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1 Introduction

Over the past two decades, a large amount of exotic hadronic states has been extensively
investigated both experimentally and theoretically. These states demonstrate characteristics
that cannot be adequately accounted for by the conventional quark model and investigations
may lead to a deeper understanding of nonperturbative quantum chromodynamics (QCD), as
discussed in numerous comprehensive reviews [1–16]. The observation of complex structures
in proximity to the thresholds of specific hadron pairs suggests that hadronic molecules
provide a compelling interpretative framework for these phenomena [6].1

The concept of two-body hadronic molecules naturally extends to three-body systems
(as recently reviewed in ref. [15]), analogous to multi-nucleon atomic nuclei. The theoretical
methodologies for three-body systems, particularly for multi-nucleon systems, have been
developed since many years ago, as documented in refs. [22–29]. In recent years, various
effective field theory (EFT) frameworks for three-body systems in both finite and infinite
volumes have been proposed [30–45]. Furthermore, these methods are applicable for extracting
three-body interaction information from lattice QCD data, as demonstrated in refs. [46–56].

The Efimov effect is a remarkable phenomenon in three-body physics [57]. It provides
a universal binding mechanism for three-body systems independent of the details of their
interactions at short distances. In its simplest setting, it states that in a system of three
identical bosons, when the interaction between two particles approaches the unitarity limit
(that is when the pair scattering length a is much larger than the range of the interaction R

and approaches infinity), a geometric spectrum of infinitely many three-body bound states
1This statement holds as long as there are no Castillejo-Dalitz-Dyson (CDD) zeros [17] in the scattering

amplitude in the vicinity of the threshold (see, e.g., refs. [18–20]). Until experimental evidence of such
additional zeros is obtained, it is most natural to employ the Occam’s razor principle to assume the smallest
possible number of poles required by data and theory constraints in the scattering amplitude, as discussed in
ref. [21].
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emerges. The ratio of the binding energies (En) of these bound states follows the scaling law:

En

En+1
≈ 515. (1.1)

The exact unitary limit (1/a→ 0, R→ 0) is a theoretical construct and cannot be reached
experimentally (but it is possible to tune 1/a to zero in ultracold atoms using Feshbach
resonances [58]). However, the predictions of Efimov universality also apply for finite
scattering length if |a| ≫ R (see ref. [59] for a review). Three-body bound states are usually
considered Efimov states if they can be described by Efimov’s universal equation with small
range corrections [60, 61]. In particular, the ratio of subsequent Efimov states can deviate
significantly from the scaling law, eq. (1.1), close to the threshold if |a| ≫ R is finite [59].
Experimental evidence for the existence of an Efimov trimer was first found in 2006 in a gas
of ultracold Cs atoms [62] by observing a unique three-body loss signature [59] that can be
detected by varying the scattering length using the Feshbach resonance technique. Since
then, Efimov states have been observed for many bosonic and fermionic atoms as well as
atomic mixtures (see ref. [63] for a review of these efforts).

The observation of Efimov physics in nuclear and particle physics systems is hindered
by the lack of experimental control over the scattering length [64]. Nevertheless, the triton
and certain two-neutron halo nuclei can be considered approximate Efimov states, see, e.g.,
refs. [65–67]. Moreover, the recent identification of new hadronic states, such as X(3872) and
T+

cc , which are situated in the immediate vicinity of relevant two-body thresholds [68, 69]
opens up the potential to investigate the possible presence of Efimov states within three-body
charmed hadron systems [64, 70–73].

There have already been some results for three-charm systems using different methods [71,
74–79]. In particular, the emergence of the Efimov effect in the D∗D∗D∗ system has been
explored in ref. [78], under the assumption that a D∗D∗ molecule with quantum numbers
(I)JP = (0)1+ exists as the heavy partner of the T+

cc . In this paper, we will examine
the existence of the Efimov effect in the D∗D∗D∗ and DD∗D∗ systems using a systematic
nonrelativistic EFT method, which is more convenient for treating all channels with different
quantum numbers. We assume the existence of an isoscalar heavy spin partner of the Tcc,
referred to as T ∗

cc, which lies close to and below the D∗D∗ threshold, as predicted from the
existence of Tcc(3875) using heavy quark spin symmetry in refs. [80, 81].2 Both the Tcc and
T ∗

cc tetraquark states are characterized by the quantum numbers (I, J) = (0, 1), and they
strongly couple to the DD∗ and D∗D∗ channels in S-wave, respectively. In section 2, we
construct the scattering equations for different spin configurations (TccD

∗ and T ∗
ccD

∗) within
a pionless EFT, for all of which the total isospin is I = 1/2. Section 3 will address the
necessary conditions for the occurrence of the Efimov effect in the full D∗D∗D∗ system with
all possible (I, J) quantum numbers. A summary is given in the last section.

2The hadronic and radiative decays of the T ∗
cc have been investigated in refs. [82, 83]. The existence of an

isoscalar D∗D∗ bound state and its width were also investigated in refs. [84, 85].
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Figure 1. Feynman rules for the dimer-particle couplings from the Lagrangian in eq. (2.1).

2 D∗D∗D∗ and DD∗D∗ in NREFT

2.1 Effective Lagrangian and propagators

In an energy range very close to the threshold, the system can be described by a pionless
EFT, which is dominated by contact interaction terms, as discussed in, e.g., refs. [70, 86–
88]. We consider that there is an isoscalar Tcc near-threshold bound state in the S-wave
DD∗ channel [69, 89] and an isoscalar T ∗

cc near-threshold bound state in the S-wave D∗D∗

channel as predicted in refs. [80, 81], and in this section we assume that there are no other
near-threshold S-wave poles in two-body double-charm systems.3

The effective Lagrangian including the Tcc and T ∗
cc dimer fields is given by

L =D∗†
iα

(
i∂0 + ∇2

2MD

)
D∗

iα +D†
α

(
i∂0 + ∇2

2MD∗

)
Dα + T ∗†

i ∆∗T
∗
i + T c†

i ∆cT
c
i

− g∗
[
T ∗†

i D∗
jα(Ui)jk(iτ2)αβD

∗
kβ + h.c.

]
− gc

[
T c†

i D∗
jαδij(iτ2)αβDβ + h.c.

]
, (2.1)

where D and D∗ denote the pseudoscalar and vector charm meson fields, respectively, while
T ∗ and T c represent the dimer fields that annihilate the T ∗

cc and Tcc states, respectively. The
lower-case Latin letters i, j, k ∈ {1, 2, 3} serve as spin-1 indices, and the Greek lower-case
letters α, β ∈ {1, 2} represent isospin-1/2 indices. The second Pauli matrix τ2 operates in the
isospin space, while the Ui’s are the generators of the rotation group acting on the spin-1
representation, with matrix elements (Ui)jk = −iϵijk. The parameters g∗ and gc characterize
the coupling strengths between the dimer fields and their constituent particles. At leading
order, g∗,c and ∆∗,c are not independent parameters, and only the combinations g2

∗,c/∆∗,c

appear in physical observables. The dimer-particle couplings are depicted in figure 1.
The two-body scattering amplitude is proportional to the propagator of the dimer field.

The dressed propagator GA is given by:

iGA(p0,p)ij = iδij

∆A + cAΣA(p0,p) , (2.2)

where A = ∗, c is the dimer index, and ΣA is the self-energy function. The spin and
isospin operators between the dimer and meson fields contribute a Kronecker delta δij in

3It was found in recent lattice QCD calculations that both the isovector S-wave DD∗ [90] and DD [91]
systems are repulsive.
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the numerator and a normalization constant cA in the denominator. For the propagator
G∗, c∗ = 4, while for Gc, cc = 2.

The ultraviolet (UV) divergence in the self-energy can be regularized using the power
divergence subtraction scheme with a hard scale ΛPDS [92, 93] as

ΣA(p0,p) = 1
2πg

2
AS2,AµA

−
√
−2µA

(
p0 −

p2

2MA

)
− iε+ ΛPDS

 , (2.3)

where S2,A represents the symmetry factor associated with the exchange of identical particles
in ΣA (for the D∗D∗ and DD∗ dimers, S2,∗ = 2 and S2,c = 1, respectively), and p0 and
p are the energy and three-momentum of the dimer, with p denoting the magnitude of
p. Here, µA and MA denote the reduced mass and total mass of the constituent particles,
respectively. Specifically, µc = MDMD∗/Mc with Mc = MD +MD∗ for the DD∗ system, and
µ∗ = MD∗MD∗/M∗ with M∗ = 2MD∗ for the D∗D∗ system.

The renormalized propagators for the T ∗
cc and Tcc dimers are then obtained as follows:

iG∗(p0,p)ij = iG∗(p0,p)δij = − 2πi
g2
∗µ∗S2,∗c∗

δij

−1/a∗ +
√
−2µ∗(p0 − p2

2M∗
+ iε)

,

iGc(p0,p)ij = iGc(p0,p)δij = − 2πi
g2

cµcS2,ccc

δij

−1/ac +
√
−2µc(p0 − p2

2Mc
+ iε)

,

(2.4)

The UV divergence in the self-energy has been absorbed into the scattering length through
the relation

1
aA

= 2π∆A

g2
AµAS2,AcA

+ ΛPDS. (2.5)

The value of aA determines the pole position of the two-body subsystem, with a positive a
corresponding to a bound state and a negative a corresponding to a virtual state.4 Furthermore,
the wave function renormalization constants Z∗ and Zc, which are obtained from the residue
at the pole are given by

Z∗ = 2πγ∗
g2
∗µ

2
∗S2,∗c∗

, Zc = 2πγc

g2
cµ

2
cS2,ccc

, (2.6)

where γA = ±
√

2µA|EA
B | (A = ∗, c for T ∗

cc and Tcc, respectively) denotes the binding mo-
mentum with the positive (negative) sign for a bound (virtual) state pole and EA

B the
corresponding binding energy.

2.2 Three-body scattering equations

Using the particle-dimer Lagrangian, we can derive the scattering equation for the three-
body system. Our calculations are performed in the center-of-mass (c.m.) frame of the

4For a repulsive potential, the scattering length has the same sign as that in the case with one bound state,
but the magnitude is much smaller such that the pole is very far below 2-body threshold and thus beyond the
applicable range of theory.
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Figure 2. Integral equation for the T ∗
ccD

∗ scattering amplitude T with incoming isospin index α and
spin indices i, j, and outgoing indices β and k, l. Here, the single solid line represents the D∗ meson
while the double solid line denotes the D∗D∗ dimer T ∗

cc.

corresponding spectator-dimer system, such as the D(∗)TA system. The total energy E

is expressed as:

E = q2

2MA
+ q2

2Msp
− γ2

A

2µA
, (2.7)

where Msp = MD(MD∗) is the mass of the spectator, MA = M∗(Mc) is the total mass of the
two particles in the two-body subsystem, and q is the momentum of the spectator.

We analyze the scattering equation to investigate possible bound states. The absence of
the strong cutoff dependence of observables (e.g., the scattering amplitudes) in our calculations
indicates that there are no bound states in the corresponding channel [71, 88, 94]. Conversely,
the emergence of three-body bound states signals the Efimov effect. In such cases, the integral
equation, which includes only two-body interactions, exhibits significant cutoff dependence,
necessitating the inclusion of three-body contact interactions for renormalization [86, 94].
For the scattering equation of three identical particles in various partial wave channels,
the existence of the Efimov effect depends on the coefficients in the scattering equation of
the system under investigation [59, 87]. These coefficients include contributions from the
Clebsch-Gordan (CG) coefficients of (iso)spin coupling and the symmetry factor of identical
particles. A systematic analysis, for which the dimers are not restricted to the T ∗

cc and Tcc,
will be presented in the subsequent section.

2.3 T ∗
ccD∗ Scattering

We begin with the single-channel T ∗
ccD

∗ scattering, whose amplitude T satisfies the integral
equation shown in figure 2. Before proceeding further, let us present the independent tree-level
amplitudes for the T ∗(c)D(∗) systems. Using the vertex factors shown in figure 1, we have

iMjiα→lkβ
T ∗D∗→T ∗D∗(E,k,p) = −ig2

∗S3,1(UlUj)ikδβα

E − k2

2MD∗ − p2

2MD∗ − (k+p)2

2MD∗ + iε
,

iMiα→jkβ
T ∗D→TcD∗(E,k,p) = −ig∗gcS3,2(Ui)kjδβα

E − k2

2MD
− p2

2MD∗ − (k+p)2

2MD∗ + iε
,

iMjiα→lkβ
TcD∗→TcD∗(E,k,p) = −ig2

cS3,3δilδkjδβα

E − k2

2MD∗ − p2

2MD∗ − (k+p)2

2MD
+ iε

,

iMjiα→kβ
TcD∗→T ∗D(E,k,p) = −ig∗gcS3,4(Uk)jiδβα

E − k2

2MD∗ − p2

2MD
− (k+p)2

2MD∗ + iε
,

(2.8)
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Figure 3. Diagram for particle-dimer scattering via the particle exchange. Here i, j and k refer to
particles.

where k,p represent the outgoing and incoming 3-momenta, respectively. S3,i is the symmetry
factor for each one-boson-exchange diagram, with S3,1 = 4, S3,2 = S3,4 = 2 and S3,3 = 1.
These symmetry factors due to the exchange of identical particles are given by (see figure 3)

Sijk =


4 if i = j = k,

2 if i ̸= j = k or i = j ̸= k,

1 if i = k ̸= j.

(2.9)

The integral equation for the T ∗
ccD

∗ scattering is given by

tlkβ
jiα(E,k,p) = Mjiα→lkβ

T ∗D∗→T ∗D∗(E,k,p)

+
∫

d4q

(2π)4
iMsnµ→lkβ

T ∗D∗→T ∗D∗(E,q,p)
−q0 − q2

2MD∗ + iε
× 2π
g2
∗µ∗

1
S2,∗c∗

tsnµ
jiα (E,k,q)

−γ∗ +
√
−2µ∗

(
E + q0 − q2

2M∗

)
− iε

,

(2.10)

where tlkβ
jiα is the scattering amplitude that includes the complete spin-isospin structure. After

integrating over the q0 component and multiplying by the wave function renormalization
constant, we obtain

T lkβ
jiα (E,k,p) = − πγ∗

µ2
∗

2S3,1
S2,∗c∗

(UlUj)ikδβα

E− k2

2MD∗ −
p2

2MD∗ −
(k+p)2

2MD∗ + iε

− π

µ∗

2S3,1
S2,∗c∗

∫
d3q

(2π)3
T snµ

jiα (E,k,q)

−γ∗+
√
−2µ∗

(
E− q2

2MD∗ −
q2

2M∗

)
− iε

(UlUs)nkδβµ

E− q2

2MD∗ −
p2

2MD∗ −
(q+p)2

2MD∗ + iε
,

(2.11)

with T lkβ
jiα ≡ Z∗ t

lkβ
jiα.

T lkβ
jiα can be projected onto a general partial wave,

1
2

∫ +1

−1
d cos θ PL(cos θ) T (E,k,p) = T(L)(E, k, p) , (2.12)

where θ is the angle between k and p, PL(cos θ) is the Legendre polynomial of order L. For

– 6 –
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L = 0, we obtain the integral equation for the S-wave T ∗
ccD

∗ scattering amplitude

T lkβ
(0) jiα(E, k, p) = − πγ∗

µ2
∗

2S3,1
S2,∗c∗

V S
1 (k, p) (UlUj)ik δβα

− 1
πµ∗

S3,1
S2,∗c∗

∫ Λ

0
dq
q2 V S

1 (q, p) T snµ
(0) jiα (E, k, q) (UlUs)nk δβµ

−γ∗ +
√
−2µ∗

(
E − q2

2MD∗ − q2

2M∗

)
− iε

≡M0 C lkβ
0 jiα +

∫ Λ

0
dqM1T

snµ
(0) jiα (E, k, q) C lkβ

0 snµ , (2.13)

where Λ is the UV cutoff discussed above. The last equality defines the amplitudes M0,
M1 and the coefficients C lkβ

0 jiα and C lkβ
0 snµ; for the latter we use boxed notations to make

the corresponding definitions more transparent (similar notations will be used later). The
S-wave potential V S is given by

V S
1 (k, q) = −MD∗

kp
Q0

(
−MD∗

kp

(
E − k2

2µ∗
− p2

2µ∗

)
− iε

)
. (2.14)

The logarithmic function Q0 originates from the one-meson exchange contributions, whose
S-wave projection leads to integrals of the form

Q0(β) ≡ 1
2

∫ +1

−1
dx
P0(x)
x+ β

= 1
2 ln

(
β + 1
β − 1

)
. (2.15)

For the S-wave T ∗
ccD

∗ system, all possible quantum numbers are JP = 0−, 1− and 2−.
Following ref. [87], we project out the desired channel with a given isospin I and angular
momentum J by evaluating:

T I,J
(0) ≡ 1

(2J + 1)(2I + 1)
∑

m̃η̃,ñλ̃

O†
ñλ̃,j̃β̃

T j̃β̃

(0) ĩα̃
O

m̃η̃,̃iα̃
, (2.16)

where we use the tilded indices to represent both spin and isospin (if any) indices of the
given operators. ĩα̃ and j̃β̃ are the indices for initial and final state spectator-dimer pairs.
To be more specific, ĩ (j̃) includes both the spin and isospin indices for the initial (final) D∗,
while α̃, β̃ are the spin indices for the isoscalar T ∗

cc. ñλ̃ and m̃η̃ represent the indices in the
corresponding (I, J) channel after projection. It should be noted that for elastic scattering,
the initial and final states are identical, requiring η̃ = λ̃ and m̃ = ñ. The projection operators
for the scalar, vector and tensor amplitudes are

OJ=0
ji (1 ⊗ 1 → 0) = −1√

3
δij ,

OJ=1
ℓ,mn (1 ⊗ 1 → 1) = −1√

2
(Uℓ)mn , (2.17)

OJ=2
ℓk,mn (1 ⊗ 1 → 2) = 1

2[δℓmδkn + δℓnδkm − 2
3δℓkδmn] ,

and the corresponding isospin projection operator is given by

OI=1/2
α,β

(1
2 ⊗ 0 → 1

2

)
= δαβ . (2.18)

– 7 –
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Channel (I, J) = (1/2, 0) (I, J) = (1/2, 1) (I, J) = (1/2, 2)

CI
0C

J
0 1 × (−2) 1 × 1 1 × 1

Table 1. Coefficients of the partial-wave projected integral equation for the S-wave T ∗
ccD

∗ scattering.

Applying the above projections to the integral equation of the S-wave T ∗
ccD

∗ scattering,
eq. (2.13), one gets

T
I= 1

2 ,J=0
(0) ≡ 1

2
∑
ηλ

(
OI=1/2

λ,β OJ=0
lk

)†
T lkβ

(0)jiα

(
OI=1/2

η,α OJ=0
ji

)

= 1
2

1
3 [δkl(UlUj)ikδji]

[∑
ηλ

δβλδβαδηα

]
M0

+1
2

∫ Λ

0
dqM1

∑
ηλ

(−1√
3
δlkδβλ

)
C lkβ

0snµT
snµ

(0)jiα

(
OI=1/2

η,α OJ=0
ji

)

= 1
2

1
3×(−6)×2M0+

∫ Λ

0
dqM1(−2)×1

2
∑
ηλ

(
OI=1/2

λ,µ OJ=0
sn

)†
T snµ

(0)jiα

(
OI=1/2

η,α OJ=0
ji

)

=−2M0−2
∫ Λ

0
dqM1T

I= 1
2 ,J=0

(0) , (2.19)

with two scalar amplitudes M0 and M1, which have been defined by the last equality in
eq. (2.13). Similarly, applying the spin-isospin projections for other partial waves to eq. (2.13)
yields the corresponding integral equations for each partial wave amplitude, all of which
can be written in the following general form,

T I,J
(0) (E, k, p) = CI

0C
J
0 M0(k, p) +

∫ Λ

0
dq CI

0C
J
0 M1(p, q)T I,J

(0) (E, k, q). (2.20)

The spin-isospin coefficients are given in table 1.
The dimer-particle amplitude T I,J

(0) (E, k, p), obtained from the integral equations above,
contains all physical information relevant to the three-meson system with specified quantum
numbers. These include, for instance, the phase shifts of T (∗)-D(∗) scattering and the possible
existence of three-body bound states. After discretizing the integral in eq. (2.20), the integral
equation can be rewritten as an eigenvalue problem expressed as follows:

(1 − CI
0C

J
0 M̃1)T̃ I,J

(0) = CI
0C

J
0 M̃0, (2.21)

where˜denotes the discretized form (vector or matrix) of the quantity evaluated on the chosen
integral mesh. To explore the existence of such bound states, one can directly identify the
poles of the amplitude, which are given as solutions of the following equation:

det(1 − Ṽ G̃) ≡ det(1 − CI
0C

J
0 M̃1) = 0, (2.22)

which is exactly analogous to the strategy used in searching for poles of the two-body
scattering amplitude solved from the Lippmann-Schwinger equation.
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Figure 4. Left panel: determinant det(1− Ṽ G̃) of the T ∗
ccD

∗ scattering equation for the channel with
quantum numbers (I, J) = (1/2, 0) and (I, J) = (1/2, 1(2)). Right panel: the corresponding S-wave
T ∗

ccD
∗ scattering phase shifts, for which curves with different cutoffs are almost indistinguishable. The

vertical lines denote the D∗T ∗
cc two-body threshold.

Our results demonstrate that all partial waves exhibit weak cutoff dependence, as shown
in the left panel of figure 4. Note that the only theoretical inputs are the binding energies
of the two (I, J) = (0, 1) dimers, corresponding to physical T ∗

cc and Tcc states, given by
E∗

B = −0.50 MeV and Ec
B = −0.36 MeV [81], respectively. The absence of trimer poles is

evident across a wide range of Λ values from 1.5 to 2.5 GeV.5

In the right panel of figure 4, we have plotted the corresponding scattering phase shifts of
D∗T ∗

cc. One sees that the phase shifts remain almost unchanged when altering the cutoff Λ. In
the plot, the D∗T ∗

cc S-wave scattering length a3 is also labeled, whose definition is as follows:

a
(I,J)
3 ≡ −µ3

2πT
I,J
(0) (k = p = 0), (2.23)

where µ3 = MT ∗
cc
MD∗/(MT ∗

cc
+MD∗) is the reduced mass of D∗T ∗

cc. The S-wave phase shifts

5A different conclusion was reached in ref. [78] due to inconsistent prefactors arising from the partial wave
projection compared to our work. There the existence of a three-body bound state with quantum numbers
(I, J) = (1/2, 0) in the D∗D∗D∗ system was claimed, using a coefficient equivalent to CJ=0

0 = 4 in our notation.
However, in our case, CJ=0

0 = −2. In fact, as this coefficient changes from 4 to −2, the three-body system
undergoes a Berezinskii-Kosterlitz-Thouless-like phase transition [95], leading to the disappearance of the
bound state.
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Figure 5. Left panel: determinant det(1 − Ṽ G̃) of the scattering equation for three identical scalar
bosons with mass m = MD∗ , illustrating the Efimov behavior. The two-body binding energy is set
to 10 eV, and zero-crossings of the determinant indicate three-body bound states. The vertical line
denotes the three-body threshold which almost equals to particle-dimer threshold in this binding
energy. The inset magnifies the region very near threshold. Right panel: the particle-dimer scattering
phase shift. Different from the results in figure 4, the phase shift is very sensitive to Λ.

for D∗T ∗
cc system are calculated as

δ(I,J) = arccot

2π
µ3

1
k

Re 1
T

(I,J)
(0) (E, k, k)

 . (2.24)

To illustrate how det(1− Ṽ G̃) and the phase shift would behave if an Efimov state exists
(the scattering equation for such a system can be found in refs. [86, 94]), in figure 5 we
present a characteristic Efimov scenario with three identical scalar bosons of mass MD∗ and
a two-body binding energy of 10 eV, the value of which is only for illustration. Notice that no
three-body contact term has been included to absorb the cutoff dependence (or in other words,
the three-body contact term is set to zero). From the left panel of figure 5, one sees that tuning
the two-body binding energy to 10 eV reveals the existence of at least three three-body bound
states. The right panel shows that the particle-dimer S-wave phase shift changes drastically
within a small energy range due to the presence of multiple near-threshold bound state poles.
One also notices that the phase shift is very sensitive to the cutoff, in contrast to the case
without any Efimov state in figure 4. The cutoff dependence in both the phase shift and the
three-body bound state position can be removed once a three-body contact term is included.

2.4 T ∗
ccD-TccD∗ coupled-channel scattering

Next, we consider the S-wave T ∗
ccD-TccD

∗ scattering. For total spin J = 1, we must solve
coupled-channel integral equations since transitions between T ∗

ccD and TccD
∗ are allowed,

as illustrated in figure 6. In contrast, for J = 0 and J = 2, only the single-channel TccD
∗

scattering occurs.
The coupled-channel integral equations for the T ∗

ccD → T ∗
ccD scattering amplitude T1
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Figure 6. Integral equations for the coupled-channel (T ∗
ccD and TccD

∗) scattering amplitudes. Here,
the single solid (dashed) line represents D∗ (D) meson, and the double solid (solid-dashed) line
represents the D∗D∗ (DD∗) dimer T ∗

cc (Tcc).

and the T ∗
ccD → TccD

∗ scattering amplitude T2 are

(T1) jβ
(0) iα (E, k, p) = − 1

πµ∗

S3,4
S2,ccc

∫ Λ

0
dq

√
γ∗S2,ccc

γcS2,∗c∗

q2 V S
4 (q, p)(T2) lmµ

(0) iα (E, k, q) (Uj)lmδβµ

−γc +
√
−2µc

(
E − q2

2MD∗ − q2

2Mc

)
− iε

≡ +
∫ Λ

0
dqM12(T2) lmµ

(0) iα (E, k, q) C jβ
1 lmµ , (2.25)

and

(T2) jkβ
(0) iα (E, k, p) = −

π
√
γ∗γc

µ∗µc

2S3,2√
S2,∗c∗S2,ccc

V S
2 (k, p) (Ui)kjδβα

− 1
πµc

S3,2
S2,∗c∗

∫ Λ

0
dq

√
γcS2,∗c∗
γ∗S2,ccc

q2 V S
2 (q, p)(T1) mµ

(0) iα (E, k, q) (Um)kjδβµ

−γ∗ +
√
−2µ∗

(
E − q2

2MD
− q2

2M∗

)
− iε

− 1
πµc

S3,3
S2,ccc

∫ Λ

0
dq
q2 V S

3 (q, p) (T2) lmµ
(0) iα (E, k, q) δklδmjδβµ

−γc +
√
−2µc

(
E − q2

2MD∗ − q2

2Mc

)
− iε

≡M20 C jkβ
2 iα +

∫ Λ

0
dqM21(T1) mµ

(0) iα (E, k, q) C jkβ
2 mµ

+
∫ Λ

0
dqM22(T2) lmµ

(0) iα (E, k, q) C jkβ
3 lmµ , (2.26)

where the S-wave projection and wave function renormalization factors have been applied,
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1 CI
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2 CI
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J
3

(I, J) = (1
2 , 1) 1 ×

√
2 1 ×

√
2 1 × (−1)

Table 2. Coefficients of the partial-wave projected integral equation for the S-wave T ∗
ccD scattering.
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Figure 7. Determinant det(1 − Ṽ G̃) of the T ∗
ccD-TccD

∗ coupled-channel scattering equations with
quantum numbers (I, J) = (1/2, 1). The vertical line denotes the threshold of T ∗

ccD.

and the relevant S-wave potentials V S are given by

V S
2 (k, q) = −MD∗

kp
Q0

(
−MD∗

kp

(
E − k2

2µ − p2

2µ∗

)
− iε

)
,

V S
3 (k, q) = −MD

kp
Q0

(
−MD

kp

(
E − k2

2µ − p2

2µ

)
− iε

)
, (2.27)

V S
4 (k, q) = −MD∗

kp
Q0

(
−MD∗

kp

(
E − k2

2µ∗
− p2

2µ

)
− iε

)
.

Note that the projections onto isospin 1/2 are the same as that in the previous subsection,
that is, CI

1 = CI
2 = CI

3 = CI
0 = 1, and the additional spin projector for the T ∗

ccD scattering
is given by

OJ=1
j,i (1 ⊗ 0 → 1) = δij . (2.28)

Using the same strategy as presented in the T ∗
ccD

∗ subsection, one can obtain the projection
coefficients for the S-wave T ∗

ccD-TccD
∗ coupled-channel integral equations by applying the

above operators to eqs. (2.25) and (2.26). The results are collected in table 2.

– 12 –



J
H
E
P
0
7
(
2
0
2
5
)
0
8
1

Channel (I, J) = (1/2, 0) (I, J) = (1/2, 2)

CI
4C

J
4 1 × 1 1 × 1

Table 3. Coefficients of the partial-wave projected integral equation for the S-wave TccD
∗ scattering.

The coupled-channel integral equations are then expressed in the following general form
with these spin-isospin factors as,

(T1)I,J
(0) (E, k, p) =

∫ Λ

0
dq CI

1C
J
1 M12(p, q)(T2)I,J

(0) (E, k, q) ,

(T2)I,J
(0) (E, k, p) =CI

2C
J
2 M20(k, p) +

∫ Λ

0
dq CI

2C
J
2 M21(p, q)(T1)I,J

(0) (E, k, q)

+
∫ Λ

0
dq CI

3C
J
3 M22(p, q)(T2)I,J

(0) (E, k, q) . (2.29)

The four scalar amplitudes M12, M20, M21, and M22 have been defined by eqs. (2.25)
and (2.26). The cutoff dependence of the determinant is shown in figure 7, and again no
Efimov effect is observed. The behavior of the phase shifts and scattering lengths is similar
to D∗T ∗

cc system in the previous section, and therefore will not be plotted here and below.

2.5 TccD∗ scattering

Finally, the amplitude for the J = 0 or J = 2 S-wave TccD
∗ scattering satisfies the single-

channel integral equation, as described above, which is given by

T lkβ
(0) jiα(E, k, p) = − πγc

µ2
c

2S3,3
S2,ccc

V S
3 (k, p) δilδkjδβα

− 1
πµc

S3,3
S2,ccc

∫ Λ

0
dq

q2 V S
3 (q, p) T snµ

(0) jiα (E, k, q) δnlδksδβµ

−γc +
√
−2µc

(
E − q2

2MD∗ − q2

2Mc

)
− iε

≡M0 C lkβ
4 jiα +

∫ Λ

0
dqM1T

snµ
(0) jiα (E, k, q) C lkβ

4 snµ . (2.30)

After applying the partial wave projections, one obtains the prefactors as listed in table 3.
Then the projected integral equation for the S-wave TccD

∗ scattering reads

T I,J
(0) (E, k, p) = CI

4C
J
4 M0(k, p) +

∫ Λ

0
dq CI

4C
J
4 M1(p, q)T I,J

(0) (E, k, q) , (2.31)

with two scalar amplitudes M0 and M1 defined by eq. (2.30). Once again, there is no signal
of the Efimov effect in these channels, see figure 8.

3 S-wave D∗D∗D∗ system with dimers of all possible quantum numbers

In the preceding section, our analysis demonstrated that the Efimov effect in the coupled-
channel Lippmann-Schwinger equation for three-charmed systems involving the T ∗

cc and Tcc

dimers is significantly affected by spin, isospin, and symmetry factors arising from identical
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Figure 8. Determinant det(1 − Ṽ G̃) of the TccD
∗ single-channel scattering equations with quantum

numbers (I, J) = (1/2, 0(2)). The vertical line denotes the threshold of TccD
∗.

particles. The weak cutoff dependence in the solutions of the scattering equations shows that
there is no Efimov effect when only the (I, J) = (0, 1) dimers Tcc and T ∗

cc are present. We
will extend our analysis in this section to consider all possible dimer configurations and their
implications for Efimov physics. We will focus on the D∗D∗D∗ three-body system studied
in ref. [78] to investigate under what conditions the Efimov effect can occur.

The Efimov effect emerges from the delicate interplay between short-range two-body
interactions and long-range three-body correlations. It depends on the behavior at large
momenta within the scattering equation, as exemplified by the three-body scattering equation
for identical scalar isoscalar bosons [86, 94]. When the momentum p is much larger than the
inverse of the two-body scattering length, the scattering amplitude T (p) satisfies

T (p) = 4√
3πp

∫ ∞

0
dq T (q) ln p

2 + pq + q2

p2 − pq + q2 . (3.1)

By introducing the power-law ansatz T (p) ∼ ps−1, one obtains in the asymptotic momen-
tum limit,

ps = 4√
3π

∫ ∞

0
dq qs−1 ln p

2 + pq + q2

p2 − pq + q2 . (3.2)

Consequently, a transcendental equation for the scaling parameter s is obtained,

1 = 8√
3

1
s

sin π
6 s

cos π
2 s

(3.3)

This equation has imaginary solutions s0 = ±1.00624i, indicating an oscillatory asymptotic
behavior for T (p). It becomes necessary to introduce a logarithmic periodic three-body
contact interaction to achieve a unique solution as Λ → ∞ [86, 94].

This oscillatory behavior manifests as the Efimov effect, characterized by an infinite
geometric spectrum of three-body bound states. When two particles interact with a resonant
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two-body interaction (infinite scattering length), a third particle can induce an effective
attractive interaction, leading to the formation of weakly bound three-body states. These
Efimov states follow a geometric scaling pattern, with each consecutive energy level related by
a universal scaling factor of approximately e2π/|s0| ≈ 515, as given in eq. (1.1). This remarkable
phenomenon is universal, appearing in nuclear physics, atomic physics, and other quantum
systems regardless of the underlying short-range interactions (for a review, see ref. [59]).

When the bosons have spin and isospin, there will be various channels with different
CG coefficients and symmetry factors. Then the asymptotic behavior of scattering equation
will depend on these CG coefficients and symmetry factors. For coupled-channel scattering
equations, if all scattering lengths are unnaturally large, eq. (3.1) is generalized to

Ti(p) = Aij
4√
3πp

∫ ∞

0
dq Tj(q)1

2 ln p
2 + pq + q2

p2 − pq + q2 . (3.4)

The factor Aij contributes to the coefficient of the scattering equations. One can decouple
the above coupled-channel scattering equation into single-channel equations of T̂i(p) by a
unitary transformation S, which diagonalizes A to S−1AS = diag(λ1, λ2, . . .), as (cf. ref. [96])T1

T2
. . .

 = S

T̂1
T̂2
. . .

 . (3.5)

The behavior of each T̂i(p) is governed by the corresponding eigenvalue λi of A. Using the
ansatz T̂i(p) ∼ psi−1, we obtain equations for si:

1 = 4λi√
3

1
si

sin π
6 si

cos π
2 si

(3.6)

The Efimov effect occurs in the system when this equation has an imaginary solution, which
happens when λi > λc = 3

√
3/(2π) ≈ 0.826993 [59]. It is worth noting that for a system of

three identical scalar bosons without (iso)spin, λ = 2 as shown in eq. (3.3).
It should be noted that the Bose-Einstein statistics plays a significant role in this context.

The matrix A contains the symmetry factor S3 from the one-boson exchange diagram, as
defined in eq. (2.8), as well as the spin and isospin CG coefficients, the two-body symmetry
factor S2, and the normalization constant c in GA. We summarize the matrix A and its
eigenvalues λi for the D∗D∗D∗ system in table 4.

Therefore, for the D∗D∗D∗ system, we conclude in section 2 that no Efimov effect occurs
when only the existence of the T ∗

cc dimer with quantum numbers (I, J) = (0, 1) is assumed.
However, when dimers with quantum numbers (I, J) = (1, 2) and (1, 0) are included in eq. (3.4)
(that is, these two-body D∗D∗ channels approach the unitary limit), the Efimov effect emerges
in channels where the eigenvalue equals 2, exceeding the critical threshold λc. In these cases,
the scaling factor si for the Efimov states equals ±1.00624i, which precisely matches the value
observed in systems of three identical spinless and isoscalar bosons. In particular, for the
(I, J) = (1/2, 2) system, the Efimov effect can emerge if, in addition to the existence of the
isoscalar T ∗

cc, the D∗D∗ scattering length in the (I, J) = (1, 2) channel is sufficiently large.
Let us take the case of (I, J) = (1/2, 1) in table 4 as an example. If we set all three

D∗D∗ dimers (1, 0), (0, 1), and (1, 2) with binding energies equal to 0.50 MeV (corresponding

– 15 –



J
H
E
P
0
7
(
2
0
2
5
)
0
8
1

(I, J) A λi

(1/2, 0) −1 −1
(3/2, 0) - -

(1/2, 1)


−1

3 1 −
√

5
3

1 1
2 −

√
5

2

−
√

5
3 −

√
5

2 −1
6

 2,−1,−1

(3/2, 1)

 2
3

2
√

5
3

2
√

5
3

1
3

 2,−1

(1/2, 2)

1
2

3
2

3
2

1
2

 2,−1

(3/2, 2) −1 −1
(1/2, 3) −1 −1
(3/2, 3) 2 2

Table 4. The A matrix and its eigenvalues λi for the D∗D∗D∗ three-body scattering equation with
various (I, J) quantum numbers. The row and column indices of Aij represent the three possible
dimers with quantum numbers (I, J) = (1, 0), (0, 1), and (1, 2), respectively, when they contribute
to the channel. Specifically, for (I, J) = (1/2, 1), all three dimers contribute to the coupled-channel
system, so index 1 corresponds to (1, 0), index 2 to (0, 1), and index 3 to (1, 2). For (I, J) = (3/2, 1),
only dimers with (I, J) = (1, 0) and (1, 2) contribute, so we use index 1 for (1, 0) and index 2 for (1, 2).
For (I, J) = (1/2, 2), only dimers with (I, J) = (0, 1) and (1, 2) contribute, so we use index 1 for (0, 1)
and index 2 for (1, 2). The case of (I, J) = (3/2, 0) is forbidden by the Bose-Einstein statistics.

to the binding energy of T ∗
cc), when Λ = 1500 MeV we can find the first two bound states

located at E1 = −44.3 MeV and E2 = −0.83 MeV with a vanishing three-body force. It is
noteworthy that ∆E1/∆E2 ≈ 134 with ∆En = En + E∗

B, which is similar to the result with
the same value of binding energy in ref. [78].

4 Summary and discussions

The existence of the Tcc(3875)+ extremely close to the DD∗ threshold implies a large S-wave
scattering length in the isoscalar DD∗ channel. Motivated by this observation and the
hypothetical heavy quark spin partner of the Tcc, denoted as T ∗

cc with quantum numbers
(I, J) = (0, 1), we have investigated the possibility of the Efimov effect in the D∗D∗D∗ and
DD∗D∗ three-body systems. Our analysis reveals that if only the isoscalar J = 1 dimers
Tcc and T ∗

cc exist, no Efimov effect is expected. This conclusion differs from that of ref. [78],
which reported the existence of (I, J) = (1/2, 0) D∗D∗D∗ three-body bound states due to
the inconsistent prefactors arising from the partial wave projection.

Then we investigate under what conditions there can be Efimov effects in the S-wave
D∗D∗D∗ system. We find that if the unitary limit is approached also in the isovector
(I, J) = (1, 0) and (I, J) = (1, 2) D∗D∗ channels, the Efimov effect can be reinstated. Notice
that such a case corresponds to one of the solutions of minimizing the entanglement [97]
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for the S-wave D(∗)D(∗) scatterings [98]. However, since the partial decay width of the
T ∗

cc → DD∗ channel could reach around 20 MeV [85], Efimov states in D∗D∗D∗ — if they
exist at all by satisfying the conditions mentioned above — will be hard to be found in
experiments. It would be interesting to calculate the isovector D∗D∗ low-energy scatterings
with J = 1 and 2 using lattice QCD.
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