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Abstract We analyze the large-Nc structure of the baryon-baryon potential derived in the framework of
SU(3) chiral perturbation theory up to next-to-leading order including contact interactions as well as one-
meson and two-meson exchange diagrams. Moreover, we assess the impact of SU(3) symmetry breaking
from a large-Nc perspective and show that the leading order results can successfully be applied to the
hyperon-nucleon potential. Our results include a reduction of the number of relevant low-energy constants
of the leading order contact interaction from fifteen to three, and we show that consistency is preserved if
the F/D ratio is given by 2/3 and the C/D ratio for the baryon decuplet-to-octet coupling is given by 2.
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1 Introduction

While ordinary matter is largely made of the light up and
down quarks, strangeness offers a new dimension in the
formation of matter and the possible forms of exotic mat-
ter, see the reviews [1–4]. One manifestation of this ad-
ditional degree of freedom are the so-called hypernuclei,
where one or two hyperons are bound together with neu-
trons and protons. These systems often feature unusual
properties, e.g. the hypertriton, a bound state of a pro-
ton, a neutron and a Λ hyperon exhibits a matter radius
of about 10 fm, which is gigantic on nuclear scales, see
e.g. [5]. To understand such types of systems, a precise
knowledge of the underlying baryon-baryon interactions
is required. This, however, is a formidable task as very
few scattering data and a limited number of hypernuclei
are known. Another intriguing aspect is the appearance
of hyperons in dense neutron matter, which naively leads
to a softening of the equation of state so that neutron
stars with 2 solar masses can not be sustained, though
we know that these exist [6, 7]. This apparent “hyperon
puzzle” can be solved with repulsive three-baryon forces
or more exotic mechanisms, but again it requires an ac-
curate understanding of the interaction between baryons
to really understand such forms of matter, see e.g. [8–10]
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and references therein. In addition, comparing the baryon-
baryon interactions with the well studied and precisely un-
derstood nucleon-nucleon interactions tells us about the
breaking of the SU(3) flavor symmetry, which is gener-
ated by the very different mass scales of the strange quark
and the light quark masses. Therefore, given the scarcity
of experimental data on baryon-baryon and multi-baryon
interactions, theoretical approaches that go beyond the
flavor SU(3) are very much welcome to help guide the re-
search in strange matter formation and the understanding
of the properties of such intriguing systems.

A quite worthwhile approach is the large-Nc limit sche-
me introduced by ’t Hooft [11] as a means of studying
QCD amplitudes in a systematic way using the number
of colors Nc as an ordering parameter. This was taken up
by Witten [12], who demonstrated the beneficial applica-
tion of this scheme to hadrons introducing a Hartree-like
picture of large-Nc baryons and establishing major results
which also lie at the basis of the present work, see Sec-
tion 2. Shortly after this, not only the connection to the
Skyrme model [13,14] could be uncovered [15,16], but also
the fact that baryons with an SU(Nf ) × SU(2)spin sym-
metry come with an exact contracted SU(2Nf ) spin-flavor
symmetry in the large-Nc limit leading to a tower of de-
generate SU(Nf ) baryon multiplets [17–19]. This allowed
for a systematic expansion of the Hartree Hamiltonian in
terms of an SU(2Nf ) operator basis [20–22]. The subse-
quent years saw successfull applications to the study of

https://arxiv.org/abs/2412.13677v2


2 Thomas Vonk, Ulf-G. Meißner: The Baryon-Baryon Interaction in the Large-Nc Limit

large-Nc baryon masses [23–27], the nucleon-nucleon sys-
tem [28–33], meson-baryon scattering [34–38], and three-
nucleon forces [39, 40]. Furthermore, the SU(3) baryon-
baryon interaction has been studied in this framework fo-
cussing on leading order chiral contact interactions [41].
The main goal of the present paper is hence to extend
this previous work and to give an overall survey of all rel-
evant contributions up to next-to-leading order in chiral
power counting including one- and two-meson-exchange
contributions.

In the following sections we will hence analyze all in-
gredients of the baryon-baryon potential up to next-to-
leading order in SU(3) chiral perturbation theory from a
large-Nc perspective, that is leading and next-to-leading
order contact interactions in Section 3, and one-meson and
two-meson exchange contributions in Sections 4.1 and 4.2,
respectively. This will of course require an adequate intro-
duction into the baryon-baryon interaction in the large-
Nc limit which directly follows this introduction in the
next section, where we will derive and analyze the general
structure of the large-Nc baryon-baryon potential.

2 Large-Nc baryon-baryon interaction

2.1 Contracted SU(6) spin-flavor symmetry and
Hamiltonian

It is well known that the baryon sector of QCD in the
large-Nc limit has an exact SU(2Nf ) spin-flavor symme-
try [17–19] and that large-Nc baryons can be described by
a Hartree-like approximation [12]. The Hartree Hamiltio-
nian for Nf = 3 baryons can be constructed in terms of
the operators

Ŝi = q†
(
σi

2
⊗ 1

)
q,

T̂ a = q†
(
1⊗ λa

2

)
q, (2.1)

Ĝai = q†
(
σi

2
⊗ λa

2

)
q,

which are the generators of the contracted SU(6) spin-
flavor symmetry. Here, q = (u, d, s) represents a three
flavor bosonic quark operator that carries no color, the
σi’s are the three Pauli spin matrices and the λa’s are the
eight Gell-Mann matrices. The commutation relations of
the corresponding Lie Algebra are given in Appendix A. In
this basis, the Hartree Hamiltonian is given by [20–22,29]

Ĥ = Nc

∑
n

∑
s,t,u

hstu

(
Ŝ
Nc

)s(
T̂
Nc

)t(
Ĝ
Nc

)u

δs+t+u,n ,

(2.2)
where the coefficients hstu are of O (1) in the large-Nc

power counting. As this Hamiltonian must be rotation and
SU(3) flavor invariant, the vector, spin, and flavor indices
suppressed in Eq. (2.2) are fully contracted with each other
meaning that the coefficients hstu are tensors of any rank

necessary to combine with the respective generators from
Eq. (2.1) to form rotational invariant objects.

The spin-flavor generators are supposed to act on bar-
yon states, which in the large-Nc limit consist ofNc quarks
and are totally symmetric in spin-flavor Fock space. In
order to get reasonable large-Nc equivalents of the real-
world baryons with half-integer spins, Nc needs to be odd.

The contracted SU(2Nf ) spin-flavor symmetry satis-

fied by Ĥ leads to a tower of SU(Nf ) baryon multiplets
[17,19]. For Nf = 3, we adopt the common approach and
set the large-Nc equivalent of the Nc = 3 flavor octet
baryons as being those with spin S = 1

2 , and isospin and
strangeness of O (1).

2.2 Sources of large-Nc suppression

In order to distinguish large-Nc baryon states B from or-
dinary baryons at Nc = 3, we use the curved bra-ket nota-
tion [20]. For the large-Nc scalings of the matrix elements
between such baryon states |B) and |B′) one finds for the
generators of Eq. (2.1)

(B′|Ŝi|B) ∼ 1, (2.3)

and [19]

(B′|T̂ a|B) ∼ 1, (B′|Ĝai|B) ∼ Nc, for a = 1, 2, 3,

(B′|T̂ a|B) ∼
√
Nc, (B′|Ĝai|B) ∼

√
Nc, for a = 4, 5, 6, 7,

(B′|T̂ a|B) ∼ Nc, (B′|Ĝai|B) ∼ 1, for a = 8,
(2.4)

where the more differentiated large-Nc scalings of the lat-
ter are valid only for baryons with strangeness of O (1).
The origin of these asymmetric scalings can be best un-
derstood in the quark picture: if the interacting baryons
have strangeness of O (1), there are only O (1) possibilities
of picking up a strange quark but O (Nc) possibilities of
finding an up or down quark.

This set of large-Nc scaling rules dictates already a
large part of the 1/Nc power counting of the baryon-
baryon interaction to be discussed in more detail below.

Another source of large-Nc suppression stems from the
general momentum structure of the resulting potential.
Considering the fact that the baryon masses mB scale
∼ Nc and are degenerate up to corrections relatively sup-
pressed by 1/N2

c , the only way of achieving a consistent
matching to any low -energy theory is to assume that the
baryon momenta scale as O

(
N0

c

)
, in which case for the

baryon velocity and non-relativistic energy one has |v| ∼
E ∼ 1/Nc [30], which at the same time justifies a static
limit approach to the baryon-baryon potential. Let p and
p′ denote the initial and final center-of-mass momenta of
the baryons, then the momentum transfer q and the mo-
mentum sum k are given by

q = p′ − p, k = p′ + p, (2.5)

which both are considered independent of O (1) in the
large-Nc power counting [29]. Moreover, the energy trans-
fer q0 = E′ − E in the non-relativistic limit is given by
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q0 = ∆mB + (k · q) /(2mB) with ∆mB the baryon mass
splitting. In sum, this leads to the following large-Nc scal-
ings of the quantities that finally enter the baryon-baryon
potential:

mB ∼ Nc, |q|2 ∼ 1, q0 ∼ N−1
c ,

∆mB ∼ N−1
c , |k|2 ∼ 1, (k · q)∼ 1. (2.6)

Moreover, expanding the baryon-baryon potential in a Tay-
lor series of the above momenta leads to the second source
of 1/Nc suppressions due to factors of 1/mB . As argued
in [29], this suppression follows the general rule that terms
proportional to qmkn are suppressed by

1/Nmin(m,n)
c . (2.7)

2.3 The resulting baryon-baryon potential

The general form of the Hartree baryon-baryon potential
is found by calculating the matrix elements

VBαBβ→BγBδ =
(
p′, γ;−p′, δ

∣∣∣Ĥ∣∣∣p, α;−p, β
)
, (2.8)

where α, . . . , δ denote internal quantum numbers such as
spin or flavor. For the SU(3) flavor symmetry case, it has
been derived in the appendix of Ref. [29]. Here, we do
not separate out terms involving explicit SU(3) breaking
and stay within the operator basis of full SU(6) spin-flavor
symmetry, Eq. (2.1). Sources of isospin and SU(3) break-
ing will nevertheless be discussed in due course. Adopting
the notation of Ref. [29], Λ̂M may denote any of the spin-
flavor generators of Eq. (2.1) with proper normalization

Ŝi/
√
3, T̂ a/

√
2, and

√
2Ĝia. The expansion of Eq. (2.2)

eliminating redundant terms then yields

V BαBβ→BγBδ = Nc

Nc∑
n=0

v0,n

(
Λ̂1 · Λ̂2

N2
c

)n

+Nc

Nc−1∑
n=0

v1,n(q× k)i

(
Ŝi
1 + Ŝi

2√
3Nc

)(
Λ̂1 · Λ̂2

N2
c

)n

+Nc

Nc−2∑
n=0

v2,n(q× k)i

(
Ĝia
2 T̂ a

1 + Ĝia
1 T̂ a

2

N2
c

)(
Λ̂1 · Λ̂2

N2
c

)n

+Nc

Nc−3∑
n=0

v3,n(q× k)i

(
2
Ĝia
1 Ĝja

2 Ŝj
1 + Ĝia

2 Ĝja
1 Ŝj

2√
3N3

c

)

×

(
Λ̂1 · Λ̂2

N2
c

)n

+Nc

Nc−2∑
n=0

[
v4,n

(
qiqj − 1

3
|q|2 δij

)

+ v5,n

(
kikj − 1

3
|k|2 δij

)]

×

(
2
Ĝia
1 Ĝja

2

N2
c

)(
Λ̂1 · Λ̂2

N2
c

)n

,

(2.9)

where Λ̂1 · Λ̂2 = Λ̂M
γαΛ̂

M
δβ and correspondigly for Ŝ, T̂ ,

and Ĝ. The range of α, . . . , δ depends on which internal
quantum number they describe and on the representation
the involved states belong to. In this potential, the coef-
ficients vk,n, k = 0, . . . , 5 are scalar functions of |q|2 and
|k|2 and related to the hstu of Eq. (2.2) up to some unim-
portant normalization factors and after separating out ex-
plicit factors of q and k guaranteeing the right behav-
ior under parity, time reversal, and rotational symmetry.
These functions in general are of O (1) in the large-Nc

power counting, but in the case of terms proportional to
(q× k)i a 1/Nc suppression is expected due to Eq. (2.7).
In Eq. (2.9), the terms of the first line yield the central
part of the two-baryon potential, terms ∼ (q × k)i the
spin-orbit interaction, and the terms of the last line the
tensor potentials.

Explicitly performing the expansion up to order 1/Nc,
the Hamiltonian (2.9) can be further simplified when re-
stricted to the pure octet baryon sector, resulting in

V BαBβ→BγBδ = Nc

 v0,0

+ v
(T )
0,1

(
T̂1 · T̂2

)
2N2

c

+ v
(S)
0,1

(
Ŝ1 · Ŝ2

)
3N2

c

+ 2v
(G)
0,1

(
Ĝ1 · Ĝ2

)
N2

c

+


v1,0 + v

(T )
1,1

(
T̂1 · T̂2

)
2N2

c


(
Ŝi
1 + Ŝi

2

)
√
3Nc

+ v2,0

(
Ĝia
2 T̂ a

1 + Ĝia
1 T̂ a

2

)
N2

c

 (q× k)
i

+

[
v4,0

(
qiqj − 1

3
|q|2 δij

)
+ v5,0

(
kikj − 1

3
|k|2 δij

)]

×
2
(
Ĝia
1 Ĝja

2

)
N2

c

+O
(
1/N3

c

)
.

(2.10)

At this point, this may be compared to a rather generic,
but merely symbolic formulation of the SU(3) baryon-
baryon potential with flavor labels a . . . d, which can be
written as

VBaBb→BcBd = V 0
0 + V 0

σ (σ1 · σ2)

+ V 0
LS (L · S) + V 0

TS12

+ V 1
0 ρ

abcd
0 + V 1

σ (σ1 · σ2) ρ
abcd
σ

+ V 1
LS (L · S) ρabcdLS + V 1

TS12ρ
abcd
T ,

(2.11)

where

S12(r̂) = 3 (r̂ · σ1) (r̂ · σ2)− (σ1 · σ2) (2.12)
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with r̂ = r/|r|, and the ρabcd{0,σ,LS,T} represent some ap-

propriate structure in accordance with SU(3) flavor sym-
metry not important at this stage.1 Here, we have de-
liberately mimicked the generic nucleon-nucleon potential
given in Ref. [29] in order to faciliate the comparision.
For the nucleon-nucleon interaction, the ρabcd{0,σ,LS,T} are

simply given by (τ 1 · τ 2), with τ being the isospin op-
erator. What the authors of Ref. [29] have shown is that
in this case only V 0

0 , V
1
σ , and V 1

T are of leading O (Nc),
while all other contributions are of O (1/Nc). Comparing
Eq. (2.11) with Eq. (2.10) taking account of the scalings
given in Eq. (2.4), one finds for the SU(3) baryon-baryon
interaction considering baryons of strangeness of O (1)

V 0
0 ∼ V 1

0 ∼ V 1
σ ∼ V 1

T ∼ Nc,

V 0
σ ∼ V 0

LS ∼ V 1
LS ∼ V 0

T ∼ 1/Nc,
(2.13)

which is basically the same as for the nucleon-nucleon case
except for the lifting of V 1

0 , which deserves explanation. It
has been noted several times [18–21,24,29] that the large-
Nc analysis of baryons is more intricate in comparison to
the large-Nc analysis of nucleons due to the more com-
plicated scalings of Eq. (2.4). This mainly affects terms

∼
(
T̂1 · T̂2

)
which in the corresponding two-nucleon po-

tential are suppressed by a relative factor of 1/N2
c but

in general are not suppressed in the baryon-baryon case,
leading to the lifting of V 1

0 . On the other hand, consider-
ing the “hidden” 1/Nc suppression due to Eq. (2.7), the
spin-orbit potentials V i

LS are still suppressed by a rela-
tive O

(
1/N2

c

)
as in this case the more complex scaling of

Ĝia
2/1T̂

a
1/2 ∼ Nc is unambiguous due to the summation over

the flavor index.
Note that in the most general case the baryon-baryon

potential Eq. (2.11) can also have an antisymmetric spin-
orbit term ∼ L · (σ1 − σ2) [42]. This force describing spin
singlet-triplet transitions is absent in isospin-symmetric
nucleon-nucleon potentials but is in accordance with SU(3)
symmetry. However, in the large-Nc case this contribution
comes with the same suppressions that also showed up in
the V i

LS case above due to Eq. (2.7). As none of the con-
tributions that we discuss in the following sections does
actually generate such antisymmetric spin-orbit interac-
tions, this term is excluded from the analysis and from
Eq. (2.11).

We further remark that the large-Nc results for the po-
tential are not RG-invariant and that there is a preferred
scale, see e.g. Ref. [43] (and references therein). However,
the extraction of this preferred scale as discussed in the
nucleon-nucleon case [43] can not be answered here as cor-
responding data are either absent or too imprecise.

Before heading to the analysis of the baryon-baryon
interaction in chiral perturbation theory, we note that for

1 Note that in actual potentials derived in the context of
baryon chiral perturbation theory the potentials V 0

{0,σ,LS,T} do
usually not appear isolated but are incorporated into some
structures similar to the ρabcd{0,σ,LS,T}, see, e. g., the potential
Eq. (3.8).

the matching to the Nc = 3 case it is convenient to apply
the rules established in Ref. [34], that is

Ŝi|s, a) = 1

2
σ
(i)
ss′ |s

′, a),

T̂ a|s, b) = ifabc|s, c),

Ĝia|s, b) = σ
(i)
ss′t

abc|s′, c),

(2.14)

where we have introduced the abbreviation

tabc =
1

2
dabc +

i

3
fabc (2.15)

and fabc and dabc are the two rank three tensors of the
flavor SU(3) algebra, see also App. B.

3 Baryon-baryon interaction in chiral
perturbation theory: Contact terms

3.1 Chiral power counting

The leading order (LO) baryon-baryon interaction has
been investigated in [44, 45] which has been extended up
to next-to-leading order (NLO) in Refs. [42, 46–48]. More
recently, also the next-to-next-to-leading order (NNLO)
case has been studied [49].

The chiral power counting can be expressed by assign-
ing a chiral order O (qν), where q denotes a small momen-
tum or mass. For the baryon-baryon interaction the power
counting is given by [44,50]

ν = 2L+
∑
i

vi∆i, ∆i = di +
1

2
bi − 2, (3.1)

where vi is the number of vertices of dimension ∆i and L
is the number of independent pseudo-Nambu-Goldstone
boson loop momenta. The vertex dimension ∆i depends
on the number of interacting baryons bi and the number
of pseudo-Nambu-Goldstone boson masses/derivatives di
at the vertex. In chiral perturbation theory, the pseudo-
Nambu-Goldstone bosons are the pseudoscalar mesons en-
tering the meson-baryon Lagrangian. At LO, correspond-
ing to O

(
q0
)
, only interactions with L = 0 (no loops) and

∆i = 0 contribute corresponding to contributions from
leading order contact interactions (bi = 4, di = 0) or
one-meson exchange (with leading order meson-baryon-
baryon vertices, bi = 2, di = 1; Fig. 3.1 left). At NLO,
additional contact interactions and two-meson exchange
diagrams can contribute (Fig. 3.1 right).

3.2 Leading Order Contact Interactions

We start with the leading order contribution from con-
tact interactions which is the only contribution studied in
Ref. [41]. Let Γi collectively denote the elements of the
Clifford algebra

Γi ∈ {1, γµ, σµν , γµγ5, γ5} (3.2)
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LO NLO
Figure 3.1. Feynman diagrams of the baryon-baryon interaction in chiral perturbation theory up to next-to-leading order. Solid
lines denote octet baryons and dashed lines pseudoscalar mesons. Dots represent leading order vertices, whereas the diamond
denotes a next-to-leading order contact interaction vertex.

and B the SU(3) baryon octet,

B =
1√
2

8∑
a=1

λaBa (3.3)

then the leading order contact interaction terms corre-
sponding to O

(
q0
)
in the chiral power counting read [45]

LLO
BB = C

(1)
i

〈
B̄σB̄τ (ΓiB)τ (ΓiB)σ

〉
+ C

(2)
i

〈
B̄σ (ΓiB)σ B̄τ (ΓiB)τ

〉
+ C

(3)
i

〈
B̄σ (ΓiB)σ

〉 〈
B̄τ (ΓiB)τ

〉
,

(3.4)

where the C
(j)
i are the 15 low-energy constants (LECs)

and the subscripts σ and τ are Dirac indices. Throughout
this paper, ⟨. . .⟩ denotes the trace in flavor space. This
Lagrangian can be rewritten in a more compact, compo-
nentwise notation

LLO
BB = Cabcd

i Γσ1σ2
i Γ τ1τ2

i B̄c
σ1
Ba

σ2
B̄d

τ1B
b
τ2 (3.5)

where the Cabcd
i , i = 1, . . . , 5, are linear combinations of

the low-energy constants of the Lagrangian (3.4),

Cabcd
i = C

(1)
i λacdb + C

(2)
i λcadb + C

(3)
i δcaδdb, (3.6)

with λabcd as defined in Eq. (B.1). Let |p, s, a⟩ denote a
baryon state with momentum p, spin s and SU(3) flavor
index a, then the potential between two baryon states in
the Born approximation of the Lippmann-Schwinger equa-
tion is given by the matrix elements

V BaBb→BcBd =

− ⟨p′, s3, c;−p′, s4, d| Lint |p, s1, a;−p, s2, b⟩
(3.7)

where Lint is the respective interaction Lagrangian. Us-
ing the non-relativistic expansion of the Dirac tensor ma-
trix elements given in App. C, the two-baryon potential
derived from the leading order contact interaction La-
grangian Eq. (3.5) can be brought into a form that shows
the general pattern of the spin and momentum depen-

dence

V LO,cont.
BaBb→BcBd =(

cabcdS + cabcd1 |q|2 + cabcd2 |k|2
)
δs3s1δs4s2

+
(
cabcdT + cabcd3 |q|2 + cabcd4 |k|2

)
(σ1 · σ2)

+ icabcd5 S · (q× k)

+ cabcd6 (q · σ1) (q · σ2) + cabcd7 (k · σ1) (k · σ2) ,

(3.8)

where q and k denote the momentum transfer and mo-
mentum sum in the baryon’s center-of-mass frame, see
Eq. (2.5), the σi’s are the spin operators of the involved
baryons, and

S =
1

2
(σ1 + σ2) (3.9)

is the total spin operator of the two-baryon system. The
coefficients cabcdk , k = S, T, 1, . . . , 7, are given by

cabcdS = Cabcd
1 + Cabcd

2 ,

cabcdT = Cabcd
3 − Cabcd

4 ,

cabcd1 =
1

4m2
B

(
Cabcd

1 − Cabcd
3

)
,

cabcd2 =
1

2m2
B

Cabcd
2 ,

cabcd3 = − 1

4m2
B

(
Cabcd

2 + Cabcd
4

)
,

cabcd4 =
1

2m2
B

Cabcd
3 ,

cabcd5 = − 1

8m2
B

(
Cabcd

1 − 3Cabcd
2 − 3Cabcd

3 − Cabcd
4

)
,

cabcd6 =
1

4m2
B

(
Cabcd

2 + Cabcd
3 + Cabcd

4 − Cabcd
5

)
,

cabcd7 = − 1

2m2
B

(
Cabcd

3 + Cabcd
4

)
,

(3.10)

The potential of Eq. (3.8) shows the usual constituents
of the general two-baryon potential: the first two lines are
the central part of the potential, the third line corresponds
to the spin-orbit force, and the last two terms constitute
the tensor potential.
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3.3 Large-Nc analysis

From the discussion of the large-Nc potential in Section 2
the overall scaling of the involved terms can readily be es-
tablished. All terms of the first line in Eq. (3.8) correspond

to the terms ∼ v0,0 and ∼ v
(T )
0,1 of the large-Nc potential

Eq. (2.10) and are allowed to be of O (Nc). Therein, the
parts ∼ |q|2 and ∼ |k|2 are simply part of the expansion

of v0,0 and v
(T )
0,1 in the momenta, which was only implicit

in Eq. (3.8). As can be seen from the explicit 1/m2
B fac-

tors in Eq. (3.10), these terms are suppressed by a relative
power of 1/N2

c . Consequently, at leading O (Nc) only cabcdS
contributes. The same argument also holds for the central
spin-spin part from the second line of Eq. (3.8) with re-

spect to the corresponding terms ∼ v
(S)
0,1 and ∼ v

(G)
0,1 of the

large-Nc potential Eq. (2.10). We therefore have to take a
closer look at the leading order contributions ∼ cabcdS and
∼ cabcdT .

Starting with cabcdS , one needs to match

cabcdS = C
(1)
S λacdb + C

(2)
S λcadb + C

(3)
S δcaδdb

∼ Nc

v0,0δ
caδdb + v

(T )
0,1

(
T̂1 · T̂2

)
N2

c

 ,
(3.11)

where as usual C
(i)
S = C

(i)
1 + C

(i)
2 . The most important

thing to note is that the term ∼ v
(T )
0,1 does only contribute

to the leading order potential for e = 8 in the summa-
tion over (T̂ e)ca(T̂ e)db due to the rules of Eq. (2.4). This
heavily restricts the structures of λabcd in cabcdS that are
allowed at O (Nc). An easy way to see this is by inspection
of the actual values of the structure constants, Eq. (B.6)
in Appendix A, which requires that leading order contri-
butions only appear for a ̸= c and b ̸= d in (T̂ 8)ca(T̂ 8)db.
With this knowledge and the explicit form of λabcd given
in Eq. (B.3) one finds at leading order in 1/Nc

1

3
(C

(1)
S + C

(2)
S ) + C

(3)
S = Ncv0,0 +O (1/Nc) ,

(C
(1)
S + C

(2)
S ) = O (1/Nc) ,

(C
(1)
S − C

(2)
S ) = −2Ncv

(T )
0,1 +O (1/Nc)

(3.12)

or

C
(1)
S

C
(2)
S

= −1
(
1 +O

(
1/N2

c

))
,

C
(1)
S ∼ C

(2)
S ∼ C

(3)
S ∼ Nc,

(3.13)

which is equivalent to the statement above, that V 0
0 and

V 1
0 in Eq. (2.11) are of O (Nc).

Turning to the central spin-spin part the matching re-
quires

cabcdT = C
(1)
T λacdb + C

(2)
T λcadb + C

(3)
T δcaδdb

∼ Nc

v
(S)
0,1 δ

caδdb

(
Ŝ1 · Ŝ2

)
3N2

c

+ 2v
(G)
0,1

(
Ĝ1 · Ĝ2

)
N2

c

 ,

(3.14)

where as usual C
(i)
T = C

(i)
3 − C

(i)
4 . The first term ∼ v

(S)
0,1

is of O (1/Nc) and thus subleading, but the second term

including the summation (Ĝe)ca(Ĝe)db over the index e =
1 . . . 8 is of O (Nc) for e = 1, 2, 3, see Eq. (2.4). In particu-

lar, the Ĝe with e = 1, 2, 3 are generators of the SU(4) sub-
algebra of the contracted SU(6) spin-flavor group, mean-
ing that the leading order central spin-spin part respects
SU(4) spin-isospin symmetry, but not SU(6) spin-flavor
symmetry. SU(6) breaking is thus associated with a sup-
pression of O (ϵ/Nc) with ϵ ∼ ms/Λχ being a measure of
SU(3) flavor symmetry breaking [29, 51, 52]. The match-
ing, which is best performed using Eq. (B.5) of App. B,
yields

1

3
(C

(1)
T + C

(2)
T ) + C

(3)
T =

v
(S)
0,1

3Nc
+O

(
1/N3

c

)
,

(C
(1)
T + C

(2)
T ) = Ncv

(G)
0,1 +O (1/Nc) ,

(C
(1)
T − C

(2)
T ) =

4

9
Ncv

(G)
0,1 +O (1/Nc)

(3.15)

or

C
(3)
T = −1

3
(C

(1)
T + C

(2)
T ) +O (1/Nc) ,

C
(1)
T ∼ C

(2)
T ∼ C

(3)
T ∼ Nc ,

(3.16)

which is equivalent to the statement above, that V 0
σ and

V 1
σ in Eq. (2.11) are of O (1/Nc) and O (Nc), respectively.

Moreover, we find the ratios

C
(2)
T

C
(1)
T

=
5

13

(
1 +O

(
1/N2

c

))
,

C
(3)
T

C
(1)
T

= − 6

13

(
1 +O

(
1/N2

c

))
.

(3.17)

It is thus clear that at leading order in 1/Nc only terms

∼ C
(i)
S/T contribute to the contact interaction potential

and that each coefficient C
(i)
S/T individually is of O (Nc).

However, certain linear combinations of these coefficients
are suppressed, which reduces the number of free parame-
ters in the leading order large-Nc baryon-baryon potential
from six to three.

This result implies that the coefficients of the origi-

nal Lagrangian, Eq. (3.4), C
(j)
i each are of O (Nc) for i =

1 . . . 4 meaning that any other term ∼ cabcdk , k = 1 . . . 7, in
the potential Eq. (3.8) is suppressed by 1/N2

c simply due
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to the factors 1/m2
B , see Eq. (3.10). The contact interac-

tion hence reproduces the large-Nc predictions Eq. (2.13)
quite well except for the scaling of V 1

T , which corresponds
to cabcd6 in the contact potential Eq. (3.8). As will be shown
in Section 4, this seemingly “missing” O (Nc) contribution
is added by one-meson exchange diagrams.

3.4 Consistency check: Hyperon-Nucleon potentials in
chiral perturbation theory

According to the results of the previous section, there are
three coefficients of the leading order contact potential
that can be eliminated. In particular, we found that up to
corrections of O (1/Nc) we are allowed to replace

C
(2)
S ≈ −C

(1)
S ,

C
(2)
T ≈ 5

13
C

(1)
T ,

C
(3)
T ≈ − 6

13
C

(1)
T .

(3.18)

Introducing

C
(i)
+ = C

(i)
S + C

(i)
T , C

(i)
− = C

(i)
S − 3C

(i)
T , (3.19)

the hyperon-nucleon potentials are given by [44,45]

V NΛ→NΛ
1S0 = 4π

(
1

6
C

(1)
− +

5

3
C

(2)
− + 2C

(3)
−

)
≡ CΛΛ

1S0,

V NΛ→NΛ
3S1 = 4π

(
3

2
C

(1)
+ + C

(2)
+ + 2C

(3)
+

)
≡ CΛΛ

3S1,

V NΣ→NΣ
1S0 = 4π

(
2C

(2)
− + 2C

(3)
−

)
≡ CΣΣ

1S0 ,

V NΣ→NΣ
3S1 = 4π

(
−2C

(2)
+ + 2C

(3)
+

)
≡ CΣΣ

3S1 ,

V NΛ→NΣ
3S1 = 4π

(
−3

2
C

(1)
+ + C

(2)
+

)
≡ CΛΣ

3S1.

(3.20)

Using the large-Nc predictions given above, one finds

CΣΣ
1S0 ≈ 1

9

(
20CΛΛ

1S0 − 11CΛΛ
3S1 − 7CΛΣ

3S1

)
,

CΣΣ
3S1 ≈ −12CΛΛ

1S0 + 13CΛΛ
3S1 + 9CΛΣ

3S1 .
(3.21)

These large-Nc sum rules of the leading order contact
terms are indeed fulfilled to a good accuracy as can be
seen from Table 3.1. Especially for small cutoff masses,
the agreement is formidable with deviations just within
what is expected from 1/Nc corrections. We note that
these sum rules differ from the ones given in [41], from
the details given in that paper we were not able to arrive
at their results.

3.5 Next-to leading order contact interactions

Ref. [46] summerizes all contact contributions up-to-and-
including O

(
q2
)
in the relativistic approach. Let

Φ =

8∑
a=1

λaΦa (3.22)

denote the SU(3) pseudoscalar-meson octet such that the
building blocks that enter the Lagrangian at this order are
given by

u = exp

(
i
Φ

2F0

)
,

DµB = ∂µB + [Γµ, B] ,

Γµ =
1

2

(
u†∂µu+ u∂µu

†) = 1

8F 2
0

[Φ, ∂µΦ] +O
(
Φ4
)
,

uµ = i
(
u†∂µu− u∂µu

†) = − 1

F0
∂µΦ+O

(
Φ3
)

χ± = u†χu† ± uχ†u,
(3.23)

where χ = 2B0Mq is proportional to the diagonal quark
mass matrix Mq and the parameter B0 is related to the
quark condensate. Contributions of O

(
q1
)
in the chiral

power counting have either the chiral covariant deriva-
tive Dµ or the chiral building block uµ. However, in a
non-relativistic expansion, contributions with Dµ are ac-
tually relegated to O

(
q2
)
and contributions with uµ add

at least one pseudoscalar to the vertex meaning that di-
agrams with such vertices must contain at least one loop
and hence are of subleading order according to the power
counting of Eq. (3.1). At O

(
q2
)
, also SU(3) symmetry

breaking terms stemming from explicit insertions of the
quark mass matrix do appear. Here, only terms with di-
rect insertions of χ are relevant, as terms with χ− are of
O
(
q3
)
in the non-relativistic limit, and any appearances

of pseudoscalars in χ+ are dropped anyway for pure con-
tact interactions. The corresponding Lagrangian is hence
given by [46]

LNLO
BB = C̃

(1)
i

〈
B̄σχ (ΓiB)σ B̄τ (ΓiB)τ

〉
+ C̃

(2)
i

〈
B̄σ (ΓiB)σ χB̄τ (ΓiB)τ

〉
+ C̃

(3)
i

(〈
B̄σχB̄τ (ΓiB)τ (ΓiB)σ

〉
+
〈
B̄σB̄τ (ΓiB)τ χ (ΓiB)σ

〉)
+ C̃

(4)
i

〈
B̄σB̄τχ (ΓiB)τ (ΓiB)σ

〉
+ C̃

(5)
i

〈
B̄σB̄τ (ΓiB)τ (ΓiB)σ χ

〉
+ C̃

(6)
i

〈
B̄σ (ΓiB)σ χ

〉 〈
B̄τ (ΓiB)τ

〉
+ C̃

(7)
i

(〈
B̄σχ

〉 〈
(ΓiB)σ B̄τ (ΓiB)τ

〉
+
〈
B̄σ (ΓiB)σ B̄τ

〉
⟨(ΓiB)τ χ⟩

)
,

(3.24)

where we use the tilde to distinguish the new LECs from
the LO ones. In this context, it is convenient to decompose
χ into SU(3) symmetric and isospin and SU(3) violating
parts

χ = 2B0Mq = M [0]
1+M [3]λ3 +M [8]λ8 (3.25)
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Cutoff CΛΛ
1S0 CΛΛ

3S1 CΛΣ
3S1 CΣΣ

1S0 CΣΣ
3S1

550MeV −0.0466 −0.0222 −0.0016 −0.0766 −0.0751 0.2336 0.2562
600MeV −0.0403 −0.0163 −0.0019 −0.0763 −0.0682 0.2391 0.2546
650MeV −0.0322 −0.0097 0.0000 −0.0757 −0.0597 0.2392 0.2603
700MeV −0.0304 −0.0022 0.0035 −0.0744 −0.0676 0.2501 0.3677

Table 3.1. Comparing best fit hyperon-nucleon potentials from Ref. [44] and corresponding large-Nc predictions (in units of
104 GeV−2). The bold values of CΣΣ

1S0 and CΣΣ
3S1 are obtained using the large-Nc sum rules Eq. (3.21).

with

M [0] =
3

2

(
M2

π0 +M2
η

)
− 2

3

(
M2

π± +M2
K± +M2

K0

)
,

M [3] = M2
K± −M2

K0 ,

M [8] =
1√
3

(
2M2

π± −M2
K± −M2

K0

)
,

(3.26)

where we have replaced the quark masses and B0 by the
leading order SU(3) pseudo-Nambu-Goldstone boson mas-
ses. Introducing

C̃abcd
i = M [0]

{(
2C̃

(3)
i + C̃

(4)
i + C̃

(5)
i

)
λcdba

+
(
C̃

(1)
i + C̃

(2)
i

)
λcadb + C̃

(6)
i δcaδdb

}

+M [3]

{
C̃

(1)
i λc3adb + C̃

(2)
i λca3db

+ C̃
(3)
i

[
λcdb3a + λc3dba

]
+ C̃

(4)
i λcd3ba

+ C̃
(5)
i λcdba3 + C̃

(6)
i δbdhca3

+ C̃
(7)
i

[
δc3hadb + δb3hcad

]}
+ ([3] → [8])

(3.27)

with λa1a2...ai and habc as defined in Eq. (B.1), this next-
to-leading order Lagrangian can be rewritten in exactly
the same way as the leading order Lagrangian Eq. (3.5)

LNLO
BB = C̃abcd

i Γσ1σ2
i Γ τ1τ2

i B̄c
σ1
Ba

σ2
B̄d

τ1B
b
τ2 , (3.28)

with the only difference being that while Cabcd
i is symmet-

ric under the exchange of the index pairs Cabcd
i = Ccdab

i ,

this does not apply to C̃abcd
i . The resulting contributions

to the potential are thus of the same form as Eq. (3.8) with
any cabcdi replaced by their respective counterparts carry-
ing the tilde, and these c̃abcdi being set just analogous to
Eq. (3.10).

The terms ∝ M [3] and M [8] violate SU(3) flavor sym-
metry and there is no matching term in the leading order

large-Nc potential Eq. (2.10) meaning that any C̃
(j)
i is

of subleading order O (ϵ/Nc) with ϵ measuring the SU(3)
flavor symmetry breaking [29], as noted before.

It is, however, possible to reduce the number of free pa-

rameters C̃
(j)
i to leading order in 1/Nc. This can be seen by

assuming SU(3) flavor symmetry, because in this case the

terms ∝ M [3] and M [8] vanish. The tensors C̃abcd
i which

then are simply ∝ M [0] structurally match the Cabcd
i of

Eq. (3.6). Consequently, the large-Nc rules found in Sec-

tion 3.3 can readily be translated for the C̃abcd
i resulting

in

C̃
(1)
S + C̃

(2)
S

2C̃
(3)
S + C̃

(4)
S + C̃

(5)
S

= −1
(
1 +O

(
1/N2

c

))
,

C̃
(1)
T + C̃

(2)
T

2C̃
(3)
T + C̃

(4)
T + C̃

(5)
T

=
5

13

(
1 +O

(
1/N2

c

))
,

C̃
(6)
T

2C̃
(3)
T + C̃

(4)
T + C̃

(5)
T

= − 6

13

(
1 +O

(
1/N2

c

))
.

(3.29)

It has been noted in Ref. [42] that currently it is almost
impossible to reliably fix these LECs from experimental
data. Although the large-Nc analysis leads to an effective
reduction of the LECs, this task still seems impracticable.
Instead, one might just absorb the higher order contact
terms into the leading order LECs which is entirely re-
liable from a large-Nc viewpoint. The parts ∝ M [0] in
Eq. (3.27) obviously constitute just constant shifts to the
leading order LECs while the other contributions lead to
O (ϵ/Nc) corrections.

4 Baryon-baryon interaction in chiral
perturbation theory: Meson-exchange

4.1 One-meson exchange

According to the chiral power counting, Eq. (3.1), one-
meson exchange (OME) countributions are of the same
order as the leading order contact contributions. The lead-
ing order meson-baryon Lagrangian reads

LLO
BΦ =

〈
B̄(iγµDµ −m0)B

〉
− D

2

〈
B̄γµγ5 {uµ, B}

〉
− F

2

〈
B̄γµγ5 [uµ, B]

〉
(4.1)

with the building blocks as in Eq. (3.23). Here, m0 is the
baryon octet mass in the three-flavor chiral limit, D and F
are coupling constants related to the axial-vector couplig
gA = D + F , and F0 is the pseudoscalar-meson decay
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constant in the chiral limit. From the Lagrangian (4.1)
one can derive the baryon-baryon-meson (BBΦ) interac-
tion Lagrangian

LLO
BBΦ = gabcBBΦB̄bγ

µγ5∂µΦcBa (4.2)

with the general coupling in the SU(3) Gell-Mann basis

gabcBBΦ =
1

F0

(
Ddabc + iFfabc

)
. (4.3)

The resulting one-meson exchange potential is then given
by

V OME
BaBb→BcBd =

− gaceBBΦg
bde
BBΦ

1

|q|2 +M2
Φe

− q20

{
(q · σ1) (q · σ2)

+
q0

2mB
[(q · σ1) (k · σ2)− (k · σ1) (q · σ2)]

+
(q · k)
8m2

B

[(q · σ1) (k · σ2) + (k · σ1) (q · σ2)]
}
,

(4.4)

where M2
Φe

is the respective meson mass of O
(
N0

c

)
[12]

and q0 denotes the energy transfer. A summation over
all intermediate mesons Φe is implied. For definiteness we
have substituted m0 with mB as in the large-Nc limit the
baryon masses are degenerate up to corrections of relative
order 1/N2

c . As q0 ≈ ∆mB + (k · q) /(2mB), the first cor-
rection term in the second line is of O

(
1/N2

c

)
in relation

to the term of the first line, as is the term in the last line,
see Eq. (2.6), so these terms are suppressed both in terms
of a low-energy expansion and in terms of large-Nc power
counting. However, even in the Nc = 3 case the baryon
mass splitting does not affect interactions with on-shell,
equal-mass initial and final baryons, such as NΛ → NΛ.

It is common practice to split the potential into a
central spin-spin part and a tensorial part using S12, see
Eq. (2.12). Neglecting the subleading terms of the poten-
tial (4.4) and performing this separation of the central and
tensorial part, one gets

V OME
BaBb→BcBd =

{
−gaceBBΦg

bde
BBΦ

1

3

|q|2

|q|2 +M2
Φe

(σ1 · σ2)

− gaceBBΦg
bde
BBΦ

1

|q|2 +M2
Φe

×
[
(q · σ1) (q · σ2)−

1

3
|q|2 (σ1 · σ2)

]}

×
(
1 +O

(
1

N2
c

))
(4.5)

where we kept the tensorial part of the second line ex-
plicit instead of substituting S12. In this form, the poten-
tial can directly be compared with the large-Nc potential
of Eq. (2.10) and it can be seen immediately that the term

of the first line corresponds to the large-Nc term ∼ v
(G)
0,1

and the terms of the second and third line to the terms

∼ v4,0. By inspection of the rules Eq. (2.14), it is clear

that these terms ∼
(
Ĝ1 · Ĝ2

)
∼ tacetbde, so the large-Nc

series requires that gabcBBΦ ∼ tabc which is only possible
if F/D = 2/3

(
1 +O

(
1/N2

c

))
, which of course is a well-

known result that has been derived several times before
using various approaches, see e. g. [21]. From gA = D+F
one can hence derive that D = 3

5gA(1 + O
(
1/N2

c

)
) and

F = 2
5gA(1−O

(
1/N2

c

)
). Taking gA = 1.26, this can be es-

timated to be D ≈ 0.84 and F ≈ 0.45 for the Nc = 3 case,
which is remarkebly close to the values D = 0.81(4) and
F = 0.44(3) that can be derived from the current FLAG
Review values for the flavor diagonal axial charges [53] –
within errors and corrections of higher order in 1/Nc.

A viable large-Nc OME potential is thus given by

V OME, large-Nc

BaBb→BcBd =

− tacetbde
1

3

(
6gA
5F0

)2 |q|2

|q|2 +M2
Φe

[(σ1 · σ2) + S12(q̂)]

(4.6)

or, equivalently

V OME, large-Nc

BaBb→BcBd =

− tacetbde
(
6gA
5F0

)2
1

|q|2 +M2
Φe

(q · σ1) (q · σ2) .
(4.7)

Finally, comparing this again with the large-Nc potential
from the Hartree Hamiltonian Eq. (2.10), this potential
must at most scale as O (Nc). This is indeed the case, as
gA = O (Nc) (which hence also aplies to F and D) and
F0 = O

(√
Nc

)
. However, the spin-flavor structure reveals

that this scaling is only the maximum expectable scaling
for terms ∼ Ĝie

1 Ĝje
2 , see Eq. (2.4). In particular, this means

that there is a hierarchy among the exchange particles,
as for e = 1, 2, 3 (pions) the potential is of O (Nc), for
e = 4, 5, 6, 7 (kaons) it is of O (1), while for e = 8 (η)
it is suppressed by a factor 1/Nc. Note that this large-Nc

result only applies to baryons with strangeness of O (1). A
similar hierarchy is evident also in terms of the exchange
meson masses, as the heavier particles lead to potentials
of shorter range. Overall, this justifies the exclusion of the
η particle from studies of the hyperon-nucleon potential,
as has been done, e. g., in Ref. [44].

Now consider the limit of very small momentum trans-
fers, |q| → 0 such that the OME potential Eq. (4.6) varies
like |q|2/M2

Φe
and assume that the meson masses are de-

generate, i. e. the sum over the intermediate mesons e is
independet of MΦe

. In this case, Eq. (B.5) from the Ap-
pendix A can be applied, such that – under the assumption
that at least one of the incoming baryons is also present
in the final state – the potential reads

V OME, large-Nc

BaBb→BcBd ≈−
(
1

5
λacbd +

1

25
λcabd − 2

25
δacδbd

)
×
(

gA
F0MΦ

)2

|q|2 [(σ1 · σ2) + S12(q̂)] ,

(4.8)
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where the expression in the first parentheses matches the
structure of the Cabcd

i , Eq. (3.6) of the leading order con-
tact potential, which was given in Eq. (3.8). Evidently, the
large-Nc OME potential in this limit can thus be incorpo-
rated into the coefficients cabcd3 and cabcd6 . However, while
formally these terms are allowed to be of O (Nc), it turned
out that – within the pure contact interaction – they are
actually suppresed by a relative factor of 1/N2

c due to the
1/m2

B factor in the definitions of cabcd3 and cabcd6 . Incorpo-
rating the large-Nc OME potential, these parts of the po-
tential are finally lifted to the allowed O (Nc) scaling. This
implies that a decent description of the baryon-baryon po-
tential should at least include leading order contact terms
and leading order OME contributions.

4.2 Two-meson exchange

4.2.1 General remarks

Recent studies of hyperon-nucleon interactions, see e. g.
Ref. [42, 47], also add two-meson exchange (TME) con-
tributions which also appear at next-to-leading order, see
Fig. 3.1. These contributions correspond to box, crossed-
box, triangle and football Feynman diagrams, and we de-
note the corresponding potentials by V □, V ▷◁, V ▷, V ◁,
and V O , respectively. The written-out results are summa-
rized in the Appendix of Ref. [42]. These contributions re-
quire dimensional regularization introducing a scale λ and
the divergent terms are absorbed by contact term LECs of
the same chiral order. Here, we will study their large-Nc

behavior.
The triangle and football diagrams require the inser-

tion of the leading order BBΦΦ vertex which can be de-
rived from Eq. (4.1) and is given by

−igabijBBΦΦγµ (q
µ
1 + qµ2 ) (4.9)

with q1 (incoming) and q2 (outgoing) being the four-mo-
menta of the mesons and the coupling tensor is given by

gabijBBΦΦ =
1

2F 2
0

fabef ije, (4.10)

where a, b (i, j) are flavor indices for the incoming and
outgoing baryons (mesons).

In general the couplings gBBΦn with an even number
n of mesons derived from the first term of the Lagrangian

Eq. (4.1) are ∝ 1/Fn
0 and thus of O

(
N

−n/2
c

)
. On the

other hand, the couplings gBBΦn with an odd number n of
mesons derived from the D and F terms of the Lagrangian

Eq. (4.1) are ∝ gA/F
n
0 and thus of O

(
N

1−n/2
c

)
which is

consistent with what is expected from the large-Nc anal-
ysis on the quark-gluon level [51]. It is thus tempting to
classify any meson exchange diagram with arbitrary many
intermediate mesons by simply assigning these large-Nc

scalings to the vertices and counting the powers. This will,
however, lead to deceptive results. The easiest way to see
this is by considering a diagram with an arbitrary num-
ber m of non-interacting intermediate mesons all coupled

Figure 4.1. Example of a seven meson exchange diagram of
the baryon-baryon interaction. Intermediate mesons are non-
interacting.

by simple BBΦ vertices in any order. An example of such
a diagram with seven intermediate mesons is shown in
Fig. 4.1. Assigning a factor of

√
Nc at each vertex leads

to an overall large-Nc scaling of
(√

Nc

)2m
= Nm

c which
is in conflict with the prediction that the baryon-baryon
potential can at most scale ∼ Nc [12].

In fact, the same problem already arises in the case
of nucleon-pion scattering, and in general baryon-meson
scattering [54, 55], and it has been shown that consis-
tency with the large-Nc prediction is preserved by con-
sidering the contracted SU(2Nf ) spin-flavor algebra dis-
cussed in Sec. 2 including the corresponding degenerate
baryon tower [18]. So on a formal level, the assignment
that the exemplary m meson exchange diagram scales as
Nm

c is correct when considered in isolation. But it is the
contracted spin-flavor symmetry that prevents the overall
amplitude from blowing up after including also all possi-
ble intermediate baryons from the full baryon tower and
after adding up any crossed partner diagrams. The sym-
metry constraints then must ensure the cancellation of the
problematic parts.

For the case of the nucleon-nucleon potential, the au-
thors of Ref. [30] have shown explicitly that this works
out as expected at the level of two-boson exchange. In
accordance with the statements above, this required the
inclusion of intermediate ∆ particles which are the only
additional members of the spin-isospin tower besides the
nucleons (at Nc = 3). For the present case of Nf = 3 this
means that the integration of decuplet baryons as inter-
mediate states is mandatory. This constrains the value of
the octet-decuplet-meson coupling to the known large-Nc

value as will be shown in this section.

Finally, the actual overall maximum large-Nc scaling
of an arbitrary n-meson exchange diagram can be deter-
mined by the maximum allowed large-Nc scaling of a gen-

eral BBΦn vertex, which is given by O
(
N

1−n/2
c

)
[51]. So

instead of assigning 2n simple gBBΦ vertices of O
(√

Nc

)
to a diagram such as the one given in Figure 4.1, one

just assigns a factor of O
(
N

1−n/2
c

)
to each baryon line

meaning that n-meson exchange contributions count as
O
(
N2−n

c

)
. Note, that adding more mesons in such dia-

grams does not only diminish their weight from a large-Nc

perspective, but also in terms of the chiral power counting,
Eq. (3.1), as each additional meson adds another indepen-
dent pseudoscalar loop momentum.
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4.2.2 Decuplet Lagrangian

We use the description of the chiral decuplet-octet inter-
action as presented in [56–59]. The decuplet fields can be
collected into a totally symmetric tensor

T111 = ∆++,

T112 =
1√
3
∆+, T113 =

1√
3
Σ∗+, T133 =

1√
3
Ξ∗0,

T122 =
1√
3
∆0, T123 =

1√
6
Σ∗0, T233 =

1√
3
Ξ∗−,

T222 = ∆−, T223 =
1√
3
Σ∗−, T333 = Ω−, (4.11)

such that the octet-decuplet-meson interaction Lagrangian
can be written as

LBTΦ =
C

2F0

3∑
i,j,k,m,n=1

ϵimn

(
T̄ijk

(
S† · ∇

)
ΦjmBkn + h.c.

)
(4.12)

with the spin transition operators

S1 =
1√
2

(
−1 0 1√

3
0

0 − 1√
3

0 1

)
,

S2 = − i√
2

(
1 0 1√

3
0

0 1√
3

0 1

)
,

S3 =

0
√

2
3 0 0

0 0
√

2
3 0

 ,

(4.13)

connecting the two-component octet spinors and the four-
component decuplet spinors. These obey

SiS
†
j =

2

3
δij −

i

3
ϵijkσk. (4.14)

Being spin-3/2 particles, the decuplet fields are given by
Rarita-Schwinger fields. However, as the present large-Nc

analysis allows for an effective static limit approach to the
baryon kinematics, we treat them non-relativistically from
the beginning. This is in contrast to the previous sections,
where the non-relativistic expansions were performed just
in the course of the calculations. Therefore, we can now
apply the effective BBΦ vertex functions

gabcBBΦ (σ · q) (4.15)

with q being the three-momentum of an incoming meson
and the large-Nc coupling constant given by

gabcBBΦ =
6

5

gA
F0

tabc (4.16)

as determined in the last section. Of course, another quite
natural choice would be to use heavy baryon chiral pertur-
bation theory for both the octet and the decuplet sector
(HBCHPT, see Refs. [56,60]). Either approach leads to the

same conclusion when working to leading order in large-
Nc, but the present choice seems to be best suited for a
concise presentation. In this approach we can safely use

i

p0 − |p|2
2mB

+ iϵ

(
1 +O

(
1

Nc

))
(4.17)

as the common baryon propagator for both octet and de-
cuplet fields.

As in the previous sections, we strive to separate the
spinor fields from their SU(3) content by defining appro-
priate coupling tensors. There are several ways to achieve
this, and here we choose a representation that is similar to
the decomposition of octet fields as given, e. g. in Eqs. (3.3)
and (3.22), that is

Tijk =

10∑
A=1

TA

(
θA
)
ijk

, (4.18)

where from now on a Latin capital index represents a decu-
plet flavor index running from one to ten, and the decuplet
fields are identified as

T1 = ∆++,

T2 = ∆+, T5 = Σ∗+, T8 = Ξ∗0,

T3 = ∆0, T6 = Σ∗0, T9 = Ξ∗−, (4.19)

T4 = ∆−, T7 = Σ∗−, T10 = Ω−.

The Lagrangian above can then be written

LBTΦ =
(
gAac
BTΦ

)†
T̄A
(
S† · ∇

)
ΦcBa + h.c. (4.20)

It is quite inconvenient to explicitly derive the ten 3×3×3
matrices θA from the tensor Tijk, Eq. (4.11), instead one
might define

Θijk =


1, if i = j = k,
1√
6
, if {i, j, k} ∈ σ ({1, 2, 3}) ,

1√
3
, otherwise

(4.21)

where σ denotes the permutation group, and the sets

P1 = {1, 1, 1}, P2 = {1, 1, 2},
P3 = {1, 2, 2}, P4 = {2, 2, 2},
P5 = {1, 1, 3}, P6 = {1, 2, 3}, (4.22)

P7 = {2, 2, 3}, P8 = {1, 3, 3},
P9 = {2, 3, 3}, P10 = {3, 3, 3},

which are just the independent indices of Tijk, Eq. (4.11).
Then the coupling tensor can be written

gAac
BTΦ =

1√
2

C

2F0

3∑
m,n=1

∑
{i,j,k}
∈σ(PA)

ϵimnΘijk (λ
c)mj (λ

a)nk .

(4.23)
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a

i

j
e

b

p1–k'

p1 p2

p2–qp1+q

k'

k'+q

dc

a

i

j
e

b

p2–k'–q

p1 p2

p2–qp1+q

k'

k'+q

dc

Figure 4.2. Triangle diagrams. Dashed lines denote exchange
mesons, solid lines baryons. Double lines denote either octet
or decuplet intermediate baryons. In the latter case, the flavor
index e should be replaced by a capital E to indicate a range
from 1 to 10.

4.2.3 Football diagram

Beginning with the football diagram, the resulting poten-
tial only contributes to the central part of the baryon-
baryon potential, V 1

0 in Eq. (2.11). It can be written as

V O

BaBb→BcBd = gacijBBΦΦg
bdij
BBΦΦV

O

0

(
|q|2,MΦi

,MΦj
, λ
)
,

(4.24)
where V O

0 is a function of |q|2, the involved mesons masses
MΦi

and MΦj
, and the scale λ, see Ref. [42] for details. All

of these quantities scale as O (1) in the large-Nc limit, so it
is the coupling that solely determines the large-Nc behav-
ior. As gBBΦΦ ∼ O (1/Nc), this potential is of O

(
1/N2

c

)
and cleary suppressed in comparison to other contribu-
tions.

Assuming degenerate meson masses, the implicit sum
over the indices i, j can be performed using Eq. (B.7)
which yields

V O

BaBb→BcBd =
3

4F 4
0

facef bdeV O

0

(
|q|2,MΦ, λ

)
. (4.25)

Relating to the Hartree potential Eq. (2.10), this contri-

bution is part of the unknown expansion of v
(T )
0,1 in the

momenta and hence consistent with the predictions.
Moreover, the more general class of “football” like di-

agrams with the same BBΦn vertex at each baryon line
is of O

(
N2−n

c

)
if n is odd but of O (N−n

c ) if n is even.
Therefore, the large-Nc scaling of even n-meson exchange
football diagrams in chiral perturbation theory is less than
the allowed O

(
N2−n

c

)
.

4.2.4 Triangle diagrams

Figure 4.2 shows collectively the triangle diagrams for
both the intermediate octet and decuplet case. As the
football diagram, the triangle diagrams contribute to the
central potential only and it can be written as a product
of three coupling tensors and some function of |q|2, the
meson masses, and the scale λ

V
▷/◁
BaBb→BcBd ∼ g3abcdV

▷
0

(
|q|2,MΦi

,MΦj
, λ
)
, (4.26)

where g3abcd symbollically stands for some appropriate com-
bination of gBBΦ, gBTΦ, and gBBΦΦ. The first thing to

show is that the function V ▷
0 up to leading order in 1/Nc

is the same for both triangle diagrams and for both inter-
mediate octet and decuplet. The loop integral involves a
non-relativistic baryon propagator as given in Eq. (4.17),
two meson propagators, which are the same in any of
these diagrams, and some spin-momentum structure from

the vertices. Let Ṽ
▷/◁
0 (k′, q,MΦi ,MΦj ) collect all of these

contributions except for the baryon propagators and the
coupling tensors, then the potentials corresponding to the
diagrams in Figure 4.2 are given by

V ▷
0 =

∫
d3k′

(2π)3

∫
dk′0
2π

Ṽ ▷
0 (k′, q,MΦi

,MΦj
)

−k′0 +
|p|2
2mB

− |p−k′|2
2mB

,

V ◁
0 =

∫
d3k′

(2π)3

∫
dk′0
2π

Ṽ ◁
0 (k′, q,MΦi

,MΦj
)

−k′0 − q0 +
|p|2
2mB

− |p+k′+q|2
2mB

,

(4.27)

using the center-of-mass momenta p1 =
(
|p|2/(2mB),p

)
and p2 =

(
|p|2/(2mB),−p

)
. Note that for the sake of

brevity we omit factors (1 + O (1/Nc)) in this and the
following equation below. Written in this form, it is clear

that only the imaginary parts of Ṽ
▷/◁
0 contribute to the

potential which follows from the Kramers-Kronig relations
and the contributions from the baryon propagators are
simply given by their principal values P

V ▷
0 = −i

∫
d3k′

(2π)3
P

∫ dk′0
2π

Im
[
Ṽ ▷
0 (k′, q,MΦi

,MΦj
)
]

k′0

 ,

V ◁
0 = −i

∫
d3k′

(2π)3
P

∫ dk′0
2π

Im
[
Ṽ ◁
0 (k′, q,MΦi

,MΦj
)
]

k′0

 ,

(4.28)

meaning that V ◁
0 = V ▷

0 if Ṽ ◁
0 = Ṽ ▷

0 . To leading or-
der in 1/Nc this is indeed the case considering octets and
decuplets individually. The only difference is a factor of
2/3 occuring in the decuplet case stemming from the spin

structure in Ṽ
▷/◁
0 which can be pulled out and put in

front of V
▷/◁
0 . The resulting potential is then given by

V ▷,◁
BaBb→BcBd =− i

[(
gaeiBBΦg

cje
BBΦ +

2

3
gEai
BTΦg

Ecj
BTΦ

)
gbdijBBΦΦ

+

(
gbejBBΦg

die
BBΦ +

2

3
gEbj
BTΦg

Edi
BTΦ

)
gacjiBBΦΦ

]
× V ▷

0

(
|q|2,MΦi ,MΦj , λ

)
×
(
1 +O

(
1

Nc

))
,

(4.29)

where the implicit summation runs from 1 . . . 8 in the case
of i, j, e, and from 1 . . . 10 in the case of the index E. The
explicitely spelled out potential V ▷

0 can be found in the
appendix of Ref. [42]. The large-Nc scaling determined
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a
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j

e f

b

p1–k' p1–k'

p1 p2

p2–qp1+q

k'

k'+q

dc

a

i

j
e

b

p2–k'–qp2+k'

p1 p2

p2–qp1+q

k'

k'+q

dc

f

Figure 4.3. Box and crossed box diagrams. Dashed lines de-
note exchange mesons, solid lines baryons. Double lines denote
either octet or decuplet intermediate baryons. For each inter-
mediate decuplet, the flavor index should be replaced by its
capital counterpart to indicate a range from 1 to 10.

from the coupling tensors is given by O (1), meaning that
its contribution to the central potential is more important
than the football contribution.

4.2.5 Box diagrams

Box diagrams including their crossed partners are more
involved as the other TME diagrams. The amplitudes of
ordinary box diagrams contain two types of poles in the
complex plane stemming from the baryon and the meson
propagators, respectively. The former contribution, how-
ever, corresponds just to the first iterate of the Lippmann-
Schwinger equation and is thus reducible. The genuine
contributions to the TME potential are therefore found
by considering the poles of the meson propagators only.

The other thing to note is that a quick view on the dia-
grams suggests that the potential being ∝ (gBBΦ)

4
seem-

ingly is of O
(
N2

c

)
which challenges the assumption that

the potential should be of O (Nc). This is exactly the kind
of contradiction that has to be remedied by symmetry
constraints after including decuplet baryons and combin-
ing ordinary box and crossed box diagrams, Figure 4.3.

Proceeding in a similar way as for the case of the tri-
angles diagrams, we assume that the resulting potential of
both box and crossed box diagrams can be split up into
a product of coupling tensors carrying the information on
the flavor structure and some function V □

0

V
□/▷◁

BaBb→BcBd ∼
(
gBBΦ/BTΦ

)4
V □
0

(
|q|2,MΦi

,MΦj
, λ
)
.

(4.30)
This function V □

0 is the same for each diagram and both
intermediate octet and decuplet baryons to leading order
in 1/Nc up to some prefactors, as has to be shown. Actu-
ally, these yet-to-be-determined prefactors will include a
relative minus sign between box and crossed box diagrams
that is crucial for the cancellation of the contradictory N2

c

contributions.
This can be seen when writing down the loop integrals

using the notation established in the previous subsection,

see Eq. (4.31) below

where the functions Ṽ □
0 and Ṽ ▷◁

0 encapsulate the meson
propagators that are identical in both cases, and the ver-
tex functions excluding the coupling tensors. Regarding

the k′0 integration, we can use the same argument as in
the triangle case and substitute the principal values P

V □
0 = −i

∫
d3k′

(2π)3
P

∫ dk′0
2π

Im
[
Ṽ □
0 (k′, q,MΦi

,MΦj
)
]

(k′0)
2

 ,

V ▷◁
0 = i

∫
d3k′

(2π)3
P

∫ dk′0
2π

Im
[
Ṽ ▷◁
0 (k′, q,MΦi

,MΦj
)
]

(k′0)
2

 ,

(4.32)

giving the relative minus sign mentioned above and a fac-
tor of (1 + O (1/Nc)) is implied. Again, without explic-
itly performing the integrals, we find that V □

0 = −V ▷◁
0

if Ṽ □
0 = Ṽ ▷◁

0 . As the meson propagators are the same in
both cases, this is just a matter of the vertex functions
which involve Pauli matrices in the case of intermediate
octet baryons and the spin transition operators given in
Eq. (4.13) in the case of intermediate decuplets. The dif-
ference to leading order in 1/Nc is just a factor of 2/3
for each baryon line containing an intermediate decuplet.
As in the case of the triangle diagrams, we regard this as
a prefactor associated with the coupling tensors, so the
total potential stemming from ordinary and crossed box
diagrams of both intermediate octet and decuplet baryons
is given by

V □,▷◁
BaBb→BcBd =

(
gfjbBBΦg

fdi
BBΦ − gfibBBΦg

fdj
BBΦ

+
2

3

[(
gFbj
BTΦ

)†
gFdi
BTΦ −

(
gFbi
BTΦ

)†
gFdj
BTΦ

])

×
(
geiaBBΦg

ecj
BBΦ +

2

3

(
gEai
BTΦ

)†
gEcj
BTΦ

)
× V □

0

(
|q|2,MΦi

,MΦj
, λ
)

×
(
1 +O

(
1

Nc

))
,

(4.33)

where implicit sums run over i, j, e, f = 1 . . . 8 and E,F =
1 . . . 10. The full expression of V □

0 is presented in the Ap-
pendix of Ref. [42] and leads to a central, spin-spin and
tensorial part. This leading order expression being seem-
ingly of O

(
N2

c

)
hence must vanish in order to preserve

consistency. This is achieved if the coupling constant C of
the baryon-decuplet Lagrangian Eq. (4.12) takes on the
large-Nc value

C =
6

5
gA

(
1 +O

(
1

N2
c

))
, (4.34)

which is equivalent to the ratio C/D = 2 that is known
in the literature [34, 54, 55]. Note that the correction of
O
(
1/N2

c

)
is neccessary to obtain the overall scaling of

O (1) that is allowed for the two-meson exchange contri-
bution.
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V □
0 =

∫
d3k′

(2π)3

∫
dk′

0

2π

Ṽ □
0 (k′, q,MΦi ,MΦj )(

−k′
0 +

|p|2
2mB

− |p−k′|2
2mB

)(
k′
0 +

|p|2
2mB

− |p−k′|2
2mB

) (
1 +O

(
1

Nc

))

V ▷◁
0 =

∫
d3k′

(2π)3

∫
dk′

0

2π

Ṽ ▷◁
0 (k′, q,MΦi ,MΦj )(

−k′
0 +

|p|2
2mB

− |p−k′|2
2mB

)(
−k′

0 − q0 +
|p|2
2mB

− |p+k′+q|2
2mB

) (
1 +O

(
1

Nc

)) (4.31)

5 Summary

Starting from the large-Nc baryon-baryon potential de-
rived from a Hartree-like Hamiltonian, we have studied
the large-Nc dependence of the baryon-baryon potential
derived from SU(3) chiral perturbation theory assuming
baryon momenta and strangeness of O (1). Here, we sum-
marize the results:

– The baryon-baryon potential is of O (Nc) and domi-
nated by V 0

0 , V
1
0 , V

1
σ , V

1
T , see Eq. (2.11), corresponding

to the central, spin-spin, and tensorial part of the po-
tential. This is in agreement with the nucleon-nucleon
case except for the central part ∼ V 1

0 , which in the
nucleon-nucleon case is of subleading order [28, 29].
The lifting of this term to O (Nc) in the Nf = 3 case
is a particularity of the assumption that the large-Nc

equivalents of the real-world nucleons and hyperons
are those with strangeness of O (1) leading to the more

complex scalings of the generator T̂a given in Eq. (2.4)

and hence of the term ∼ v
(T )
0,1 in the large-Nc potential,

Eq. (2.10).
– The contact terms of leading order in chiral perturba-

tion theory, see Sec. 3.2, generate a potential that in-
cludes central, spin-spin, spin-orbit, and tensorial parts.
However, only the central and spin-spin parts ∼ cabcdS

and ∼ cabcdT of this potential are indeed of O (Nc),
while all other contributions are suppressed by a factor
1/m2

B . The contact terms alone hence do not generate
the full leading O (Nc) potential, but only terms cor-
responding to V 0

0 , V
1
0 , and V 1

σ in Eq. (2.11), while an
O (Nc) tensorial part is missing. Moreover, the spin-
orbit part ∼ cabcd5 is of subleading O (1/Nc) as ex-
pected. What these contact terms also add is a partial
expansion of the large-Nc coefficients in Eq. (2.10) in
the momenta, which can not be determined from the
large-Nc Hartree scenario. All coefficients cabcdi with
i ̸= {S, T, 5} belong to this category.

– The leading O (Nc) contact contributions ∼ cabcdS and
∼ cabcdT consist of linear combinations of six of the orig-
inal 15 low-energy constants of the contact Lagrangian.
In Section 3.3, we derived sum rules valid at leading
order in 1/Nc allowing to reduce the number of inde-
pendent parameters to three. Applying these sum rules
to the hyperon-nucleon potential studied in Ref. [44],
see Sec. 3.4, we were able to use the best-fit values of
the hyperon-nucleon potentials CΛΛ

1S0, C
ΛΛ
3S1, and CΛΣ

3S1
to predict the potentials CΣΣ

1S0 and CΣΣ
3S1 finding strik-

ing agreement.
– We have also studied higher order contact terms with

explicit insertions of the quark mass matrix. In gen-

eral, the resulting potential is structurally similar to
the leading order one, but with an extra suppression
of O (ϵ/Nc), as these terms involve contributions from
SU(3) symmetry breaking of the order ϵ. Note that for
Nc = 3 the value of ϵ/Nc has roughly the same mag-
nitude as 1/N2

c . However, confronting the hyperon-
nucleon potential from chiral perturbation theory with
experimental data, such terms can not be neglected,
see, e.g., Ref. [61].

– A baryon-baryon potential derived from SU(3) chi-
ral perturbation theory must include one-meson ex-
change contributions in order to fully reproduce the
leading order large-Nc potential, as the tensorial part
V 1
T of O (Nc) can not be generated by the contact

terms alone, which only generate a tensorial part of
O (1/Nc). This is just in accordance with chiral power
counting which also requires the incusion of leading or-
der contact interactions and one-meson exchanges, see
Eq. (3.1).

– Matching the one-meson exchange contributions with
the large-Nc potential yields the already known ra-
tio F/D = 2/3

(
1 +O

(
1/N2

c

))
, see e. g. [21]. We also

derived an effective coupling gBBΦ in terms of gA =
F + D that is valid at leading order in 1/Nc. In the
literature it is common to use hyperon-nucleon and
hyperon-hyperon couplings fBBΦ expressed in terms
of fNNπ = gA/(2F0) and α = F/(F + D) based on
Ref. [62]. The effective large-Nc coupling gBBΦ just re-
produces these fBBΦ after forming approriate isospin
combinations and setting α = 2/5.

– It is also of relevance that the full large-Nc scaling of
O (Nc) in the one-meson exchange case is only achieved
by exchanging pions, while exchanging kaons are of
O (1) and exchanging η’s are even more suppressed
and of O (1/Nc) which is a consequence of the choice to
match real-world baryons with those large-Nc baryons
that have strangeness of O (1), see Eq. (2.4). At the
level of quarks and gluons, this is just a result of combi-
natorics, as with this choice there are about Nc choices
to pick up an up or down quark, but only O (1) choices
to find a strange quark.

– The large-Nc scalings of many-meson exchange contri-
butions can not be assessed by means of a naive power
counting of the involved meson-baryon couplings alone,
as this might lead to results that contradict the as-
sumption that the baryon-baryon potential is ofO (Nc).
However, imposing spin-flavor symmetry and consid-
ering all diagrams of a given type including the full
baryon tower retains consistency. Summing over all
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n-meson exchange diagrams of a given type yields a
contribution that at most scales as O

(
N2−n

c

)
.

– For the TME contributions in SU(3) chiral perturba-
tion theory, we showed this explicitly. In this case,
the inclusion of decuplet baryons is mandatory, and
a cancellation between the deceptive O

(
N2

c

)
contri-

butions of the box and crossed box diagrams appears
if the large-Nc ratio C/D = 2 in addition to the ratio
F/D = 2/3. To leading order it is thus possible to de-
scribe one-meson and two-meson exchange diagrams
by a single parameter, e. g. by setting D = 3/5gA,
F = 2/5gA, and C = 6/5gA.

– Among the TME contributions, the box, crossed box,
and triangle diagrams are of O (1), while the football
diagrams are of subleading O

(
1/N2

c

)
, which is a par-

ticularity of chiral perturbation theory when the num-
ber of exchanged mesons is even.

The results suggest that a simultaneous expansion in large-
Nc and chiral power counting can be used to reduce the
number of ingredients to the baryon-baryon potential at a
given order. While it is clear that at leading order the in-
clusion of contact interactions∼ cS and∼ cT and one-pion
exchange diagrams is obligatory, any extension to higher
orders depends on the weight that is assigned to powers
1/Nc in relation to chiral power counting. For instance,
one might count powers of 1/Nc ∼ O

(
q2
)
as argued by

the authors of Ref. [63, 64] for the mesonic sector.
However, it seems that such an approach is mislead-

ing in the baryonic sector, because some contributions
then appear to be overly suppressed. For instance, in this
scheme the SU(3) symmetry breaking contact terms would
count as O

(
q2/Nc

)
and would show up only way be-

yond the 1/m2
B corrections of the leading order terms

(∼ q0/Nc) and the box, crossed box, and triangle TME
diagrams (∼ q2N0

c ). However, when confronted with the
(still sparse) experimental data of hyperon-nucleon and
hyperon-hyperon scattering, the importance of these SU(3)
symmetry breaking contact terms is evident [61].

The problem here seems to be that such a simultane-
ous power counting scheme doubly suppresses contribu-
tions that are subleading in terms of both chiral power
counting and the 1/Nc expansion, even though they are
suppressed for the same reason. This applies, for example,
to the 1/m2

B corrections that are treated as suppression
factors in the non-relativistic expansion of chiral perturba-
tion theory relegating such contributions to higher order,
but are also O

(
1/N2

c

)
, which is basically the same state-

ment. Clearly, this also holds for the SU(3) breaking terms
mentioned above, which are of O

(
q2
)
in terms of chiral

power counting because they contain M and hence signal
explicit SU(3) breaking, and are of O (ϵ/Nc) because they
explicitly break the large-Nc contracted SU(6) symmetry.
In a sense, the power counting of chiral perturbation the-
ory and the large-Nc limit just go hand in hand with each
other regarding these contributions, and what this study
shows is that both schemes are mutually consistent.

Consequently, a more cautious approach would be to
use the results of the large-Nc analysis to assign different
weights only among the contributions at a given chiral or-

der. So at chiral order q0, the large-Nc analysis reveals that
the contact terms ∼ cS and ∼ cT and one-pion exchange
diagrams are more important than one-kaon exchange di-
agrams, which in turn are more important than the 1/m2

B
contributions and one-η exchange diagrams. At chiral or-
der q2, the SU(3) breaking contact terms and TME box,
crossed box, and triangle diagrams are more relevant than
the TME football diagram.

This work was supported in part by the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant No. 101018170), and
by the MKW NRW under the funding code NW21-024-A. The
work of UGM was further supported by CAS through the Pres-
ident’s International Fellowship Initiative (PIFI) (Grant No.
2025PD0022).

A SU(6) commutation relations

The 35 generators given in Eq. (2.1) obey the commuta-
tion relations [19][

Ŝi, T̂ a
]
= 0,[

Ŝi, Ŝj
]
= iϵijkŜk,

[
T̂ a, T̂ b

]
= ifabcT̂ c, (A.1)[

Ŝi, Ĝja
]
= iϵijkĜka,

[
T̂a, Ĝib

]
= ifabcĜic,

and[
Ĝia, Ĝjb

]
=

i

4
δijfabcT̂ c +

i

6
δabϵijkŜk +

i

2
ϵijkdabcĜkc.

(A.2)

B SU(3) properties and tensor relations

The matching procedure of the previous sections involved
manipulations of traces over Gell-Mann matrices and of
the two third rank tensors f and d of the respective SU(3)
algebra. Throughout this paper, we use the symbols

habc = dabc + ifabc,

tabc =
1

2
dabc +

i

3
fabc,

λa1a2...ai =
1

4
⟨λa1λa1 . . . λai⟩ ,

(B.1)

which altogether are cyclic in their respective indices. Here,
we summerize the most important properties and relations
used during our calculations taken from Refs. [65–67]. The
tensors f and d are defined by the commutators and an-
ticommutators of the matrices[

λa, λb
]
= 2ifabcλc,{

λa, λb
}
=

4

3
δab1+ 2dabcλc,

λaλb =
2

3
δab1+ habcλc.

(B.2)
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Traces of sequences of Gell-Mann matrices are given by

⟨λa⟩ = 0,〈
λaλb

〉
= 2δab,〈

λaλbλc
〉
= 2habc,〈

λaλbλcλd
〉
=

4

3
δabδcd + 2habkhcdk,〈

λaλbλcλdλe
〉
=

4

3
δabhcde +

4

3
δdehabc + 2habkhkclhlde.

(B.3)

The tensors f and d obey the Jacobi identities

fabef cde − facef bde + f bcefade = 0,

dabef cde + dacef bde + dbcefade = 0,
(B.4)

Another useful relation can be found after some algebra

6tacetbde =
25

12
λacbd+

5

12
λacdb+

5

12
λcabd+

1

12
λcadb−δacδbd.

(B.5)
As it is relevant with respect to the matching procedure,
we replicate the non-vanishing values of the SU(3) struc-
ture constants (up to permutations):

f123 = 1,

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
,

f458 = f678 =

√
3

2
,

d146 = d157 = d256 = d344 = d355 =
1

2
,

d247 = d366 = d377 = −1

2
,

d118 = d228 = d338 = −d888 =
1√
3
,

d448 = d558 = d668 = d778 = − 1

2
√
3
.

(B.6)

For simplifying two-meson exchange contributions, we also
used

facdf bcd = 3δab, (B.7)

and

f iajf jbkfkci = −3

2
fabc,

diajf jbkfkci = −3

2
dabc,

diajdjbkfkci =
5

6
fabc,

diajdjbkdkci = −1

2
dabc.

(B.8)

C Non-relativistic expansion of Dirac tensor
matrix elements

Any Dirac field bilinear with any element of the Clifford
algebra Γi, Eq. (3.2), can be rewritten in terms of two-

component Pauli spinors χs

ū(p2, s2)Γiu(p1, s2) = χ†
s2Mi(p2, p1)χs1 , (C.1)

where the free positive energy Dirac spinors u(p, s) is given
by

u(p, s) =

√
Ep +m

2m

(
χs

σ·p
Ep+mχs

)
(C.2)

with Ep =
√
p2 +m2. Expanding the matrix elements

for low-energy transfers q0 yields the expressions given in
Table C.1.
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