added to L0þ for the
weak transition. For the Z boson, the matrix elements are
defined analogously, with the superscript W replaced by Z.
These multipole amplitudes can also be expressed in the
isospin basis. The relationships between the multipole
amplitudes in the physical and isospin bases are provided
in the Supplemental Material [40].
Spin projection for correlation functions—The nucleon-

pion operatorsOI;Iz
Nπ with isospin I ¼ 1

2
and 3

2
are constructed
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using the isospin-triplet operator for the pion,OI;Iz
π , and the

doublet operator for the nucleon, OI;Iz
N , with appropriate

coefficients. More details of the construction are given in
the Supplemental Material [40].
To simplify the analysis, we first apply the projection

operator Pþ ¼ ½ð1þ γ0Þ=2� to the nucleon field, reducing
it to a two-component field. Consequently, the spin
structure of the correlation functions and matrix elements
is analyzed within a 2 × 2 spin space. The overlap of the
interpolating operators OI;Iz

N and OI;Iz
Nπ with the nucleon and

nucleon-pion ground state is expressed as

h0jOI;Iz
N ðp⃗; tÞjNI;Iz ; p⃗; siV ¼ L3ZN;Lðp⃗Þe−Etξs;

h0jOI;Iz
Nπ ðp⃗; tÞjðNπÞI;Iz ; G−

1 ; siV ¼ L3ZI
Nπ;Lðp⃗Þe−EI

Nπ tξs; ð6Þ
where the operatorsOI;Iz

N ðp⃗; tÞ andOI;Iz
Nπ ðp⃗; tÞ are defined as

OI;Iz
N ðp⃗; tÞ ¼

X
x⃗

OI;Iz
N ðx⃗; tÞeip⃗·x⃗;

OI;Iz
Nπ ðp⃗; tÞ ¼

1

NR

X
R̂∈Oh

X
x⃗;y⃗

OI;Iz
Nπ ðx⃗; y⃗; tÞeiR̂ k⃗ ·ðx⃗−y⃗Þ; ð7Þ

with NR ¼ P
R̂∈Oh

1, and R̂ is an element of the hyper-
cubic groupOh, which describes the rotational symmetry in
a finite volume. The operator OI;Iz

Nπ ðp⃗; tÞ is defined in the
center-of-mass frame, with p⃗ serving only as an indicator of
the operator construction. The coordinates x⃗ and y⃗ corre-
spond to the spatial positions of the nucleon and pion
operators, respectively. The factor L3 accounts for the finite
volume, where L represents the lattice size. The subscript V
denotes the states in a finite volume. E and EI

Nπ represent
the energies of the nucleon and nucleon-pion states,
respectively.
The G−

1 representation is a two-dimensional irreducible
representation of Oh, with basis states labeled by the index
s, which remain consistent with the spin index in the
infinite-volume limit. The finite-volume states are normal-
ized by

VhNI;I0z ;p⃗0;s0jNI;Iz ;p⃗;siV ¼2EL3δIz;I0zδs;s0δp⃗;p⃗0 ;

VhðNπÞI;I0z ;G−
1 ;s

0jðNπÞI;Iz ;G−
1 ;siV ¼2EI

NπL
3δIz;I0zδs;s0 : ð8Þ

The correlation functions are constructed as

CNπJNðtf; tJ; tiÞ ¼ hOI00;I00z
Nπ ð0⃗; tfÞJ̃I

0;I0z
μ ðk⃗; tJÞŌI;Iz

N ðp⃗; tiÞi;
CNπðtf; tiÞ ¼ hOI;Iz

Nπ ð0⃗; tfÞŌI;Iz
Nπ ð0⃗; tiÞi;

CNðtf; tiÞ ¼ hOI;Iz
N ð−p⃗; tfÞŌI;Iz

N ðp⃗; tiÞi: ð9Þ
According to Eq. (6), a typical operator OI;Iz acts as an
annihilation operator, removing a state with isospin ðI; IzÞ.
However, the same operator can also act as a creation
operator, generating a state with isospin ðI;−IzÞ. To clarify
this distinction, we introduce the notation ÕI;−Iz to

represent OI;Iz when it functions as a creation operator.
This convention similarly applies to the current operator.

By using J̃I
0;I0z
μ in the correlation function, we ensure that the

isospin relation Iz þ I0z ¼ I00z holds. Specifically, we set
ðIz; I0zÞ ¼ ð1

2
; 0Þ. Other choices of ðIz; I0zÞ can be related

to this setup through the Wigner-Eckart theorem.
Additionally, the current’s momentum k⃗ satisfies the
momentum conservation condition p⃗þ k⃗ ¼ 0⃗.
For the correlation functionsCNðtf; tiÞ andCNπðtf; tiÞ, at

large time separation tf − ti, we obtain

1

2
Tr½CNðtf; tiÞ� ¼ L3

ZN;Lðp⃗Þ2
2E

e−Eðtf−tiÞ;

1

2
Tr½CNπðtf; tiÞ� ¼ L3

ZI
Nπ;Lð0⃗Þ2
2EI

Nπ

e−E
I
Nπðtf−tiÞ: ð10Þ

For the correlation function CNπJN , we use C⃗ and C0 to
distinguish its spatial and temporal components, and denote
vector and axial-vector current insertions by J ¼ V and A,
respectively. Before applying the trace operator, we first
express

CNπJN ¼ αNπJN

X
s0;s

ξs0 ½J �s0;sξ†s ; ð11Þ

where the coefficient is given by

αNπJN ¼ L3
ZI
Nπ;Lð0⃗Þ
2EI

Nπ

e−ENπðtf−tJÞ ZN;Lðp⃗Þ
2E

e−EðtJ−tiÞ: ð12Þ

To extract the five multipole amplitudes, we define the
following spin projection operators

PL0þ ¼
k0
jk⃗j

ðk̂ · σ⃗Þ; P⃗E0þ ¼
1

2
ðσ⃗− ðk̂ · σ⃗Þk̂Þ;

P⃗H0þ ¼
m

jk⃗j
k̂; P

LðWÞ
0þ ;H0þ

¼ 1; P⃗M0þ ¼
i
2
ðσ⃗× k̂Þ: ð13Þ

These projection operators are applied to correlation
functions to extract the multipole amplitudes. For example,

1

NR

X
R̂∈Oh

1

2
Tr½PL0þ · C0

NπVN �jR̂ k⃗

¼ ð2μNπÞ−1
2f

−1
2

LLαNπJNαmL0þ; ð14Þ
where fLL is the Lellouch-Lüscher factor that relates the
finite-volume state to the infinite-volume one, and μNπ ¼
ðmMπ=ENπÞ is the reduced mass of the nucleon-pion
system. Other multipole amplitudes can be extracted by
applying the corresponding spin projection operators to the
relevant correlation functions, as summarized in Table I.
These projection operators are valid for k⃗ ≠ 0⃗. For k⃗ ¼ 0⃗,
E0þ can be extracted by applying P⃗E0þ ¼ σ⃗=3 to C⃗NπVN .
Applying the projection operator P⃗L0þ ¼ ðk̂ · σ⃗Þk̂ to

C⃗NπVN can also extract L0þ, but PL0þ is preferred as it
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reduces systematic effects. For instance, if the lattice size
is tuned such that k0 ¼ 0, L0þ should vanish, yet P⃗L0þ fails
to ensure this due to systematic uncertainties. In our Letter,
the factor k0=jk⃗j takes small values of 0.376, 0.170,
and 0.063, which helps suppress systematic effects when
using PL0þ. Conversely, we observe significant excited-

state contamination when using P⃗L0þ, leading us to adopt
PL0þ exclusively. Further details on the design of spin
operators and the discussion of Lellouch-Lüscher factor are
provided in the Supplemental Material [40].
Operator optimization—To reduce excited-state con-

tamination, we use OI;Iz
Nπ ðp⃗; tÞ with the four lowest momen-

tum modes

p⃗
2π=L

¼ ð0; 0; 0Þ; ð0; 0; 1Þ; ð0; 1; 1Þ; ð1; 1; 1Þ: ð15Þ

These operators are denoted as OðnÞ
Nπ , where n ¼ 1, 2, 3, 4

corresponds to increasing momentum modes. For simplic-
ity, we have omitted the isospin index. Using these
operators, we construct a 4 × 4 correlation function matrix
with elements given by

Mn;m
Nπ ðtf − tiÞ ¼

1

2
TrhOðnÞ

NπðtfÞŌðmÞ
Nπ ðtiÞi: ð16Þ

The four lowest states are defined as jNπ; G−
1 ; s; niV with

n ¼ 1, 2, 3, 4.
By solving the generalized eigenvalue problem (GEVP),

we construct optimized Nπ operators as

ÕNπ ¼ Oð1Þ
Nπ þ c2O

ð2Þ
Nπ þ c3O

ð3Þ
Nπ þ c4O

ð4Þ
Nπ; ð17Þ

where the coefficients cm are determined using the standard
GEVP procedure [44,45]. Assuming that the lowest four
states dominate the correlation function matrix, with higher
excited-state contributions being negligible compared to
the statistical noise, the coefficients cm can be considered to
satisfy the condition

h0jÕNπjNπ; G−
1 ; s; niV ¼ 0; for n ¼ 2; 3; 4: ð18Þ

For the nucleon operator with nonzero momentum p⃗,
parity is no longer a good quantum number, allowing
mixing with Nπ operators of the same momentum. We
consider three operators

Oð1Þ
N ¼ ONðp⃗Þ; Oð2Þ

N ¼ ðp̂ · σ⃗ÞONðp⃗ÞOπð0⃗Þ;
Oð3Þ

N ¼ ðp̂ · σ⃗ÞONð0⃗ÞOπðp⃗Þ; ð19Þ

using which, we construct the correlation function matrix

Mn;m
N ðtf − tiÞ ¼

1

2
TrhOðnÞ

N ðtfÞŌðmÞ
N ðtiÞi: ð20Þ

It is explained in the Supplemental Material [40] why this
matrix is suitable for GEVP analysis [40]. By solving the
GEVP, we obtain the optimized nucleon operator

ÕN ¼ Oð1Þ
N þ d2O

ð2Þ
N þ d3O

ð3Þ
N ; ð21Þ

where the coefficients d2;3 satisfy

h0jÕN jNð0⃗Þπðp⃗ÞiV ¼0; h0jÕN jNðp⃗Þπð0⃗ÞiV ¼0: ð22Þ
We construct the correlation function using the opti-

mized operators

C̃NπJNðtf; tJ; tiÞ ¼ hÕNπðtfÞJ̃μðtJÞ ¯̃ONðtiÞi; ð23Þ
where we include only terms from CNπJN and those
proportional to the coefficients c2;3;4 and d2;3. Terms
involving products of cmdn are treated as higher-order
corrections and neglected. A challenge in computing

correlation functions like hOð1Þ
NπðtfÞJ̃μðtJÞŌðnÞ

N ðtiÞi for
n ¼ 2, 3 is the evaluation of five-point correlation func-
tions. Since the disconnected diagrams encapsulate the
contributions from hNð0⃗ÞjNð0⃗Þihπð0⃗ÞjJ̃μjπðp⃗Þi and

hNð0⃗ÞjJ̃μjNðp⃗Þihπð0⃗Þjπð0⃗Þi, which are enhanced by a
factor of spatial volume of the lattice, they dominate the
five-point correlation functions based on the factorization
approximation

hNð0⃗Þπð0⃗ÞjJ̃μjNð0⃗Þπðp⃗Þi ≈ hNð0⃗ÞjNð0⃗Þihπð0⃗ÞjJ̃μjπðp⃗Þi;
hNð0⃗Þπð0⃗ÞjJ̃μjNðp⃗Þπð0⃗Þi ≈ hNð0⃗ÞjJ̃μjNðp⃗Þihπð0⃗Þjπð0⃗Þi:
Therefore, we compute only the disconnected contributions
as approximations to the challenging five-point functions,
which is feasible within current lattice QCD studies.
Though certain simplifications have been made, they
mainly affect corrections for excited-state contamination
and are therefore acceptable. Future work to develop
methods for handling five-point correlation functions is
beneficial.
Numerical analysis—We used two 2þ 1-flavor domain

wall fermion ensembles, 24D and 32Df, from the RBC-
UKQCDCollaboration [46], which have similar pion masses
[142.6(3) and 142.9(7) MeV [47]], comparable spatial
volumes (L ¼ 4.6 fm), the same discretization but different
lattice spacings [a−1¼1.023ð2Þ and 1.378(5)GeV]. For each
configuration, we generate 1024 point-source and 1024
smeared-source propagators at randomly chosen spatiotem-
poral locations to compute the correlation functions, using the
random sparsening-field technique [48,49]. Smeared nucleon
operators and local current operators are used, with renorm-
alization factors provided in Ref. [50]. Additional details on

TABLE I. The correspondence between spin projection oper-
ators, correlation functions, and multipole amplitudes.

PL0þ P⃗E0þ P⃗H0þ
P

LðWÞ
0þ ;H0þ P⃗M0þ

C0
NπVN C⃗NπVN C⃗NπAN C0

NπAN C⃗NπAN
L0þ E0þ H0þ LðWÞ

0þ þ ðk0=mÞH0þ M0þ
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the computation of four-point correlation functions can be
found in Refs. [38,51,52].
Taking the 24D ensemble and the I ¼ 3=2 Nπ system as

an example, we show the GEVP analysis results in the

left panel of Fig. 1. For each operator OðnÞ
Nπ, we plot its

overlap with the state jNπ; G−
1 ; s; mi, defined as cn;m ¼

jh0jOðnÞ
Nπ jNπ; G−

1 ; s; miV j, normalized by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m c2n;m
q

.

Similarly, for the nucleon system with momentum
jp⃗j ¼ ð2π=LÞ, the right panel of Fig. 1 presents the
corresponding GEVP results. The overlaps with excited

states for the operators Oð1Þ
Nπ and Oð1Þ

N are about 5% and
10%, respectively. Although these overlaps are small,
eliminating excited-state contamination remains crucial,
as discussed below.
Using Eqs. (10) and (14), we extract the effective

multipole amplitude for given time separations tNπ − tJ
and tJ − tN . Since the initial and final state operators differ
significantly, we analyze their time dependence separately.
We first fix tN − tJ and compute the multipole amplitude as
a function of tNπ − tJ to assess excited-state contamination
on the Nπ side. By fitting this dependence, we obtain an
effective multipole amplitude dependent only on tN − tJ.
We then examine excited-state contamination on the N side
and extract the final multipole amplitude by fitting its
tN − tJ dependence.
We takeH0þ and L0þ as examples to illustrate the impact

of the GEVP correction on the Nπ and N sides, respec-
tively. Figure 2 shows H0þ as a function of tNπ − tJ for
tJ − tN ¼ 0.58 fm, comparing results with and without
GEVP corrections. Here, “with GEVP” refers to the use
of the optimized operator ÕNπðtÞ, which retains both the
CNπJN term and terms proportional to c2;3;4, whereas
“without GEVP” omits the c2;3;4 corrections. As the

coupling of Oð1Þ
Nπ with excited states is weak, the GEVP

corrections are not highly significant as shown in Fig. 2.
However, they still cause a shift by around 1–3σ.
Figure 3 compares L0þ as a function of tJ − tN with and

without GEVP corrections on the N side. Here, the tJ − tN
dependence is analyzed using data that include the c2;3;4
corrections. The terms with GEVP and without GEVP
indicate whether the d2;3 terms are included. The GEVP
correction is crucial: before GEVP, significant excited-state
contamination is visible at small tJ − tN , whereas after
correction, a clearer plateau emerges. The difference can
reach 6σ in the more precise 24D data. Since nucleon
operators with nonzero momenta are widely used in lattice
calculations, such as for parton distribution functions,
removing excited-state contamination using techniques like
GEVP is essential. It is worth noting that GEVP optimi-
zation has only a mild effect on the single-nucleon
two-point correlation function CNðtf; tiÞ. However, for
matrix elements extracted from CNπJNðtf; tJ; tiÞ, the impact
of GEVP is significant. A more detailed discussion is

FIG. 1. The overlap of the operatorsOðnÞ
Nπ for n ¼ 1, 2, 3, 4 (left)

and OðnÞ
N for n ¼ 1, 2, 3 (right) with the eigenstates from the

GEVP analysis.

FIG. 2. Effective multipole amplitude H0þ as a function of
tNπ − tJ for tJ − tN ¼ 0.58 fm.

FIG. 3. Effective multipole amplitude L0þ as a function of
tJ − tN , obtained from a fit using GEVP-corrected data on the Nπ
side to analyze the time dependence on the N side, both before
and after GEVP correction on the N side.
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provided in the Supplemental Material [40]. Figures
illustrating the fitting quality for other multipole amplitudes
are also included in [40].
Results and conclusion—Figure 4 shows the momentum

dependence of the multipole amplitudes obtained from fits
to both the tNπ − tJ and tJ − tN dependences. The ampli-
tudes L0þ and E0þ are presented in the physical basis,
allowing for a direct comparison of the lattice results with
extractions from experimental data and predictions from
LETs, including O½ðMπ=mÞ2� corrections [18]. Lattice
results for other multipole amplitudes in the isospin basis
are provided in the Supplemental Material [40]. Several
partial-wave analyses based on experimental data exist
[53–59]. In this Letter, we compare our results with the
most recent analysis within a coupled-channel framework
[53]. Note, however, this analysis does not incorporate
matching to the ChPT amplitude at low energies and
momenta, and only proton target data are analyzed, as
the neutron in the initial state is bound in a deuteron or 3He,
making the theoretical interpretation less clean.
In Fig. 4, the lattice data exhibit a similar trend to both

experimental analyses and LET predictions but align more
closely with the experimental results while deviating more
from LETs. This discrepancy arises because LETs omit
higher-order corrections within the framework of ChPT.
Although some differences exist between the lattice and
experimental results, the large uncertainties in the exper-
imental data imply that the lattice and experimental results
are either consistent or deviate by around 2–3σ.
Additionally, some deviations between the two lattice
ensembles can be observed. While these differences may

arise from lattice artifacts, they could also result from
statistical fluctuations. Further investigation into these
effects, using larger statistics and additional lattice spac-
ings, would be a valuable direction for future studies.
Improved precision in both lattice calculations and experi-
ments will enable mutual validation and deepen our under-
standing of pion production from a nucleon, a fundamental
quantum fluctuation process.
As the first lattice QCD study of pion production, our

approach to spin projection and multiple operator con-
struction extends techniques developed to study excited-
state effects in nucleon observables and holds promise for
the eventual calculation of shallow inelastic neutrino-
nucleon scattering.
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