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Abstract We analyze the large-Nc structure of the baryon–
baryon potential derived in the framework of SU(3) chiral
perturbation theory up to next-to-leading order including
contact interactions as well as one-meson and two-meson
exchange diagrams. Moreover, we assess the impact of SU(3)
symmetry breaking from a large-Nc perspective and show
that the leading order results can successfully be applied to
the hyperon–nucleon potential. Our results include a reduc-
tion of the number of relevant low-energy constants of the
leading order contact interaction from fifteen to three, and we
show that consistency is preserved if the F/D ratio is given
by 2/3 and the C/D ratio for the baryon decuplet-to-octet
coupling is given by 2.

1 Introduction

While ordinary matter is largely made of the light up and
down quarks, strangeness offers a new dimension in the for-
mation of matter and the possible forms of exotic matter,
see the reviews [1–4]. One manifestation of this additional
degree of freedom are the so-called hypernuclei, where one
or two hyperons are bound together with neutrons and pro-
tons. These systems often feature unusual properties, e.g.
the hypertriton, a bound state of a proton, a neutron and a
Λ hyperon exhibits a matter radius of about 10 fm, which
is gigantic on nuclear scales, see e.g. [5]. To understand
such types of systems, a precise knowledge of the under-
lying baryon–baryon interactions is required. This, however,
is a formidable task as very few scattering data and a lim-
ited number of hypernuclei are known. Another intriguing
aspect is the appearance of hyperons in dense neutron mat-
ter, which naively leads to a softening of the equation of
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state so that neutron stars with 2 solar masses can not be sus-
tained, though we know that these exist [6,7]. This apparent
“hyperon puzzle” can be solved with repulsive three-baryon
forces or more exotic mechanisms, but again it requires an
accurate understanding of the interaction between baryons to
really understand such forms of matter, see e.g. [8–10] and
references therein. In addition, comparing the baryon–baryon
interactions with the well studied and precisely understood
nucleon–nucleon interactions tells us about the breaking of
the SU(3) flavor symmetry, which is generated by the very
different mass scales of the strange quark and the light quark
masses. Therefore, given the scarcity of experimental data
on baryon–baryon and multi-baryon interactions, theoretical
approaches that go beyond the flavor SU(3) are very much
welcome to help guide the research in strange matter forma-
tion and the understanding of the properties of such intriguing
systems.

A quite worthwhile approach is the large-Nc limit sche-
me introduced by ’t Hooft [11] as a means of studying QCD
amplitudes in a systematic way using the number of col-
ors Nc as an ordering parameter. This was taken up by Wit-
ten [12], who demonstrated the beneficial application of this
scheme to hadrons introducing a Hartree-like picture of large-
Nc baryons and establishing major results which also lie
at the basis of the present work, see Sect. 2. Shortly after
this, not only the connection to the Skyrme model [13,14]
could be uncovered [15,16], but also the fact that baryons
with an SU(N f ) × SU(2)spin symmetry come with an exact
contracted SU(2N f ) spin-flavor symmetry in the large-Nc

limit leading to a tower of degenerate SU(N f ) baryon mul-
tiplets [17–19]. This allowed for a systematic expansion of
the Hartree Hamiltonian in terms of an SU(2N f ) operator
basis [20–22]. The subsequent years saw successfull appli-
cations to the study of large-Nc baryon masses [23–27], the
nucleon–nucleon system [28–33], meson-baryon scattering
[34–38], and three-nucleon forces [39,40]. Furthermore, the
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SU(3) baryon–baryon interaction has been studied in this
framework focussing on leading order chiral contact inter-
actions [41]. The main goal of the present paper is hence to
extend this previous work and to give an overall survey of
all relevant contributions up to next-to-leading order in chi-
ral power counting including one- and two-meson-exchange
contributions.

In the following sections we will hence analyze all ingre-
dients of the baryon–baryon potential up to next-to-leading
order in SU(3) chiral perturbation theory from a large-Nc

perspective, that is leading and next-to-leading order con-
tact interactions in Sect. 3, and one-meson and two-meson
exchange contributions in Sects. 4.1 and 4.2, respectively.
This will of course require an adequate introduction into
the baryon–baryon interaction in the large-Nc limit which
directly follows this introduction in the next section, where
we will derive and analyze the general structure of the large-
Nc baryon–baryon potential.

2 Large-Nc baryon–baryon interaction

2.1 Contracted SU(6) spin-flavor symmetry and
Hamiltonian

It is well known that the baryon sector of QCD in the large-
Nc limit has an exact SU(2N f ) spin-flavor symmetry [17–19]
and that large-Nc baryons can be described by a Hartree-like
approximation [12]. The Hartree Hamiltionian for N f = 3
baryons can be constructed in terms of the operators

Ŝ i = q†
(

σ i

2
⊗ 1

)
q,

T̂ a = q†
(
1 ⊗ λa

2

)
q,

Ĝai = q†
(

σ i

2
⊗ λa

2

)
q, (2.1)

which are the generators of the contracted SU(6) spin-flavor
symmetry. Here, q = (u, d, s) represents a three flavor
bosonic quark operator that carries no color, the σi ’s are the
three Pauli spin matrices and the λa’s are the eight Gell-Mann
matrices. The commutation relations of the corresponding
Lie Algebra are given in Appendix A. In this basis, the
Hartree Hamiltonian is given by [20–22,29]

Ĥ = Nc

∑
n

∑
s,t,u

hstu

(
Ŝ
Nc

)s (
T̂
Nc

)t (
Ĝ
Nc

)u

δs+t+u,n ,

(2.2)

where the coefficients hstu are ofO (1) in the large-Nc power
counting. As this Hamiltonian must be rotation and SU(3) fla-

vor invariant, the vector, spin, and flavor indices suppressed
in Eq. (2.2) are fully contracted with each other meaning that
the coefficients hstu are tensors of any rank necessary to com-
bine with the respective generators from Eq. (2.1) to form
rotational invariant objects.

The spin-flavor generators are supposed to act on baryon
states, which in the large-Nc limit consist of Nc quarks and
are totally symmetric in spin-flavor Fock space. In order to
get reasonable large-Nc equivalents of the real-world baryons
with half-integer spins, Nc needs to be odd.

The contracted SU(2N f ) spin-flavor symmetry satisfied
by Ĥ leads to a tower of SU(N f ) baryon multiplets [17,19].
For N f = 3, we adopt the common approach and set the
large-Nc equivalent of the Nc = 3 flavor octet baryons as
being those with spin S = 1

2 , and isospin and strangeness of
O (1).

2.2 Sources of large-Nc suppression

In order to distinguish large-Nc baryon statesB from ordinary
baryons at Nc = 3, we use the curved bra-ket notation [20].
For the large-Nc scalings of the matrix elements between
such baryon states |B) and |B′) one finds for the generators
of Eq. (2.1)

(
B′|Ŝ i |B

)
∼ 1, (2.3)

and [19]

(
B′|T̂ a |B

)
∼ 1,

(
B′|Ĝai |B

)
∼ Nc, for a = 1, 2, 3,(

B′|T̂ a |B
)

∼ √
Nc,

(
B′|Ĝai |B

)
∼ √

Nc, for a = 4, 5, 6, 7,(
B′|T̂ a |B

)
∼ Nc,

(
B′|Ĝai |B

)
∼ 1, for a = 8,

(2.4)

where the more differentiated large-Nc scalings of the latter
are valid only for baryons with strangeness of O (1). The
origin of these asymmetric scalings can be best understood in
the quark picture: if the interacting baryons have strangeness
of O (1), there are only O (1) possibilities of picking up a
strange quark but O (Nc) possibilities of finding an up or
down quark.

This set of large-Nc scaling rules dictates already a large
part of the 1/Nc power counting of the baryon–baryon inter-
action to be discussed in more detail below.

Another source of large-Nc suppression stems from the
general momentum structure of the resulting potential. Con-
sidering the fact that the baryon masses mB scale ∼ Nc

and are degenerate up to corrections relatively suppressed
by 1/N 2

c , the only way of achieving a consistent matching to
any low-energy theory is to assume that the baryon momenta
scale as O

(
N 0
c

)
, in which case for the baryon velocity and
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non-relativistic energy one has |v| ∼ E ∼ 1/Nc [30], which
at the same time justifies a static limit approach to the baryon–
baryon potential. Let p and p′ denote the initial and final
center-of-mass momenta of the baryons, then the momen-
tum transfer q and the momentum sum k are given by

q = p′ − p, k = p′ + p, (2.5)

which both are of O (1) in the large-Nc power counting [29].
Moreover, the energy transfer q0 = E ′ − E in the non-
relativistic limit is given by q0 = ΔmB + (k · q) /(2mB)

with ΔmB the baryon mass splitting. In sum, this leads to
the following large-Nc scalings of the quantities that finally
enter the baryon–baryon potential:

mB ∼ Nc, |q|2 ∼ 1, q0 ∼ N−1
c ,

ΔmB ∼ N−1
c , |k|2 ∼ 1, (k · q)∼ 1. (2.6)

Moreover, expanding the baryon–baryon potential in a Tay-
lor series of the above momenta leads to the second source
of 1/Nc suppressions due to factors of 1/mB . As argued
in [29], this suppression follows the general rule that terms
proportional to qmkn are suppressed by

1/Nmin(m,n)
c . (2.7)

2.3 The resulting baryon–baryon potential

The general form of the Hartree baryon–baryon potential is
found by calculating the matrix elements

VBαBβ→BγBδ =
(
p′, γ ;−p′, δ

∣∣∣Ĥ∣∣∣ p, α;−p, β
)

, (2.8)

where α, . . . , δ denote internal quantum numbers such as
spin or flavor. For the SU(3) flavor symmetry case, it has
been derived in the appendix of Ref. [29]. Here, we do not
separate out terms involving explicit SU(3) breaking and stay
within the operator basis of full SU(6) spin-flavor symmetry,
Eq. (2.1). Sources of isospin and SU(3) breaking will never-
theless be discussed in due course. Adopting the notation of
Ref. [29], Λ̂M may denote any of the spin-flavor generators
of Eq. (2.1) with proper normalization Ŝ i/

√
3, T̂ a/

√
2, and√

2Ĝia . The expansion of Eq. (2.2) eliminating redundant
terms then yields

VBαBβ→BγBδ

= Nc

Nc∑
n=0

v0,n

(
Λ̂1 · Λ̂2

N2
c

)n

+ Nc

Nc−1∑
n=0

v1,n(q × k)i

(
Ŝi

1 + Ŝi
2√

3Nc

)(
Λ̂1 · Λ̂2

N2
c

)n

+ Nc

Nc−2∑
n=0

v2,n(q × k)i

(
Ĝia

2 T̂ a
1 + Ĝia

1 T̂ a
2

N2
c

)(
Λ̂1 · Λ̂2

N2
c

)n

+ Nc

Nc−3∑
n=0

v3,n(q × k)i

(
2
Ĝia

1 Ĝ ja
2 Ŝ j

1 + Ĝia
2 Ĝ ja

1 Ŝ j
2√

3N3
c

)

×
(

Λ̂1 · Λ̂2

N2
c

)n

+ Nc

Nc−2∑
n=0

[
v4,n

(
qiq j − 1

3
|q|2 δi j

)

+ v5,n

(
kik j − 1

3
|k|2 δi j

)]

×
(

2
Ĝia

1 Ĝ ja
2

N2
c

)(
Λ̂1 · Λ̂2

N2
c

)n

, (2.9)

where Λ̂1 · Λ̂2 = Λ̂M
γαΛ̂M

δβ and correspondigly for Ŝ , T̂ , and

Ĝ. The range of α, . . . , δ depends on which internal quantum
number they describe and on the representation the involved
states belong to. In this potential, the coefficients vk,n, k =
0, . . . , 5 are scalar functions of |q|2 and |k|2 and related to
the hstu of Eq. (2.2) up to some unimportant normalization
factors and after separating out explicit factors of q and k
guaranteeing the right behavior under parity, time reversal,
and rotational symmetry. These functions in general are of
O (1) in the large-Nc power counting, but in the case of terms
proportional to (q× k)i a 1/Nc suppression is expected due
to Eq. (2.7). In Eq. (2.9), the terms of the first line yield the
central part of the two-baryon potential, terms ∼ (q × k)i

the spin-orbit interaction, and the terms of the last line the
tensor potentials.

Explicitly performing the expansion up to order 1/Nc, the
Hamiltonian (2.9) can be further simplified when restricted
to the pure octet baryon sector, resulting in

VBαBβ→BγBδ = Nc

⎧⎨
⎩ v0,0

+v
(T )
0,1

(
T̂1 · T̂2

)

2N2
c

+ v
(S)
0,1

(
Ŝ1 · Ŝ2

)

3N2
c

+ 2v
(G)
0,1

(
Ĝ1 · Ĝ2

)

N2
c

+
⎡
⎣
⎛
⎝v1,0 + v

(T )
1,1

(
T̂1 · T̂2

)

2N2
c

⎞
⎠

(
Ŝi

1 + Ŝi
2

)
√

3Nc

+v2,0

(
Ĝia

2 T̂ a
1 + Ĝia

1 T̂ a
2

)

N2
c

⎤
⎦ (q × k)i

+
[
v4,0

(
qiq j − 1

3
|q|2 δi j

)
+ v5,0

(
kik j − 1

3
|k|2 δi j

)]

×
2
(
Ĝia

1 Ĝ ja
2

)

N2
c

⎫⎬
⎭ + O

(
1/N3

c

)
. (2.10)

At this point, this may be compared to a rather generic, but
merely symbolic formulation of the SU(3) baryon–baryon
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potential with flavor labels a . . . d, which can be written as

VBa Bb→BcBd = V 0
0 + V 0

σ (σ 1 · σ 2)

+ V 0
LS (L · S) + V 0

T S12

+ V 1
0 ρabcd

0 + V 1
σ (σ 1 · σ 2) ρabcd

σ

+ V 1
LS (L · S) ρabcd

LS + V 1
T S12ρ

abcd
T ,

(2.11)

where

S12(r̂) = 3
(
r̂ · σ 1

) (
r̂ · σ 2

) − (σ 1 · σ 2) (2.12)

with r̂ = r/|r|, and the ρabcd{0,σ,LS,T} represent some appro-
priate structure in accordance with SU(3) flavor symme-
try not important at this stage.1 Here, we have deliber-
ately mimicked the generic nucleon–nucleon potential given
in Ref. [29] in order to faciliate the comparision. For the
nucleon–nucleon interaction, the ρabcd{0,σ,LS,T} are simply given
by (τ 1 · τ 2), with τ being the isospin operator. What the
authors of Ref. [29] have shown is that in this case only V 0

0 ,
V 1

σ , and V 1
T are of leading O (Nc), while all other contribu-

tions are of O (1/Nc). Comparing Eq. (2.11) with Eq. (2.10)
taking account of the scalings given in Eq. (2.4), one finds for
the SU(3) baryon–baryon interaction considering baryons of
strangeness of O (1)

V 0
0 ∼ V 1

0 ∼ V 1
σ ∼ V 1

T ∼ Nc,

V 0
σ ∼ V 0

LS ∼ V 1
LS ∼ V 0

T ∼ 1/Nc, (2.13)

which is basically the same as for the nucleon–nucleon case
except for the lifting of V 1

0 , which deserves explanation. It
has been noted several times [18–21,24,29] that the large-
Nc analysis of baryons is more intricate in comparison to the
large-Nc analysis of nucleons due to the more complicated

scalings of Eq. (2.4). This mainly affects terms ∼
(
T̂1 · T̂2

)
which in the corresponding two-nucleon potential are sup-
pressed by a relative factor of 1/N 2

c but in general are not
suppressed in the baryon–baryon case, leading to the lifting
of V 1

0 . On the other hand, considering the “hidden” 1/Nc

suppression due to Eq. (2.7), the spin-orbit potentials V i
LS

are still suppressed by a relative O
(
1/N 2

c

)
as in this case the

more complex scaling of Ĝia
2/1T̂ a

1/2 ∼ Nc is unambiguous due
to the summation over the flavor index.

Note that in the most general case the baryon–baryon
potential Eq. (2.11) can also have an antisymmetric spin-orbit

1 Note that in actual potentials derived in the context of baryon chiral
perturbation theory the potentials V 0{0,σ,LS,T} do usually not appear iso-

lated but are incorporated into some structures similar to the ρabcd{0,σ,LS,T},
see, e. g., the potential Eq. (3.8).

term ∼ L·(σ 1 − σ 2) [42]. This force describing spin singlet-
triplet transitions is absent in isospin-symmetric nucleon–
nucleon potentials but is in accordance with SU(3) symmetry.
However, in the large-Nc case this contribution comes with
the same suppressions that also showed up in the V i

LS case
above due to Eq. (2.7). As none of the contributions that we
discuss in the following sections does actually generate such
antisymmetric spin-orbit interactions, this term is excluded
from the analysis and from Eq. (2.11).

We further remark that the large-Nc results for the poten-
tial are not RG-invariant and that there is a preferred scale,
see e.g. Ref. [43] (and references therein). However, the
extraction of this preferred scale as discussed in the nucleon–
nucleon case [43] can not be answered here as corresponding
data are either absent or too imprecise.

Before heading to the analysis of the baryon–baryon inter-
action in chiral perturbation theory, we note that for the
matching to the Nc = 3 case it is convenient to apply the
rules established in Ref. [34], that is

Ŝ i |s, a) = 1

2
σ

(i)
ss′ |s′, a),

T̂ a |s, b) = i f abc|s, c),
Ĝia |s, b) = σ

(i)
ss′ t

abc|s′, c),

(2.14)

where we have introduced the abbreviation

tabc = 1

2
dabc + i

3
f abc (2.15)

and f abc and dabc are the two rank three tensors of the flavor
SU(3) algebra, see also Appendix B.

3 Baryon–baryon interaction in chiral perturbation
theory: contact terms

3.1 Chiral power counting

The leading order (LO) baryon–baryon interaction has been
investigated in [44,45] which has been extended up to next-
to-leading order (NLO) in Refs. [42,46–48]. More recently,
also the next-to-next-to-leading order (NNLO) case has been
studied [49].

The chiral power counting can be expressed by assigning
a chiral order O (qν), where q denotes a small momentum or
mass. For the baryon–baryon interaction the power counting
is given by [44,50]

ν = 2L +
∑
i

viΔi , Δi = di + 1

2
bi − 2, (3.1)
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where vi is the number of vertices of dimension Δi and L is
the number of independent pseudo-Nambu–Goldstone boson
loop momenta. The vertex dimension Δi depends on the
number of interacting baryons bi and the number of pseudo-
Nambu–Goldstone boson masses/derivatives di at the vertex.
In chiral perturbation theory, the pseudo-Nambu–Goldstone
bosons are the pseudoscalar mesons entering the meson-
baryon Lagrangian. At LO, corresponding to O

(
q0

)
, only

interactions with L = 0 (no loops) and Δi = 0 contribute
corresponding to contributions from leading order contact
interactions (bi = 4, di = 0) or one-meson exchange (with
leading order meson-baryon–baryon vertices, bi = 2, di =
1; Fig. 1, left). At NLO, additional contact interactions and
two-meson exchange diagrams can contribute (Fig. 1, right).

3.2 Leading order contact interactions

We start with the leading order contribution from con-
tact interactions which is the only contribution studied in
Ref. [41]. Let Γi collectively denote the elements of the Clif-
ford algebra

Γi ∈ {1, γμ, σμν, γμγ5, γ5} (3.2)

and B the SU(3) baryon octet,

B = 1√
2

8∑
a=1

λa Ba (3.3)

then the leading order contact interaction terms correspond-
ing to O

(
q0

)
in the chiral power counting read [45]

LLO
BB = C (1)

i

〈
B̄σ B̄τ (Γi B)τ (Γi B)σ

〉
+ C (2)

i

〈
B̄σ (Γi B)σ B̄τ (Γi B)τ

〉
+ C (3)

i

〈
B̄σ (Γi B)σ

〉 〈
B̄τ (Γi B)τ

〉
,

(3.4)

where the C ( j)
i are the 15 low-energy constants (LECs) and

the subscripts σ and τ are Dirac indices. Throughout this
paper, 〈. . .〉 denotes the trace in flavor space. This Lagrangian
can be rewritten in a more compact, componentwise notation

LLO
BB = Cabcd

i Γ
σ1σ2
i Γ

τ1τ2
i B̄c

σ1
Ba

σ2
B̄d

τ1
Bb

τ2
(3.5)

where the Cabcd
i , i = 1, . . . , 5, are linear combinations of

the low-energy constants of the Lagrangian (3.4),

Cabcd
i = C (1)

i λacdb + C (2)
i λcadb + C (3)

i δcaδdb, (3.6)

with λabcd as defined in Eq. (B.1). Let |p, s, a〉 denote a
baryon state with momentum p, spin s and SU(3) flavor

index a, then the potential between two baryon states in the
Born approximation of the Lippmann–Schwinger equation
is given by the matrix elements

V Ba Bb→BcBd

= − 〈
p′, s3, c;−p′, s4, d

∣∣Lint |p, s1, a;−p, s2, b〉
(3.7)

where Lint is the respective interaction Lagrangian. Using
the non-relativistic expansion of the Dirac tensor matrix
elements given in Appendix C, the two-baryon potential
derived from the leading order contact interaction Lagrangian
Eq. (3.5) can be brought into a form that shows the general
pattern of the spin and momentum dependence

V LO,cont.
Ba Bb→BcBd

=
(
cabcdS + cabcd1 |q|2 + cabcd2 |k|2

)
δs3s1δs4s2

+
(
cabcdT + cabcd3 |q|2 + cabcd4 |k|2

)
(σ 1 · σ 2)

+ icabcd5 S · (q × k)

+ cabcd6 (q · σ 1) (q · σ 2) + cabcd7 (k · σ 1) (k · σ 2) ,

(3.8)

whereq andk denote the momentum transfer and momentum
sum in the baryon’s center-of-mass frame, see Eq. (2.5), the
σ i ’s are the spin operators of the involved baryons, and

S = 1

2
(σ 1 + σ 2) (3.9)

is the total spin operator of the two-baryon system. The coef-
ficients cabcdk , k = S, T, 1, . . . , 7, are given by

cabcdS = Cabcd
1 + Cabcd

2 ,

cabcdT = Cabcd
3 − Cabcd

4 ,

cabcd1 = 1

4m2
B

(
Cabcd

1 − Cabcd
3

)
,

cabcd2 = 1

2m2
B

Cabcd
2 ,

cabcd3 = − 1

4m2
B

(
Cabcd

2 + Cabcd
4

)
,

cabcd4 = 1

2m2
B

Cabcd
3 ,

cabcd5 = − 1

8m2
B

(
Cabcd

1 − 3Cabcd
2 − 3Cabcd

3 − Cabcd
4

)
,

cabcd6 = 1

4m2
B

(
Cabcd

2 + Cabcd
3 + Cabcd

4 − Cabcd
5

)
,

cabcd7 = − 1

2m2
B

(
Cabcd

3 + Cabcd
4

)
,

(3.10)
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Fig. 1 Feynman diagrams of
the baryon–baryon interaction in
chiral perturbation theory up to
next-to-leading order. Solid lines
denote octet baryons and dashed
lines pseudoscalar mesons. Dots
represent leading order vertices,
whereas the diamond denotes a
next-to-leading order contact
interaction vertex

The potential of Eq. (3.8) shows the usual constituents of
the general two-baryon potential: the first two lines are the
central part of the potential, the third line corresponds to the
spin-orbit force, and the last two terms constitute the tensor
potential.

3.3 Large-Nc analysis

From the discussion of the large-Nc potential in Sect. 2 the
overall scaling of the involved terms can readily be estab-
lished. All terms of the first line in Eq. (3.8) correspond to the
terms ∼ v0,0 and ∼ v

(T )
0,1 of the large-Nc potential Eq. (2.10)

and are allowed to be ofO (Nc). Therein, the parts ∼ |q|2 and
∼ |k|2 are simply part of the expansion of v0,0 and v

(T )
0,1 in

the momenta, which was only implicit in Eq. (3.8). As can be
seen from the explicit 1/m2

B factors in Eq. (3.10), these terms
are suppressed by a relative power of 1/N 2

c . Consequently, at
leading O (Nc) only cabcdS contributes. The same argument
also holds for the central spin–spin part from the second line
of Eq. (3.8) with respect to the corresponding terms ∼ v

(S)
0,1

and ∼ v
(G)
0,1 of the large-Nc potential Eq. (2.10). We therefore

have to take a closer look at the leading order contributions
∼ cabcdS and ∼ cabcdT .

Starting with cabcdS , one needs to match

cabcdS = C (1)
S λacdb + C (2)

S λcadb + C (3)
S δcaδdb

∼ Nc

⎛
⎝v0,0δ

caδdb + v
(T )
0,1

(
T̂1 · T̂2

)
N 2
c

⎞
⎠ ,

(3.11)

where as usual C (i)
S = C (i)

1 + C (i)
2 . The most important

thing to note is that the term ∼ v
(T )
0,1 does only contribute

to the leading order potential for e = 8 in the summation
over (T̂ e)ca(T̂ e)db due to the rules of Eq. (2.4). This heavily
restricts the structures of λabcd in cabcdS that are allowed at
O (Nc). An easy way to see this is by inspection of the actual
values of the structure constants, Eq. (B.6) in Appendix A,
which requires that leading order contributions only appear
for a 
= c and b 
= d in (T̂ 8)ca(T̂ 8)db. With this knowledge
and the explicit form of λabcd given in Eq. (B.3) one finds at
leading order in 1/Nc

1

3
(C (1)

S + C (2)
S ) + C (3)

S = Ncv0,0 + O (1/Nc) ,

(C (1)
S + C (2)

S ) = O (1/Nc) ,

(C (1)
S − C (2)

S ) = −2Ncv
(T )
0,1 + O (1/Nc) (3.12)

or

C (1)
S

C (2)
S

= −1
(

1 + O
(

1/N 2
c

))
,

C (1)
S ∼ C (2)

S ∼ C (3)
S ∼ Nc,

(3.13)

which is equivalent to the statement above, that V 0
0 and V 1

0
in Eq. (2.11) are of O (Nc).

Turning to the central spin–spin part the matching requires

cabcdT = C (1)
T λacdb + C (2)

T λcadb + C (3)
T δcaδdb

∼ Nc

⎛
⎝v

(S)
0,1δcaδdb

(
Ŝ1 · Ŝ2

)
3N 2

c
+ 2v

(G)
0,1

(
Ĝ1 · Ĝ2

)
N 2
c

⎞
⎠ ,

(3.14)

where as usual C (i)
T = C (i)

3 −C (i)
4 . The first term ∼ v

(S)
0,1 is of

O (1/Nc) and thus subleading, but the second term includ-
ing the summation (Ĝe)ca(Ĝe)db over the index e = 1 . . . 8
is of O (Nc) for e = 1, 2, 3, see Eq. (2.4). In particular,
the Ĝe with e = 1, 2, 3 are generators of the SU(4) sub-
algebra of the contracted SU(6) spin-flavor group, meaning
that the leading order central spin–spin part respects SU(4)
spin-isospin symmetry, but not SU(6) spin-flavor symme-
try. SU(6) breaking is thus associated with a suppression of
O (ε/Nc) with ε ∼ ms/Λχ being a measure of SU(3) flavor
symmetry breaking [29,51,52]. The matching, which is best
performed using Eq. (B.5) of Appendix B, yields

1

3
(C (1)

T + C (2)
T ) + C (3)

T = v
(S)
0,1

3Nc
+ O

(
1/N 3

c

)
,

(C (1)
T + C (2)

T ) = Ncv
(G)
0,1 + O (1/Nc) ,

(C (1)
T − C (2)

T ) = 4

9
Ncv

(G)
0,1 + O (1/Nc)

(3.15)
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or

C (3)
T = −1

3
(C (1)

T + C (2)
T ) + O (1/Nc) ,

C (1)
T ∼ C (2)

T ∼ C (3)
T ∼ Nc ,

(3.16)

which is equivalent to the statement above, that V 0
σ and V 1

σ in
Eq. (2.11) are of O (1/Nc) and O (Nc), respectively. More-
over, we find the ratios

C (2)
T

C (1)
T

= 5

13

(
1 + O

(
1/N 2

c

))
,

C (3)
T

C (1)
T

= − 6

13

(
1 + O

(
1/N 2

c

))
.

(3.17)

It is thus clear that at leading order in 1/Nc only terms
∼ C (i)

S/T contribute to the contact interaction potential and

that each coefficient C (i)
S/T individually is of O (Nc). How-

ever, certain linear combinations of these coefficients are sup-
pressed, which reduces the number of free parameters in the
leading order large-Nc baryon–baryon potential from six to
three.

This result implies that the coefficients of the original
Lagrangian, Eq. (3.4),C ( j)

i each are ofO (Nc) for i = 1 . . . 4
meaning that any other term ∼ cabcdk , k = 1 . . . 7, in the
potential Eq. (3.8) is suppressed by 1/N 2

c simply due to the
factors 1/m2

B , see Eq. (3.10). The contact interaction hence
reproduces the large-Nc predictions Eq. (2.13) quite well
except for the scaling of V 1

T , which corresponds to cabcd6
in the contact potential Eq. (3.8). As will be shown in Sect. 4,
this seemingly “missing” O (Nc) contribution is added by
one-meson exchange diagrams.

3.4 Consistency check: Hyperon–Nucleon potentials in
chiral perturbation theory

According to the results of the previous section, there are
three coefficients of the leading order contact potential that
can be eliminated. In particular, we found that up to correc-
tions of O (1/Nc) we are allowed to replace

C (2)
S ≈ −C (1)

S ,

C (2)
T ≈ 5

13
C (1)
T ,

C (3)
T ≈ − 6

13
C (1)
T .

(3.18)

Introducing

C (i)
+ = C (i)

S + C (i)
T , C (i)

− = C (i)
S − 3C (i)

T , (3.19)

the hyperon–nucleon potentials are given by [44,45]

V NΛ→NΛ
1S0 = 4π

(
1

6
C (1)

− + 5

3
C (2)

− + 2C (3)
−

)
≡ CΛΛ

1S0 ,

V NΛ→NΛ
3S1 = 4π

(
3

2
C (1)

+ + C (2)
+ + 2C (3)

+
)

≡ CΛΛ
3S1 ,

V NΣ→NΣ
1S0 = 4π

(
2C (2)

− + 2C (3)
−

)
≡ CΣΣ

1S0 ,

V NΣ→NΣ
3S1 = 4π

(
−2C (2)

+ + 2C (3)
+

)
≡ CΣΣ

3S1 ,

V NΛ→NΣ
3S1 = 4π

(
−3

2
C (1)

+ + C (2)
+

)
≡ CΛΣ

3S1 .

(3.20)

Using the large-Nc predictions given above, one finds

CΣΣ
1S0 ≈ 1

9

(
20CΛΛ

1S0 − 11CΛΛ
3S1 − 7CΛΣ

3S1

)
,

CΣΣ
3S1 ≈ −12CΛΛ

1S0 + 13CΛΛ
3S1 + 9CΛΣ

3S1 .

(3.21)

These large-Nc sum rules of the leading order contact terms
are indeed fulfilled to a good accuracy as can be seen from
Table 1. Especially for small cutoff masses, the agreement is
formidable with deviations just within what is expected from
1/Nc corrections. We note that these sum rules differ from
the ones given in [41], from the details given in that paper
we were not able to arrive at their results.

3.5 Next-to leading order contact interactions

Ref. [46] summerizes all contact contributions up-to-and-
including O

(
q2

)
in the relativistic approach. Let

Φ =
8∑

a=1

λaΦa (3.22)

denote the SU(3) pseudoscalar-meson octet such that the
building blocks that enter the Lagrangian at this order are
given by

u = exp

(
i

Φ

2F0

)
,

DμB = ∂μB + [
Γμ, B

]
,

Γμ = 1

2

(
u†∂μu + u∂μu

†
)

= 1

8F2
0

[
Φ, ∂μΦ

] + O
(
Φ4

)
,

uμ = i
(
u†∂μu − u∂μu

†
)

= − 1

F0
∂μΦ + O

(
Φ3

)

χ± = u†χu† ± uχ†u, (3.23)

where χ = 2B0Mq is proportional to the diagonal quark
mass matrix Mq and the parameter B0 is related to the quark
condensate. Contributions of O

(
q1

)
in the chiral power
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Table 1 Comparing best fit
hyperon–nucleon potentials
from Ref. [44] and
corresponding large-Nc
predictions (in units of 104

GeV−2). The bold values of
CΣΣ

1S0 and CΣΣ
3S1 are obtained

using the large-Nc sum rules
Eq. (3.21)

Cutoff CΛΛ
1S0 CΛΛ

3S1 CΛΣ
3S1 CΣΣ

1S0 CΣΣ
3S1

550 MeV −0.0466 −0.0222 −0.0016 −0.0766 −0.0751 0.2336 0.2562

600 MeV −0.0403 −0.0163 −0.0019 −0.0763 −0.0682 0.2391 0.2546

650 MeV −0.0322 −0.0097 0.0000 −0.0757 −0.0597 0.2392 0.2603

700 MeV −0.0304 −0.0022 0.0035 −0.0744 −0.0676 0.2501 0.3677

counting have either the chiral covariant derivative Dμ or
the chiral building block uμ. However, in a non-relativistic
expansion, contributions with Dμ are actually relegated to
O

(
q2

)
and contributions with uμ add at least one pseu-

doscalar to the vertex meaning that diagrams with such ver-
tices must contain at least one loop and hence are of sub-
leading order according to the power counting of Eq. (3.1).
At O

(
q2

)
, also SU(3) symmetry breaking terms stemming

from explicit insertions of the quark mass matrix do appear.
Here, only terms with direct insertions of χ are relevant, as
terms with χ− are of O

(
q3

)
in the non-relativistic limit, and

any appearances of pseudoscalars in χ+ are dropped anyway
for pure contact interactions. The corresponding Lagrangian
is hence given by [46]

LNLO
BB = C̃ (1)

i

〈
B̄σ χ (Γi B)σ B̄τ (Γi B)τ

〉
+ C̃ (2)

i

〈
B̄σ (Γi B)σ χ B̄τ (Γi B)τ

〉
+ C̃ (3)

i

(〈
B̄σ χ B̄τ (Γi B)τ (Γi B)σ

〉

+ 〈
B̄σ B̄τ (Γi B)τ χ (Γi B)σ

〉)

+ C̃ (4)
i

〈
B̄σ B̄τ χ (Γi B)τ (Γi B)σ

〉
+ C̃ (5)

i

〈
B̄σ B̄τ (Γi B)τ (Γi B)σ χ

〉
+ C̃ (6)

i

〈
B̄σ (Γi B)σ χ

〉 〈
B̄τ (Γi B)τ

〉
+ C̃ (7)

i

(〈
B̄σ χ

〉 〈
(Γi B)σ B̄τ (Γi B)τ

〉

+ 〈
B̄σ (Γi B)σ B̄τ

〉 〈
(Γi B)τ χ

〉)
, (3.24)

where we use the tilde to distinguish the new LECs from the
LO ones. In this context, it is convenient to decompose χ

into SU(3) symmetric and isospin and SU(3) violating parts

χ = 2B0Mq = M [0]1 + M [3]λ3 + M [8]λ8 (3.25)

with

M [0] = 3

2

(
M2

π0 + M2
η

)
− 2

3

(
M2

π± + M2
K± + M2

K 0

)
,

M [3] = M2
K± − M2

K 0 ,

M [8] = 1√
3

(
2M2

π± − M2
K± − M2

K 0

)
, (3.26)

where we have replaced the quark masses and B0 by the
leading order SU(3) pseudo-Nambu–Goldstone boson mas-
ses. Introducing

C̃abcd
i = M [0]

{(
2C̃ (3)

i + C̃ (4)
i + C̃ (5)

i

)
λcdba

+
(
C̃ (1)
i + C̃ (2)

i

)
λcadb + C̃ (6)

i δcaδdb
}

+ M [3]
{
C̃ (1)
i λc3adb + C̃ (2)

i λca3db

+ C̃ (3)
i

[
λcdb3a + λc3dba

]
+ C̃ (4)

i λcd3ba

+ C̃ (5)
i λcdba3 + C̃ (6)

i δbdhca3

+ C̃ (7)
i

[
δc3hadb + δb3hcad

]}

+ ([3] → [8]) (3.27)

with λa1a2...ai and habc as defined in Eq. (B.1), this next-to-
leading order Lagrangian can be rewritten in exactly the same
way as the leading order Lagrangian Eq. (3.5)

LNLO
BB = C̃abcd

i Γ
σ1σ2
i Γ

τ1τ2
i B̄c

σ1
Ba

σ2
B̄d

τ1
Bb

τ2
, (3.28)

with the only difference being that while Cabcd
i is symmetric

under the exchange of the index pairs Cabcd
i = Ccdab

i , this
does not apply to C̃abcd

i . The resulting contributions to the
potential are thus of the same form as Eq. (3.8) with any cabcdi
replaced by their respective counterparts carrying the tilde,
and these c̃abcdi being set just analogous to Eq. (3.10).

The terms ∝ M [3] and M [8] violate SU(3) flavor symmetry
and there is no matching term in the leading order large-Nc

potential Eq. (2.10) meaning that any C̃ ( j)
i is of subleading

order O (ε/Nc) with ε measuring the SU(3) flavor symmetry
breaking [29], as noted before.

It is, however, possible to reduce the number of free param-
eters C̃ ( j)

i to leading order in 1/Nc. This can be seen by
assuming SU(3) flavor symmetry, because in this case the
terms ∝ M [3] and M [8] vanish. The tensors C̃abcd

i which then
are simply ∝ M [0] structurally match the Cabcd

i of Eq. (3.6).
Consequently, the large-Nc rules found in Sect. 3.3 can read-
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ily be translated for the C̃abcd
i resulting in

C̃ (1)
S + C̃ (2)

S

2C̃ (3)
S + C̃ (4)

S + C̃ (5)
S

= −1
(

1 + O
(

1/N 2
c

))
,

C̃ (1)
T + C̃ (2)

T

2C̃ (3)
T + C̃ (4)

T + C̃ (5)
T

= 5

13

(
1 + O

(
1/N 2

c

))
,

C̃ (6)
T

2C̃ (3)
T + C̃ (4)

T + C̃ (5)
T

= − 6

13

(
1 + O

(
1/N 2

c

))
.

(3.29)

It has been noted in Ref. [42] that currently it is almost
impossible to reliably fix these LECs from experimental data.
Although the large-Nc analysis leads to an effective reduc-
tion of the LECs, this task still seems impracticable. Instead,
one might just absorb the higher order contact terms into the
leading order LECs which is entirely reliable from a large-Nc

viewpoint. The parts ∝ M [0] in Eq. (3.27) obviously consti-
tute just constant shifts to the leading order LECs while the
other contributions lead to O (ε/Nc) corrections.

4 Baryon–baryon interaction in chiral perturbation
theory: Meson-exchange

4.1 One-meson exchange

According to the chiral power counting, Eq. (3.1), one-meson
exchange (OME) countributions are of the same order as
the leading order contact contributions. The leading order
meson-baryon Lagrangian reads

LLO
BΦ = 〈

B̄(iγ μDμ − m0)B
〉

− D

2

〈
B̄γ μγ5

{
uμ, B

}〉 − F

2

〈
B̄γ μγ5

[
uμ, B

]〉
(4.1)

with the building blocks as in Eq. (3.23). Here, m0 is the
baryon octet mass in the three-flavor chiral limit, D and F are
coupling constants related to the axial-vector couplig gA =
D + F , and F0 is the pseudoscalar-meson decay constant in
the chiral limit. From the Lagrangian (4.1) one can derive the
baryon–baryon-meson (BBΦ) interaction Lagrangian

LLO
BBΦ = gabcBBΦ B̄bγ

μγ5∂μΦcBa (4.2)

with the general coupling in the SU(3) Gell-Mann basis

gabcBBΦ = 1

F0

(
Ddabc + i F f abc

)
. (4.3)

The resulting one-meson exchange potential is then given by

VOME
Ba Bb→BcBd

= gaceBBΦgbdeBBΦ

1

|q|2 + M2
Φe

− q2
0

{
(q · σ 1) (q · σ 2)

+ q0

2mB

[
(q · σ 1) (k · σ 2) − (k · σ 1) (q · σ 2)

]

+ (q · k)

8m2
B

[
(q · σ 1) (k · σ 2) + (k · σ 1) (q · σ 2)

]}
,

(4.4)

where M2
Φe

is the respective meson mass of O
(
N 0
c

)
[12] and

q0 denotes the energy transfer. A summation over all interme-
diate mesons Φe is implied. For definiteness we have substi-
tuted m0 with mB as in the large-Nc limit the baryon masses
are degenerate up to corrections of relative order 1/N 2

c . As
q0 ≈ ΔmB + (k · q) /(2mB), the first correction term in the
second line is of O

(
1/N 2

c

)
in relation to the term of the first

line, as is the term in the last line, see Eq. (2.6), so these terms
are suppressed both in terms of a low-energy expansion and
in terms of large-Nc power counting. However, even in the
Nc = 3 case the baryon mass splitting does not affect inter-
actions with on-shell, equal-mass initial and final baryons,
such as NΛ → NΛ.

It is common practice to split the potential into a central
spin–spin part and a tensorial part using S12, see Eq. (2.12).
Neglecting the subleading terms of the potential (4.4) and
performing this separation of the central and tensorial part,
one gets

VOME
Ba Bb→BcBd =

{
−gaceBBΦgbdeBBΦ

1

3

|q|2
|q|2 + M2

Φe

(σ 1 · σ 2)

− gaceBBΦgbdeBBΦ

1

|q|2 + M2
Φe

×
[
(q · σ 1) (q · σ 2) − 1

3
|q|2 (σ 1 · σ 2)

]}

×
(

1 + O
(

1

N 2
c

))
(4.5)

where we kept the tensorial part of the second line explicit
instead of substituting S12. In this form, the potential can
directly be compared with the large-Nc potential of Eq. (2.10)
and it can be seen immediately that the term of the first line
corresponds to the large-Nc term ∼ v

(G)
0,1 and the terms of the

second and third line to the terms ∼ v4,0. By inspection of the

rules Eq. (2.14), it is clear that these terms ∼
(
Ĝ1 · Ĝ2

)
∼

tacetbde, so the large-Nc series requires that gabcBBΦ ∼ tabc

which is only possible if F/D = 2/3
(
1 + O

(
1/N 2

c

))
,

which of course is a well-known result that has been derived
several times before using various approaches, see e. g. [21].
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From gA = D + F one can hence derive that D =
3
5gA(1 + O

(
1/N 2

c

)
) and F = 2

5gA(1 − O
(
1/N 2

c

)
). Tak-

ing gA = 1.26, this can be estimated to be D ≈ 0.84 and
F ≈ 0.45 for the Nc = 3 case, which is remarkebly close to
the values D = 0.81(4) and F = 0.44(3) that can be derived
from the current FLAG Review values for the flavor diagonal
axial charges [53] – within errors and corrections of higher
order in 1/Nc.

A viable large-Nc OME potential is thus given by

VOME, large-Nc

Ba Bb→BcBd = −tacetbde
1

3

(
6gA
5F0

)2

× |q|2
|q|2 + M2

Φe

[
(σ 1 · σ 2) + S12(q̂)

]
(4.6)

or, equivalently

VOME, large-Nc

Ba Bb→BcBd = −tacetbde
(

6gA
5F0

)2

× 1

|q|2 + M2
Φe

(q · σ 1) (q · σ 2) .

(4.7)

Finally, comparing this again with the large-Nc potential
from the Hartree Hamiltonian Eq. (2.10), this potential must
at most scale as O (Nc). This is indeed the case, as gA =
O (Nc) (which hence also aplies to F and D) and F0 =
O

(√
Nc

)
. However, the spin-flavor structure reveals that this

scaling is only the maximum expectable scaling for terms
∼ Ĝie

1 Ĝ je
2 , see Eq. (2.4). In particular, this means that there

is a hierarchy among the exchange particles, as for e = 1, 2, 3
(pions) the potential is of O (Nc), for e = 4, 5, 6, 7 (kaons)
it is of O (1), while for e = 8 (η) it is suppressed by a factor
1/Nc. Note that this large-Nc result only applies to baryons
with strangeness of O (1). A similar hierarchy is evident also
in terms of the exchange meson masses, as the heavier parti-
cles lead to potentials of shorter range. Overall, this justifies
the exclusion of the η particle from studies of the hyperon–
nucleon potential, as has been done, e. g., in Ref. [44].

Now consider the limit of very small momentum transfers,
|q| → 0 such that the OME potential Eq. (4.6) varies like
|q|2/M2

Φe
and assume that the meson masses are degenerate,

i. e. the sum over the intermediate mesons e is independet
of MΦe . In this case, Eq. (B.5) from the Appendix A can be
applied, such that – under the assumption that at least one of
the incoming baryons is also present in the final state – the
potential reads

VOME, large-Nc

Ba Bb→BcBd ≈ −
(

1

5
λacbd + 1

25
λcabd − 2

25
δacδbd

)

×
(

gA
F0MΦ

)2

|q|2 [
(σ 1 · σ 2) + S12(q̂)

]
,

(4.8)

where the expression in the first parentheses matches the
structure of the Cabcd

i , Eq. (3.6) of the leading order con-
tact potential, which was given in Eq. (3.8). Evidently, the
large-Nc OME potential in this limit can thus be incorpo-
rated into the coefficients cabcd3 and cabcd6 . However, while
formally these terms are allowed to be of O (Nc), it turned
out that – within the pure contact interaction – they are actu-
ally suppresed by a relative factor of 1/N 2

c due to the 1/m2
B

factor in the definitions of cabcd3 and cabcd6 . Incorporating
the large-Nc OME potential, these parts of the potential are
finally lifted to the allowed O (Nc) scaling. This implies that
a decent description of the baryon–baryon potential should
at least include leading order contact terms and leading order
OME contributions.

4.2 Two-meson exchange

4.2.1 General remarks

Recent studies of hyperon–nucleon interactions, see e. g.
Refs. [42,47], also add two-meson exchange (TME) con-
tributions which also appear at next-to-leading order, see
Fig. 1. These contributions correspond to box, crossed-box,
triangle and football Feynman diagrams, and we denote the
corresponding potentials by V�, V ��, V�, V�, and V O ,
respectively. The written-out results are summarized in the
Appendix of Ref. [42]. These contributions require dimen-
sional regularization introducing a scale λ and the divergent
terms are absorbed by contact term LECs of the same chiral
order. Here, we will study their large-Nc behavior.

The triangle and football diagrams require the insertion of
the leading order BBΦΦ vertex which can be derived from
Eq. (4.1) and is given by

−igabi jBBΦΦγμ

(
qμ

1 + qμ
2

)
(4.9)

with q1 (incoming) and q2 (outgoing) being the four-mo-
menta of the mesons and the coupling tensor is given by

gabi jBBΦΦ = 1

2F2
0

f abe f i je, (4.10)

where a, b (i, j) are flavor indices for the incoming and out-
going baryons (mesons).

In general the couplings gBBΦn with an even number n of
mesons derived from the first term of the Lagrangian Eq. (4.1)

are ∝ 1/Fn
0 and thus of O

(
N−n/2
c

)
. On the other hand, the

couplings gBBΦn with an odd number n of mesons derived
from the D and F terms of the Lagrangian Eq. (4.1) are

∝ gA/Fn
0 and thus of O

(
N 1−n/2
c

)
which is consistent with

what is expected from the large-Nc analysis on the quark-
gluon level [51]. It is thus tempting to classify any meson
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Fig. 2 Example of a seven meson exchange diagram of the baryon–
baryon interaction. Intermediate mesons are non-interacting

exchange diagram with arbitrary many intermediate mesons
by simply assigning these large-Nc scalings to the vertices
and counting the powers. This will, however, lead to decep-
tive results. The easiest way to see this is by considering
a diagram with an arbitrary number m of non-interacting
intermediate mesons all coupled by simple BBΦ vertices in
any order. An example of such a diagram with seven inter-
mediate mesons is shown in Fig. 2. Assigning a factor of√
Nc at each vertex leads to an overall large-Nc scaling of(√
Nc

)2m = Nm
c which is in conflict with the prediction that

the baryon–baryon potential can at most scale ∼ Nc [12].
In fact, the same problem already arises in the case of

nucleon-pion scattering, and in general baryon-meson scat-
tering [54,55], and it has been shown that consistency with
the large-Nc prediction is preserved by considering the con-
tracted SU(2N f ) spin-flavor algebra discussed in Sect. 2
including the corresponding degenerate baryon tower [18].
So on a formal level, the assignment that the exemplary m
meson exchange diagram scales as Nm

c is correct when con-
sidered in isolation. But it is the contracted spin-flavor sym-
metry that prevents the overall amplitude from blowing up
after including also all possible intermediate baryons from
the full baryon tower and after adding up any crossed partner
diagrams. The symmetry constraints then must ensure the
cancellation of the problematic parts.

For the case of the nucleon–nucleon potential, the authors
of Ref. [30] have shown explicitly that this works out as
expected at the level of two-boson exchange. In accordance
with the statements above, this required the inclusion of inter-
mediate Δ particles which are the only additional members
of the spin-isospin tower besides the nucleons (at Nc = 3).
For the present case of N f = 3 this means that the integration
of decuplet baryons as intermediate states is mandatory. This
constrains the value of the octet-decuplet-meson coupling to
the known large-Nc value as will be shown in this section.

Finally, the actual overall maximum large-Nc scaling of an
arbitrary n-meson exchange diagram can be determined by
the maximum allowed large-Nc scaling of a general BBΦn

vertex, which is given by O
(
N 1−n/2
c

)
[51]. So instead of

assigning 2n simple gBBΦ vertices of O
(√

Nc
)

to a dia-

gram such as the one given in Fig. 2, one just assigns a factor

of O
(
N 1−n/2
c

)
to each baryon line meaning that n-meson

exchange contributions count asO
(
N 2−n
c

)
. Note, that adding

more mesons in such diagrams does not only diminish their
weight from a large-Nc perspective, but also in terms of the
chiral power counting, Eq. (3.1), as each additional meson
adds another independent pseudoscalar loop momentum.

4.2.2 Decuplet Lagrangian

We use the description of the chiral decuplet-octet interaction
as presented in [56–59]. The decuplet fields can be collected
into a totally symmetric tensor

T111 = Δ++,

T112 = 1√
3
Δ+, T113 = 1√

3
Σ∗+, T133 = 1√

3
Ξ∗0,

T122 = 1√
3
Δ0, T123 = 1√

6
Σ∗0, T233 = 1√

3
Ξ∗−,

T222 = Δ−, T223 = 1√
3
Σ∗−, T333 = Ω−, (4.11)

such that the octet-decuplet-meson interaction Lagrangian
can be written as

LBTΦ = C

2F0

3∑
i, j,k,m,n=1

εimn

(
T̄i jk

(
S† · ∇

)
Φ jm Bkn + h.c.

)

(4.12)

with the spin transition operators

S1 = 1√
2

(−1 0 1√
3

0

0 − 1√
3

0 1

)
,

S2 = − i√
2

(
1 0 1√

3
0

0 1√
3

0 1

)
,

S3 =
⎛
⎝0

√
2
3 0 0

0 0
√

2
3 0

⎞
⎠ ,

(4.13)

connecting the two-component octet spinors and the four-
component decuplet spinors. These obey

Si S
†
j = 2

3
δi j − i

3
εi jkσk . (4.14)

Being spin-3/2 particles, the decuplet fields are given by
Rarita-Schwinger fields. However, as the present large-Nc

analysis allows for an effective static limit approach to the
baryon kinematics, we treat them non-relativistically from
the beginning. This is in contrast to the previous sections,
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where the non-relativistic expansions were performed just in
the course of the calculations. Therefore, we can now apply
the effective BBΦ vertex functions

gabcBBΦ (σ · q) (4.15)

with q being the three-momentum of an incoming meson and
the large-Nc coupling constant given by

gabcBBΦ = 6

5

gA
F0

tabc (4.16)

as determined in the last section. Of course, another quite nat-
ural choice would be to use heavy baryon chiral perturbation
theory for both the octet and the decuplet sector (HBCHPT,
see Refs. [56,60]). Either approach leads to the same con-
clusion when working to leading order in large-Nc, but the
present choice seems to be best suited for a concise presen-
tation. In this approach we can safely use

i

p0 − |p|2
2mB

+ iε

(
1 + O

(
1

Nc

))
(4.17)

as the common baryon propagator for both octet and decuplet
fields.

As in the previous sections, we strive to separate the spinor
fields from their SU(3) content by defining appropriate cou-
pling tensors. There are several ways to achieve this, and here
we choose a representation that is similar to the decomposi-
tion of octet fields as given, e. g. in Eqs. (3.3) and (3.22), that
is

Ti jk =
10∑
A=1

TA
(
θ A

)
i jk

, (4.18)

where from now on a Latin capital index represents a decuplet
flavor index running from one to ten, and the decuplet fields
are identified as

T1 = Δ++,

T2 = Δ+, T5 = Σ∗+, T8 = Ξ∗0,

T3 = Δ0, T6 = Σ∗0, T9 = Ξ∗−, (4.19)

T4 = Δ−, T7 = Σ∗−, T10 = Ω−.

The Lagrangian above can then be written

LBTΦ =
(
gAac
BTΦ

)†
T̄ A

(
S† · ∇

)
ΦcBa + h.c. (4.20)

It is quite inconvenient to explicitly derive the ten 3 × 3 × 3
matrices θ A from the tensor Ti jk , Eq. (4.11), instead one

might define

Θi jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if i = j = k,
1√
6
, if {i, j, k} ∈ σ ({1, 2, 3}) ,

1√
3
, otherwise

(4.21)

where σ denotes the permutation group, and the sets

P1 = {1, 1, 1}, P2 = {1, 1, 2},
P3 = {1, 2, 2}, P4 = {2, 2, 2},
P5 = {1, 1, 3}, P6 = {1, 2, 3}, (4.22)

P7 = {2, 2, 3}, P8 = {1, 3, 3},
P9 = {2, 3, 3}, P10 = {3, 3, 3},

which are just the independent indices of Ti jk , Eq. (4.11).
Then the coupling tensor can be written

gAac
BTΦ = 1√

2

C

2F0

3∑
m,n=1

∑
{i, j,k}
∈σ(PA)

εimnΘi jk
(
λc

)
mj

(
λa

)
nk .

(4.23)

4.2.3 Football diagram

Beginning with the football diagram, the resulting poten-
tial only contributes to the central part of the baryon–baryon
potential, V 1

0 in Eq. (2.11). It can be written as

V O

Ba Bb→BcBd = gaci jBBΦΦgbdi jBBΦΦV O

0

(
|q|2, MΦi , MΦ j , λ

)
,

(4.24)

where V O

0 is a function of |q|2, the involved mesons masses
MΦi and MΦ j , and the scale λ, see Ref. [42] for details. All
of these quantities scale as O (1) in the large-Nc limit, so it
is the coupling that solely determines the large-Nc behavior.
As gBBΦΦ ∼ O (1/Nc), this potential is of O

(
1/N 2

c

)
and

cleary suppressed in comparison to other contributions.
Assuming degenerate meson masses, the implicit sum

over the indices i, j can be performed using Eq. (B.7) which
yields

V O

Ba Bb→BcBd = 3

4F4
0

f ace f bdeV O

0

(
|q|2, MΦ, λ

)
. (4.25)

Relating to the Hartree potential Eq. (2.10), this contribution
is part of the unknown expansion of v

(T )
0,1 in the momenta and

hence consistent with the predictions.
Moreover, the more general class of “football” like dia-

grams with the same BBΦn vertex at each baryon line is of
O

(
N 2−n
c

)
if n is odd but of O

(
N−n
c

)
if n is even. Therefore,
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Fig. 3 Triangle diagrams. Dashed lines denote exchange mesons, solid
lines baryons. Double lines denote either octet or decuplet intermediate
baryons. In the latter case, the flavor index e should be replaced by a
capital E to indicate a range from 1 to 10

the large-Nc scaling of even n-meson exchange football dia-
grams in chiral perturbation theory is less than the allowed
O

(
N 2−n
c

)
.

4.2.4 Triangle diagrams

Figure 3 shows collectively the triangle diagrams for both the
intermediate octet and decuplet case. As the football diagram,
the triangle diagrams contribute to the central potential only
and it can be written as a product of three coupling tensors
and some function of |q|2, the meson masses, and the scale
λ

V�/�
Ba Bb→BcBd ∼ g3

abcdV
�
0

(
|q|2, MΦi , MΦ j , λ

)
, (4.26)

where g3
abcd symbollically stands for some appropriate com-

bination of gBBΦ , gBTΦ , and gBBΦΦ . The first thing to
show is that the function V�

0 up to leading order in 1/Nc

is the same for both triangle diagrams and for both interme-
diate octet and decuplet. The loop integral involves a non-
relativistic baryon propagator as given in Eq. (4.17), two
meson propagators, which are the same in any of these dia-
grams, and some spin-momentum structure from the vertices.
Let Ṽ�/�

0 (k′, q, MΦi , MΦ j ) collect all of these contributions
except for the baryon propagators and the coupling tensors,
then the potentials corresponding to the diagrams in Fig. 3
are given by

V�
0 =

∫
d3k′

(2π)3

∫
dk′

0

2π

Ṽ�
0 (k′, q, MΦi , MΦ j )

−k′
0 + |p|2

2mB
− |p−k′|2

2mB

,

V�
0 =

∫
d3k′

(2π)3

∫
dk′

0

2π

Ṽ�
0 (k′, q, MΦi , MΦ j )

−k′
0 − q0 + |p|2

2mB
− |p+k′+q|2

2mB

,

(4.27)

using the center-of-mass momenta p1 = (|p|2/(2mB),p
)

and p2 = (|p|2/(2mB),−p
)
. Note that for the sake of brevity

we omit factors (1 + O (1/Nc)) in this and the following
equation below. Written in this form, it is clear that only the

imaginary parts of Ṽ�/�
0 contribute to the potential which

follows from the Kramers-Kronig relations and the contribu-
tions from the baryon propagators are simply given by their
principal values P

V�
0 = −i

∫
d3k′
(2π)3 P

⎡
⎣∫

dk′
0

2π

Im
[
Ṽ�

0 (k′, q, MΦi , MΦ j )
]

k′
0

⎤
⎦ ,

V�
0 = −i

∫
d3k′
(2π)3 P

⎡
⎣∫

dk′
0

2π

Im
[
Ṽ�

0 (k′, q, MΦi , MΦ j )
]

k′
0

⎤
⎦ ,

(4.28)

meaning that V�
0 = V�

0 if Ṽ�
0 = Ṽ�

0 . To leading order in
1/Nc this is indeed the case considering octets and decuplets
individually. The only difference is a factor of 2/3 occur-
ing in the decuplet case stemming from the spin structure in
Ṽ�/�

0 which can be pulled out and put in front of V�/�
0 .

The resulting potential is then given by

V�,�
Ba Bb→BcBd = − i

[(
gaeiBBΦgcjeBBΦ + 2

3
gEaiBTΦgEcjBTΦ

)
gbdi jBBΦΦ

+
(
gbejBBΦgdieBBΦ + 2

3
gEbjBTΦgEdiBTΦ

)
gacjiBBΦΦ

]

× V�
0

(
|q|2, MΦi , MΦ j , λ

)

× (1 + O(
1

Nc
)),

(4.29)

where the implicit summation runs from 1 . . . 8 in the case of
i, j, e, and from 1 . . . 10 in the case of the index E . The
explicitely spelled out potential V�

0 can be found in the
appendix of Ref. [42]. The large-Nc scaling determined from
the coupling tensors is given by O (1), meaning that its con-
tribution to the central potential is more important than the
football contribution.

4.2.5 Box diagrams

Box diagrams including their crossed partners are more
involved as the other TME diagrams. The amplitudes of ordi-
nary box diagrams contain two types of poles in the complex
plane stemming from the baryon and the meson propagators,
respectively. The former contribution, however, corresponds
just to the first iterate of the Lippmann–Schwinger equation
and is thus reducible. The genuine contributions to the TME
potential are therefore found by considering the poles of the
meson propagators only.

The other thing to note is that a quick view on the diagrams
suggests that the potential being ∝ (gBBΦ)4 seemingly is of
O

(
N 2
c

)
which challenges the assumption that the potential
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Fig. 4 Box and crossed box diagrams. Dashed lines denote exchange
mesons, solid lines baryons. Double lines denote either octet or decuplet
intermediate baryons. For each intermediate decuplet, the flavor index
should be replaced by its capital counterpart to indicate a range from 1
to 10

should be of O (Nc). This is exactly the kind of contradic-
tion that has to be remedied by symmetry constraints after
including decuplet baryons and combining ordinary box and
crossed box diagrams, Fig. 4.

Proceeding in a similar way as for the case of the trian-
gles diagrams, we assume that the resulting potential of both
box and crossed box diagrams can be split up into a product
of coupling tensors carrying the information on the flavor
structure and some function V�

0

V�/��
Ba Bb→BcBd ∼ (

gBBΦ/BTΦ

)4
V�

0

(
|q|2, MΦi , MΦ j , λ

)
.

(4.30)

This function V�
0 is the same for each diagram and both

intermediate octet and decuplet baryons to leading order in
1/Nc up to some prefactors, as has to be shown. Actually,
these yet-to-be-determined prefactors will include a relative
minus sign between box and crossed box diagrams that is
crucial for the cancellation of the contradictory N 2

c contribu-
tions.

V�
0 =

∫
d3k′

(2π)3

∫
dk′

0

2π

Ṽ�
0 (k′, q, MΦi , MΦ j )(

−k′
0 + |p|2

2mB
− |p−k′|2

2mB

) (
k′

0 + |p|2
2mB

− |p−k′|2
2mB

)
(

1 + O
(

1

Nc

))

V ��
0 =

∫
d3k′

(2π)3

∫
dk′

0

2π

Ṽ ��
0 (k′, q, MΦi , MΦ j )(

−k′
0 + |p|2

2mB
− |p−k′|2

2mB

) (
−k′

0 − q0 + |p|2
2mB

− |p+k′+q|2
2mB

)
(

1 + O
(

1

Nc

))
(4.31)

This can be seen when writing down the loop integrals
using the notation established in the previous subsection,
see Eq. (4.31) where the functions Ṽ�

0 and Ṽ ��
0 encapsulate

the meson propagators that are identical in both cases, and
the vertex functions excluding the coupling tensors. Regard-
ing the k′

0 integration, we can use the same argument as in
the triangle case and substitute the principal values P

V�
0 = −i

∫
d3k′
(2π)3 P

⎡
⎣∫

dk′
0

2π

Im
[
Ṽ�

0 (k′, q, MΦi , MΦ j )
]

(
k′

0

)2

⎤
⎦ ,

V ��
0 = i

∫
d3k′
(2π)3 P

⎡
⎣∫

dk′
0

2π

Im
[
Ṽ ��

0 (k′, q, MΦi , MΦ j )
]

(
k′

0

)2

⎤
⎦ ,

(4.32)

giving the relative minus sign mentioned above and a factor of
(1+O (1/Nc)) is implied. Again, without explicitly perform-
ing the integrals, we find that V�

0 = −V ��
0 if Ṽ�

0 = Ṽ ��
0 . As

the meson propagators are the same in both cases, this is just
a matter of the vertex functions which involve Pauli matrices
in the case of intermediate octet baryons and the spin transi-
tion operators given in Eq. (4.13) in the case of intermediate
decuplets. The difference to leading order in 1/Nc is just a
factor of 2/3 for each baryon line containing an intermediate
decuplet. As in the case of the triangle diagrams, we regard
this as a prefactor associated with the coupling tensors, so
the total potential stemming from ordinary and crossed box
diagrams of both intermediate octet and decuplet baryons is
given by
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V�,��
Ba Bb→BcBd =

(
g f jb
BBΦ

g f di
BBΦ

− g f ib
BBΦ

g f d j
BBΦ

+ 2

3

[(
gFbjBTΦ

)†
gFdiBTΦ −

(
gFbiBTΦ

)†
gFd jBTΦ

])

×
(
geiaBBΦgecjBBΦ

+ 2

3

(
gEaiBTΦ

)†
gEcjBTΦ

)

× V�
0

(
|q|2, MΦi , MΦ j , λ

)

×
(

1 + O
(

1

Nc

))
, (4.33)

where implicit sums run over i, j, e, f = 1 . . . 8 and
E, F = 1 . . . 10. The full expression of V�

0 is presented
in the Appendix of Ref. [42] and leads to a central, spin–
spin and tensorial part. This leading order expression being
seemingly of O

(
N 2
c

)
hence must vanish in order to preserve

consistency. This is achieved if the coupling constantC of the
baryon-decuplet Lagrangian Eq. (4.12) takes on the large-Nc

value

C = 6

5
gA

(
1 + O

(
1

N 2
c

))
, (4.34)

which is equivalent to the ratioC/D = 2 that is known in the
literature [34,54,55]. Note that the correction of O

(
1/N 2

c

)
is neccessary to obtain the overall scaling of O (1) that is
allowed for the two-meson exchange contribution.

5 Summary

Starting from the large-Nc baryon–baryon potential derived
from a Hartree-like Hamiltonian, we have studied the large-
Nc dependence of the baryon–baryon potential derived from
SU(3) chiral perturbation theory assuming baryon momenta
and strangeness of O (1). Here, we summarize the results:

– The baryon–baryon potential is ofO (Nc) and dominated
by V 0

0 , V 1
0 , V 1

σ , V 1
T , see Eq. (2.11), corresponding to the

central, spin–spin, and tensorial part of the potential. This
is in agreement with the nucleon–nucleon case except
for the central part ∼ V 1

0 , which in the nucleon–nucleon
case is of subleading order [28,29]. The lifting of this
term to O (Nc) in the N f = 3 case is a particularity of
the assumption that the large-Nc equivalents of the real-
world nucleons and hyperons are those with strangeness
of O (1) leading to the more complex scalings of the
generator T̂a given in Eq. (2.4) and hence of the term
∼ v

(T )
0,1 in the large-Nc potential, Eq. (2.10).

– The contact terms of leading order in chiral perturbation
theory, see Sect. 3.2, generate a potential that includes
central, spin–spin, spin-orbit, and tensorial parts. How-
ever, only the central and spin–spin parts ∼ cabcdS and

∼ cabcdT of this potential are indeed of O (Nc), while all
other contributions are suppressed by a factor 1/m2

B . The
contact terms alone hence do not generate the full lead-
ing O (Nc) potential, but only terms corresponding to
V 0

0 , V 1
0 , and V 1

σ in Eq. (2.11), while an O (Nc) tensorial
part is missing. Moreover, the spin-orbit part ∼ cabcd5 is
of subleading O (1/Nc) as expected. What these contact
terms also add is a partial expansion of the large-Nc coef-
ficients in Eq. (2.10) in the momenta, which can not be
determined from the large-Nc Hartree scenario. All coef-
ficients cabcdi with i 
= {S, T, 5} belong to this category.

– The leading O (Nc) contact contributions ∼ cabcdS and
∼ cabcdT consist of linear combinations of six of the orig-
inal 15 low-energy constants of the contact Lagrangian.
In Sect. 3.3, we derived sum rules valid at leading order
in 1/Nc allowing to reduce the number of indepen-
dent parameters to three. Applying these sum rules to
the hyperon–nucleon potential studied in Ref. [44], see
Sect. 3.4, we were able to use the best-fit values of the
hyperon–nucleon potentialsCΛΛ

1S0 ,CΛΛ
3S1 , andCΛΣ

3S1 to pre-
dict the potentials CΣΣ

1S0 and CΣΣ
3S1 finding striking agree-

ment.
– We have also studied higher order contact terms with

explicit insertions of the quark mass matrix. In general,
the resulting potential is structurally similar to the leading
order one, but with an extra suppression of O (ε/Nc), as
these terms involve contributions from SU(3) symmetry
breaking of the order ε. Note that for Nc = 3 the value of
ε/Nc has roughly the same magnitude as 1/N 2

c . However,
confronting the hyperon–nucleon potential from chiral
perturbation theory with experimental data, such terms
can not be neglected, see, e.g., Ref. [61].

– A baryon–baryon potential derived from SU(3) chiral
perturbation theory must include one-meson exchange
contributions in order to fully reproduce the leading order
large-Nc potential, as the tensorial part V 1

T of O (Nc) can
not be generated by the contact terms alone, which only
generate a tensorial part ofO (1/Nc). This is just in accor-
dance with chiral power counting which also requires the
incusion of leading order contact interactions and one-
meson exchanges, see Eq. (3.1).

– Matching the one-meson exchange contributions with the
large-Nc potential yields the already known ratio F/D =
2/3

(
1 + O

(
1/N 2

c

))
, see e. g. [21]. We also derived an

effective coupling gBBΦ in terms of gA = F + D that is
valid at leading order in 1/Nc. In the literature it is com-
mon to use hyperon–nucleon and hyperon-hyperon cou-
plings fBBΦ expressed in terms of fN Nπ = gA/(2F0)

and α = F/(F + D) based on Ref. [62]. The effec-
tive large-Nc coupling gBBΦ just reproduces these fBBΦ

after forming approriate isospin combinations and setting
α = 2/5.
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– It is also of relevance that the full large-Nc scaling of
O (Nc) in the one-meson exchange case is only achieved
by exchanging pions, while exchanging kaons are of
O (1) and exchanging η’s are even more suppressed and
of O (1/Nc) which is a consequence of the choice to
match real-world baryons with those large-Nc baryons
that have strangeness of O (1), see Eq. (2.4). At the level
of quarks and gluons, this is just a result of combina-
torics, as with this choice there are about Nc choices to
pick up an up or down quark, but only O (1) choices to
find a strange quark.

– The large-Nc scalings of many-meson exchange contri-
butions can not be assessed by means of a naive power
counting of the involved meson-baryon couplings alone,
as this might lead to results that contradict the assump-
tion that the baryon–baryon potential is of O (Nc). How-
ever, imposing spin-flavor symmetry and considering all
diagrams of a given type including the full baryon tower
retains consistency. Summing over all n-meson exchange
diagrams of a given type yields a contribution that at most
scales as O

(
N 2−n
c

)
.

– For the TME contributions in SU(3) chiral perturbation
theory, we showed this explicitly. In this case, the inclu-
sion of decuplet baryons is mandatory, and a cancellation
between the deceptive O

(
N 2
c

)
contributions of the box

and crossed box diagrams appears if the large-Nc ratio
C/D = 2 in addition to the ratio F/D = 2/3. To leading
order it is thus possible to describe one-meson and two-
meson exchange diagrams by a single parameter, e. g. by
setting D = 3/5gA, F = 2/5gA, and C = 6/5gA.

– Among the TME contributions, the box, crossed box,
and triangle diagrams are of O (1), while the football
diagrams are of subleading O

(
1/N 2

c

)
, which is a partic-

ularity of chiral perturbation theory when the number of
exchanged mesons is even.

The results suggest that a simultaneous expansion in large-Nc

and chiral power counting can be used to reduce the number
of ingredients to the baryon–baryon potential at a given order.
While it is clear that at leading order the inclusion of contact
interactions ∼ cS and ∼ cT and one-pion exchange diagrams
is obligatory, any extension to higher orders depends on the
weight that is assigned to powers 1/Nc in relation to chiral
power counting. For instance, one might count powers of
1/Nc ∼ O

(
q2

)
as argued by the authors of Refs. [63,64] for

the mesonic sector.
However, it seems that such an approach is misleading in

the baryonic sector, because some contributions then appear
to be overly suppressed. For instance, in this scheme the
SU(3) symmetry breaking contact terms would count as
O

(
q2/Nc

)
and would show up only way beyond the 1/m2

B
corrections of the leading order terms (∼ q0/Nc) and the
box, crossed box, and triangle TME diagrams (∼ q2N 0

c ).

However, when confronted with the (still sparse) experimen-
tal data of hyperon–nucleon and hyperon-hyperon scattering,
the importance of these SU(3) symmetry breaking contact
terms is evident [61].

The problem here seems to be that such a simultaneous
power counting scheme doubly suppresses contributions that
are subleading in terms of both chiral power counting and
the 1/Nc expansion, even though they are suppressed for
the same reason. This applies, for example, to the 1/m2

B
corrections that are treated as suppression factors in the non-
relativistic expansion of chiral perturbation theory relegating
such contributions to higher order, but are also O

(
1/N 2

c

)
,

which is basically the same statement. Clearly, this also holds
for the SU(3) breaking terms mentioned above, which are
of O

(
q2

)
in terms of chiral power counting because they

contain M and hence signal explicit SU(3) breaking, and
are of O (ε/Nc) because they explicitly break the large-Nc

contracted SU(6) symmetry. In a sense, the power counting
of chiral perturbation theory and the large-Nc limit just go
hand in hand with each other regarding these contributions,
and what this study shows is that both schemes are mutually
consistent.

Consequently, a more cautious approach would be to use
the results of the large-Nc analysis to assign different weights
only among the contributions at a given chiral order. So at
chiral order q0, the large-Nc analysis reveals that the contact
terms ∼ cS and ∼ cT and one-pion exchange diagrams are
more important than one-kaon exchange diagrams, which in
turn are more important than the 1/m2

B contributions and one-
η exchange diagrams. At chiral order q2, the SU(3) breaking
contact terms and TME box, crossed box, and triangle dia-
grams are more relevant than the TME football diagram.
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A SU(6) commutation relations

The 35 generators given in Eq. (2.1) obey the commutation
relations [19]

[
Ŝ i , T̂ a

]
= 0,[

Ŝ i , Ŝ j
]

= iεi jk Ŝk,
[
T̂ a, T̂ b

]
= i f abcT̂ c, (A.1)[

Ŝ i , Ĝ ja
]

= iεi jk Ĝka,
[
T̂a, Ĝib

]
= i f abcĜic,

and[
Ĝia, Ĝ jb

]
= i

4
δi j f abcT̂ c + i

6
δabεi jk Ŝk + i

2
εi jkdabcĜkc.

(A.2)

B SU(3) properties and tensor relations

The matching procedure of the previous sections involved
manipulations of traces over Gell-Mann matrices and of the
two third rank tensors f and d of the respective SU(3) alge-
bra. Throughout this paper, we use the symbols

habc = dabc + i f abc,

tabc = 1

2
dabc + i

3
f abc,

λa1a2...ai = 1

4

〈
λa1λa1 . . . λai

〉
, (B.1)

which altogether are cyclic in their respective indices. Here,
we summerize the most important properties and relations
used during our calculations taken from Refs. [65–67]. The
tensors f and d are defined by the commutators and anti-
commutators of the matrices

[
λa, λb

]
= 2i f abcλc,

{
λa, λb

}
= 4

3
δab1 + 2dabcλc,

λaλb = 2

3
δab1 + habcλc. (B.2)

Traces of sequences of Gell-Mann matrices are given by

〈
λa

〉 = 0,

〈
λaλb

〉
= 2δab,〈

λaλbλc
〉
= 2habc,

〈
λaλbλcλd

〉
= 4

3
δabδcd + 2habkhcdk,

〈
λaλbλcλdλe

〉
= 4

3
δabhcde + 4

3
δdehabc

+ 2habkhkclhlde. (B.3)

The tensors f and d obey the Jacobi identities

f abe f cde − f ace f bde + f bce f ade = 0,

dabe f cde + dace f bde + dbce f ade = 0, (B.4)

Another useful relation can be found after some algebra

6tacetbde = 25

12
λacbd+ 5

12
λacdb+ 5

12
λcabd+ 1

12
λcadb−δacδbd .

(B.5)

As it is relevant with respect to the matching procedure, we
replicate the non-vanishing values of the SU(3) structure con-
stants (up to permutations):

f123 = 1,

f147 = − f156 = f246 = f257 = f345 = − f367 = 1

2
,

f458 = f678 =
√

3

2
,

d146 = d157 = d256 = d344 = d355 = 1

2
,

d247 = d366 = d377 = −1

2
,

d118 = d228 = d338 = −d888 = 1√
3
,

d448 = d558 = d668 = d778 = − 1

2
√

3
. (B.6)

For simplifying two-meson exchange contributions, we
also used

f acd f bcd = 3δab, (B.7)

and

f ia j f jbk f kci = −3

2
f abc,

diaj f jbk f kci = −3

2
dabc,

diaj d jbk f kci = 5

6
f abc,

diaj d jbkdkci = −1

2
dabc. (B.8)
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Table 2 Equivalence of Γi and
Mi (p2, p1) as defined in
Eq. (C.1)

Γi Mi (p2, p1)

1 1 + (p1−p2)2

8m2 + i
4m2 (p1 × p2) · σ

γ 0 1 + (p1+p2)2

8m2 − i
4m2 (p1 × p2) · σ

γ i (p1+p2)i

2m + i
2m ((p1 − p2) × σ )i

σ 0 j i (p1−p2)i

2m − 1
2m ((p1 + p2) × σ )i

σ i j
{(

1 + (p1+p2)2

8m2

)
σ k − 1

4m2

[
i (p1 × p2)

k + pk1 (p2 · σ ) + pk2 (p1 · σ )
]}

εi jk

γ iγ5

(
1 + (p1−p2)2

8m2

)
σ i + 1

4m2

[
i (p1 × p2)

i + pi1 (p2 · σ ) + pi2 (p1 · σ )
]

γ 0γ5
1

2m (p1 + p2) · σ + q0
8m2 (p1 − p2) · σ

γ 5 1
2m (p1 − p2) · σ + q0

8m2 (p1 + p2) · σ

C Non-relativistic expansion of Dirac tensor matrix
elements

Any Dirac field bilinear with any element of the Clifford alge-
bra Γi , Eq. (3.2), can be rewritten in terms of two-component
Pauli spinors χs

ū(p2, s2)Γi u(p1, s2) = χ†
s2
Mi (p2, p1)χs1

, (C.1)

where the free positive energy Dirac spinors u(p, s) is given
by

u(p, s) =
√

Ep + m

2m

(
χs

σ ·p
Ep+mχs

)
(C.2)

with Ep = √
p2 + m2. Expanding the matrix elements

for low-energy transfers q0 yields the expressions given in
Table 2.
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