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Abstract

We present a calculation of the leading two-loop corrections to the axial-vector coupling constant gA in two
covariant versions of two-flavor baryon chiral perturbation theory. Taking the low-energy constants from a
combined analysis of elastic and inelastic pion-nucleon scattering, we find that these corrections are rather
moderate.

1. Introduction

The nucleon axial-vector coupling constant gA plays an eminent role in neutron β-decay, see Ref. [1]
for a recent work, in nuclear reactions and in neutrino scattering off nuclei, as witnessed by the T2K,
NOvA, MINERvA, MicroBooNE, and SBN experiments. For reviews, see Refs. [2, 3]. Furthermore, gA is
also a fundamental parameter of low-energy chiral QCD dynamics which parameterizes the leading order
pion-nucleon interaction as at tree level the Goldberger-Treiman relation (GTR) allows to express the pion-
nucleon coupling in terms of the axial-vector coupling. Corrections to the GTR are known to be small so
that this relation is an approximate one when considering loops. Furthermore, the axial-vector coupling is
also considered a “gold-plated” observable for the ab initio lattice QCD approach. The first high-precision
lattice QCD calculation was reported in Ref. [4] and a summary of older and more recent results is collected
in Ref. [5]. Most of these simulations are performed for unphysical pion masses, while in Refs. [6, 7, 8, 9] the
physical pion mass is also considered. In any case, the issue of precise and controlled chiral extrapolations is
still of relevance. Of course, it is also of general interest to study the higher-order corrections in the quark
mass expansion of this observable, as they encode information about the convergence of two-flavor baryon
chiral perturbation theory. Therefore, in this work, we consider the calculation of gA to two loops using
two different covariant schemes, namely the extended-on-mass-shell (EOMS) approach [10] and the method
of infrared regularization (IR) [11]. Detailed discussions of these schemes and comparisons with the often
used heavy baryon approach can be found in Refs. [12, 13]. This work differs from the earlier paper [14],
where renormalization group methods were applied to the chiral pion-nucleon Lagrangian in the heavy
baryon approach and the two-loop representation was confronted with then existing lattice calculations at
unphysical pion masses. We will come back to that work later.

This article is organized as follows. In Sec. 2 we present the general form of the chiral expansion of gA.
Sect. 3 outlines the calculations of the two-loop corrections. We present and discuss our results in Sec. 4.
Appendix A contains some further results.

https://arxiv.org/abs/2505.05941v2


2. Chiral expansion of gA

In baryon chiral perturbation theory (BCHPT), one encounters odd and even powers of the small ex-
pansion parameter q, which in the two flavor case is given by pion masses and momenta as well as nucleon
three-momenta. The nucleon mass mN is of the same size as the hard scale related to chiral symmetry
breaking, often estimated as Λχ = 4πFπ ≃ 1.2GeV, with Fπ ≃ 92MeV the pion decay constant. Tree
diagrams start contributing at order q, one-loop diagrams at order q3, two-loop ones at order q5, three-loop
diagrams at order q7, and so on. In this paper we will concentrate on the leading two-loop diagrams of chiral
order q5, the order q6 two-loop calculation is in progress [20]. The latter involves the calculation of several

two-loop diagrams with vertices from L(2)
πN . Consequently, the chiral expansion of the axial-vector coupling

as evaluated in this work takes the form

gA = g0

{
1 +

(
α2

(4πF )2
ln
M

µ
+ β2

)
M2 + α3M

3

+

(
α4

(4πF )4
ln2

M

µ
+

γ4
(4πF )4

ln
M

µ
+ β4

)
M4

}
+O(M5) ,

= g0

{
1 + ∆(2) +∆(3)︸ ︷︷ ︸

one−loop

+ ∆(4)︸︷︷︸
leading two−loop

}
+O(M5) , (1)

with g0 the chiral limit value of gA,
gA = g0

[
1 +O(M2)

]
, (2)

and ∆(4) contains the two loop contribution of chiral order q5, as well as contributions from one loop

diagrams with vertices from L(1,2,3)
πN . Note that terms with denominations one-loop/leading two-loop in the

last line of Eq. (1) include the contributions from tree diagrams with vertices from L(3/5)
πN . Further, µ is the

scale of dimensional regularization and ∆(n) represents the correction at order n in the chiral counting. We
have expressed gA in terms of the pion decay constant in the chiral limit, F , and the leading order term of
the quark mass expansion of the pion mass squared, M2. One has:

Fπ = F
[
1 +O(M2)

]
, M2

π =M2
[
1 +O(M2)

]
. (3)

The difference between F and Fπ (M and Mπ) is of higher order when working at O(q3), however, at the
order we are working it has to be taken into account. The one-loop coefficients α2 and β2 in Eq. (1) were
first given in Ref. [15] and the one-loop fourth order calculation was completed in Ref. [16] with (see also
Ref. [17]),

α2 = −2− 4g20 ,

β2 =
4

g0
dr16(µ)−

g20
(4πF )2

,

α3 =
1

24πF 2m

(
3 + 3g20 − 4mc3 + 8mc4

)
, (4)

with m the nucleon mass in the two-flavor chiral limit (sometimes also denoted as m0). Further, the
expressions in Eq. (4) are identical in the IR and EOMS schemes when expanded in powers of M . Indeed
in the latter the additional so-called regular terms, which violate the power counting, can be absorbed into
the LECs g0 and d16, see Ref. [18] and below. One has in the EOMS scheme

g0→ g0 + δg0|reg d16→ d16 + δd16|reg , (5)

where the subscript “reg” denotes the above mentioned regular terms.
Let us now discuss the M4 contribution to gA. Note that contrary to the work [14], in which α4 was

calculated in heavy baryon chiral perturbation theory using renormalization group methods, we use here
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the operator basis and low-energy constants (LECs) given in Ref. [19]. There are four types of contri-
butions to ∆(4): the irreducible diagrams, the one coming from the wave function and coupling constant

renormalization, the one loop graphs with vertices from L(3)
πN , and counterterms. One thus has schematically

g0 ∆
(4) = grenA + gdi

A + girrA + gctA . (6)

3. Outline of the calculation

Here, we sketch the calculation of the four different contributions mentioned above. For all the details,
we refer to Ref. [20].

Figure 1: Two-loop diagrams contributing to the nucleon self-energy. The same topologies contribute also to gA. For the latter
one has to hook the axial current wherever possible on the nucleon propagator and on the vertices with pions and nucleons. The

dashed lines represent the pion and the solid ones the nucleon. The dots are vertices from L(1)
πN at the order we are working.

Note that there are further two-loop diagrams shown in Fig. 2 where the axial-current couples to three pions.

Let us first discuss the wave function and coupling constant renormalization. The wave function renor-
malization constant Z is the residue of the pole in the two point function and is determined by

Z−1 = 1− d

d/p
Σ(/p)

∣∣∣∣
/p=mN

(7)

with Σ(/p) the nucleon self-energy, which has a similar expansion as discussed above for gA, namely

Z = 1 + Z1−loop + Z2−loop + · · · , (8)
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Figure 2: Two-loop diagrams contributing to gA. The wavy line represents the axial current, the dashed ones the pion and the
solid lines the nucleon.

where one has

Z1−loop = − 9

32π2F 2
M2g20

{
16π2λ+ log

M

µ
+

1

3
− πM

2m
− ϵ

[
log2

M

µ
+

2

3
log

M

µ

+
1

24
(6 + π2)− π

m
M

(
log

M

µ
− 1

6
(1 + 6 log 2)

)]}
+

3

16π2F 2
M2g20

{
16π2λ+ log

m

µ
− 1

2
− ϵ

[
log2

m

µ
− log

m

µ
+

1

4

(
5 +

π2

6

)]}
(9)

with

λ =
1

16π2

(
1

d− 4
− 1

2

(
log(4π)− γE + 1

))
≡ − 1

32π2
λ0 , (10)

and γE is the Euler-Mascheroni constant. The first two lines correspond to the pure infrared result while
the last line gives the contribution from the regular part. As expected the latter exhibits only analytic
terms in M2. The total sum given in Eq. (9) is the EOMS result expanded up to M3. Note that one needs
the results of the one-loop calculation up to order O(ϵ) as it contributes to the product of two one-loop
quantities. Further, d = 4−2ϵ is the dimension of the space-time. Z2−loop can be obtained from the nucleon
self-energy to two loops, whose purely IR part is given in Ref. [21] and in Refs. [22, 23, 24, 25] within the
EOMS scheme. In order to calculate the Z factor we have performed the calculation of Σ(p2) at two loop
order, see the diagrams in Fig. 1, and found agreement with these works at the order we are working. We
thus finally have

grenA = g0

((
∆(2) +∆(3)

)
Z1−loop + g0

(
Z2
1−loop + Z2−loop

))
. (11)

Let us turn to girrA . There are 44 irreducible diagrams contributing at two loop order. Forty have the
same topologies as the ones for the nucleon mass with the axial current interacting with the nucleon and
up to four pions wherever possible. For example the first graph in Fig. 1 leads to 7 diagrams, the second
and third ones to 8 diagrams each, and so on. They are proportional to g1,3,50 . Additionally there are four
diagrams specific to the calculation of the axial current, where the axial current couples to three pions, see
Fig. 2. In order to calculate these 44 graphs we used the Mathematica program Feyncalc [26], TARCER
[27] and finally HypExp to expand the Hypergeometric functions [28]. It allows to write the result in terms
of a small set of scalar master integrals Fαβγδϵ(m1,m2,m3,m4,m5) with two integration variables involving
up to five propagators:

Fαβγδϵ(m1,m2,m3,m4,m5) (12)

=

∫
ddk

(2π)d
ddk′

(2π)d
1

[k2 −m2
1]

α[k′2 −m2
2]

β [(k − p)2 −m2
3]

γ [(k′ − p)2 −m2
4]

δ[(k − k′)2 −m2
5]

ϵ
,

with mi denoting here either the nucleon or the pion mass. These functions also depend in principle on p2,
but unless specified otherwise they are understood to be taken at p2 = m2 in the following. Note that when
β = 0 and γ = 0 these functions are the well-known sunset integrals which have been rather well studied
in the literature, using the Mellin-Barnes representation, see for example Ref. [29] (and references therein).
In particular the full ϵ-dependent expression of the functions F1,0,0,1,1(M,m,M) and F2,0,0,1,1(m,M,M) to
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all orders in M is given in Ref. [30] providing some checks of our results. Following Ref. [21] we split these
loop functions into a purely infrared part F4, a mixed term F2 + F3 and a regular part F1:

Fαβγδϵ(m1,m2,m3,m4,m5) = F1 + (F2 + F3) + F4 . (13)

This decomposition corresponds to an expansion of the integrand into different regions where the integration
momenta is either of the order of the soft scale or of the hard scale. More precisely, in F4 both integration
momenta are soft, whereas in F2, F3 one of these is soft and the other hard, and in F1 they are both hard.
The latter terms can be absorbed by the LECs. This decomposition allows to differentiate between the pure
IR result and the full EOMS one. At present we have performed an expansion of these loop functions up to
order M5.

For the pure IR result for gA as well as for the two-loop contributions to Z we need four two-loop
functions, namely

F1,0,0,1,1(M,m,M), F2,0,0,1,1(m,M,M), F1,0,1,1,1(M,m,m,M), F1,1,1,1,1(M,M,m,m,M) , (14)

with M and m the leading order terms of the quark mass expansion of the pion and the nucleon mass,
respectively. For the graphs with the axial coupling to three pions, we need three additional loop functions
with three pion propagators instead of two:

F1,0,1,1,1(m,M,M,M), F1,1,1,1,1(M,M,m,m,M), F1,1,0,0,1(M,M,M)|p2=0 , (15)

and one with two pion propagators F2,0,0,1,1(M,m,M), which is, however, not an independent loop function
as it can be expressed in terms of F1,0,0,1,1(M,m,M) and F2,0,0,1,1(m,M,M) [31]. In the case of the second
and third scalar integrals in Eq. (15) we only need the first term of the expansion in M which we take from
Ref. [32]. For the EOMS calculation more loop functions are needed which involve only one pion mass, thus
contributing only to F1,2,3. These are

F1,0,0,1,1(M,m,m)|p2=0,m2 , F1,0,1,1,1(M,m,m,m) . (16)

Indeed those necessarily have F4 ≡ 0. One also needs the products of two one-loop functions

A(m1) =

∫
ddk

(2π)d
1

[k2 −m2
1]
,

B(m1,m2) =

∫
ddk

(2π)d
1

[k2 −m2
1][(k − p)2 −m2

2]
, (17)

which are well known in one loop calculation within BCHPT.

Let us now turn to the contribution of one-loop graphs with either vertices from L(3)
πN or insertions

from mesonic operators with LECs from L(4)
ππ . This contribution denoted as gdi

A is necessary to cancel the
divergences ∼ log(M/µ)/ϵ and ∼ log(m/µ)/ϵ appearing in the two-loop calculation. In fact this property
was used in Ref. [14] to determine α4 from a renormalization group condition. Here this cancellation provides
one of the various checks of the result. The LECs of this part of the chiral pion-nucleon Lagrangian are
usually denoted as di and nine of them contribute to gA at O(q4), namely d1,2,10,11,12,13,14,16,18. They satisfy

di = µ−2ϵ
(
δiλ+ di(µ) + ϵ dϵi(µ) +O(ϵ2)

)
(18)

with the δi given in Ref. [19] for the IR case and in Ref. [18] for the full EOMS case. Note that each δi has
an expansion in powers of g0, which up to the order we are working has the form

δi = δ
(0)
i + δ

(1)
i g0 + δ

(2)
i g20 + δ

(3)
i g30 + δ

(4)
i g40 +O(g50) , (19)

where the δi with i = (1, 2)/(10 − 13, 16) have non-vanishing contributions of only even/odd powers of g0
respectively, while for i = 14 only δ

(4)
14 is different from zero. This has to be kept in mind when checking
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the scale dependence. There are also contributions from the mesonic LECs l3 and l4, which enter the quark
mass expansion of the pion mass and the pion decay constant, respectively. Similarly to the di one has

li = µ−2ϵ
(
γiλ+ li(µ) + ϵ lϵi (µ) +O(ϵ2)

)
(20)

with

γ3 = −1

2
, γ4 = 2 . (21)

We have given the LECs up to order ϵ as they will be multiplied by one-loop terms and thus the ϵ terms can
contribute at two-loop order. The result of a one-loop calculation can be written in terms of a sum of some
scalar master integrals which can be split into an infrared part (I) and a regular one (R) with coefficients
cnI,R. One can decompose the contributions from the insertions of the di as

gdi

A = di
∑
n

(IncnI +RncnR) =
∑
n

IncnI di|IR +
∑
n

(RncnRdi|IR + IncnI di|R) +
∑
n

RncnRdi|R , (22)

where di|IR contains the δi from Ref. [19] and di|R contains the difference between the EOMS and IR results
for the δi. The first sum in the last equality in Eq. (22) added to the IR two-loop contributions constitutes
the IR result. It satisfies the Ward identities. The same is true for the second sum together with the mixed
terms from the two-loop graphs, which we will call the mixed result. Finally one has the contribution from
the third sum and the regular part of the two loop graphs which can be absorbed into gctA . The EOMS result
is the sum of these three parts.

Finally, we discuss the last contribution to the two-loop calculation of gA. In Eq. (6) gctA denotes
counterterms generated by a linear combination of LECs from the Lagrangian at order q5:

gctA =
(
C(0) + C(1)g0 + C(2)g20 + C(3)g30 + C(5)g50

)
M4 ≡ CM4 . (23)

They are necessary to absorb the remaining infinities, however, as explained before, they cannot cancel the
logM/ϵ terms as they are coefficients of an analytic term in the expansion of gA. One has

C = µ−4ϵ (C2λ2 + C1(µ)λ1 + C0(µ) +O(ϵ)) ,

= µ−4ϵ
∑

i=1,2,3,5

(
C

(i)
2 gi0λ2 + C

(i)
1 (µ)gi0λ1 + C

(i)
0 (µ)gi0 +O(ϵ)

)
, (24)

with

λ2 = λ20 +
(
log(4π)− γE + 1

)2
,

λ1 = λ0 +
(
log(4π)− γE + 1

)
, (25)

which is appropriate for the modified MS subtraction scheme used here as it is customary in CHPT (for
similar results in two-loop calculation in the meson sector see, e.g., Ref. [33]). Let us consider the derivative
of C with respect to µ. It turns out that the contribution to gi0 of this derivative is not given by the derivative
of C(i) with respect to µ as the latter can contribute to various powers of g0. This is specific to the baryon
sector as already encountered in the case of the di, see discussion after Eq. (19). The C(i) therefore can not
be individually scale-independent. Thus one has

µ
d

dµ
C = 0 , (26)

meaning of course that each contribution to gi0 of the derivative of C with respect to µ is a scale-independent
quantity. Consequently, C2 has to be scale-independent whereas the two others are scale-dependent and
satisfy the following relations [34]

d

dµ
C1(µ) =

4C2

µ
,

d

dµ
C0(µ) =

4C1(µ)

µ
. (27)
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To get these relations provides another check of the calculation together with the scale-independence of the
result. One obtains

C(0) =
8π2

F 2
(−20dr16 + 8dr18 + 14dr10 + 8dr11 + 3dr12 + dr13) λ1 + C

(0)
0 (µ) ,

C(1) = − 7

12F 4
λ2 + λ1

{
−16π2

F 2
(dr14 − 2(dr1 + dr2))−

32π2

F 4
(lr3 − lr4)−

323

144F 4

}
+ C

(1)
0 (µ) ,

C(2) =
128π2

F 2
(dr18 − 3dr16) λ1 + C

(2)
0 (µ) ,

C(3) =
7

12F 4
λ2 +

{
−64π2(lr3 − lr4)

F 4
+

1

72F 4
(65− 32π2)

}
λ1 + C

(3)
0 (µ) ,

C(5) =
4

F 4
λ2 −

11

6F 4
λ1 + C

(5)
0 (µ) . (28)

4. Results and discussion

We can now put all pieces together. We start with the infrared result for Z(2−loop), which reads

Z(2−loop)|IR =
3M4

2048π4F 4
g0

{
g40

[
5λ2
4

+ λ1

(
1− 5 log

M

µ

)
+ 10 log2

M

µ
− 4 log

M

µ
+

1

24

(
6 + 281π2

)]
+g20

[
−3λ2 + λ1

(
12 log

M

µ
+ 5

)
− 24 log2

M

µ
− 20 log

M

µ
− π2

2
− 5

]
+

[
3λ2
2

+ λ1

(
2− 6 log

M

µ

)
+ 12 log2

M

µ
− 8 log

M

µ
+

1

4

(
22 + π2

)]}
. (29)

We give the result of the mixed terms in Appendix A. There is in addition a contribution from the purely
regular local terms. As already stated the sum of all the regular parts satisfies the Ward identities and thus
can be absorbed in the LECs of the Lagrangian of fifth order. We thus refrain from giving any pure two-loop
regular pieces here as at the order we are working they are irrelevant. The sum of the mixed and the pure
infrared terms (+ the regular parts) above leads to the EOMS expression of the two-loop contribution to
the Z factor. Adding the various M4 contributions to gA discussed so far one gets:

α4 = −7

3
g0

(
1− g20

)
+ 16g50 . (30)

This result agrees with the g50 term of Ref. [14]. However, we found a small mistake in that reference. The
quantity α̃4 which takes into account the quark mass expansion of the decay constant was too large by a
factor of two, it should read α̃4 = 2α2. Taking this into account and the fact that the result there is given
in terms of the physical pion mass our results are in agreement. For γ4 we get

γ4 = γ
(0)
4 + γ

(1)
4 g0 + γ

(2)
4 g20 + γ

(3)
4 g30 + γ

(5)
4 g50 , (31)

with

γ
(0)
4 = 16π2F 2 (−20dr16 + 8dr18 + 14dr10 + 8dr11 + 3dr12 + dr13) ,

γ
(1)
4 = −32π2F 2 (dr14 − 2(dr1 + dr2))− 64π2 (lr3 − lr4)−

389

36

−64π2F 2

m

(
c2 + c3 − c4 −

1

2m

)
,

γ
(2)
4 = 256π2F 2 (dr18 − 3dr16) ,

γ
(3)
4 = −128π2 (lr3 − lr4) +

1

9

(
13− 16π2

)
+

48π2F 2

m2
,

7



γ
(5)
4 =

11

3
. (32)

And finally one has

β4 = β
(0)
4 + β

(1)
4 g0 + β

(2)
4 g20 + β

(3)
4 g30 + β

(5)
4 g50 , (33)

with

(4πF )4β
(0)
4 = −4π2 (2dr10 + 4dr11 + 3dr12 + dr13) + C

(0)
0 ,

(4πF )4β
(1)
4 = −8π2 (dr14 + 2(dr1 + dr2))− 32π2lr3 +

3575

864
− π2

3
+

1

2
ψ(1)

(
2

3

)
+ C

(1)
0

+
16π2F 2

m

(
c2 + 4c4 +

2

m

)
,

(4πF )4β
(2)
4 = −64π2F 2 (3dr16 − dr18) + C

(2)
0 ,

(4πF )4β
(3)
4 = 32π2 (−3lr3 + lr4)−

π2

27
(61 + 48 log 3)− 335

432
− 1

6
ψ(1)

(
2

3

)
+ C

(3)
0 +

32π2F 2

m2
,

(4πF )4β
(5)
4 =

41

36
+

7

3
π2 + C

(5)
0 , (34)

where ψ(1)(2/3) = 3.06388 is the first derivative of the digamma function at 2/3. Note that the β
(i)
4 also

have contributions from the dϵi and lϵi terms in Eqs. (18) and (20), respectively. These can be absorbed

in the C
(i)
0 . In the EOMS scheme the mixed terms do not contribute to α

(i)
4 . This has to be the case as

the leading non-analytic terms have to be the same in all renormalization schemes. This is in principle not

the case for γ
(i)
4 as this coefficient is renormalization scheme-dependent due to the different treatment of

one-loop diagrams in different renormalization schemes. It turns out that in our case the mixed terms do

not contribute to γ
(i)
4 . Thus the only difference between EOMS and IR at that order are terms contributing

to β4. These will be hidden in our C0s.
Let us now discuss the convergence of the series and the dependence of gA on the pion mass which is

relevant for the lattice. We will not perform fits to lattice data here, but rather use typical values for the
pertinent LECs from various analyses of elastic and inelastic pion-nucleon scattering in the EOMS scheme to
get an idea about the size of the leading two-loop corrections. A more detailed discussion including also an
uncertainty analysis will be given in Ref. [20]. To be concrete, we use Fπ = 0.927GeV andMπ = 0.139GeV,
and the nucleon mass in the chiral limit is taken as m = 0.87GeV [35]. Further, we set the renormalization
scale to µ = m (which leads to log(m/µ)=0, a quantity which appears in the mixed terms and in the regular
ones in principle) and take the values of the LECs at that scale. The LECs in the mesonic sector are rather
well known, one has l3(m) = 1.4·10−3 and l4(m) = 3.7·10−3. From the values of l3 and l4 one can determine F
andM . In the baryon sector the LECs are less known. From an analysis of elastic and inelastic pion-nucleon
scattering [36] we take set 1 (which is based on the standard power counting mN ∼ Λχ) c2 = 3.51GeV−1,
c3 = −6.63GeV−1, c4 = 4.01GeV−1, d̄1 + d̄2 = 4.37GeV−2, d̄10 = −0.8GeV−2, d̄11 = −15.6GeV−2,
d̄12 = 5.9GeV−2, d̄13 = 13.6GeV−2, d̄14 = −7.43GeV−2, and d̄16 = 0.4GeV−2, and as set 2 (which
is based on the power counting used in nucleon-nucleon scattering mN ∼ Λ2

χ/Mπ), c2 = 4.89GeV−1,

c3 = −7.26GeV−1, c4 = 4.74 GeV−1, d̄1 + d̄2 = 3.39,GeV−2, d̄10 = 10.9GeV−2, d̄11 = −30.9GeV−2,
d̄12 = −10.9GeV−2, d̄13 = 27.7,GeV−2, d̄14 = −7.36GeV−2, and d̄16 = −3.0GeV−2. Note that we only
have information on d̄14 − d̄15 and we have assumed here d̄15 = 0. Further, the d̄i are the dri (µ) defined at
µ = Mπ, see, e.g., Ref. [37]. These central values have been obtained in heavy baryon chiral perturbation
theory from a combined fit to the reactions πN → πN and πN → ππN . As we have done an expansion in
M/m of the IR and EOMS expressions our results should in fact correspond to the one in the heavy baryon
approach. Finally, d̄18 = −0.8GeV−2 can be related to the Goldberger-Treiman discrepancy [37, 38]. For

the LEC C0 ≡
∑

i C
(i)
0 gi0 we assume it to be of natural size, typically of the order of 1/Λ4

χ with Λχ = 0.6GeV
an estimate of the breakdown scale of the chiral expansion (which is a more conservative estimate than given
above and was used in Refs. [18, 36]). In Fig. 3 (left panel) we show the chiral expansion of gA at second,
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Figure 3: gA as a function of M for set 1 (left panel) and set 2 (right panel) of the LECs given in the text. The blue
dash-dotted, the black dashed and the red solid lines represent the results up to M2, M3 and M4, respectively. The upper M4

curve corresponds to C0(m) = 15GeV−4, whereas the lower M4 curve represents the case C0(m) = −15GeV−4. The pink
circle denotes the physical value of gA.

third and fourth order for set 1 of the LECs and similarly for set 2 in the right panel of Fig. 3. The upper
fourth order curve corresponds to C0(m) = 15GeV−4, whereas the lower fourth order curve represents the
case C0(m) = −15GeV−4. While the third order correction is large, as the coefficient α3 in Eq. (1) is
proportional to the large factor 2c4 − c3, we see that the fourth order corrections are rather small for pion
masses below 300 MeV, even though some of the dimension-three LECs are rather large. Also, we find that
g0 = 1.0 for set 1 and g0 = 1.3 for set 2, in order. Furthermore, at the physical pion mass one has for

C
(i)
0 (m) = 0

set 1 : ∆(2) = 1.5% , ∆(3) = 28.8% , ∆(4) = 2.6% ,

set 2 : ∆(2) = −26.7% , ∆(3) = 44.5% , ∆(4) = −17.4% , (35)

which shows the same pattern as discussed above, namely large corrections at order q3 for both sets of the
LECs, but small/moderate ones at leading two-loop order q4 for set 1 and set 2, respectively. We note that
the quantity ∆(2) is rather sensitive to the actual value of d̄16. Furthermore, we point out that in the recent
lattice QCD fits in Ref. [9], g0 comes out in the range 1.26− 1.30.

5. Summary and outlook

In this paper, we have calculated and analyzed the leading two-loop corrections to the nucleon axial-
vector coupling gA, that is of fundamental importance in low-energy QCD. We used two covariant versions
of baryon chiral perturbation theory, namely we applied the EOMS and the IR renormalization schemes.
The pertinent expression for the fourth order corrections ∼ M4, denoted as α4, γ4 and β4, as defined in
Eq. (1), are explicitly given in Eq. (30), Eq. (32) and Eq. (34), respectively. We have used two sets of
the dimension-two and dimension-three LECs from a combined study of the πN → πN and πN → ππN
processes in the EOMS scheme and calculated the fourth order corrections as shown in Fig. 3. For set 1 of
the LECs, the corrections turned out to be rather small, signaling a good convergence of the chiral expansion
of gA, whereas for set 2 they are larger but still moderate. However, to finally draw conclusions, the M5

corrections need to be worked out and a more detailed uncertainty analysis has to be performed. Such work
is in progress.
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Appendix A. Mixed terms in the wave function renormalization factor at two loops

We give the expression of Z(2−loop)|mix, the contribution from the mixed terms F2 + F3 of the loop
functions,

Z(2−loop)|mix =
3M4

32π4F 4
g0

{
g40

(
9λ2
32

+ λ1

(
− 9

16
log

m

µ
− 9

16
log

M

µ
+

71

192

)
+ log

m

µ

(
9

8
log

M

µ
− 71

96

)
+

9

16
log2

m

µ
+

9

16
log2

M

µ
− 71

96
log

M

µ
+

1

384

(
113 + 18π2

)
+g20

(
−5λ2

64
+ λ1

(
5

32
log

m

µ
+

5

32
log

M

µ
− 37

64

)
+ log

m

µ

(
37

32
− 5

16
log

M

µ

)
− 5

32
log2

m

µ
− 5

32
log2

M

µ
+

37

32
log

M

µ
− 5

384

(
36 + π2

))
+

(
−3λ2

64
+ λ1

(
3

32
log

m

µ
+

3

32
log

M

µ
− 5

128

)
+ log

m

µ

(
5

64
− 3

16
log

M

µ

)
− 3

32
log2

m

µ
− 3

32
log2

M

µ
+

5

64
log

M

µ
+

1

256

(
−33− 2π2

)}
. (A.1)

One has, see remark after Eq. (29),

Z(2−loop)|EOMS = Z(2−loop)|IR + Z(2−loop)|mix + (Z(2−loop)|reg) , (A.2)

where we put the regular piece in brackets as it is anyway absorbed by the LECs.
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