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We investigate potential hadronic molecular states in the D(∗)D̄(∗) and B(∗)B̄∗ systems using light meson
exchange interactions. Our analysis focuses on coupled-channel systems with spin-parity quantum numbers
JPC = 0++, 1+±, and 2++, examining how the δ(r) potential affects states near threshold. Using coupled-channel
analysis, we reproduce the X(3872) mass with a given cutoff for the (I)JPC = (0)1++ state, finding a minimal
impact from the δ(r) term. At this cutoff, both the (0)0++ state near the DD̄ threshold and the (0)1+− state
near the DD̄∗ threshold show less sensitivity to the δ(r) term compared to the three states—(0)0++, (0)1+−, and
(0)2++—near the D∗D̄∗ threshold. As anticipated, the B(∗)B̄∗ systems exhibit similar behavior but with stronger
binding due to their larger reduced mass. These findings suggest promising directions for future experimen-
tal searches, particularly in the isoscalar sector, which could substantially advance our understanding of exotic
tetraquark states.

I. INTRODUCTION

The formation mechanism of the hadrons governed by
the strong interaction described by quantum chromodynamics
(QCD) is intensively studied, however, its low-energy dynam-
ics is still the most challenging task for the hadron commu-
nity. It is no clear that apart from the well-known qqq baryons
and qq̄ mesons of the conventional quark model [1, 2], there
exist multiquark states, glueballs, quark-gluon hybrids, which
are collectively called exotic hadrons. Multiquark states can
be classified into tetraquark states (qqq̄q̄), pentaquark states
(qqqqq̄), and so on. The study of multiquark states, especially
how the quarks are grouped inside (i.e., compact or molecular
configuration) plays a crucial role for understanding the struc-
ture formation in QCD; for a few recent reviews, see Refs. [3–
8].

As the most famous exotic state, the X(3872), listed as
χc1(3872) in the Review of Particle Physics (RPP) [9], was ob-
served by the Belle collaboration two decades ago [10], whose
mass is very close to the D0D̄∗0 threshold. Due to its quantum
numbers JPC = 1++ [11] and large isospin breaking in de-
cays [12, 13], it has been extensively discussed as a potential
DD̄∗ + c.c. hadronic molecule [14–42]. While other interpre-
tations—such as compact tetraquark configurations or mixed
molecular-charmonium states—have also been proposed [43–
47], a recent analysis of the most precise experimental data
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concludes that the compositeness of the X(3872) is consis-
tent with unity, strongly supporting its interpretation as a pure
molecular state [48]. Following the discovery of the X(3872),
many charmonium- and bottomonium-like states are reported
experimentally, Zc(3900) [49–51], Zc(4020)/Zc(4025) [52–
55], Zb(10610) and Zb(10650) [56–58], and assigned with
isospin 1. These states are close to the DD̄∗, D∗D̄∗, BB̄∗,
B∗B̄∗ thresholds, respectively. Conspicuously, their isoscalar
partners and the states near thresholds of DD̄/ BB̄ are absent
from the list. Apart from that, the observation of hidden-
charm pentaquark states Pc [59, 60] and Pcs [61, 62] by
the LHCb collaboration adds further members to the exotic
hadron zoo. They can be understood as hadronic molecules
in D̄(∗)Σ

(∗)
c and D̄(∗)Ξ

(∗)
c system [63–77]. A very intriguing and

remarkable fact is that most of the exotic states are located
quite close to the thresholds of a pair of hadrons that they
can couple to. This property can be understood as there is
an S -wave attraction between the relevant hadron pair [40],
and it naturally leads to the hadronic molecule interpreta-
tion [5, 34, 41, 63, 78, 79]. The validity of the hadronic
molecule picture is also reflected by the successful quanti-
tative predictions of some exotic states in early theoretical
works based on the hadron-hadron interactions [80–88].

In present work, we solve the stationary Schrödinger equa-
tion to search for possible molecular states in D(∗)D̄(∗) and
B(∗)B̄∗ systems, similar to the strategies used previously in
the hidden-charm pentaquark sector [89, 90]. The low-energy
interaction between hadrons is described by the one-boson-
exchange model (OBE), which includes the SU(3) vector-
nonet mesons, pseudoscalar octet mesons, and the σ meson
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as exchanged particles. It should be noted that such type
of approach has been used in the pioneering works [91, 92]
but suffer from a systematic expansion as offered by effective
field theory approaches, where the short-ranged interaction is
given in terms of contact terms with adjustable low-energy
constants. The characterization of short-range interaction pro-
vides critical insights into the formation mechanisms of the
hadronic molecular states[93]. The vector-meson exchange
considered here is one specific representation of the short-
range dynamics. In such an OBE model, the potential may
contain a δ(r) term representing short-range interactions. Two
strategies exist in the literature for handling this δ(r) term:
either retaining it [65, 94–97] or discarding it [20, 98, 99].
However, since the short-range interaction between hadrons
cannot be definitively determined by such a phenomenolog-
ical model and may receive contributions from heavier par-
ticle exchanges, we introduce a parameter a to phenomeno-
logically adjust the strength of the δ(r) term. This parameter
effectively introduces an additional contact interaction to ac-
count for extra short-range interactions from other heavier me-
son exchanges. As demonstrated in our previous study [90],
a specific value of parameter a enables the interpretation of
the four observed Pc states with a simultaneous cutoff. In this
work, we systematically investigate the analogous mechanism
associated with the δ(r) term within the D(∗)D̄(∗) and B(∗)B̄∗

systems.

This paper is organized as follows. The details of the
OBE model in the D(∗)D̄(∗) and the B(∗)B̄∗ system as well as
the terminology of the scattering matrix from the stationary
Schrödinger equation are introduced in Sec. II. Numerical re-
sults and discussions of the possible molecular states in the
D(∗)D̄(∗) and B(∗)B̄∗ systems are given in Sec. III. Finally, our
conclusion are presented in Sec. IV.

II. EFFECTIVE LAGRANGIAN AND POTENTIAL

The OBE potential model is quite successful in interpreting
the formation mechanism of pentaquarks [90, 98, 100–102].
In this work, we systematically study the OBE potentials in
D(∗)D̄(∗)/B(∗)B̄(∗) systems, and investigate the possibility of the
hidden-charm or bottom tetraquarks states in the molecular
picture.

To investigate the coupling between a charmed or bottomed
meson with light scalar, pseudoscalar and vector mesons,
we employ the effective Lagrangian satisfying chiral symme-
try and heavy quark spin symmetry (HQSS), developed in

Refs. [103–109],

LH = gS Tr[H̄Q̄
a σHQ̄

a ] + igTr[H̄Q̄
a γ · Aabγ

5HQ̄
b ]

− iβTr[H̄Q̄
a vµ(Γµab − ρ

µ
ab)HQ̄

b ] + iλTr
[
H̄Q̄

a
i
2

[γµ, γν]F
µν
ab HQ̄

b

]
+ gS Tr[HQ

a σH̄Q
a ] + igTr[HQ

a γ · Aabγ
5H̄Q

b ]

+ iβTr[HQ
a vµ(Γµab − ρ

µ
ab)H̄Q

b ] + iλTr
[
HQ

a
i
2

[γµ, γν]F
µν
ab H̄Q

b

]
,

(1)

with a, b and c the flavor indices and vµ the four-velocity of
the heavy hadron. The axial-vector and vector currents read,
respectively,

Aµ =
1
2

(ξ†∂µξ − ξ∂µξ†) =
i
fπ
∂µP + · · · ,

Γµ =
i
2

(ξ†∂µξ + ξ∂µξ†) =
i

2 f 2
π

[P, ∂µP] + · · · , (2)

with ξ = exp(iP/ fπ) and fπ = 132 MeV the pion decay con-
stant. The vector meson fields ρα and field strength tensor
Fαβ are defined as ρα = i gVV

α/
√

2 and Fαβ = ∂αρβ − ∂βρα +

[ρα, ρβ] with

P =


π0
√

2
+

η
√

6
π+ K+

π− − π0
√

2
+

η
√

6
K0

K− K̄0 −

√
2
3η

 , (3)

V =


ρ0
√

2
+ ω
√

2
ρ+ K∗+

ρ− −
ρ0
√

2
+ ω
√

2
K∗0

K∗− K̄∗0 ϕ

 , (4)

where we have ignored the mixing between the pseudoscalar
octet and singlet. Because the pseudoscalar singlet η′ has a
much higher mass than the octet member η, its contribution is
highly suppressed in low-energy systems as considered here.
On the other hand, the η′-nucleon coupling is suppressed by a
factor of about 1/3 compared to the η coupling in chiral per-
turbation theory [110, 111], a suppression pattern that is ex-
pected to persist in heavy meson systems. This octet approxi-
mation is frequently used in OBE models for heavy hadronic
molecules [5, 20, 35, 65, 94–99]. The S -wave heavy meson
can be represented by HQ

a and HQ̄
a , respectively,

HQ̄
a = (P̄Q̄∗

aµ γ
µ − P̄Q̄

a γ
5)

1 − /v
2

, H̄Q̄
a = γ

0HQ̄†
a γ0, (5)

HQ
a =

1 + /v
2

(PQ∗
a,µγ

µ − PQ
a γ

5), H̄Q
a = γ

0HQ†
a γ0, (6)
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where heavy mesons with JP = 0− and 1− are denoted by P
and P∗µ, respectively, which are normalized as [95, 105]

⟨0|P̄|Q̄q(0−)⟩ =
√

MP̄, ⟨0|P̄∗µ|Q̄q(1−)⟩ = ϵµ
√

MP̄∗ , (7)

⟨0|P|Qq̄(0−)⟩ =
√

MP, ⟨0|P∗µ|Qq̄(1−)⟩ = ϵµ
√

MP∗ , (8)

where MP(∗) and MP̄(∗) are the masses of the heavy and anti-
heavy mesons, and the polarization vector for heavy vector
mesons is taken as εµ = (1, ϵ) in the heavy quark mass limit.

Using the Lagrangian in Eq. (1), we can derive the poten-
tials from the OBE for the P(∗)P̄(∗) systems in the Breit ap-
proximation. The potential in momentum space reads

Vh1h2→h3h4 (q) = −
Mh1h2→h3h4

√
2m12m22m32m4

, (9)

where mi is the mass of the particle hi, q is the three momen-
tum of the exchanged meson andMh1h2→h3h4 is the scattering
amplitude of the transition h1h2 → h3h4. The Feynman dia-
grams for P(∗)P̄(∗) → P(∗)P̄(∗) are shown in Fig.1. The mo-
mentum space potentials are collected in Appendix A.

P P

P̄ P̄

σ/ρ/ω

P

P̄

P∗

P̄∗

ρ/ω/π/η

P P

P̄∗ P̄∗

σ/ρ/ω

P

P̄P̄∗

P∗

ρ/ω/π/η

P∗ P∗

P̄∗ P̄∗

σ/ρ/ω/π/η

P

P̄∗ P̄∗

P∗

ρ/ω/π/η

FIG. 1. Feynman diagrams for P(∗)P̄(∗) → P(∗)P̄(∗) transition.

The potentials in position space are obtained by performing
the Fourier transformation,

V(r,Λ, µex) =
∫

d3q

(2π)3V(q)F2(q,Λ, µex)eiq·r, (10)

where the form factor with the cutoff Λ is introduced to ac-
count for the inner structures of the interacting hadrons [80],

F(q,Λ, µex) =
m2

ex − Λ
2

(q0)2 − q2 − Λ2 =
Λ̃2 − µ2

ex

q2 + Λ̃2
. (11)

We notice that the form factor may break the symmetries

we employed in the Lagrangian (1). However, in the near-
threshold region, this effect is expected to be not significant.
We have defined Λ̃ =

√
Λ2 − (q0)2 and µex =

√
m2

ex − (q0)2

for convenience. Note that, for inelastic scattering, the en-
ergy of the exchanged meson is nonzero, so the denomina-
tor of the propagator can be rewritten as q2 − m2

ex = (q0)2 −

q2 − m2
ex = −(q2 + µ2

ex), with µex the effective mass of the
exchanged meson. We note that the potentials involve three
types of functions, 1/(q2 + µ2

ex), A · qB · q/(q2 + µ2
ex) and

(A × q) · (B × q)/(q2 + µ2
ex), where A and B refer to the

vector operators acting on the spin-orbit wave functions of the
initial or final states, and their specific forms can be deduced
from the corresponding terms in Eqs. (24). Therefore, to ob-
tain the position space potentials, it is sufficient to perform the
Fourier transformation on these three types of functions. The
Fourier transformation of 1/(q2 + µ2

ex), denoted by Yex, reads

Yex =

∫
d3q

(2π)3

1
q2 + µ2

ex

(
Λ̃2 − µ2

ex

q2 + Λ̃2

)2

eiq·r,

=
1

4πr
(e−µexr − e−Λ̃r) −

Λ̃2 − µ2
ex

8πΛ̃
e−Λ̃r. (12)

Before performing the Fourier transformation on A · qB ·

q/(q2 + µ2
ex), we can decompose it as

A · qB · q

q2 + µ2
ex
=

1
3

{
A ·B

(
1 −

µ2
ex

q2 + µ2
ex

)
−

S (A,B, q̂)|q|2

q2 + µ2
ex

}
,

(13)

where S (A,B, q̂) = 3A·q̂B ·q̂−A·B is the tensor operator in
momentum space. It can be found that without the form factor,
the constant term in Eq. (13) leads to a δ(r) term in coordinate
space after the Fourier transformation. With the form factor,
the δ(r) term becomes finite, and it dominates the short-range
part of the potential. In the phenomenological view, the δ(r)
term can mimic the role of contact interaction [90], which is
also related to the regularization scheme [80]. In Refs. [20,
112], after removing the δ(r) term, the hadronic molecular
picture for some observed hidden-charm states is discussed
with the one-pion-exchange potential, which is assumed to be
of long-range. In this work, we will separately analyze the
poles in the system with or without the δ(r) term. For this
purpose, we introduce a parameter a to distinguish these two
case,

A · qB · q

q2 + µ2
ex
−

a
3
A ·B =

1
3

{
A ·B

(
1 − a −

µ2
ex

q2 + µ2
ex

)
−S (A,B, q̂)

|q|2

q2 + µ2
ex

}
. (14)
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TABLE I. Partial waves in the given JP.

PP̄ PP̄∗/P∗P̄ P∗P̄∗

Jp = 0+ 1S 0 - 1S 0,5D0

Jp = 1+ - 3S 1,3D1
3S 1,3D1,5D1

Jp = 2+ 1D2
3D2

5S 2,1D2,3D2,5D2

After performing the Fourier transformation of Eq. (14), we
have ∫

d3q

(2π)3

(
A · qB · q

q2 + µ2
ex
−

a
3
A ·B

) (
Λ̃2 − µ2

ex

q2 + Λ̃2

)2

eiq·r

= −
1
3

[A ·BCex + S (A,B, r̂)Tex], (15)

where S (A,B, r̂) = 3A · r̂B · r̂ −A ·B is the tensor operator
in coordinate space, and the functions Cex and Tex read

Cex =
1
r2

∂

∂r
r2 ∂

∂r
Yex +

a
(2π)3

∫ (
Λ̃2 − µ2

ex

q2 + Λ̃2

)2

eiq·rd3q, (16)

Tex = r
∂

∂r
1
r
∂

∂r
Yex. (17)

Apparently, the contribution of the δ(r) term is fully included
(excluded) when a = 0(1) [90, 95]. Similarly, the Fourier
transformation of the function (A×q) · (B×q)/(q2+µ2

ex) can
be evaluated with the help of the relation (A × q) · (B × q) =
A ·B|q|2 −A · qB · q.

With the prescription above, the coordinate space represen-
tations of the potentials in Eqs. (24) can be written in terms of
Yex, Cex and Tex given in Eqs. (12) and (15). The potentials
should be projected into certain partial waves by sandwiching
the spin operators in the potentials between the partial waves
of the initial and final states. We refer to Refs. [89, 90] for
computing the partial wave projections. In this work, we fo-
cus on the positive parity states which are possibly bound in
S-wave and more easily form the molecular states respect to
negative ones. The partial waves corresponding to the spin-
parities of JP = 0+, 1+, 2+ are shown in Table I.

In our numerical calculation, the masses of exchanged par-
ticles are taken as mσ = 600.0 MeV, mπ = 138.0 MeV,
mη = 547.9 MeV, mρ = 770.7 MeV and mω = 782.0 MeV.
The σ meson in our work refers to the lightest scalar meson
with isospin 0 and spin-parity 0+, corresponding to f0(500) in
the RPP, which is a very broad state with a large mass uncer-
tainty (400 − 800 MeV). It has been shown that contributions
from such a broad resonance exchange (effectively correlated
scalar-isoscalar 2π exchange) in t-channel can be represented

by a stable particle with a mass about 600 MeV in nucleon-
nucleon interaction [113, 114]. We simply set the mass of σ to
600 MeV, which is also commonly used in the OBE model for
hadronic molecules [98, 115, 116]. The coupling constants in
the Lagrangian can be extracted from experimental data or de-
duced from various theoretical models. Here we adopt the val-
ues given in Refs. [109, 117–119], i.e., gS = 0.76, g = −0.59,
β = 0.9, λ = 0.56 GeV−1 and gV = 5.9, while their rela-
tive phases are fixed by the quark model [89, 120]. With the
coupled-channel potential matrix V jk, the radial Schrödinger
equation can be written as[
−

1
2µ j

d2

dr2 +
l j(l j + 1)

2µ jr2 +W j

]
u j +

∑
k

V jkuk = Eu j, (18)

where j is the channel index; u j is defined by u j(r) = rR j(r)
with the radial wave function R j(r) for the j-th channel; µ j

and W j are the corresponding reduced mass and threshold; E
is the total energy of the system. The momentum for channel
j is expressed as

q j(E) =
√

2µ j(E −W j). (19)

By solving Eq. (18), we obtain the wave function which is
normalized to satisfy the incoming boundary condition for the
j-th channel [121],

u(k)
j (r)

r→∞
−→ δ jke−iq jr − S jk(E)eiq jr, (20)

where S jk(E) is the scattering matrix component. In the multi-
channel problem, there is a sequence of thresholds, W1 <

W2 < · · · , and the scattering matrix element S jk(E) is an ana-
lytic function of E except at the branch points W j and possible
poles. Bound/virtual states and resonances are represented as
the poles of the S jk(E) on the complex energy plane [121].

The characterization of these poles requires analytical con-
tinuation of the S matrix to the complex energy plane, where
the poles must be searched for on the correct Riemann sheet
(RS). Since the momentum q j is a double-valued function of
energy E, each channel has two RSs: the first (physical) sheet
where Im[q j] ≥ 0, and the second (unphysical) sheet where
Im[q j] < 0. In an n-channel system, the scattering ampli-
tude has 2n RSs, each labeled by (±, · · · ,±) where the j-th
“±” indicates the sign of Im[q j(E)]. Note that the form fac-
tor introduced in Eq. (11) does not introduce additional non-
analytic structures into the scattering amplitude within the
near-threshold energy region we consider.
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TABLE II. Isospin factors for each meson exchange in D(∗)D̄(∗) →

D(∗)D̄(∗) transition, where I = 0 or I = 1 representing the total isospin

σ π η ρ ω

IF(I = 0) 1 3/2 1/6 3/2 1/2

IF(I = 1) 1 −1/2 1/6 −1/2 1/2

III. RESULTS AND DISCUSSION

A. D(∗)D̄(∗) systems

In this subsection, we discuss the near-threshold molecu-
lar states in D(∗)D̄(∗) systems, which are not only important to
understand the molecular nature of hidden-charm tetraquarks,
but also a good starting point to extend our analysis to other
hidden-heavy quark systems. We use the isospin-averaged
masses for the charmed mesons in the following calculations.
D(∗)D̄(∗) can be grouped into four systems as DD̄, DD̄∗, D∗D̄
and D∗D̄∗. Among them, DD̄∗ and D∗D̄ have the same mass
and quark configuration, and they mix [22]

|DD̄∗⟩± =
1
√

2
[|DD̄∗⟩ ± |D∗D̄⟩], (21)

which represent the two charge-conjugation eigenstates of the
DD̄∗ systems, C|DD̄∗⟩± = ∓|DD̄∗⟩±, with C the charge conju-
gation operator. The OBE potentials are expressed as

VD(∗)D̄(∗)→D(∗)D̄(∗)
=

∑
ex=σ,π,η,ρ,ω

IexV
P(∗)P̄(∗)→P(∗)P̄(∗)

ex (22)

where Iex stands for the isospin factors shown in Table II.
The S-wave potentials for I = 0 systems are shown in

Fig. 2, while those for I = 1 are shown Fig. 3, where
the strength of individual meson exchange potentials in both
cases, with- and without-δ(r) terms, are compared. The gen-
eral conclusion is that the I = 0 system is more attractive then
the corresponding I = 1 system, and the potentials of [DD̄∗]±
and D∗D̄∗ systems with various spin-parity quantum numbers
JP depends on the δ(r) terms.

In the single channel case, we are dealing with either bound
or virtual states, which appear as poles of the scattering ampli-
tude on the real axis of the complex energy plane. The binding
energy is defined as

B = Epole −W. (23)

As discussed in the previous section, the δ(r) term domi-
nates the short-range dynamics of the potentials, and thus it

75
50
25

0
25
50
75

V
(r

)[
M

eV
]

(0)0 + [DD̄] (0)0 + [D ∗ D̄ ∗ ]

75
50
25

0
25
50
75

V
(r

)[
M

eV
]

(0)1 + [DD̄ ∗ ] − (0)1 + [DD̄ ∗ ] +

0.0 0.5 1.0 1.5
r [fm]

75
50
25

0
25
50
75

V
(r

)[
M

eV
]

(0)1 + [D ∗ D̄ ∗ ]

0.0 0.5 1.0 1.5
r [fm]

(0)2 + [D ∗ D̄ ∗ ]

σ

π

η

ρ

ω

Total

FIG. 2. Single channel potentials in S -wave for I = 0 systems
with Λ = 1.2 GeV. Quantum numbers are denoted by (I)JP, and
the dashed lines represents the case without δ(r) term.

75
50
25

0
25
50
75

V
(r

)[
M

eV
]

(1)0 + [DD̄] (1)0 + [D ∗ D̄ ∗ ]

75
50
25

0
25
50
75

V
(r

)[
M

eV
]

(1)1 + [DD̄ ∗ ] − (1)1 + [DD̄ ∗ ] +

0.0 0.5 1.0 1.5
r [fm]

75
50
25

0
25
50
75

V
(r

)[
M

eV
]

(1)1 + [D ∗ D̄ ∗ ]

0.0 0.5 1.0 1.5
r [fm]

(1)2 + [D ∗ D̄ ∗ ]

σ

π

η

ρ

ω

Total

FIG. 3. Single channel potentials in S -wave for I = 1 systems with
Λ = 1.2 GeV. See the caption of Fig. 2.

serves as the phenomenological contact term. It is seen that
the proper treatment of the δ(r) term in the OBE model plays
an important role in the simultaneous interpretation of the Pc

states [90]. Therefore, we will represent the results in two
extreme cases, with or without the δ(r) term. The binding en-
ergies of the states with I = 0 as cutoff varies from 1 to 2 GeV
are shown in Fig. 4, where the S -D wave mixing effects are
included. The sub-figures 4(b) and 4(a) show the effects of
the δ(r) term on the binding energies of the single channel
systems. It is found that the effects of the δ(r) term are more
significant in D∗D̄∗ systems than in [DD̄∗]± systems but the
DD̄ system is independent of it. The interpretation can be
elucidated by examining the OBE potentials associated with
these channels, as depicted in Fig. 2. Specifically, the poten-
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tial for the DD̄ channel lacks any presence of the δ(r) term,
while the potential for the D∗D̄∗ channel receives significant
modification upon the exclusion of the δ(r) term relative to
the potentials of the [DD̄∗]± channels. The latter observation
results from the specific values of the coupling constants in
the Lagrangian defined in Eq. (1).

1000 1200 1400 1600 1800 2000
Λ [MeV]

40

30

20

10

0

E
 [M

eV
]

(0)0 + [DD̄]
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(0)1 + [D ∗ D̄ ∗ ]

(0)2 + [D ∗ D̄ ∗ ]

(a) With δ-term
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(0)1 + [D ∗ D̄ ∗ ]

(0)2 + [D ∗ D̄ ∗ ]

(b) Without δ-term

FIG. 4. Binding energy of the bound states (solid curves) or virtual
states (dashed curves) in the single channels isoscalar systems as Λ
increases.

For the I = 0 system, bound states can exist in all
six channels when the cutoff parameter is sufficiently large.
The X(3872), with a PDG averaged mass of 3871.64 ±
0.06 MeV [9], is understood as a molecular state below
the DD̄∗ threshold. Our analysis shows that the charge-
conjugation eigenstate (0)1+[DD̄∗]− binds with Λ ≈ 1.2 GeV,
no matter the δ(r) term is included or not. When the δ(r) term
is excluded (Fig. 4(b)), the (0)2+D∗D̄∗ state becomes virtual,
while (0)0+D∗D̄∗ and (0)1+D∗D̄∗ bind more easily compared
to the case with δ(r) (Fig. 4(a)). The δ(r) term has mini-
mal impact on both (0)1+[DD̄∗]± states due to cancellation
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5
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Im
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]
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]

DD̄ DD̄ ∗ D ∗ D̄ ∗

373437331

0

3870 38751

0

4012 40205

0

0+ + (−+ )

0+ + (+− )→ (−+ ), 0.8

1+ + (+)

1+− (+ + )→ (−+ ), 0.3

1+− (+− )→ (−+ ), 0.8

2+ + (−− + )→ (+ + − ), 0.6

FIG. 5. The trajectory of poles in the D(∗)D̄(∗) isoscalar system as the
parameter a varies from 0 to 1, with the cutoff Λ set at 1.11 GeV. If a
pole remains on the same Riemann sheet (RS) as a varies from 0 to 1,
its trajectory is shown as a solid line, with a star marking the starting
point (a = 0) and a circle marking the endpoint (a = 1). When a
pole transitions between different RS’s, its trajectory is split into two
curves: a solid line for a = 0 to a0 and a dashed line for a = a0 to 1,
where a0 is the transition point specified in the legend.

between vector and pseudoscalar meson exchange potentials
(Fig. 2). For the I = 1 system with the δ(r) term, we find no
bound states within the cutoff range 1 ∼ 2 GeV. However, vir-
tual state poles appear in the (1)0+[D∗D̄∗], (1)1+[DD̄∗]+ and
(1)1+[D∗D̄∗] systems on the unphysical Riemann sheets, ap-
proaching their respective thresholds as the cutoff increases.

Having analyzed the single-channel cases, we now turn our
attention to the coupled-channel systems. Using the partial
waves presented in Table I, we group channels with identical
quantum numbers to construct several coupled-channel sys-
tems identified by their JPC as 0++, 1+± and 2++. We explicitly
include the C-parity to determine which channels can couple
with each other due to C-parity conservation. Specifically, we
study the coupled channel systems DD̄-D∗D̄∗, [DD̄∗]+-D∗D̄∗

and DD̄-[DD̄∗]−-D∗D̄∗ for the quantum numbers JPC = 0++,
1+− and 2++, respectively. Additionally, we examine the
[DD̄∗]− channel alone for the 1++ system. For the isoscalar
1++ system, which corresponds to the quantum numbers of
X(3872), only the [DD̄∗]− channel contributes, making it ef-
fectively a single-channel problem. Using the measured mass
of the X(3872) as input, we determine the cutoff parameter Λ
to be 1.11 GeV. This value shows minimal dependence on the
parameter a, as evidenced by the very short trajectory labeled
by 1++ in Fig. 5. With this calibrated cutoff, we then calculate
the trajectories of near-threshold poles in all D(∗)D̄(∗) systems
as a varies from 0 to 1.

In the (0)0++ systems, we find two poles: a virtual pole
located approximately 1 MeV below the DD̄ threshold, and
another pole near the D∗D̄∗ threshold. If we consider a sys-
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tematic uncertainty by varying Λ slightly, the first pole can
move to the physical RS, becoming a bound state. This state
has been extensively discussed in the literature, with predic-
tions from various phenomenological models [25, 115, 122–
125] and lattice QCD calculations [126]. However, despite
several studies [127–129] analyzing available experimental
data [130–132], no clear experimental evidence has yet been
found. It is worth noting that distinguishing between bound
and virtual poles using only the DD̄ distribution is challeng-
ing, as they can produce identical lineshapes above thresh-
old [5]. The pole near the D∗D̄∗ threshold shows a notable de-
pendence on a, as illustrated by the green trajectory in Fig. 5.
As a increases from 0 to 1, this pole moves from RS(−−) to
RS(−+), indicating a transition from a virtual state of D∗D̄∗ to
a bound state.

For the (0)1+− systems, we find two near-threshold poles:
one near the DD̄∗ threshold as the C-parity partner of X(3872),
and the other near the D∗D̄∗ threshold. The former evolves
from a virtual state to a bound state as a increases. Note
that the trajectory of it lies on the real energy axis and
is slightly shifted by hand in the plot for it is visibility.
This state, denoted as X̃(3872) in the COMPASS collabora-
tion’s analysis [133], has been discussed in several theoreti-
cal works [63, 134, 135] as the C-parity partner of X(3872)
with mass degeneracy. The COMPASS analysis revealed pre-
liminary evidence through distinctive kinematic features in
the J/ψπ+π− decay channel, particularly manifest in the two-
pion invariant mass distribution that differs significantly from
X(3872)’s characteristic pattern. Our theoretical work demon-
strates that the classification of this state - whether as a bound
or virtual state - exhibits critical dependence on the parame-
ter a governing short-range interaction dynamics in the OBE
model.

For the (0)2++ system, DD̄ and DD̄∗ can not be in S -wave
and hence no poles are found near their thresholds. Near the
D∗D̄∗ threshold, a pole moves from RS(−−+), corresponding
to a D∗D̄∗ bound state, to RS(+ + −), turning into a virtual
state. By imposing HQSS, it leads to the prediction of a 2++

D∗D̄∗ tensor state as the HQSS partner of the X(3872) con-
sidering the physical charmed meson masses [25, 125, 136].
It was argued in Ref. [137] that the state observed by Belle
collaboration [138] is a good candidate of such a molecular
state.

Similar to the coupled channel analysis of isoscalar systems
above, now we study the isovector coupled channel systems
with JPC = 0++, 1+± and 2++. However, no poles (virtual or
resonance) are found within the cutoff range of 1 ∼ 2 GeV,
which indicates that any such poles would be located far from
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0
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]
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0

0+ + (+ + )

0+ + (+− )→ (−+ ), 0.2

1+ + (+)

1+− (+ + )→ (+− ), 0.2

1+− (+− )→ (−+ ), 0.1

2+ + (−− + )

2+ + (−− + )

FIG. 6. The trajectory of poles in the B(∗)B̄(∗) isoscalar system as the
parameter a varies from 0 to 1, with the cutoff Λ set at 1.11 GeV. See
the caption of Fig. 5.

the physical real energy axis. This is consistent with our sin-
gle channel analysis where the OBE potentials for I = 1 cases
were found to be insufficiently attractive to form bound or vir-
tual states. The absence of isovector poles in our work is con-
sistent with fundamental the OBE dynamics as the isovector
channels exhibits reduced attraction due to the cancellations
between isovector (π, ρ) and isoscalar (η, ω) meson exchanges
(see Fig. 3). This contrasts with experimental observations of
isovector states in the Zc family, suggesting either a sizable
compact tetraquark component in such isovector states [4] or
molecular configurations with additional short-range forces
beyond meson-exchange [7].

B. B(∗)B̄(∗) systems

The OBE potentials for B(∗)B̄(∗) systems are similar to those
for D(∗)D̄(∗) systems. Therefore, we move directly to the
coupled-channel analysis and skip the calculation of single-
channel bound states or virtual states. For the B(∗)B̄(∗) sys-
tems, coupled-channel dynamics of the BB̄, [BB̄∗]± and B∗B̄∗

channels are considered. We use the same strategy as in the
hidden charm sector: Λ is fixed to be 1.11 GeV and a is varied
from 0 to 1 to investigate the effects of the δ(r) term. The pole
trajectories are shown in Fig. 6.

In the BB̄-B∗B̄∗ system with (0)0++, a bound state pole
is found and its mass is below the BB̄ threshold by about
60 MeV. The δ(r) term contributes a slightly attractive force
to this bound state, which originated in the inelastic potential
described by PP̄ → P∗P̄∗ transition. A narrow resonance be-
low the B∗B̄∗ threshold is also found in this coupled channel
system when a = 0. By increasing the contribution of the δ(r)
term, this resonance is pushed toward the physical region on
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the RS (−+) and then moves to RS(+−), becoming a virtual
state due to its repulsive contribution to the single channel po-
tential P∗P̄∗, which can be deduced from the S-wave D∗D̄∗

potential in Fig. 2.

For the (0)1++ channel, we find a bound state at about
30 MeV below the BB̄∗ threshold. This is the analogue of
X(3872) in the hidden bottom sector, denoted as Xb. Although
predicted in many studies, see e.g. Refs. [136, 139], only neg-
ative experimental results [140, 141] have been reported so
far. The reason may be that the decay Xb → Υ(nS )π+π− vi-
olates isospin symmetry and Υ(nS )π+π−π0 is a better channel
to search for Xb [136].

For the (0)1+− system, we found two near-threshold poles,
one analogous to X̃(3872) near the BB̄∗ threshold and the other
near the B∗B̄∗ threshold, both being either a bound or virtual
state depending on the value of a.

In the (0)2++ system, two poles are found on the first RS
(− − +) with a = 0. The first pole lies below the BB̄ thresh-
old with a tiny imaginary part, while the second pole resides
below the B∗B̄∗ threshold and exhibits a relatively larger imag-
inary part. As a increases, the former pole moves toward the
B∗B̄∗ threshold and takes a position on the complex energy
plane connected to the physical energy axis when a is close
to 1, which is significant and causes a peak-like structure in
the amplitude. However, the latter pole gradually moves away
from the physical energy axis and does not cause a visible im-
pact on the amplitude.

The comparison between the D(∗)D̄(∗) and B(∗)B̄(∗) systems
within the isoscalar sector reveals that both exhibit compara-
ble characteristics in their hadronic molecular spectra. The
B(∗)B̄(∗) systems demonstrate stronger attractions compared to
the hidden charm systems, a phenomenon attributed to their
lower kinetic energy resulting from the larger reduced mass
of the constituent particles. It is further suggested that apply-
ing a uniform theoretical framework or cutoff for both systems
leads to more deeply bound molecular states in the B(∗)B̄(∗)

sector than in the D(∗)D̄(∗) sector. Our results suggest that sev-
eral isoscalar bottomonium-like exotic tetraquark states near
the B(∗)B̄(∗) thresholds exist and can be potentially discovered
in future experiments. For the isovector B(∗)B̄(∗) systems, we
still cannot find any poles in the coupled channel analysis of
JPC = 0++, 1+± and 2++ states near the thresholds.

In previous coupled-channel analyses, we investigated the
dependence of various poles on the parameter a while keeping
the cutoff fixed at 1.11 GeV. Here, we briefly examine the sen-
sitivity of these poles to variations in the cutoff by considering
a range from 1.06 to 1.16 GeV. The cutoff variation is set in
this narrow region so that most poles move in the same RS

and it is convenient to observe the sensitivity of these poles
to the cutoff, which is already sufficient to see the trend of
pole variations. Specifically, we focus on the pole positions
in the isoscalar D(∗)D̄(∗) and B(∗)B̄(∗) systems with the param-
eter a = 0, as summarized in Table III. In the hidden-charm
sector, we observe that as the cutoff varies within this range,
the lower poles in the (0)0++ and (0)1+− systems move onto
their first RSs, forming bound states. Meanwhile, the other
poles tend to shift toward their respective nearby thresholds
as the cutoff increases. Notably, the mass variations for the
lower pole in (0)1+− and another pole in (0)2++ are signif-
icant—approximately 15 MeV—due to their relatively large
separation from nearby thresholds, making their dependence
on the cutoff more pronounced compared to other poles. In
contrast, within the same cutoff range, all poles in the hidden-
bottom sector remain on their original RSs. However, the cut-
off dependence in this sector is considerably stronger than in
the hidden-charm sector. In particular, the lower poles in the
(0)0++ and (0)1+− systems, as well as the bound-state pole in
(0)1++, exhibit mass variations ranging from 30 to 70 MeV.
In addition, the cutoff dependence of these poles on the value
of the parameter a, i.e. a = 0.25, 0.5, 0.75, 1.0, is shown in
Appendix B. The positions of the poles relevant to D∗D̄∗ and
B∗B̄∗ channel thresholds are affected by the parameter a, but
the patterns shown remain the same as the cutoff varies.

IV. SUMMARY

In this work, we have systematically investigated
charmonium-like and bottomonium-like hadronic molecular
states near the D(∗)D̄(∗) and B(∗)B̄(∗) thresholds using the one-
boson-exchange (OBE) model. Our approach respects both
heavy quark spin symmetry and SU(3)-flavor symmetry. We
analyzed possible near-threshold states with quantum num-
bers (0)0++, (0)1+± and (0)2++ by analytically continuing
the scattering S-matrix, which was extracted from asymptotic
wave functions obtained through solving the coupled-channel
Schrödinger equation.

A key aspect of our analysis was investigating the role of
the short-range δ(r) term in the OBE model. By introducing a
parameter a to control its contribution, we systematically stud-
ied how this term affects the pole positions and their trajecto-
ries on different Riemann sheets. Using the well-established
X(3872) as a calibration point, we fixed the cutoff parameter
Λ to 1.11 GeV and explored the pole evolution as a varied
from 0 to 1.

For the D(∗)D̄(∗) systems in the isoscalar sector, we found: A
virtual state near the DD̄ threshold that could become bound
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TABLE III. Pole positions in the D(∗)D̄(∗) and B(∗)B̄(∗) systems in the isoscalar sector by varying the Λ around 1.11 GeV. The subscript for each
entry denotes the RS where the pole is located on. The pole positions and relevant thresholds Wi are given in MeV.

D(∗)D̄(∗) (0)0++ (0)1++ (0)1+− (0)2++

Wi [MeV] 3734.5 4017.1 3875.8 3875.8 4017.1 4017.1

Λ=1.06 3731.2−+ 3997.4 − i0.7+− 3874.1+ 3874.9−+ 4022.5 − i27.4+− 4010.8 − 4.9−−+

1.11 3734.0−+ 4000.1 − i0.6+− 3871.7+ 3872.8++ 4023.3 − i16.8+− 4001.8 − i5.3−−+

1.16 3734.3++ 4002.6 − i0.5+− 3868.4+ 3855.3++ 4020.2 − i10.5+− 3989.2 − i4.8−−+

B(∗)B̄(∗) (0)0++ (0)1++ (0)1+− (0)2++

Wi[MeV] 10559.1 10649.5 10604.3 10604.3 10649.5 10649.5 10649.5

Λ=1.06 10512.8++ 10648.6 − i0.2+− 10571.3+ 10604.2++ 10658.5 − i4.6+− 10570.5 − i0.0−−+ 10624.1 − i14.4−−+

1.11 10492.5++ 10649.2 − i0.3+− 10561.1+ 10599.8++ 10657.5 − i5.4+− 10541.22 − i0.0−−+ 10622.8 − i8.9−−+

1.16 10468.6++ 10649.5 − i0.1+− 10502.3+ 10588.9++ 10655.2 − i4.1+− 10533.16 − i0.0−−+ 10619.6 − i4.6−−+

under slight parameter variations; The X(3872) as a [DD̄∗]−
molecular state with (0)1++;Several near-threshold poles in
the (0)1+− and (0)2++ channels, with positions sensitive to the
δ(r) term. In the B(∗)B̄(∗) systems, we observed similar spec-
tral patterns but with generally stronger binding, attributed to
the larger reduced mass of the bottom mesons. Notable find-
ings include: A deeply bound state about 60 MeV below the
BB̄ threshold; A bottomonium analogue of X(3872), predicted
as a bound state 30 MeV below the BB̄∗ threshold; Multi-
ple near-threshold states in various channels that warrant ex-
perimental investigation. Importantly, our analysis revealed
no poles in the isovector sectors of either system within rea-
sonable parameter ranges, suggesting that isovector molecular
states are unlikely to form through OBE interactions alone.

These results provide valuable insights into the nature of
exotic hadrons and offer specific predictions for future exper-
imental searches, particularly in the bottomonium sector. The
systematic treatment of the δ(r) term effects also contributes
to our understanding of short-range dynamics in heavy meson
interactions.
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A. POTENTIALS OF P(∗)P̄(∗) SYSTEMS

We collect the potentials related toP(∗)P̄(∗) → P(∗)P̄(∗) scat-
tering in the following.

• PP̄ → PP̄

Vσ = −g2
s

1
q2 + m2

σ

, (24a)

VV = −
1
2
β2g2

V
1

q2 + m2
V

. (24b)

The amplitudes for the scattering process PP̄ → PP̄∗ and
PP̄ → P∗P̄ in S -wave are forbidden.

• PP̄ → P∗P̄∗

VV = −2λ2g2
V

(ϵ∗3 × q) · (ϵ∗4 × q)

q2 + µ2
V

, (24c)

VP =
g2

f 2
π

ϵ∗3 · qϵ
∗
4 · q

q2 + µ2
P

. (24d)

• PP̄∗ → PP̄∗

Vσ = −g2
s
ϵ2 · ϵ

∗
4

q2 + m2
σ

, (24e)

VV = −
1
2
β2g2

V

ϵ∗4 · ϵ2

q2 + m2
V

. (24f)

• PP̄∗ → P∗P̄

VV = −2λ2g2
V

(ϵ∗3 × q) · (ϵ2 × q)

q2 + µ2
V

, (24g)
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VP =
g2

f 2
π

ϵ∗3 · qϵ2 · q

q2 + µ2
P

. (24h)

• PP̄∗ → P∗P̄∗

VV = 2λ2g2
V

(ϵ∗3 × q) · (iϵ2 × ϵ
∗
4 × q)

q2 + µ2
V

, (24i)

VP =
g2

f 2
π

ϵ∗3 · q(iϵ2 × ϵ
∗
4) · q

q2 + µ2
P

. (24j)

• P∗P̄ → P∗P̄

Vσ = −g2
s
ϵ1 · ϵ

∗
3

q2 + m2
σ

, (24k)

VV = −
1
2
β2g2

V

ϵ∗3 · ϵ1

q2 + m2
V

. (24l)

• P∗P̄ → P∗P̄∗

VV = −2λ2g2
V

(ϵ∗4 × q) · (iϵ1 × ϵ
∗
3 × q)

q2 + µ2
V

, (24m)

VP = −
g2

f 2
π

ϵ∗4 · q(iϵ1 × ϵ
∗
3) · q

q2 + µ2
P

. (24n)

• P∗P̄∗ → P∗P̄∗

Vσ = −g2
s
ϵ1 · ϵ

∗
3ϵ2 · ϵ

∗
4

q2 + m2
σ

, (24o)

VV = −
1
2
β2g2

V

ϵ∗3 · ϵ1ϵ
∗
4 · ϵ2

q2 + m2
V

− 2λ2g2
V

(iϵ1 × ϵ
∗
3 × q) · (iϵ2 × ϵ

∗
4 × q)

q2 + m2
V

, (24p)

VP = −
g2

f 2
π

(iϵ1 × ϵ
∗
3) · q(iϵ2 × ϵ

∗
4) · q

q2 + m2
P

. (24q)

where µex is the effective mass of the exchanged me-
son defined as µ2

ex = m2
ex − (q0)2 with the energy of the

exchanged meson q0

q0 =
m2

2 − m2
1 + m2

3 − m2
4

2(m3 + m4)
, (24r)

where m1(m3) and m2(m4) are the masses of the heavy
and anti-heavy mesons in the initial(final) state.

B. CUTOFF DEPENDENCE OF THE POLE LOCATIONS
FOR a , 0

In Table IV, we present the cutoff dependence of the poles
corresponding to isoscalar JP = 0++, 1+±, 2++ states in the
coupled channel analysis for a = 0.25, 0.5, 0.75, 1.0, compar-
ing D(∗)D̄(∗) and B(∗)B̄(∗) systems. While both systems exhibit
cutoff sensitivity, the poles in B(∗)B̄(∗) systems − being far-
ther from their respective thresholds (Wi) − show significantly
stronger dependence onΛ. Especially, for a ≥ 0.75, the higher
pole in the B(∗)B̄(∗) system with (0)2++ moves deeper into the
complex energy plane (denoted by “· · · ”) due to the suppres-
sion of the short-range δ(r) term contributions. The lower
pole in B(∗)B̄(∗) system with (0)1++ (binding energy ∼30 MeV
at Λ = 1.11 GeV) shows minimal a-dependence and repre-
sents a prime candidate for future experimental investigation.
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TABLE IV. Pole positions in the D(∗)D̄(∗) and B(∗)B̄(∗) systems in the isoscalar sector by varying the Λ around 1.11 GeV when a =
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are given in MeV
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