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1 Introduction

Big Bang nucleosynthesis (BBN) is a fine laboratory for studying possible variations of the
fundamental constants of nature as well as to search for new physics effects, see e.g. [1–11].
Here, we will consider the first issue, namely the bounds on variations of certain parameters
from the primordial element abundances. Mostly, one has studied the variation of the
electromagnetic fine-structure constant αEM (for a recent work with many references, see [12])
or of the light quark masses mu, md (or alternatively, the Higgs vacuum expectation value
(VEV) v), for very recent works see refs. [13, 14].

However, the nucleon and thus the nuclei contain a certain amount of strangeness
as indicated by the non-vanishing matrix elements ⟨N |mss̄s|N⟩ or ⟨N |mss̄γµs|N⟩, just to
mention two [15, 16]. Since the nuclei that take part in the BBN reaction network are made
of neutrons and protons, their masses are also sensitive to the amount of strangeness in
the nucleon and similarly, the mass differences of the pertinent reactions depend on the
precise value of the matrix-element ⟨N |mss̄s|N⟩. Such effects have not been considered
before. Note that we are not talking about hypernuclei here, which are nuclei that contain
one or two hyperons.

There are many other possible sources of strangeness in the BBN reaction network. First,
kaon loops could influence the vector coupling constant that plays a role in neutron β-decay.
Such effects have been shown to be tiny [17] and can thus be neglected. Further, in the
boson-exchange models of the nuclear force that underlie the modeling of atomic nuclei,
strangeness could enter via η-exchanges or πK, KK loops. While the η coupling to the
nucleon is very small and such effects can be neglected, see e.g. [18] and references therein,
loops involving kaons are of such short distance, that they can effectively be absorbed in the
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four-nucleon contact interactions that are used in the modern theory of nuclear forces [19].
As it turns out, the dominant strangeness effect in BBN is due to the mass shift ⟨N |mss̄s|N⟩,
which enters the nucleon mass via the trace anomaly of the energy-momentum tensor. As
will be shown below, this matrix element is of the order of 50 MeV, and such a mass shift
can strongly influence the BBN network.

The manuscript is organized as follows. In section 2 we discuss the determination of the
matrix element ⟨N |mss̄s|N⟩ and give the bounds on its value. Section 3 contains the details
of the calculational procedure. First, we consider the nucleon mass dependence of nuclear
quantities like binding energies and scattering parameters, making use of the results from
pionless EFT as well as Nuclear Lattice EFT (NLEFT). Second, we discuss the modeling
of the nucleon mass dependence of nuclear reaction rates, in particular of the leading eight
reactions in the BBN network. We also present the temperature-dependent reaction rates
based on various inputs from NLEFT and/or pionless EFT. This we consider the main
systematic error of the calculation. In section 4, we present and discuss our results on the
nucleon mass variations consistent with the observed abundances and the consequences for
the strangeness content of the nucleon. Some technicalities are relegated to the appendices.

2 Strangeness in the nucleon

The quark mass contribution to the nucleon mass (we neglect the heavy flavors c, b here) can
be derived from the mass term of the three-flavor QCD Hamiltonian,

Hmass
QCD = mu ūu + md d̄d + ms s̄s . (2.1)

The trace anomaly of the energy-momentum tensor Θµν allows one to quantify the effect
of the quark mass terms on the nucleon mass, see e.g. refs. [20–22],

⟨N |Θµ
µ|N⟩ =

〈
N

∣∣∣∣−β(g)
g3 Ga

µνGa,µν

∣∣∣∣ N

〉
+ ⟨N |muūu + mdd̄d + mss̄s|N⟩ (2.2)

where |N⟩ is the nucleon spinor, β is the QCD β-function, g the strong coupling constant,
Ga

µν the non-abelian gluon field strength tensor, a = 1, . . . , 8 is a color index and we have
neglected the anomalous dimension contribution to the quark mass term for simplicity. The
first term related to the QCD gauge fields in eq. (2.2) generates the bulk of the nucleon
mass, that is the nucleon mass in the three-flavor chiral limit, the famous “mass without
mass” [23, 24]. The quark mass contribution to the nucleon mass is encoded in the second
term in eq. (2.2), where the first two terms from the light quarks u, d are related to the
well-known pion-nucleon sigma term, σπN , that can be precisely determined from pion-nucleon
scattering data using Roy-Steiner equations. Its most recent and accurate determination
including isospin-breaking effects gives σπN = 59.0(3.5)MeV [25]. The strange sigma-term,
that gives the strangeness contribution of the nucleon mass,

σs = ⟨N |ms s̄s|N⟩ , (2.3)

is known much less precisely and can be determined using lattice QCD. The FLAG group
quotes an average of σs = 44.9(6.4)MeV for simulations with Nf = 2 + 1 flavors and
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σs = 41.0(8.8)MeV for simulations with Nf = 2 + 1 + 1 flavors [16]. However, looking at the
individual results that enter these averages, one sees that these span a range from −40 to
160MeV within the given uncertainties. We will therefore vary this matrix element in the
range from −94 to 94MeV, corresponding to changes of at most 10% of the nucleon mass.
This variation will not only modify the nucleon mass (the proton and the neutron mass
equally, since we are dealing with an isoscalar operator) but consequently also the masses of
the involved nuclei. This, in turn, affects the Q-values, meaning the differences between the
masses of incoming and outgoing particles, of the various reactions in the network. From
imposing consistency with experimental data for primordial abundances, one can then also
get bounds on the possible variations of the strange quark mass, if one assumes that the
strange condensate in the nucleon remains unchanged. Note, however, that the quark masses
and the condensate are scale- and scheme-dependent quantities, so that only their product is
an observable. Thus, it is customary to use the MS scheme at the scale µ = 2GeV when one
discusses the light quark masses. In what follows, we will vary the strange sigma-term and
thus the nucleon mass and derive bounds on such variations from the observed primordial
abundances. More precisely, if we assume the strange quark condensate to be constant, we
can extract a possible variation of the strange quark mass from the nucleon mass variation via

|δms | =
∣∣∣∣∆ms

ms

∣∣∣∣ = ∆mN

σs
(2.4)

3 Calculational procedure

In this section, we discuss how changes in the nucleon mass affect the BBN reaction network.
We heavily borrow from the formalism laid out in refs. [12, 26] and present here only the details
required to investigate the influence of nucleon mass shifts on the primordial abundances.

3.1 Nucleon mass dependence of binding energies and other quantities

Fortunately, for the leading nuclear reaction n+ p → d+γ a detailed and accurate theoretical
description within the framework of pionless Effective Field Theory (EFT) exists, see refs. [27,
28]. Accordingly, one can calculate the variation of the cross section with a variation of the
nucleon mass mN and the leading effective range parameters for np-scattering: as, rs, at, rt

denoting the singlet (1S0) scattering length, the corresponding effective range, the triplet
(3S1) scattering length and corresponding effective range, respectively.

In order to determine the variation of the effective range parameters with a variation
of the nucleon mass we calculated the low energy np scattering on the basis on the next-to-
next-to-next-to leading order (N3LO) chiral effective field theory Hamiltonian implemented
on the lattice consisting of the one-pion exchange potential and various contact interactions
to account for the short range behavior, similar to what was done in earlier works [29–31].
The calculation was done on a three-dimensional lattice with L = 45 (in lattice units) in
each spatial dimension with a lattice spacing a = 1.32 fm. Note that in the framework of
Nuclear Lattice Effective Field Theory (NLEFT) the lattice spacing works as a regulator
and is not meant to approach zero. The contact operators at given orders are listed, e.g.,
in [32] and the corresponding low-energy constants (LECs) were found from a fit to data
for the phase shifts in the 1S0 and 3S1 − 3D1 channels.
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NLEFT

X0 a b c

a−1
s −8.3286(4)MeV −13.437(1) 12.802(9) −12.910(163)
rs 2.660 53(1) fm −0.8247(1) 0.872(1) −0.855(15)

a−1
t 36.3849(1)MeV 2.5207(1) −2.379(2) 2.563(32)
rt 1.740 921(1) fm −0.652 77(1) 0.905(1) −0.931(12)
Bd 2.208 96(9)MeV 5.276(1) 2.568(8) −8.240(158)

Square-well potential

a−1
s −8.310(8)MeV −12.182(30) 11.840(212) −8.963(3852)
rs 2.7300(2) fm −0.519(1) 0.498(9) −0.377(164)

a−1
t 36.4147(3)MeV 2.2105(2) −2.141(1) 2.165(27)
rt 1.778 992(1) fm −0.423 76(4) 0.3949(3) −0.403(5)
Bd 2.224 22(7)MeV 4.597(1) 1.347(6) −5.733(117)

Table 1. Parameters for cubic polynomial fits, see eq. (3.2), to nucleon-nucleon scattering observables
calculated in NLEFT or using a square-well potential. Empirical values corresponding to the parameters
listed under X0 can be found in tables 6, 8 of appendix A.

For comparison we performed the same calculation with a simple square-well potential,
as earlier done e.g. in ref. [33], where the width and depth were adjusted to experimental
values at the nominal nucleon mass. For details, see appendix A.

Note that in both calculations we assume the interaction to be nucleon-mass independent
and the variation of the scattering parameters is due to the change of the reduced mass
in the kinetic energy only. Varying the strange quark matrix element between −94MeV
to 94MeV as described in section 2, is roughly equivalent to changing the nucleon mass
by ±10%, so we define

mN (δmN ) = mN · (1 + δmN ) , (3.1)

where mN = 938.92MeV is the nominal value of the average nucleon mass [34].
The variation of the effective range parameters is illustrated in figure 1. We have fitted

a cubic polynomial like

X(δmN ) = X0 ·
(
1 + aδmN

+ bδ2
mN

+ cδ3
mN

)
(3.2)

to the nucleon-nucleon scattering parameters. The fit parameters and corresponding errors
are listed in table 1. Note that we ignored the systematic errors in both calculations as we
estimate the systematic error by the difference between the two methods.

It is worth noting that the inverse singlet scattering length changes sign for δmN ≃ 9%
and the slope of the variation in the triplet scattering length is about half of the slope
of the deuteron binding energy, consistent with the leading order result Bd = 1/(mN a2

t ).
The changes in the effective range parameters are more modest, as one would also expect
on dimensional grounds.
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Figure 1. Variation of the np effective range expansion parameters with the nucleon mass: mN (δmN
) =

mN (1+δmN
), where mN is the nominal nucleon mass and δmN

is the fractional change; as is the singlet
scattering length (orange), rs is the corresponding effective range (green), at is the triplet scattering
length (pink), rt is the corresponding effective range (brown), Bd is the deuteron binding energy
(purple). The closed symbols and solid lines refer to the NLEFT calculation of the nucleon-nucleon
scattering parameters and the corresponding cubic polynomial fits, while the open symbols and dashed
lines present the results obtained with the square-well potential and the corresponding fits.

The effect of changes in the nucleon mass on the n + p → d + γ rate as a function
of the temperature is appreciable, see figure 2, in particular for temperatures well below
T9 = 1, with T9 := T/(109 K). However, the n + p → d + γ rate is mostly relevant at
high temperatures so the effect from variations in this rate on the element abundances may
not be as great as suggested by the figure. The main effect from changes in the deuteron
binding energy will come from the inverse rate d + γ → n + p as this defines the start of
BBN (the deuterium bottleneck).

No detailed theoretical description is available for other nuclear reactions in the BBN
network. However, we can make a statement concerning the variation of the binding energies
of three- and four nucleon systems with a variation of the singlet scattering length as and
the deuteron binding energy Bd. To this end we invoke the relations cited in eq. (5.2) in
ref. [35] quoting [36]:

Kas
B3He

= 0.12± 0.01 , KBd
B3He

= 1.41± 0.01 ;

Kas
B4He

= 0.037± 0.011 , KBd
B4He

= 0.74± 0.22 , (3.3)
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Figure 2. Variation of the rate of the n + p → d + γ reaction as a function of the temperature
T9 = T/(109 K). In red the variation based on the effective range parameters calculated in the NLEFT
framework is shown. The green curves are the results obtained with the simple square well potential.
The black curve reflects the rate calculated with the nominal mass mN , the dashed lines correspond
to δmN

= ±0.05 and the solid lines to δmN
= ±0.10.

where
Kx

y := x

y

∆y

∆x
. (3.4)

From the parameter fits listed in table 1 and displayed in figure 1 we find for the NLEFT
calculation

KmN
as

= −KmN

1/as
= 13.437± 0.001 , KmN

Bd
= 5.276± 0.001 , (3.5)

and from the results obtained with the square-well potential

KmN
as

= −KmN

1/as
= 12.18± 0.03 , KmN

Bd
= 4.597± 0.001 . (3.6)

We then obtain

KmN
B3He

= KmN
as

Kas
B3He

+ KmN
Bd

KBd
B3He

= 9.05± 0.14 ,

KmN
B4He

= KmN
as

Kas
B4He

+ KmN
Bd

KBd
B4He

= 4.4± 1.2 ,
(3.7)

from the NLEFT np-parameters and for the square-well potential calculation

KmN
B3He

= KmN
as

Kas
B3He

+ KmN
Bd

KBd
B3He

= 7.94± 0.13 ,

KmN
B4He

= KmN
as

Kas
B4He

+ KmN
Bd

KBd
B4He

= 3.9± 1.0 .
(3.8)

Although the resulting K-factors for 3He differ by about 10%, in the case of 4He, the
K-factors agree within the uncertainties. We note that these are approximate relations,
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Figure 3. The binding energies for the three-nucleon system (left) and Helium-4 (right) calculated in
the framework of NLEFT for a variation of the nucleon mass, δmN

, between ±10%. The solid lines
are the corresponding cubic polynomial fits to the data, as given in eq. (3.2).

as they ignore any effective range effects in the binding energies of the light nuclei. Using
these K-factors, we find for the change of the binding energy as a function of the change
in the nucleon mass in linear approximation

∆B3He =
B3He
mN

KmN
B3He

∆mN

and thus

B3He(δmN ) = B3He
(
1 + KmN

B3He
δmN

)
,

where δmN := ∆mN /mN is the fractional change in the nucleon mass. Likewise

B4He(δmN ) = B4He
(
1 + KmN

B4He
δmN

)
.

In both cases the dependence via the deuteron binding energy dominates.
Alternatively, we calculated the variation of the binding energies of the three and four

nucleon system within NLEFT. In both cases the same action as described in [37] is used, and
the binding energies are calculated on a lattice with L = 10 (in lattice units) in each spatial
dimension and a lattice spacing a = 1.32 fm. For the three nucleon system, we calculate the
binding energies non-perturbatively, while for the binding energy of Helium-4 we do various
simulations for different values of the Euclidean time (for more details on Euclidean time
projection, see, e.g., [38]) so that we can extrapolate to infinite times. As for the calculation of
the deuteron binding energy variation, we only varied the nucleon mass in the kinetic energy,
the interactions in the Hamiltonian were not changed. The results are displayed in figure 3.

Similar to the nucleon-nucleon scattering observables, we have fitted a cubic polyno-
mial (see eq. (3.2)) to the binding energy data obtained in the NLEFT framework. The
corresponding fit parameters are listed in table 2. The parameter of the term linear in δmN

is then the K-value defined in eq. (3.4)) as introduced e.g. in [36]. A comparison of the
results obtained within this framework:

KmN
B3H

= 3.477(39), KmN
B3He

= 3.662(66), KmN
B4He

= 1.685(25), (3.9)

– 7 –



J
H
E
P
0
6
(
2
0
2
5
)
2
4
4

X0 / MeV a b c

3H 8.571(12) 3.477(39) 2.011(272) −14.490(5034)
3He 7.923(19) 3.662(66) 2.152(458) −18.313(8460)
4He 28.591(28) 1.685(25) −0.930(170) −7.367(3453)

Table 2. Parameters for cubic polynomial fits (see eq. (3.2)) to the three-nucleon system and Helium-4
binding energies calculated in the framework of NLEFT.

with the K-factors quoted in eqs. (3.7)–(3.8) shows that the dependence on δmN is significantly
smaller than what was found on the basis of the results from [35] and [36], especially for
the three-nucleon system. We have ignored the systematic uncertainties in the NLEFT
calculations (truncation error of perturbative expansion, lattice spacing dependence etc.),
because as we can see, the systematic uncertainty from modeling the nucleon mass dependence
as discussed here is considered to be more significant. We stress again that while the K-factors
from the NLEFT calculation are exact (modulo higher order corrections), the ones based on
pionless EFT are subject to effective range corrections and thus turn out to be larger in size.

These results are then used to calculate the variation of the Q-values for some relevant
reactions involving these nuclei. The Q-values in turn affect the kinematics of the reactions,
the reaction rate, the rates of the inverse reactions as well as Coulomb penetration factors
as will be explained below.

3.2 Modeling the nucleon mass dependence of nuclear reaction rates

Based on the variation of the masses mi (or, equivalently, of the binding energies Bi) of the
nuclei 2H, 3H, 3He and 4He with the nucleon mass, we modeled the variation of the rates of
reactions involving these nuclei similar to the procedure we outlined in a previous paper on
the variation with the electromagnetic fine structure constant, see ref. [12] for more details:

First of all a variation of masses in a reaction of the form a + b → c + d trivially leads to
a variation of the reduced masses µab = ma mb/(ma + mb) and µcb = mc md/(mc + md) in
the entrance and exit channels. In addition, the Q-value of the reaction

Q := ma + mb − mc − md = Bc + Bd − Ba − Bb (3.10)

is affected. These two quantities enter the nuclear reactions rates as follows:
• The temperature dependent reaction rate that follows from the energy dependent total

cross section via

Γab→cd(T ) = NA

√
8

π µab(kBT )3

∫ ∞

0
dE E σab→cd(E) exp

[
− E

kBT

]
(3.11)

depends on µab. Here E is the center-of mass kinetic energy, NA denotes Avogadro’s
number and kB is Boltzmann’s constant;

• The reaction rate for the inverse reaction then depends on the reduced masses and the
Q-value as

Γcd→ab(T ) =
(

µab

µcd

) 3
2 ga gb

gc gd
exp

[
− Q

kBT

]
Γab→cd(T ) , (3.12)

where gi denotes the spin multiplicity of particle i;
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• We shall assume that the cross section for a strong reaction a + b → c + d depends on
mN as

σab→cd(E;mN ) =
√

E + Q(mN )Pi(xi(E, mN ))Pf (xf (E, mN )) f(E) (3.13)

where f is some function independent of mN and Pi(xi), Pf (xf ) are penetration factors
of the form

P (x) = x

exp{x} − 1 , (3.14)

reflecting the Coulomb repulsion in a channel where both particles are charged. The
first factor in equation (3.13) accounts for the exit channel momentum dependence of
the cross section of the strong reaction a + b → c + d. Here,

xi(E, mN ) =

√
Ei

G(mN )
E

, xf (E, mN ) =

√√√√ Ef
G(mN )

E + Q(E) , (3.15)

with, denoting the charge number of nuclide k by Zk and the fine structure constant by
α,

Ei
G = 2π2 Z2

a Z2
b µab α2 , Ef

G = 2π2 Z2
c Z2

d µcd α2 (3.16)

the Gamow-energies in the entrance and the exit channel, respectively. Thus the cross
section is supposed to depend on the varying nucleon mass mN (δmN ) = mN (1 + δmN ),
where mN is the nominal nucleon mass and δmN the fractional change, as

σab→cd(E;mN (δmN )) = Pi(xi(E, mN (δmN ))
Pi(xi(E, mN ))

√
E + Q(mN (δmN ))√

E + Q(mN )
Pf (xf (E, mN (δmN ))

Pf (xf (E, mN ))
× σab→cd(E;mN ) . (3.17)

For a radiative capture reaction a + b → c + γ the corresponding expression is

σab→cγ(E;mN (δmN )) = Pi(xi(E, mN (δmN ))
Pi(xi(E, mN ))

(
E + Q(mN (δmN ))

E + Q(mN )

)3
σab→cγ(E;mN ) ,

(3.18)
where the second factor reflects the final state momentum dependence assuming dipole
dominance of the radiation.

Considering exclusively the variations for the reactions including only d, 3H, 3He and 4He
is justified as these are the reactions most relevant for the abundances of these light nuclei,
as was shown, e.g., in [39]. In order to derive constraints on the nucleon mass variation,
we will use experimental data collected on the abundances by the Particle Data Group
(PDG) [34] for deuterium and Helium-4, because these are the most reliable (for Lithium-7
the so-called “Lithium problem” exists [40], which makes it unsuitable for these kinds of
considerations). The binding energy dependence on the nucleon mass for other light nuclei is
not known, so it would seem incomplete (and unnecessary) to change the Q-values of other
reactions that include the four lightest but also other nuclei. Including the first reaction
n + p → d + γ which was already discussed in section 3.1, there are eight reactions where

– 9 –
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only the four lightest nuclei are involved. In figure 4, the variation of these rates resulting
from changing the nucleon mass by ±10% is displayed for the temperature range in which
these reactions are most relevant in the BBN process as explained in [41]. Here, we have
used an updated version (compared to [12]) of the parameterizations of cross sections for
17 key rates which are listed in appendix B.

We have defined “flags” corresponding to different combinations of how we calculated
the nucleon-nucleon scattering parameters and the changes in the binding energies:

• (0, 0) means everything is based on NLEFT calculations (see the upper part of table 1
and table 2);

• (0, 1) is the NLEFT result for the nucleon-nucleon parameters (see the upper part of
table 1) combined with variations of the binding energies from pionless EFT [36] (see
eq. (3.7));

• (1, 0) uses the square-well results for the np scattering parameters (see the lower part
of table 1) combined with the three- and four-body binding energies from NLEFT
(table 2);

• (1, 1) is again the np scattering parameters (see the lower part of table 1) from the
square-well potential now combined with the K-factors from pionless EFT [36] (see
eq. (3.8)).

For some of these combinations, the Q-values for some reactions become negative for certain
δmN meaning the reactions is not kinematically allowed anymore. In this case, we have
simply set the reaction rate to zero.

4 Results and discussion

The variation of the resulting relative abundances for the nuclides 2H, 3H + 3He, 4He, 6Li
and 7Li + 7Be with a variation of the nucleon mass, cf. eq. (3.1) is displayed in figure 6.
These results were obtained by varying the rates of the eight reactions discussed above with
modified (see [12, 26]) versions of

• the Kawano code [42] nuc123,

• PRyMordial [10],

• AlterBBN [43, 44] and

• PRIMAT [41].

The nominal abundances, i.e. without variation of the nucleon mass are compared to experi-
mental data in table 3. As mentioned in the last section, some reaction Q-values become
negative for too large negative variations of the nucleon mass for some of the model versions
we used for varying the nucleon-nucleon scattering parameters and binding energies. For
the reaction d(d, n)3He this happens below δmN = −7% (flag (0, 1)), other reactions become
kinematically forbidden at larger (negative) changes in the nucleon mass. Because the system
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Figure 4. Reaction rates of the eight reactions in the BBN network involving only d, 3H, 3He and
4He. The nominal value of the rates according to [28] (for n + p → d + γ) or to the parameterizations
listed in appendix B is given in black. The bands correspond to a nucleon mass variation of ±10%.
Red: (0, 0); blue: (0, 1); green: (1, 0); orange: (1, 1), where the combinations 0 and 1 refer to the flags
defined at the end of section 3.
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Yd/YH Y3H+3He/YH YP Y6Li/YH Y7Li+7Be/YH

nuc123 2.452× 10−5 1.078× 10−5 0.246 0.960× 10−14 5.035× 10−10

PRyMordial 2.541× 10−5 1.092× 10−5 0.247 0.920× 10−14 4.874× 10−10

AlterBBN 2.563× 10−5 1.096× 10−5 0.247 1.027× 10−14 4.756× 10−10

PRIMAT 2.517× 10−5 1.089× 10−5 0.247 0.994× 10−14 4.874× 10−10

PDG [34] 2.547(29)× 10−5 0.245(3) 1.6(3)× 10−10

Table 3. Values of the light element abundances as calculated with the four codes for the nominal
value of the nucleon mass mN and the corresponding experimental value from [34]. For 4He the mass
fraction is given.

nuc123 PRyMordial AlterBBN PRIMAT

Flag δmN ,min δmN ,max δmN ,min δmN ,max δmN ,min δmN ,max δmN ,min δmN ,max

0 0 -0.00204 -0.00105 -0.00060 0.00039 -0.00023 0.00075 -0.00099 -0.00002
0 1 -0.00127 -0.00065 -0.00037 0.00024 -0.00014 0.00047 -0.00062 -0.00001
1 0 -0.00235 -0.00126 -0.00066 0.00043 -0.00025 0.00082 -0.00109 -0.00002
1 1 -0.00154 -0.00082 -0.00043 0.00028 -0.00017 0.00054 -0.00072 -0.00001

Table 4. Constraints on the nucleon mass variation δmN
from comparing the simulated deuterium

abundance for different values of mN to the experimental value 2.547(29)× 10−5 [34], for the different
methods of deriving the nucleon-nucleon scattering parameters and binding energies and for the
different codes used to simulate BBN.

of differential equations becomes somewhat numerically unstable, the codes do not give
reliable results in these cases, so we only included values for δmN ≥ −7% for the flags (0, 1)
and (1, 1) in figure 6. We did not study this in more detail or tried to include possible
effects of other reaction channels opening up for large negative changes in the nucleon mass
because the deuteron abundance alone constraints the region of interest for variations in mN

to the sub-percent-level, where these kinds of considerations are not relevant. Of course,
whenever a Q-value becomes negative, the reaction would effectively proceed in the reverse
direction, which could significantly affect certain abundances. In our case, notable differences
would be expected particularly in the abundances of elements with A = 3, since the first
reactions to develop negative Q-values for negative δmN are the d-d reactions that produce
tritium and He-3. Indeed, the overall structure of BBN would change substantially. While
it would be fascinating to explore the impact of such effects on the BBN network, this
topic warrants a dedicated study and would be best presented in a separate publication,
as we cannot do it justice here.

On the basis of the uncertainties of the empirical data for the relative deuteron abundance,
Y2H = (2.547± 0.029)× 10−5 [34], and the relative 4He (mass) abundance, Y4He = 0.245±
0.003 [34], we estimated the possible variation of the nucleon mass with the four combinations
of the rates discussed in section 3. The resulting ranges in the relative nucleon mass variation
δmN are displayed in figure 5 and listed in table 4 for 2H and in table 5 for 4He.
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Figure 5. Extracted ranges of δmN
for the four rate combinations labeled “0 0”, “0 1”, “1 0” and “1

1” discussed in section 3, both on the basis of the 2H (left) and the 4He (right) abundance data. The
results with the BBN code nuc123 is displayed by red crosses, with PRyMordial by green stars, with
AlterBBN with blue open squares and with PRIMAT by magenta filled squares.

nuc123 PRyMordial AlterBBN PRIMAT

Flag δmN ,min δmN ,max δmN ,min δmN ,max δmN ,min δmN ,max δmN ,min δmN ,max

0 0 -0.00422 0.00251 -0.00505 0.00141 -0.00570 0.00071 -0.00538 0.00105
0 1 -0.00413 0.00245 -0.00495 0.00138 -0.00559 0.00070 -0.00527 0.00103
1 0 -0.00486 0.00286 -0.00579 0.00162 -0.00654 0.00082 -0.00617 0.00120
1 1 -0.00476 0.00281 -0.00568 0.00159 -0.00641 0.00081 -0.00605 0.00118

Table 5. Constraints on the nucleon mass variation δmN
from comparing the simulated Helium-4 mass

fraction for different values of mN to the experimental value 0.245(3) [34], for the different methods
of deriving the nucleon-nucleon scattering parameters and binding energies and for the different codes
used to simulate BBN.

From this we infer that δmN ∈ (−0.0024,+0.0008) and δmN ∈ (−0.0065,+0.0029), on the
basis of Y2H and Y4He, respectively. This is all well below 1% . It is amusing to observe, see
the bottom panel in figure 6, that a decrease in the nucleon mass by 1− 2% apparently would
solve the so called “Lithium-problem”, but such a variation is of course excluded by the other
relative abundance data mentioned before. The main contribution to the 7Be abundance
comes from the reaction 4He + 3He → 7Be + γ (see figure B7 of [39]). The 4He abundance
decreasing sizeably for negative δmN is the reason why also the 7Be abundance decreases to
the experimentally observed value and then even further. For the abundances of 6Li and
3He + 3H a strong non-linear dependence on the nucleon mass is found, while also the four
versions of the rates yield markedly varying results for the abundances, but unfortunately
there are no reliable empirical data for these nuclides.
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Figure 6. Nucleon mass dependence of the relative abundances for 2H, 3H+He, 4He, 6Li and 7Li+Be
calculated with a modified verion of the Kawano code nuc123 [42] (open circles), with PRyMordial [10]
(squares), with AlterBBN [43, 44] (diamonds) and with PRIMAT [41] (crosses). For 4He this is the mass
ratio with respect to hydrogen, for the other nuclides the relative abundance reflects the number ratio
with respect to hydrogen. The color coding of the curves, respective to the different methods, is the
same as in figure 4.
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We can now draw conclusions on the size of the variation of the strangeness content
and the strange quark mass. Taking the largest possible variation (in size) from tables 4,
5, we see that |∆mN | is bounded by 2.3MeV and 6.1MeV from the deuterium and the 4He
abundance, respectively. This translates into possible variations of σs of less than 5.1%
and 13.6%, respectively, using the central FLAG value for Nf = 2 + 1 flavors. As in the
case of variations of the Higgs VEV [14], the deuterium abundance sets the stronger bound.
Assuming that the strange quark condensate does not change, we can derive an upper bound
on variation of the strange quark mass (from the deuterium abundance)∣∣∣∣∆ms

ms

∣∣∣∣ ≤ 5.1% . (4.1)

Note, however, that this is only an upper bound. Scanning through tables 4, 5, one can see
that the range of possible variations for the individual codes is much smaller. The interval
of possible values for δmN that we mention is only as large because the nominal value of
the abundances vary between the codes (see also figure 5). In addition, if we would take
the largest values of δmN found from NLEFT calculations only (flag (0, 0)), which, in our
opinion, is the best calculation, the upper bound for the variation of the strange quark mass
would reduce further by 1%. Furthermore, assuming that the Yukawa couplings do not vary,
one can also derive a bound on possible variations of ΛQCD. For that, we use eq. (A.2) from
ref. [13] together with the bound in eq. (4.1), it follows that ΛQCD varied by less than 1.13%
between the time of the Big Bang and now.
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A Square-well potentials

The stationary radial Schrödinger equation for non-relativistic S-wave relative motion of
two nucleons of mass mN in a spherical potential well of depth −V0 and width R0 :

V (r) =
{
−V0 , r < R0 ,

0 , r > R0
, (A.1)

reads
− 1
2µ

u′′(r) + V (r)u(r) = E u(r) (A.2)

where µ = mN /2 is the reduced mass and E the energy. Defining the dimensionless potential
strength

ξ2 := 2µ V0 R2
0 , (A.3)
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proton mass mp [MeV] 938.27208816
neutron mass mn [MeV] 939.56542052
reduced mass µ [MeV] 469.45915448
nucleon mass mN [MeV] 938.91875434
depth V0 [MeV] 33.306
radius R0 [fm] 2.116

Table 6. Spherical well parameters for the 3S1 channel.

calc. exp. [46].
inverse scattering length a−1

t [MeV] 36.414 36.407(7)
effective range rt [fm] 1.779 1.753(2)
binding energy B [MeV] 2.224433 2.224575(9)
asymptotic normalisation As [fm− 1

2 ] 0.879 0.8845(8)
root mean square radius rd [fm] 1.9505 1.9676(10)

Table 7. Deuteron properties and low-energy scattering parameters for the 3S1 channel.

the scattering length a and the effective range r are given by the expressions:

a = R0 α(ξ) := R0

(
1− tan ξ

ξ

)
, r = R0

(
1− 1

α(ξ) ξ2 − 1
3α(ξ)2

)
. (A.4)

Accordingly, for given a and r the value of ξ2 ∝ V0 R2
0 follows from the ratio r/a and R0 from

the first equation in (A.4). For a bound state ξ > 1 and with x the solution of sin(x)/x = 1/ξ

the binding energy B is given by

B = 1
2µ R2

0

(
ξ2 − x2

)
.

Application to the np-3S1 channel. In this simple model we consider S-wave scattering
only and thus neglect the 3S1 − 3D1 mixing. The low energy triplet scattering parameters
(scattering length at and effective range rt) can e.g. be found in ref. [46]. With the spherical
well parameters listed in table 6. we find with the values for the scattering length and
effective range as listed in the column labeled “calc.” in table 7, a fair description of various
empirical deuteron data, also listed in table 7.

Application to the np-1S0 channel. We have inspected three parameter sets, based on
three combinations of (as, rs) (the 1S0 scattering length and effective range, respectively), as
listed in table 8, that, via eq. (A.4) lead to the potential parameters V0 and R0 listed in the last
two columns of this table. Keeping the potential parameters fixed to the values of tables 6, 8
(second line labeled “Pionless EFT”) by varying the nucleon mass as mN (δmN ) = mN (1+δmN )
the variation of the scattering parameters and the deuteron binding energy is as shown in
figure 1.
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a−1
s [MeV] rs [fm] V0 [MeV] R0 [fm]

Experiment [47] -8.312(7) 2.77(5) 13.358 2.650
Pionless EFT [28] -8.309 2.73 13.752 2.614
CD-Bonn [47] -8.313 2.671 14.376 2.558

Table 8. Scattering parameters and spherical well parameters for the 1S0 channel.

B Parameterizations of cross sections

In this appendix we present updated parameterizations for 17 relevant cross sections in BBN.
Compared to the parameterizations shown in [12], we have slightly changed a few parameters
and added error estimations. Because of its more modest variation with the centre-of-mass
(CMS) energy E, one often prefers to parameterize the so-called S-factor

S(E) = σ(E) · E · e
√

EG/E (B.1)

over the cross section σ(E). Here the Gamow-energy EG is

EG = 2π2µabc
2Z2

aZ2
b α2, (B.2)

and the S-factor was chosen to be a rational function in terms of the CMS energy E (given
here in MeV) multiplied by a constant S0 (in MeVmb):

S(E) = S0
1 + a1E + a2E2 + a3E3

1 + q1E + q2E2 + q3E3 . (B.3)

The constant S0 and the coefficients ak, qk in (MeV)−k are given in tables 9 and 10 for 14
charged particle reactions.
For neutron capture reactions we parameterize a function

R(E) = σ(E)
√

E (B.4)

similarly to the S-factor above as

R(E) = R0
1 + a1E + a2E2 + a3E3

1 + q1E + q2E2 + q3E3 , (B.5)

with E in MeV, the coefficients ak, qk in (MeV)−k and R0 in (MeV)1/2mb. The S-factor
is then for neutron-capture reactions

S(E) = R(E) ·
√

E = σ(E) · E. (B.6)

There are some reactions with resonances in the energy range considered here. For these,
we can parameterize the S-factor as a rational function or a polynomial with a combination
of (relativistic) Breit-Wigner functions. The coefficients for the relativistic Breit-Wigner
functions (E,Γ, M in MeV) of the form

BW(E; k,Γ, M) = k

Γ2M2 + (E2 − M2)2 (B.7)
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Reaction S0 a1 a2 a3 q1 q2 q3

d + p → 3He + γ (2.072± 0.043)× 10−4 30.094± 1.839 16.754± 2.302 0 0 0.035± 0.008 0
d + 4He → 6Li + γ (4.382± 1.762)× 10−7 0 90.682± 37.560 0 0 0 0
3H+ p → 4He + γ (1.875± 0.031)× 10−3 10.773± 0.996 32.613± 7.711 113.840± 4.597 0 0 8.919± 0.181× 10−3
3H+ 4He → 7Li + γ (9.275± 0.258)× 10−2 −0.937± 0.067 0.594± 0.064 0 0 0 0
3He + 4He → 7Be + γ (5.160± 0.161)× 10−1 −0.556± 0.064 0.281± 0.060 0 0 0.132± 0.051 0
6Li + p → 7Be + γ (3.208± 0.619)× 10−2 40.354± 9.384 −11.448± 1.107 0 −9.092± 0.616 24.154± 3.089 0

Table 9. Fit parameters according to eq. (B.3) and eq. (B.9) for some relevant radiative capture
reactions. S0 is given in MeVmb, ak, qk in (MeV)−k.

Reaction S0 a1 a2 a3 q1 q2

d + d → 3He + n (5.517± 0.131)× 101 6.701± 0.377 0 0 0.531± 0.044 −0.032± 0.005
d + d → p + 3H (5.786± 0.088)× 101 3.443± 0.321 0 0 0.149± 0.034 0
3H+ d → n + 4He (1.069± 0.031)× 104 −0.994± 1.342 11.819± 5.744 0 −24.260± 0.444 243.991± 8.442
3He + d → p + 4He (5.937± 0.052)× 103 −2.049± 0.175 3.835± 0.296 −0.305± 0.063 −6.788± 0.053 15.604± 0.223
6Li + p → 3He + 4He (2.162± 0.076)× 103 −0.058± 0.008 0 0 0 0
7Li + p → 4He + 4He (−4.246± 2.128)× 101 −0.522± 0.222 0 0 0 0
7Li + d → n + 4He + 4He 2.968× 103 8.279 −0.308 0 54.611 0
7Be + d → p + 4He + 4He (5.817± 0.843)× 102 0 0 0 −0.458± 0.010 0.057± 0.002

Table 10. Fit parameters according to eqs. (B.3), (B.10) and (B.11) for charged particle reactions.
S0 is given in MeVmb, ak, qk in (MeV)−k.

and the non-relativistic ones like

bw(E; k, κ, M) = k

1 + κ(E − M)2 , (B.8)

with κ in (MeV)−2 can be found in table 12 for the pertinent reactions.
For the function fits we use data composed by EXFOR [48, 49] for the cross section

of 17 relevant reactions in BBN.

B.1 Radiative capture reactions

The parameters found by fitting data composed by [49] to eq. (B.3) are displayed in table 9
for most radiative capture reactions treated here. The parameterizations are compared to
the corresponding data in figure 7.

The only exception is the reaction d + 4He → 6Li + γ, where a resonance appears.
The S-factor here is given by

S(E) = S0
(
a2 · E2 +BW(E; 1,Γ, M)

)
, (B.9)

with the coefficients listed in tables 9 and 12.

B.2 Charged particle reactions

As in section B.1, we fit an S-factor like eq. (B.3). The parameters are listed in table 10
for the charged particle reactions treated here. The S-factor fits are displayed with the
data composed by [49] in figures 8 and 9.

For the reactions 6Li + p → 3He + 4He and 7Li + p → 4He + 4He which have one
(two) resonance(s), the S-factor is given by

S(E) = S0
(
1 + a1E + a2E2 + a3E3 +BW(E; k1,Γ1, M1) + BW(E; k2,Γ2, M2)

)
. (B.10)

– 18 –



J
H
E
P
0
6
(
2
0
2
5
)
2
4
4

10−2 10−1 100 101

E [MeV]

10−3

10−2

10−1

S
(E

)
[M

eV
m

b]

own fit
[50]
[51]
[52]
[53]

[54]
[55]
[56]
[57]
[58]

(a) d + p → 3He + γ

10−2 10−1 100 101

E [MeV]

10−6

10−5

10−4

10−3

10−2

10−1

100

S
(E

)
[M

eV
m

b]

own fit
[59]
[60]

[61]
[62]

[63]
[64]

(b) d + 4He → 6Li + γ

10−2 10−1 100 101

E [MeV]

10−2

10−1

100

101

S
(E

)
[M

eV
m

b]

own fit
[65]

[66]
[67]

(c) 3H+ p → 4He + γ

10−1 100

E [MeV]

10−2

10−1

S
(E

)
[M

eV
m

b]

fit
[68]
[69]
[70]

[71]
[72]
[73]
[74]

(d) 3H+ 4He → 7Li + γ

10−1 100

E [MeV]

10−1

S
(E

)
[M

eV
m

b]

own fit
[75]
[76]
[77]
[78]

[79]
[80]
[81]
[82]
[83]

[84]
[85]
[86]
[87]

(e) 3He + 4He → 7Be + γ

10−1 100

E [MeV]

10−2

10−1

S
(E

)
[M

eV
m

b]

own fit
[88]
[89]
[90]

(f) 6Li + p → 7Be + γ ; error estimated using only
∆S0 and ∆a1

Figure 7. Fits to experimental data composed by EXFOR [49] with error band for some relevant
radiative capture reactions. The arrows on the data points in panel (b) indicate that these are upper
bounds, not included in the fit.
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Reaction R0 a1 a2 a3 q1 q2 q3

3He + n → p + 3H (7.053± 0.034)× 102 8.359± 1.763 22.042± 2.556 1.571± 0.273 22.192± 2.708 −2.601± 2.445 6.462± 0.616
7Be + n → p + 7Li (6.962± 0.035)× 103 9.375± 0.488 0 0 89.309± 3.542 0 0
7Be + n → 4He +4He (−2.765± 1.01)× 102 −0.160± 0.010 0 0 0 0 0

Table 11. Fit parameters according to eq. (B.5) for neutron-induced reactions. R0 is given in
(MeV)1/2mb, ak, qk in (MeV)−k.

Reaction k1 Γ1 M1 k2 Γ2 M2

d + 4He → 6Li + γ 1 .028± 0.007 .711± 0.002
6Li + p → 3He + 4He 0.130± 0.088 0.397± 0.135 1.708± 0.042
7Li + p → 4He + 4He −398.050± 189.573 0.866± 0.098 5.171± 0.032 −159.822± 64.838 0.872± 0.060 2.657± 0.017
7Be + n → p + 7Li (4.430± 0.923)× 10−4 0.162± 0.020 0.341± 0.006
7Be + n → 4He + 4He −92.818± 35.910 3.644± 0.812 3.450± 0.118 −5.969± 2.532 3.253± 1.544 0.872± 0.218

k1 κ1 M1 k2 κ2 M2

7Li + d → n + 4He + 4He 9820.6 82.3871 0.6 8990.99 1963.84 0.8

Table 12. Fit parameters for resonances parameterized as Breit-Wigner functions (eq. (B.7) and
eq. (B.8). Γk, Mk are given in MeV, κk in (MeV)−2. For the reaction 7Li + d → n + 4He + 4He k is
given in MeVmb, otherwise it is dimensionless.

For the reaction 7Li + d → n + 4He + 4He, we use the parameterization from [26]
which has the form

S(E) = S0
1 + a1E + a2E2

1 + q1E
+ bw(E; k1, κ1, M1) + bw(E; k2, κ2, M2), (B.11)

and estimate the error to be ±97% (so that almost all data points are included).

B.3 Neutron-induced reactions

The parameters found for three neutron-induced reactions parameterized here are displayed
in table 11 and compared to data composed by [49] in figure 10.

The parameterization for the reactions 7Be + n → 7Li + p (one resonance) and
7Be + n → 4He + 4He (two resonances) is of the form

R(E) = R0

(
1 + a1E + a2E2

1 + q1E
+BW(E; k1,Γ1, M1) + BW(E; k2,Γ2, M2)

)
. (B.12)
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Figure 8. Fits to experimental data composed by EXFOR [49] with error bands for some relevant
charged particle reactions.
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