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Abstract

We construct light-cone sum rules (LCSR) for the B → K∗ form factors in the large recoil region
using vacuum-to-B-meson correlation functions, and systematically calculate subleading-power corrections
to these form factors at tree level, including next-to-leading power contributions from the hard-collinear
propagator, the subleading effective current q̄Γ[i /D⊥/(2mb)]hv, and twist-five/six four-particle higher-twist
effects. By incorporating the available leading-power results at O(αs) and the corrections to higher-twist
B-meson light-cone distribution amplitudes from our previous work, we improve the precision of theoretical
predictions for B → K∗ form factors and find that the subleading-power contributions amount to 30% of
the corresponding leading-power results. Employing the Bourrely-Caprini-Lellouch (BCL) parametrization,
we determine the numerical results for B → K∗ form factors across the full kinematic range through a
combined fit of LCSR predictions in the large recoil region and lattice QCD results in the small recoil
region. Using the newly obtained B → K∗ form factors, we compute the branching fractions for the
rare decays B → K∗νℓν̄ℓ in the Standard Model, obtaining BR(B̄0 → K̄∗0νℓν̄ℓ) = 8.09(96) × 10−6 and
BR(B̄+ → K̄∗+νℓν̄ℓ) = 9.95(1.05)× 10−6. Additionally, we predict that the longitudinal K∗ polarization
fraction is FL = 0.44(4).
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1 Introduction

The semi-leptonic B decays induced by the flavor-changing neutral current (FCNC) and accompanied
by clean experimental signals, serve as powerful probes of physics beyond the Standard Model (SM). In the
prominent semi-leptonic b → sℓ+ℓ− decays, several flavor anomalies have been observed, including a 4.0σ
deviation in the experimentally measured BR(B+ → K+µ+µ−) compared to the Standard Model predictions
in the low q2 region, where q denotes the momentum of the lepton pair, and the discrepancy between the
angular observable P ′

5(B → K∗0µ+µ−) measured by the LHCb collaboration and the SM predictions in two
q2 bins [1, 2, 3]. Notably, the branching ratio of B → Kνℓν̄ℓ reported by the Belle II collaboration exceeds the
Standard Model prediction by 2.7σ [4]. B-meson decays with a pair of neutrinos in the final state are one of
the cleanest channels in the SM, since the electroweak effects in these processes are under control and the QCD
effects are fully encoded in the corresponding hadronic form factors. Meanwhile, the b → sℓ+ℓ− decays are
affected by various “ non-factorizable ” contributions, including the short-distance hard spectator scattering
[5, 6], weak annihilation effects [7], and the power suppressed long-distance quark loop contribution [5, 8, 9].
Studying the b → sνν̄ process also allows us to distinguish among different Z ′ models introduced to explain
the anomalies in b→ sℓ+ℓ−, or further constrain the Wilson coefficients of high-dimensional operators within
the Standard Model effective field theory (SMEFT) [10, 11, 12].

In order to make precise theoretical predictions for observables in B → K∗νℓν̄ℓ decay, precision calculations
of B → K∗ form factors are of paramount importance. In the high q2 region, the form factors have been
computed using lattice QCD simulations in Refs. [13, 14] and extrapolated to the entire kinetic region. In the
low q2 region, several QCD based methods have been developed to derive the factorization formulas involved
in the heavy-to-light transition processes with the help of the heavy quark expansion. At leading power in
ΛQCD/mQ, the seven B → V form factors can be expressed as a product of the four effective operators in soft-
collinear effective theory (SCET), the so-called A0-type and B1-type SCET form factors, and corresponding
coefficient functions with hard fluctuations [15, 16, 17, 18, 19],

FB→V
i (n · p) = C

(A0)
i (n · p)ξa(n · p) +

∫
dτC

(B1)
i (τ, n · p)Ξa(τ, n · p), (a = ∥,⊥), (1)

where C
(A0)
i and C

(B1)
i are the hard functions corresponding to A0-type and B1-type operators, respectively,

with their explicit expressions up to O(αs) provided in Appendix A [20, 21, 22, 23]. Specifically, a =∥ for
FB→V

i ∈ {A0,A12, T23} and a =⊥ for FB→V
i ∈ {V,A1, T1, T2}. Due to the endpoint divergences arising in the

convolution of the jet functions and the light-cone distribution amplitudes, the soft-collinear factorization of
form factors ξa cannot be directly accessed. In contrast, the B1-type effective matrix elements can be expressed
as the convolution of jet functions and hadronic distribution amplitudes.

Starting from the vacuum-to-light-meson correlation functions with heavy meson interpolating current,
LCSR with light-meson distribution amplitudes has been used to study the B → V form factors up to twist-4
at tree level and to twist-2 at O(αs) in Refs. [24, 25, 26, 27]. Following the analogous strategies, the light-
cone sum rules for B → V form factors with B-meson light-cone distribution amplitudes at tree level were
constructed in Ref. [28] and the subleading-power corrections up to twist-4 at tree level were calculated in
Ref. [29]. The next-to-leading-logarithmic contribution with SCET sum rules was studied in Ref. [30]. The
power corrections to B → V form factors from two-particle and three-particle higher-twist B-meson LCDAs
have been computed in Ref. [31]. These computations rely on the universal B-meson distribution amplitudes
with duality assumption of the light-meson channel and the narrow-width approximation for the vector mesons
[32, 33]. The finite-width effects in the B → K∗ form factors were investigated in Refs. [34, 35]. Compared
to QCD factorization, the LCSR approach eliminates the endpoint singularity but introduces a systematic
uncertainty due to the quark-hadron duality assumption above a continuum threshold s0, which is used to
determine the lowest-lying hadronic parameters.

This work aims to systematically investigate the subleading power effects of B → K∗ form factors in QCD
by constructing sum rules with B-meson LCDAs, following the approach adopted in Refs. [36, 37, 38]. The
subleading power corrections explored in the present work arise from three distinct sources: (I) the power-
suppressed terms from the heavy quark expansion of the hard-collinear propagator, (II) the subleading effective
current q̄Γ[i /D⊥/(2mb)]hv from the weak current q̄Γb, (III) the twist-five and twist-six four-body higher-twist
contributions. By performing combined fits with lattice QCD results in the high q2 region and the improved
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LCSR form factors in the low q2 region with the BCL parametrization [39, 40, 41], we determine the central
values and correlation matrix of the BCL z-expansion coefficients. We then explore the observables in the
B̄ → K̄∗νℓν̄ℓ process, including the differential branching ratios and the longitudinal K∗ polarization fraction.

The organization of the article is as follows: In Section 2, we present the definitions, notations and
leading power effective SCET form factors at O(αs). In Section 3, we show the computation of various power-
suppressed contributions up to twist-six and provides the corresponding B → K∗ form factors in the low q2

region with LCSR. In section 4, we apply the BCL parametrization in order to get the B → K∗ form factors
in the entire momentum region, and determine the z-series expansion coefficients and their correlation matrix
by a combined fit of form factors from lattice QCD and LCSR. The updated predictions for the branching
ratio B̄ → K̄∗νℓν̄ℓ and longitudinal K∗ polarization fraction are also provided. Finally, we discuss our results
and future prospects in Section 5. Various technical details are collected in the Appendices.

2 NLL correction to the B → K∗ form factors at leading power

According to the standard Lorentz decomposition of the bilinear quark currents, the B → K∗ form factors
are defined in the standard way [15]

cV ⟨V (p, ε∗)|q̄γµb|B̄(p+ q)⟩ = − 2iV (q2)

mB +mV
ϵµνρσε

∗νpρqσ,

cV ⟨V (p, ε∗)|q̄γµγ5b|B̄(p+ q)⟩ = 2mV ε
∗ · q

q2
qµA0(q

2)

+ (mB +mV )

(
ε∗µ −

ε∗ · q
q2

qµ

)
A1(q

2)

− ε∗ · q
mB +mV

[
(2p+ q)µ −

m2
B −m2

V

q2
qµ

]
A2(q

2),

cV ⟨V (p, ε∗)|q̄iσµνqνb|B̄(p+ q)⟩ = −2iT1(q2)ϵµνρσε∗νpρqσ,
cV ⟨V (p, ε∗)|q̄iσµνγ5qνb|B̄(p+ q)⟩ = T2(q

2)[(m2
B −m2

V )ε
∗
µ − (ε∗ · q)(2p+ q)µ]

+ T3(q
2)(ε∗ · q)

[
qµ −

q2

m2
B −m2

V

(2p+ q)µ

]
,

(2)

with the convention ϵ0123 = −1. The factor cV denotes the flavor structure of a vector meson with cV = 1 for
the K∗ meson. Additionally, mV and mB denote the mass of K∗ meson and B meson, respectively. p and
q correspond to the momentum of K∗ meson and the momentum transfer of weak current, respectively, with
q = pB − p = mBv − p.

In the following subsection, the calligraphic form factors Fi represent the linear combinations of the
conventionally defined form factors in Eq. (2),

V(q2) = mB

mB +mV
V (q2), A0(q

2) =
mV

EV
A0(q

2), A1(q
2) =

mB +mV

2EV
A1(q

2),

A2(q
2) =

mB −mV

mB
A2(q

2), T1(q2) = T1(q
2), T2(q2) =

mB

2EV
T2(q

2),

A12(q
2) = A1(q

2)−A2(q
2), T23(q2) = T2(q2)− T3(q2).

(3)

Following the procedure outlined in Refs. [30, 42, 43, 44], we can construct the vacuum-to-B-meson correlation
functions as follows:

Π
(a)
νµ,∥(p, q) =

∫
d4xeip·x⟨0|T{jν(x), q̄(0)Γ(a)

µ b(0)}|B̄⟩,

Π
(a)
νδµ,⊥(p, q) =

∫
d4xeip·x⟨0|T{jνδ(x), q̄(0)Γ(a)

µ b(0)}|B̄⟩,
(4)

where jν(x) = q̄′(x)γνq(x) and jνδ(x) = q̄′(x)γνγδ⊥q(x) are the interpolating currents corresponding to the
longitudinal and transverse polarization vector meson states with momentum p, respectively. The superscript
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Figure 1: Diagrammatic representations of the vacuum-to-B-meson correlation functions at tree level, where
double line stands for the effective heavy quark field in HQET, the wave line indicates the interpolating current
and square box denotes the weak vertex.

(a) denotes different Dirac structures. We further introduce two light-cone vectors nµ and n̄µ, which satisfy the
relations n · n̄ = 2 and n2 = n̄2 = 0. In this work we don’t intend to study the power suppressed contribution
arising from the interpolating currents, therefore we keep the leading-power term of the interpolating currents
in our calculations. Subsequently, the correlation functions in Eq. (4) can be expressed as

Π
(a)
νµ,∥(p, q) = n̄νΠ

(a)
µ,∥(p, q), Π

(a)
νδµ,⊥(p, q) = n̄νΠ

(a)
δµ,⊥(p, q), (5)

with

Π
(a)
µ,∥(p, q) =

∫
d4xeip·x⟨0|T{q̄′(x) /n

2
q(x), q̄(0)Γ(a)

µ b(0)}|B̄(p+ q)⟩,

Π
(a)
δµ,⊥(p, q) =

∫
d4xeip·x⟨0|T{q̄′(x) /n

2
γδ⊥q(x), q̄(0)Γ

(a)
µ b(0)}|B̄(p+ q)⟩.

(6)

For convenience, we conduct our research in the rest frame of B-meson, which allows us to express the four-
velocity vector of B meson as vµ = pB/mB = (nµ + n̄µ)/2. In addition, the power counting scheme for the
momentum of interpolating currents, as well as the masses of strange quark is assigned to

n · p ∼ O(mb), |n̄ · p| ∼ O(ΛQCD/mb), mq ∼ mq′ ∼ O(ΛQCD/mb). (7)

The correlation functions defined in Eq. (4) can be systematically calculated within the framework of SCET.
Since the momentum of the interpolation current is space-like, there is no endpoint singularity in the convo-
lution integral between the perturbation function and the B-meson distribution amplitudes, which guarantees
factorization of the correlation function. The two-particle leading-twist B-meson LCDA is defined in terms of
the nonlocal operators in SCETII [15, 45]

⟨0|(q̄sYs)β(tn̄)(Y †
s hv)α(0)|B̄v⟩ = −

if̃B(µ)mB

4

{
1 + /v

2
[2ϕ̃+B(t, µ) + (ϕ̃−B(t, µ)− ϕ̃

+
B(t, µ))/̄n]γ5

}
αβ

, (8)

where

ϕ̃±B(t) ≡
∫ ∞

0

dωe−iω·tϕ±B(ω). (9)

The scale-dependent decay constant f̃B(µ) in HQET is related to the decay constant fB in QCD by the
following relation [46]

f̃B(µ) = fB

[
1− αsCF

4π

(
3 ln

mb

µ
− 2

)
+O(α2

s)

]
. (10)

SCETII is an infrared effective theory, which contains only soft and collinear fields (in this work it is equivalent
to HQET since no collinear field is taken into account), and it describes all the long distance degrees of freedom.
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There also exist quark and gluon field at intermediate scale called hard-collinear scale that is described by
SCETI operators, which deals with the interaction between hard-collinear and soft fields. The hard-collinear
field is at the perturbation region, and should be integrated out to obtain the jet function. Therefore, we
need to perform the two-step matching process QCD → SCETI → SCETII, then the perturbation functions,
including the hard function and jet function, can be obtained step by step.

Matching the QCD heavy-to-light current to SCETI operators, which can contribute to the correlation
function at leading power, is shown as follows (see Ref. [21] for the explicit expressions of the A-type and
B-type SCET operators)

(ψ̄ ΓiQ)(0) =

∫
dŝ
∑
j

C̃
(A0)
ij (ŝ)O

(A0)
j (s; 0) +

∫
dŝ
∑
j

C̃
(A1)
ijµ (ŝ)O

(A1)µ
j (s; 0)

+

∫
dŝ1

∫
dŝ2

∑
j

C̃
(B1)
ijµ (ŝ1, ŝ2)O

(B1)µ
j (s1, s2; 0) + ... , (11)

where the hard functions C̃
(A0)
ij (s) and C̃

(B1)
ijµ (ŝ1, ŝ2) are given in position space, they could be transformed

into momentum space through Fourier transformation, and the corresponding momentum space hard function

is written by C
(A0)
i (n · p, µ) and C

(B1)
i (n · p, τ, µ). Because the hard functions C

(A0)
i and C

(B1)
i contain the

enhanced logarithms lnn(mb/ΛQCD), they should be summed up to all orders in perturbation theory with NLL
and LL accuracy by solving renomalization equation [20, 21]. The general solutions to the RG equations are

C
(A0)
i (n · p, µ) = U1(n · p, µh, µ)C

(A0)
i (n · p, µh), (12)

C
(B1)
i (n · p, τ, µ) = exp[−S(n · p, µh, µ)]

∫ 1

0

dτ ′U
(B1)
i (τ, τ ′, µh, µ)C

(B1)
i (n · p, τ ′, µh), (13)

where the NLL resummation evolution factor U1 and LL expansion of the S function are detailed in Refs. [21,
46]. The jet function can be obtained by matching the matrix element of the time-ordered product of SCETI

operators and the SCETI Lagrangian [47] to the matrix elements of SCETII operators. In practical operation,
one can just evaluate the Feynman diagrams in Fig. 1 for tree level result, and the O(αs) contribution has been
calculated in Ref. [31]. To extract the form factors of the B → K∗ process, we utilize a dispersion relation
and express the partonic correlation function as a dispersion integral [48]

Π(n · p, n̄ · p) = 1

π

∫ ∞

0

dω′ ImΠ(n · p, ω′)

ω′ − n̄ · p− iϵ
. (14)

At the hadronic level, the correlation function with different interpolating currents can be expressed by the
following formulas

Π
(V−A)
µ,∥ (p, q) =

f
∥
VmV

m2
V /n · p− n̄ · p− i0

(
n · p
2mV

)2{
mB

mB − n · p
nµ

[(
−2mV

n · p
A0

(
q2
))

+

(
mB +mV

n · p
A1

(
q2
)
− mB −mV

mB
A2

(
q2
))]

−n̄µ
[(

2mV

n · p
A0(q

2)

)
+

(
mB +mV

n · p
A1

(
q2
)
− mB −mV

mB
A2

(
q2
))]}

+

∫
dω′ 1

ω′ − n̄ · p− i0

[
nµϱ

(V−A)
n,∥ (ω′, n · p) + n̄µϱ

(V−A)
n̄,∥ (ω′, n · p)

]
, (15)

Π
(V−A)
δµ,⊥ (p, q) =− 1

2

f⊥V n · p
m2

V /n · p− n̄ · p− i0

×
[
g⊥δµ

(
mB +mV

n · p
A1

(
q2
))

+ iϵ⊥δµ

(
mB

mB +mV
V
(
q2
))]

+

∫
dω′ 1

ω′ − n̄ · p− i0

[
g⊥δµϱ

(V−A)
⊥,A1

(ω′, n · p) + iϵ⊥δµϱ
(V−A)
⊥,V (ω′, n · p)

]
, (16)
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Π
(T+T̃)
µ,∥ (p, q) =

1

2

f
∥
VmV

m2
V /n · p− n̄ · p− i0

(
n · p
2mV

)2

× [n · qn̄µ − n̄ · qnµ]
[
mB

n · p
T2
(
q2
)
− T3

(
q2
)]

+

∫
dω′ 1

ω′ − n̄ · p− i0
[n · qn̄µ − n̄ · qnµ] ϱ(T+T̃)

∥ (ω′, n · p) , (17)

Π
(T+T̃)
δµ,⊥ (p, q) =

1

2

f⊥V n · pmB

m2
V /n · p− n̄ · p− i0

[
g⊥δµ

(
mB

n · p
T2
(
q2
))

+ iϵ⊥δµT1
(
q2
)]

+

∫
dω′ 1

ω′ − n̄ · p− i0

[
g⊥δµϱ

(T+T̃)
⊥,T2

(ω′, n · p) + iϵ⊥δµϱ
(T+T̃)
⊥,T1

(ω′, n · p)
]
, (18)

where the definitions of decay constants for the longitudinal and transverse K∗ meson are given by Ref. [30]

⟨0|q̄′(x) /n
2
q(x)|V (p, ε)⟩ = i

2
f
∥
VmV n · ε,

⟨0|q̄′(x) /n
2
γ⊥δ q(x)|V (p, ε)⟩ =− n · p i

2
f⊥V ε

⊥
δ (p).

(19)

At leading power, the large recoil symmetry reduce the seven B → V form factors to two, namely, ξ∥(n · p)
and ξ⊥(n · p). The relation between the QCD form factors in the above equation and the SCET form factors
ξ∥,⊥(n̄ · p) can be found in Ref. [31]. Taking advantage of these relations, all the correlation functions can be
expressed in terms of the SCET form factors. We then apply quark-hadron duality and Borel transformation
to both the partonic and hadronic correlation functions in the SCET representation to eliminate the continuum
and resonance contributions, thereby reducing the uncertainties from the duality ansatz. We finally obtain the
four effective SCET form factors at O(αs) [31]

ξ∥,NLL(n · p) =
U2(µh2, µ)f̃B(µh2)

f
∥
V

2mBmV

(n · p)2

×
∫ ω∥

s

0

dω′ exp

[
− n · pω′ −m2

V

n · pωM

]
[ϕ−B,eff(ω

′, µ) + ϕ+B,m(ω′, µ)], (20)

ξ⊥,NLL(n · p) =
U2(µh2, µ)f̃B(µh2)

f⊥V (ν)

mB

n · p

×
∫ ω⊥

s

0

dω′ exp

[
− n · pω′ −m2

V

n · pωM

]
ϕ̃−B,eff(ω

′, µ, ν), (21)

Ξ∥,NLL(n · p) =−
αsCF

π

U2(µh2, µ)f̃B(µh2)

f
∥
V

mBmV

n · pmb
[(1− τ)θ(τ)θ(1− τ)]

×
∫ ω∥

s

0

dω′ exp

[
− n · pω′ −m2

V

n · pωM

] ∫ ∞

ω′
dω
ϕ+B(ω, µ)

ω
, (22)

Ξ⊥,NLL(n · p) =−
αsCF

2π

U2(µh2, µ)f̃B(µh2)

f⊥V (ν)

mB

mb
[(1− τ)θ(τ)θ(1− τ)]

×
∫ ω⊥

s

0

dω′ exp

[
− n · pω′ −m2

V

n · pωM

] ∫ ∞

ω′
dω
ϕ+B(ω, µ)

ω
, (23)

where ω
∥,⊥
s = s

∥,⊥
0 /n · p and ωM =M2/n · p denote the effective threshold and Borel mass, respectively, which

are two fundamental inputs of LCSR. µ and ν correspond to the factorization scale and renormalization scale,
respectively. Additionally, the effective B-meson distribution amplitudes are introduced to describe both the
hard-collinear and soft fluctuations [31, 43, 44], as given in Appendix B. The quark mass contributions in
SCET have been investigated in Ref. [49] and the leading-power spectator-quark mass corrections to B(s)-
meson decay form factors at one-loop accuracy have been calculated in Refs. [36, 38]. In this work, we do not
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include the spectator-quark mass corrections to the effective SCET form factors at one-loop accuracy. The
omission is justified because the spectator quark in B → K∗ decay process is either a u-quark or d-quark,
whose mass-induced corrections are significantly suppressed compared to those from the s-quark in Bs-meson
decays. We will estimate the spectator-quark correction to the B → K∗ form factors with the SCET sum
rules in our future work.

3 Subleading-power contributions

In this section, we investigate the power corrections arising from various sources to the B → K∗ form
factors within the LCSR approach. Utilizing the equations of motion in HQET and the factorization formula of
correlation functions at subleading power, we ultimately obtain the tree-level power corrections to the B → K∗

form factors in the large hadronic recoil region and analyze the scaling behavior of these form factors.

3.1 Higher-twist B-meson LCDAs contribution

Figure 2: Diagrammatic representations of two-particle (left) and three-particle (right) corrections to the
vacuum-to-B-meson correlation functions at tree level, where the square box indicates the weak vertex and
wavy line represents the interpolating current.

The contributions from the higher-twist B-meson LCDAs of two-particle and three-particle are shown in
Fig. 2. In order to define higher-twist B-meson LCDAs, the general parameterization of the vacuum-to-B-
meson matrix element of three-body HQET operator is given by Ref. [50]

⟨0|q̄α(z1n̄)gsGµν(z2n̄)hvβ |0⟩ =
f̃B(µ)mB

4
[(1 + /v){(vµγν − vνγµ)

[
ΨA(z1, z2, µ)−ΨV (z1, z2, µ)

]
− iσµνΨV (z1, z2, µ)− (n̄µvν − n̄νvµ)XA(z1, z2, µ) + (n̄µγν − n̄νγµ)

[
W (z1, z2, µ) + YA(z1, z2, µ)

]
+ iϵµναβn̄

αvβγ5X̃A(z1, z2, µ)− iϵµναβn̄αγβγ5ỸA(z1, z2, µ)
− (n̄µvν − n̄νvµ)/̄nW (z1, z2, µ) + (n̄µγν − n̄νγµ)/̄nZ(z1, z2, µ)}γ5]βα, (24)

where ϵ0123 = −1, and we also introduce three-particle HQET distribution amplitudes of definite collinear
twist as follows

Φ3 = ΨA −ΨV , Φ4 = ΨA +ΨV ,

Ψ4 = ΨA +XA, Ψ̃4 = ΨV − X̃A,

Φ̃5 = ΨA +ΨV + 2YA − 2ỸA + 2W, Ψ5 = −ΨA +XA − 2YA,

Ψ̃5 = −ΨV − X̃A + 2ỸA, Φ6 = ΨA −ΨV + 2YA + 2W + 2ỸA − 4Z.

(25)

To facilitate the calculation of the contributions from high-twist LCDAs more effectively, we introduce the
light-cone expansion of the quark propagator within the background gluon field. The relevant definition for
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this expansion can be located in the Ref. [51].

⟨0|T{q̄(x), q(0)}|0⟩ ⊃ igs
∫

d4l

(2π)4
e−il·x

∫ 1

0

du

[
uxµγν
l2 −m2

q

− (/l +mq)σµν
2(l2 −m2

q)
2

]
Gµν(ux), (26)

First, we evaluate the correlation function Π
(a)
∥ (p, q) in Eq. (6), which corresponds to the longitudinally po-

larized vector meson. Contracting the quark fields q(x) and q̄(0) (leads to the propagator in Eq. (26)), taking
advantage of the three-particle higher-twist B-meson LCDA in Eq. (24), the three-particle higher-twist cor-
rection to the correlation function can be written as

Π
(a),3PHT
∥,NLP (p, q) =

f̃B(µ)mB

2n · p

[
Γ
(a)
∥ Π3PHT

∥,NLP + Γ̃
(a)
∥ Π̃3PHT

∥,NLP

]
, (27)

with

Π3PHT
∥,NLP =

∫ ∞

0

dω1

∫ ∞

0

dω2

∫ 1

0

du
−2ūΦ4(ω1, ω2)

(n̄ · p− ω1 − uω2 − ωq)2
+

mq

n · p
Ψ5(ω1, ω2)− Ψ̃5(ω1, ω2)

(n̄ · p− ω1 − uω2 − ωq)2
,

Π̃3PHT
∥,NLP =

∫ ∞

0

dω1

∫ ∞

0

dω2

∫ 1

0

du
Ψ̃5(ω1, ω2)− (2u− 1)Φ5(ω1, ω2)

(n̄ · p− ω1 − uω2 − ωq)2
− mq

n · p
2Φ̃6(ω1, ω2)

(n̄ · p− ω1 − uω2 − ωq)2
,

(28)

where the factors Γ
(a)
∥ and Γ̃

(a)
∥ take the form{

Γ
(V−A)
∥ ,Γ

(T+T̃)
∥

}
∈
{
nµ, n̄µ

n · q
2
− nµ

n̄ · q
2

}
,
{
Γ̃
(V−A)
∥ ,Γ

(T+T̃)
∥

}
∈
{
n̄µ, nµ

n̄ · q
2
− n̄µ

n · q
2

}
, (29)

and a ∈ {V−A,T+ T̃} denotes the different Dirac structures γµ(1−γ5) and iσµν(1+γ5)qν of the heavy-to-light
weak current, respectively. Additionally, we set ωq = m2

q/n · p for brevity.

Along the same lines, the three-particle higher-twist correction to the correlation function Π
(a)
⊥ (p, q) in

Eq. (6), which corresponds to a transversely polarized vector meson, can be expressed as

Π
(a),3PHT
⊥,NLP (p, q) =

f̃B(µ)mB

2n · p

∫ ∞

0

dω1

∫ ∞

0

dω2

∫ 1

0

du

[
Γ
(a)
⊥

(1− 2u)Ψ5(ω1, ω2)− Ψ̃5(ω1, ω2)

(n̄ · p− ω1 − uω2 − ωq)2

− Γ̃
(a)
⊥

mq

n · p
Ψ5(ω1, ω2) + Ψ̃5(ω1, ω2)

(n̄ · p− ω1 − uω2 − ωq)2

] (30)

by taking ϵ⊥δµ ≡ 1
2ϵδµρσn

ρn̄σ and{
Γ
(V−A)
⊥ ,Γ

(T+T̃)
⊥

}
∈ {g⊥δµ + iϵδµ, g

⊥
δµ − iϵ⊥δµ},{

Γ̃
(V−A)
⊥ , Γ̃

(T+T̃)
⊥

}
∈ −{n̄ · q(g⊥δµ + iϵδµ), n · q(g⊥δµ − iϵ⊥δµ)}.

(31)

In addition, the two-particle higher-twist B-meson LCDAs, for example g±B(ω), also generate subleading-power
contributions. The off-light-cone corrections to the renormalized two-body non-local HQET matrix element
at O(x2) accuracy is given by Ref. [50]

⟨0|(q̄sYs)β(x)(Y †
s hv)α|B̄v⟩ = −i

f̃B(µ)mB

4

∫ ∞

0

dωe−iωv·x
[
1 + /v

2

{
2

[
ϕ+B(ω, µ) + x2g+B(ω, µ)

]
− /x

v · x

[
(ϕ+B(ω, µ)− ϕ

−
B(ω, µ)) + x2(g+B(ω, µ)− g

−
B(ω, µ))

]}
γ5

]
αβ

, (32)

where the higher-twist LCDA g−B(ω, µ) can be decomposed into the “genuine” twist-five three-particle LCDA
Ψ5(ω1, ω2, µ) and the lower-twist “Wandzura-Wilczek” two-particle LCDA ĝ−B(ω, µ)

g−B(x) = ĝ−B(x)−
1

2

∫ 1

0

duūΨ5(x, ux). (33)
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After inserting the two-particle higher-twist B-meson LCDAs given in Eq. (32) into the correlation functions,
we obtain the factorization formulas for the two-particle higher-twist contributions

Π
(a),2PHT
∥,⊥ (p, q) =

f̃B(µ)mB

2n · p
Γ
(a)
∥,⊥

{∫ ∞

0

dω
4ĝ−B(ω, µ)

(n̄ · p− ω)2

−
∫ ∞

0

dω1

∫ ∞

0

dω2

∫ 1

0

du
2ūΨ5(ω1, ω2)

(n̄ · p− ω1 − uω2)2

}
,

(34)

with Γ
(a)
∥ ∈ {n̄µ, nµ n̄·q

2 − n̄µ
n·q
2 } and Γ

(a)
⊥ ∈ {g⊥δµ + iϵ⊥δµ,−n̄ · q(g⊥δµ + iϵ⊥δµ)} for a ∈ {V−A,T+ T̃}.

Summing up the two-particle and three-particle higher-twist contributions, we obtain the higher-twist

corrections to the correlation functions Π
(a)
∥,⊥(p, q) at tree level. We then implement the dispersion relation to the

correlation functions at the partonic level and apply the quark-hadron duality ansatz and Borel transformation.
This procedure yields the following sum rules for the higher-twist corrections to the B → K∗ form factors [31]

f⊥V exp

[
− m2

V

n · pωM

]{
VHT
NLP

(
q2
)
,AHT

1,NLP

(
q2
)
, T HT

1,NLP

(
q2
)
, T HT

2,NLP

(
q2
)}

=
f̃B(µ)mB

(n · p)2

{
f2,1[τ1] + f3,2[τ2]− κi

mq

n · p
f3,2[τ2]

}
,

f
∥
V exp

[
− m2

V

n · pωM

]{
AHT

0,NLP

(
q2
)
,AHT

12,NLP

(
q2
)
, T HT

23,NLP

(
q2
)}

=
2f̃B(µ)mBmV

(n · p)3

{
f2,1[τ1] + f3,2[τ3] +

mq

n · p
f3,2[τ4] + ιi

(
f3,2[τ5] +

mq

n · p
f3,2[−τ3]

)}
,

(35)

with the symmetry-breaking factors

κi ∈
{
+1,−1, n · q

n̄ · q
,−n · q

n̄ · q

}
, ιi ∈

{
n · q
mB

,−n · q
mB

,−1
}
, (36)

where the function fi,j describes the contribution of terms in the form ϕ(ω)/(ω − · · · )j , with ϕ(ω) being the
i-particle LCDA and the denominator raised to the j-th power. The explicit expressions of fi,j are listed in
Appendix C, and the density functions are expressed by

τ1(ω) = 4
d

dω
ĝ−B(ω), τ2(ω1, ω2, u) = Ψ5(ω1, ω2) + Ψ̃5(ω1, ω2),

τ3(ω1, ω2, u) = Ψ5(ω1, ω2)− Ψ̃5(ω1, ω2), τ4(ω1, ω2, u) = 2Φ6(ω1, ω2),

τ5(ω1, ω2, u) = 2ūΦ4(ω1, ω2).

(37)

3.2 Higher-order terms in hard-collinear propagator

Adopting the approach detailed in Refs. [36, 37, 38], we carry out the calculation of the subleading power
corrections stemming from the hard-collinear propagator in the correlation functions expressed by Eq.(6).
Given that the momentum in the interpolating current lies in the hard-collinear regime, the quark propagator
connecting this interpolating current and a soft quark also possesses hard-collinear momentum. Expanding
the hard-collinear propagator in terms of powers of ΛQCD/mb gives rise to

/p− /k +mq

(p− k)2 −m2
q + iϵ

=

[ LP︷ ︸︸ ︷
n · p

/̄n

2
+

NLP︷ ︸︸ ︷
(n̄ · p /n

2
− /k +mq) +

n · p /̄n
2 n̄ · pn · k

n · p(n̄ · p− n̄ · k)
+
n · p /̄n

2 (m
2
q −m2

q′)

n · p(n̄ · p− n̄ · k)

]
n · p(n̄ · p− n̄ · k)

, (38)

where mq is the mass of the hard-collinear quark propagator and mq′ is the mass of the B-meson spectator
quark. “LP” refers to the leading-power contribution of hard-collinear propagator at tree level , while “NLP”
represents the subleading-power contributions resulting from the expansion of the hard-collinear propagator.
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We then insert the NLP terms into the correlation functions Π
(a)
∥,⊥, and apply the HQET operator identities

[50, 52]

vρ
∂

∂xρ
q̄(x)Γ[x, 0]hv(0) = v · ∂q̄(x)Γ[x, 0]hv(0) + i

∫ 1

0

duūq̄(x)[x, ux]xλgsGλρ(ux)[ux, 0]v
ρΓhv(0),

iv · ∂⟨0|q̄(x)Γ[x, 0]hv(0)|B̄v⟩ = Λ̄⟨0|q̄(x)Γ[x, 0]hv(0)|B̄v⟩,
∂

∂xρ
q̄(x)γρΓ[x, 0]hv(0) = −i

∫ 1

0

duuq̄(x)[x, ux]xλgsGλρ(ux)[ux, 0]γ
ρΓhv(0) + imq′ q̄(x)Γ[x, 0]hv(0).

(39)

Taking advantage of the three-body light-cone HQET matrix element up to twist-six accuracy in Eq. (24), we
are able to derive the results for the first NLP term presented in Eq. (38),

ΠI,QPE
NLP =

[
f̃B(µ)mB

2n · p

]{∫ ∞

0

dω
(ω − 2Λ̄)ϕ+B(ω)

n̄ · p− ω
+ (mq′ −mq)

∫ ∞

0

dω
ϕ−B(ω)

n̄ · p− ω

−
∫ 1

0

du

∫ ∞

0

dω1

∫ ∞

0

dω2
2[uΦ4(ω1, ω2) + Ψ4(ω1, ω2)]

(n̄ · p− ω1 − uω2)2

}
,

Π̃I,QPE
NLP =

[
f̃B(µ)mB

2n · p

]{∫ ∞

0

dω
(ω − 2Λ̄)

n̄ · p− ω
ϕ−B(ω)

−
∫ 1

0

du

∫ ∞

0

dω1

∫ ∞

0

dω2
2ūΨ5(ω1, ω2)

(n̄ · p− ω1 − uω2)2

}
,

(40)

where the hadronic parameter Λ̄ characterizes the “effective mass” of the B-meson state in HQET. It can be
defined as [53]

Λ̄ ≡ ⟨0|q̄iv ·
←−
DΓhv|B̄q(v)⟩

⟨0|q̄iΓhv|B̄q(v)⟩
. (41)

Noting the relation nα = 2vα − n̄α, we can further compute the contribution of the second NLP term along
the same lines,

ΠII,QPE
NLP = 0, Π̃II,QPE

NLP =

[
f̃B(µ)mB

2n · p

]{∫ ∞

0

dω
n̄ · p(2Λ̄− ω)
(n̄ · p− ω)2

ϕ−B(ω)

+

∫ 1

0

du

∫ ∞

0

dω1

∫ ∞

0

dω2
4ū n̄ · pΨ5(ω1, ω2)

(n̄ · p− ω1 − uω2)3

}
.

(42)

Subsequently, the contribution of the third NLP term of the hard-collinear propagator expansion can be easily
derived by applying the standard factorization procedure,

ΠIII,QPE
NLP = 0, Π̃III,QPE

NLP = (m2
q −m2

q′)

∫ ∞

0

dω
1

(n̄ · p− ω)2
ϕ−B(ω). (43)

Ultimately, we obtain the factorization formulas for the NLP contributions stemming from the quark propa-
gator expansion at tree level:

Π
(a),QPE
j,NLP = Γ

(a)
j (ΠI,QPE

NLP +ΠII,QPE
NLP +ΠIII,QPE

NLP ) + Γ̃
(a)
j (Π̃I,QPE

NLP + Π̃II,QPE
NLP + Π̃III,QPE

NLP ), (44)

with
Γ
(V−A)
∥,⊥ = {nµ, g⊥δµ − iϵ⊥δµ}, Γ̃

(V−A)
∥,⊥ = {n̄µ, g⊥δµ + iϵ⊥δµ}, (45)

and

Γ
(T+T̃)
∥,⊥ = −

{
nµ
n̄ · q
2
− n̄µ

n · q
2
, (g⊥δµ − iϵ⊥δµ)

n · q
2

}
,

Γ̃
(T+T̃)
∥,⊥ = −

{
n̄µ
n · q
2
− nµ

n̄ · q
2
, (g⊥δµ + iϵ⊥δµ)

n̄ · q
2

}
.

(46)
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Adopting the standard LCSR strategy, we formulate the correlation functions in the dispersion relation for-
malism and match them to the hadronic representation given from Eq. (15) to Eq. (18). Finally, the desired
B → K∗ form factors for the power-suppressed contribution stemming from hard-collinear propagator can be
expressed as

fV exp

[
− m2

V

n · pωM

]
FQPE

i,NLP(q
2) =

f̃B(µ)mB

(n · p)2
{κi (f2,1[η1]− f3,2[η2])

+κ̃i (f2,1[η3]− f3,2[η4]− f2,2[η5]− f3,3[η6])} ,
(47)

where form factors Fi ∈ {V,A1, T1, T2,A0,A12, T23} with the replacement fV → f⊥V for the first four Fi and

fV → f
∥
V for the last three Fi, and the corresponding symmetry-breaking factors read

κi ∈
{
1,−1, n · q

mB
,−n · q

mB
,−2mV n · q

mB n · p
,
2mV n · q
mB n · p

,
2mV

n · p

}
, (48)

κ̃i ∈
{
1, 1,

n̄ · q
mB

,
n̄ · q
mB

,
2mV

n · p
,
2mV

n · p
,
2mV

n · p

}
, (49)

and the density functions ηi are given as follows

η1(ω) = (ω − 2Λ̄)ϕ+B(ω) + (mq′ ±mq)ϕ
−
B(ω), η2(ω1, ω2, u) = 2[uΦ4(ω1, ω2) + Ψ4(ω1, ω2)],

η3(ω) = 0, η4(ω1, ω2, u) = 2ūΨ5(ω1, ω2),

η5(ω) = ω(2Λ̄− ω)ϕ−B(ω) + (m2
q −m2

q′)ϕ
−
B(ω), η6(ω1, ω2, u) = 2(ω1 + uω2)η4(ω1, ω2, u),

(50)

where the + sign and − sign in η1(ω) assigned to Fi ∈ {V,A1, T1, T2} and Fi ∈ {A0,A12, T23}, respectively.

3.3 Subleading heavy-quark effective current

We now proceed to consider the contributions of the power-suppressed terms in the heavy quark expansion
to the B → K∗ form factors. In HQET, the bottom quark can be replaced by the effective heavy quark field,
and the heavy-to-light weak current is expanded up to NLP accuracy [47, 54],

q̄Γµb = q̄Γµhv︸ ︷︷ ︸
LP

+
1

2mb
q̄Γµi
−→
/Dhv︸ ︷︷ ︸

NLP

+ · · · , (51)

where
−→
/D = /D−(v ·D)/v and

−→
/Dhv(0) = [ /D−(v ·D)/v]hv(0) = /Dhv(0) due to the HQET equations of motion. The

ellipses denote the terms in powers of O(1/m2
b), whose contributions to the correlation functions are beyond

the scope of our current work. Substituting the heavy-to-light effective current in the correlation functions
with the NLP term and taking advantage of the operator identities in Eq. (39) and the following equation,

q̄(x)Γ[x, 0]
−→
Dρhv(0) =∂ρ[q̄(x)Γ[x, 0]hv(0)] + i

∫ 1

0

duūq̄(x)[x, ux]gsGλρ(ux)[ux, 0]x
λΓhv(0)

− ∂

∂xρ
q̄(x)Γ[x, 0]hv(0),

(52)

the correlation functions can be directly presented in the following form

Π
(a),HQE
j,NLP (p, q) =

∫
d4xeip·x⟨0|T{q̄′(x)Γjq(x),

1

2mb
q̄(0)Γ(a)

µ i
−→
/Dhv}|B̄(p+ q)⟩

=
−1
2mb

∫
d4x

∫
d4k

(2π)4
eik·x

n̄ · p− n̄ · k + iϵ

{
∂ξ[q̄(x)Γj

/̄n

2
Γ(a)
µ γξhv(0)]

+i

∫ 1

0

duūq̄(x)xρgsGρξ(ux)Γj
/̄n

2
Γ(a)
µ γξhv(0)−

∂

∂xξ
[q̄(x)]Γj

/̄n

2
Γ(a)
µ γξhv(0)

}
,

(53)
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where a ∈ {V − A,T + T̃} denotes the different Dirac structures Γ
(a)
µ ∈ {γµ(1 − γ5), iσµν(1 + γ5)q

ν} and

Γj ∈ { /n2 ,
/n
2 γ

⊥
δ } for j =∥,⊥, respectively. We can further derive the factorization formula by utilizing analogous

techniques at tree level

Π
(a),HQE
j,NLP =Γ

(a)
j

f̃B(µ)mB

4mb

{∫ ∞

0

dω
1

n̄ · p− ω
[
(2Λ̄− ω)ϕ+B(ω) + (Λ̄− ω −mq′)ϕ

−
B(ω)

]
+

∫ ∞

0

dω1

∫ ∞

0

dω2

∫ 1

0

du
2[Φ4(ω1, ω2) + Ψ4(ω1, ω2)]

(n̄ · p− ω1 − uω2)2

}
,

(54)

with

ΓV−A
∥,⊥ ∈

{
−n̄µ, g⊥δµ + iϵ⊥δµ

}
, ΓT+T̃

∥,⊥ ∈
{
nµ
n̄ · q
2
− n̄µ

n · q
2
, n̄ · q(g⊥δµ + iϵ⊥δµ)

}
. (55)

By matching the partonic representation with the hadronic dispersion relations given from Eq. (15) to Eq. (18),
we can derive the subleading-power heavy-quark effective current correction to the B → K∗ form factors

fV exp

[
− m2

V

n · pωM

]
FHQE

i,NLP(q
2) =

f̃B(µ)mB

2(n · p)mb
ci {f2,1[ζ1] + f3,2[ζ2]} , (56)

where the coefficient factors ci are determined from the correlation functions at the hadronic level,

ci ∈
{
−1,−1, n̄ · q

mB
,
n̄ · q
mB

,
2mV

n · p
,
2mV

n · p
,
−2mV

n · p

}
, (57)

and the density functions ζi can be derived from the correlation functions at the partonic level in Eq. (54)

ζ1(ω) = (2Λ̄− ω)ϕ+B(ω) + (Λ̄− ω −mq′)ϕ
−
B(ω), ζ2(ω1, ω2, u) = 2[Φ4(ω1, ω2) + Ψ4(ω1, ω2)]. (58)

Both the correction from the hard-collinear propagator and the correction from the subleading effective current
to the B → K∗ form factors show excellent agreement with the previous calculation for the B → D∗ process
reported in Ref. [38], upon substituting the charm quark mass with the strange quark mass.

3.4 Higher-twist four-particle contribution

We are now in the position to calculate the heavy-to-light B-meson decay form factors from the twist-five
and twist-six four-particle LCDAs in the factorization approximation. The subleading-power correction to
the B → K∗ form factors can be factorized into a product of the lower-twist two-particle LCDAs and the
quark condensate [54, 55]. By evaluating the lowest-order Feynman diagrams shown in Fig. 3, we obtain the
non-leading Fock-state correction to the correlation functions

Π
(a),4P
j,NLP =

g2sCF

12

f̃B(µ)mB

n · p

{
Γ
(a)
j ⟨q̄q⟩

∫ ∞

0

dω
ϕ+B(ω)

n̄ · p(ω − n̄ · p)2

+ Γ̃
(a)
j ⟨q̄

′q′⟩
∫ ∞

0

dω
ϕ+B(ω)

ω3

[
2ω

n̄ · p− ω
− ω2

n̄ · p(n̄ · p− ω)
+ 2 ln

n̄ · p− ω
n̄ · p

]}
,

(59)

with Γ
(a)
∥ = Γ̃

(a)
∥ =

{
n̄µ, nµ

n̄·q
2 − n̄µ

n·q
2

}
and Γ

(a)
⊥ = 0, Γ̃

(a)
⊥ = {g⊥δµ + iϵ⊥δµ, −n̄ · q(g⊥δµ + iϵ⊥δµ)} for a ∈

{V−A,T+T̃}. Γ(a)
j and Γ̃

(a)
j denote the contributions from diagram-(d) and diagram-(e) in Fig. 3, respectively.

The terms ⟨q̄q⟩ and ⟨q̄′q′⟩ represent the vacuum condensate of the propagator quark q and the spectator quark
q′, respectively.

It is worth mentioning that diagram (e) in Fig. 3 is analyzed using the background field expansion of the
quark propagator on the light-cone [51]

⟨0|T{q(x), q̄(0)}|0⟩ ⊃ Γ(d/2− 1)

8πd/2(−x2)d/2−1

∫ 1

0

duuū/xgsDλG
λρ(ux)xρ +

Γ(d/2− 2)

16πd/2(−x2)d/2−2
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Figure 3: Diagrammatic representations of twist-five and twist-six four-particle corrections to the vaccumm-
to-bottom meson correlation functions.

∫ 1

0

du(uū− 1

2
)gsDλG

λρ(ux)γρ, (60)

where the classical equation of motion in QCD reads

DλGa
λρ = −gs

∑
q

q̄γρT
aq. (61)

After explicitly calculating diagrams (a), (b) and (c) in Fig. 3, the results indicate that, in comparison to the
dominant contributions from diagrams (d) and (e), these three diagrams can only contribute to the higher
power corrections. Moreover, diagram (f) is found to be insensitive to both the hard and hard-collinear
QCD dynamics. Furthermore, diagram (d) is power-suppressed relative to diagram (e) when the interpolating
current corresponds to a transversely polarized K∗.

By applying the dispersion relation to the correlation functions at the partonic level and employing the
standard sum rule approach, we can derive the subleading-power corrections from four-particle contributions
to the B → K∗ form factors

fV exp

[
− m2

V

n · pωM

]
F4P

i,NLP(q
2) =

2παsCF f̃B(µ)mB

3(n · p)2
ci⟨q̄′q′⟩

{∫ ωs

0

dωϕ+eff-I(ω) +

∫ ∞

ωs

dωϕ+eff-II(ω)

− ri
⟨q̄q⟩
⟨q̄′q′⟩

[
e
− ωs

ωM
ϕ+B(ωs)

ωs
−
∫ ∞

ωs

dω
ϕ+B(ω)

ω2
+

∫ ωs

0

dωϕ+eff-III(ω)

]}
,

(62)

where the coefficients

ci ∈ {1, 1,
n̄ · q
mB

,
n̄ · q
mB

,
2mV

n · p
,
2mV

n · p
,
2mV

n · p
}, ri ∈ {0, 0, 0, 0, 1, 1, 1}, (63)

for Fi ∈ {V,A1, T1, T2,A0,A12, T23} and the explicit expressions for the density functions ϕeff are given by

ϕ+eff-I(ω) =
[
1− 2

ωM

ω
+
(
1 + 2

ωM

ω

)
e
− ω

ωM

] ϕ+B(ω)
ω2

,

ϕ+eff-II(ω) =
[
1− 2

ωM

ω
+ 2

ωM

ω
e
− ωs

ωM

] ϕ+B(ω)
ω2

,

ϕ+eff-III(ω) =

[(
1 +

ω

ωM

)
e
− ω

ωM − 1

]
ϕ+B(ω)

ω2
.

(64)
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Collecting the next-to-leading power (NLP) contributions estimated above, the total NLP correction to the
B → K∗ form factors in QCD can be expressed as

F i
BK∗,NLP = F i,HT

BK∗,NLP + F i,QPE
BK∗,NLP + F i,HQE

BK∗,NLP + F i,4P
BK∗,NLP, (65)

where the index i labels seven different B → K∗ form factors in QCD. Before proceeding to the numerical
analysis, we first establish the power-counting rules for the form factors at LP and NLP, adopting the asymp-
totic behaviors of B-meson LCDAs [50]. According to the power-counting scheme ωM ∼ ωs ∼ O(λ2) and
ms ∼ O(λ), where the scaling parameter λ = ΛQCD/mb, we derive the scaling behavior for the leading-power
B → K∗ form factors,

V LP
BK∗ ∼ ALP

1,BK∗ ∼ TLP
1,BK∗ ∼ TLP

2,BK∗ ∼ O(λ2),
ALP

0,BK∗ ∼ O(λ3), A12
LP
BK∗ ∼ T23LPBK∗ ∼ O(λ4),

(66)

where A12 and T23 denote combinations of the form factors corresponding to mB+mV

n·p A1 − mB−mV

mB
A2 and

mB

n·p T2 − T3, respectively. From the relations between seven QCD form factors and the four SCET effective

form factors in Ref. [31], the scalings of the form factors V,A1, T1, T2 are determined by the SCET effective form
factor ξ⊥, while A0, A12, T23 are determined by the SCET effective form factor ξ∥. Evidently, ξ∥ is suppressed
by a factor of λ2 compared to ξ⊥. Because A0 has an enhancement factor 1/ms, it ultimately contributes the
power of O(λ3). Applying the same analytical method as for the leading power and considering the asymptotic
behavior of two-particle and three-particle higher-twist B-meson LCDAs, we further determine the scalings of
B → K∗ form factors at NLP

V NLP
BK∗ ∼ ANLP

1,BK∗ ∼ TNLP
1,BK∗ ∼ TNLP

2,BK∗ ∼ O(λ3),
ANLP

0,BK∗ ∼ O(λ4), A12
NLP
BK∗ ∼ T23NLP

BK∗ ∼ O(λ5).
(67)

4 Numerical analysis

Summing up both the NLL correction and the newly derived NLP corrections, we obtain the improvedB →
K∗ form factors with SCET sum rules in the large recoil region. In this section, we analyze phenomenological
observables for the rare FCNC process B → K∗νℓν̄ℓ. We firstly list the relevant theoretical inputs in the
factorization formula for the heavy-to-light form factors, including quark masses, decay constants, distribution
amplitudes, sum rules parameters, electroweak parameters, and the inverse moments. We compare the form
factors under two scenarios : selecting the inverse moment as either the recent lattice QCD simulation result
λB = 389(35) MeV or the conventional range λB = 350(150) MeV. The theoretical precision of form factors
could be improved if lattice QCD simulations systematically account for potential uncertainties [56]. After
taking into account both the available lattice QCD results in the high-q2 region and improved LCSR predictions
in the low-q2 region, we then perform a combined fit to determine the coefficients in the z-series expansion,
thereby extending the B → K∗ form factors to the entire kinematic region. Taking advantage of the newly
updated LCSR predictions, we investigate the differential branching ratio and longitudinal K∗ polarization
fraction of B → K∗νℓν̄ℓ decays. For B

+ → K∗+νℓν̄ℓ decay process, the additional long-distance effect induced
by B+ → τ+(→ K∗+ντ )ν̄τ at tree level is included with the narrow τ width approximation.

4.1 Theory inputs

In Tab. 1, we summarize the necessary input parameters of the Standard Model and relevant hadronic
parameters, along with the central values and uncertainties. In our numerical calculations, we employ the

three-loop evolution of the strong coupling constant αs(µ) in the MS scheme by taking the interval α
(5)
s (mZ)

from [57] and adopting the perturbative matching scales µ4 = 4.8 GeV and µ3 = 1.3 GeV for crossing the
nf = 4 and nf = 3 thresholds, respectively [58, 59]. Additionally, the bottom quark mass mb(mb) and
strange quark mass ms(ms) are given in the MS scheme at the scale of their respective MS masses. Using
RunDec [60], we obtain the scale dependence of the strong coupling constant αs(µ) and the quark masses
mb(µ) and ms(µ). Moreover, we incorporate the results from four-flavor lattice QCD computations for the B-
meson decay constant fB [61]. The decay constant of the longitudinalK∗ can be extracted from leptonic decays
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V 0 → e+e− and tau lepton decays τ+ → V +ντ , while the renormalization scale-dependent decay constant of
the transverse K∗ is taken from a lattice QCD simulation with 2 + 1 flavors of domain wall quarks and the
Iwasaki gauge action [62]. Two hard scales µh1 and µh2 are introduced in the hard functions and B-meson decay
constants, respectively. The factorization scale µ is same as the hard-collinear scale and the renormalization
scale for the QCD tensor current will be taken as ν = mb. The LCSR improved form factors for the B-meson
semileptonic decay processes depend on the B-meson light-cone distribution amplitudes (LCDAs) as universal
non-perturbative input parameters. Therefore, we need to construct an acceptable phenomenological model
for the leading- and higher-twist B-meson LCDAs that not only satisfies the classical equations of motion [50],
but also exhibits the expected asymptotic behavior at sufficiently large scales. In this work, we adopt a newly
proposed three-parameter model for all the relevant B-meson light-cone distribution amplitudes in coordinate
space [54], with the details provided in Appendix D. The three shape parameters α, β and ω0 in this model
can be related to the inverse logarithmic moments λB and σ̂1,2 for the leading-twist B-meson distribution
amplitude ϕ+B with the equations

λB(µ) =
α− 1

β − 1
ω0 ,

σ̂1(µ) = ψ(β − 1)− ψ(α− 1) + ln
α− 1

β − 1
,

σ̂2(µ) = σ̂2
1(µ) + ψ′(α− 1)− ψ′(β − 1) +

π2

6
, (68)

and the definitions of the inverse logarithmic moments λB and σ̂1,2 are

1

λB(µ)
=

∫ ∞

0

dω

ω
ϕ+B(ω, µ) ,

σ̂n(µ)

λB(µ)
=

∫ ∞

0

dω

ω
lnn

e−γEλB(µ)

ω
ϕ+B(ω, µ) . (69)

The numerical values for the hadronic parameters λB , σ̂1,2 and λE,H in Tab. 1 are all given at the reference
scale µ0 = 1 GeV and these parameters will be evolved to the factorization scale µ in the final results. Despite
various strategies being employed to investigate the inverse moment λB [54, 56, 63, 64, 65, 66, 67, 68, 69], a
QCD-based method for its precise determination remains elusive due to its definition via a non-local operator
(see Refs. [56, 70] for preliminary results from the lattice QCD perspectives). We adopt a conservative interval
of λB = (350 ± 150) MeV in this work and compare the resulting form factors with those derived from
λB = 389(35) MeV, as suggested by the recent lattice QCD result [56, 70]. For the inverse logarithmic
moments σ̂1,2, we prefer the choice {σ̂1, σ̂2} = {0, π2/6} with the intervals

−0.7 < σ̂1 < 0.7, −6.0 < σ̂2 < 6.0. (70)

Following the standard procedure outlined in Refs. [28, 31, 71], the two intrinsic parameters ωM and ωs

introduced by the light-cone sum rules can be determined by effectively constraining the smallness of the
continuum contributions in the dispersion integrals and the stability of the obtained sum rules results against

the variation of ωM . The parameters s⊥0 and s
∥
0 correspond to the interpolating currents q̄′/nγ⊥q and q̄′/nq,

respectively, leading to the following intervals

s⊥0 = n · pω⊥
s = (1.4± 0.1)GeV2, s

∥
0 = n · pω∥

s = (1.7± 0.1)GeV2,

M2 = n · pωM = (1.7± 0.5)GeV2. (71)

4.2 Numerical predictions for the B → K∗ form factors

Making use of the numerical inputs from Tab. 1 and the B-meson light-cone distribution amplitudes
described by three-parameter model in Appendix D, we obtain the B → K∗ form factors in the large recoil
region. In Tab. 2, we present the numerical results of B → K∗ form factors based on LCSR with heavy-meson
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Table 1: Numerical values of the input parameters.

Parameter Value Ref. Parameter Value Ref.

mB0 5279.66 MeV [57] mK∗0 898.46 MeV [57]

mB+ 5279.34 MeV [57] mK∗+ 891.67 MeV [57]

τB0 1.517(4) ps [57] τB+ 1.638(4) ps [57]

mτ+ 1776.86 MeV [57] ττ+ 0.2903(5) ps [57]

GF 1.166379× 10−5 GeV−2 [57] sin2 θW 0.23126(5) [72]

|VtbV ∗
ts| (41.25± 0.45)× 10−3 [73] αem(mZ) 1/127.925 [57]

|Vub| 3.82(20)× 10−3 [57] |Vus| 0.2243(8) [57]

mb(mb) (4.203± 0.011) GeV [57] ms(ms) (93.5± 0.8) MeV [57]

fB (190.0± 1.3) MeV [61] µh1 [mb/2, 2mb]

f
∥
K∗ (204± 7) MeV [27] µh2 [mb/2, 2mb]

f⊥K∗(1Gev) (159± 6) MeV [62] µ 1.5± 0.5 GeV

⟨q̄q⟩(2Gev) −(286± 23MeV)3 [61] ν mb

⟨s̄s⟩ : ⟨q̄q⟩ (0.8± 0.1) [74, 75] M2 (1.7± 0.5) GeV2 [71]

s
∥
0 (1.7± 0.1) GeV2 [28, 71] s⊥0 (1.4± 0.1) GeV2 [28, 71]

λB 350± 150 MeV [54]

{σ̂1, σ̂2}
{0.7 , 6.0}

[54](λ2E/λ
2
H) 0.50± 0.10 [54] {0.0 , π2/6}

(2λ2E + λ2H) (0.25± 0.15) GeV2 [54] {−0.7 ,−6.0}

distribution amplitudes at q2 = 0. The central values of our improved form factors are consistent within
a 1∼2σ deviation with the results obtained from sum rules based on K∗ distribution amplitudes [27]. To
examine the numerical features of the LCSR parameters to form factors, we first present the dependence of
the form factors on the Borel mass M2 in Fig. 4. The left panel in Fig. 4 shows the variation of form factor
V when the Borel mass M2 changes in the range of 1.2 GeV2 to 2.2 GeV2, with the effective threshold s⊥0
fixed at 1.3 GeV2, 1.4 GeV2, and 1.5 GeV2. The right panel in Fig. 4 illustrates the effect on the form factor
A0 for the same Borel mass range, with the effective threshold set at 1.6 GeV2, 1.7 GeV2, and 1.8 GeV2,
respectively. We find that LCSR form factors exhibit a mild dependence on the intrinsic parameters M2 and

s
∥,⊥
0 , with each introducing a 10% systematic uncertainties to the form factors, which is consistent with our
previous work [31] and other sum rules analyses [36, 37].

We now proceed to explore the contributions of the subleading-power corrections from different sources
to the B → K∗ form factors, with the form factors V and A0 as illustrative examples. In Fig. 5, we present

Table 2: The B → K∗ form factors at q2 = 0 given by our work (second row) and by sum rules with light-
meson distribution amplitudes (third row).

FB→K∗

i V A0 A1 T1 T2 A12 T23
This work 0.20(14) 0.066(38) 0.19(13) 0.24(16) 0.19(13) 0.066(38) 0.094(44)

Ref. [27] 0.29(3) 0.118(16) 0.306(33) 0.282(31) 0.274(31) 0.113(15) 0.095(13)
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the contributions of four different sources of the subleading-power corrections as well as the total power
correction in the kinematic region of 0 ≤ q2 ≤ 6GeV2. These subleading-power corrections include the “ HT ”
contribution from the two-particle and three-particle higher-twist B-meson distribution amplitudes, the “ QPE
” contribution from the expansion of hard-collinear quark propagator in the small parameter ΛQCD/mb, the “
HQE ” contribution from the power-suppressed effective weak transition current q̄Γ[i /D⊥/(2mb)]hv, and the “
4P ” contribution from twist-5 and twist-6 four-particle B-meson LCDAs within the factorization approach.
We can find that the NLP contribution from twist-5 and twist-6 four-particle B-meson LCDAs is minimal for
the B → K∗ form factors and this contribution accounts for only 3% ∼ 7% of the total NLP contribution
to the form factors V and A0, respectively. In contrast, it is evident that the higher-twist B-meson LCDAs
provide the largest contributions to the NLP B → K∗ form factors, which numerically account for 50% ∼ 60%
of the total NLP corrections in analogy to the previous discussions [29, 36, 37, 76].
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Figure 4: Dependence of the form factors VB→K∗ and A0,B→K∗ on the Borel parameter M2.
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Figure 5: Subleading-power corrections to the B → K∗ form factors VB→K∗ (left panel) and A0,B→K∗ (right
panel) in the kinematic region of 0 ≤ q2 ≤ 6GeV2. The shaded bands represent the uncertainties from the
variation of factorization scale µ.

We now explore the contribution of the NLL resummation improved leading-power B → K∗ form factors
and the newly derived subleading-power corrections to the B → K∗ form factors at tree level. In order to
understand the impact of one-loop and subleading-power corrections, we show the numerical results explicitly
for the resummation improved contribution at one-loop level and NLP corrections at the tree level to the
B → K∗ form factors in the region of 0 ≤ q2 ≤ 6GeV2 in Fig. 6. For instance, the resummation improved NLL
correction reduces the form factors V and A0 by 30% compared to the results at leading-logarithm accuracy.
In addition, the newly determined NLP corrections lead to an approximate 30% reduction to the form factors
V and A0, respectively. After including both NLP and NLL corrections, we find that the total results for
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Figure 6: Comparison of the LL resummation improved tree-level contribution (LL), NLL resummation im-
proved one-loop correction (NLL), subleading-power correction at tree level (NLP), and total result (TOTAL)
to the B → K∗ form factors VB→K∗ (left panel) and A0,B→K∗ (right panel) in the kinematic region of
0 ≤ q2 ≤ 6 GeV2. The shaded bands represent the uncertainties from the variation of factorization scale µ.

the form factors V and A0 exhibit a 60% reduction relative to the corresponding LL resummation improved
tree-level predictions.
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Figure 7: Comparison of LL resummation improved tree level contribution (LL), NLL resummation improved
one-loop correction (NLL), subleading-power correction at tree level (NLP) and total result (TOTAL) to the
B → K∗ form factors VB→K∗ (left panel) and A0,B→K∗ (right panel) with the variation of 0.2GeV ≤ λB ≤
0.5GeV. The areas with deeper color correspond to λB = 0.389(35)GeV given in Ref. [70]. The upper (lower)
bound represents {σ̂1, σ̂2} = {−0.7,−6.0} ({σ̂1, σ̂2} = {0.7, 6.0}).

In addition, we investigate the dependence of both the NLL resummation improved one-loop correction and
the newly derived NLP corrections on the inverse moment λB at q2 = 0. We take {σ̂1, σ̂2} = {0, π2/6} as the
central values and display the corresponding numerical results in Fig. 7. For instance, we observe that the form
factors VB→K∗ and A0,B→K∗ exhibit a pronounced decrease with increasing λB . By adopting λB = 389(35)
MeV as input from lattice QCD in Ref. [70], we find that both the central values and uncertainties of the form
factors are reduced by approximately 20% compared to those obtained with λB = 350(150) MeV. Notably, the
light-cone sum rules based on light-meson LCDA suggest λB ≈ 300 MeV, when fitting λB by using the form
factor values from Ref. [27]. This discrepancy between λB ≈ 300 MeV and the λB = 389 MeV derived by
lattice QCD may stem from unaccounted power corrections in current lattice QCD simulations, which could
potentially introduce additional systematic uncertainties.

Since LCSR predictions are valid only in the large recoil region, it is necessary to extrapolate the LCSR
results for the B → K∗ form factors to the entire kinematic region by employing the BCL z-series expansion
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[39, 40, 41, 77, 78], which is based on the positivity and analyticity of the transition form factors. For this
purpose, we apply the conformal transformation

z(q2, t0) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

(72)

with the threshold parameter t+ ≡ (mB + mK∗)2 for the exclusive B → K∗ form factors, which allows us
to map the complex cut q2-plane onto the unit disk |z(q2, t0)| ≤ 1. Additionally, the free parameter t0 < t+
corresponds to the value of q2 that is mapped onto the origin in the z-plane. To minimize the z-interval, we
set

t0 = t+ −
√
t+(t+ − t−), t− = (mB −mK∗)2. (73)

Taking into account the asymptotic behavior of the form factor near the threshold of the corresponding excited
states, we can further parameterize the B → K∗ form factors with the z-series expansion as follows

F i
B→K∗(q2) =

1

1− q2/m2
i,pole

N−1∑
k=0

bik
[
z(q2, t0)− z(0, t0)

]k
, (74)

where m2
i,pole denotes the masses of the corresponding resonances below the particle-pair production threshold

(mB +mK∗) with distinct quantum numbers. For convenience, we have summarized the masses of the reso-
nances relevant to our parameterization in Tab. 3 as given in Ref. [27]. We will truncate the z-series expansion
at N = 3 in the subsequent fitting process, since the contribution beyond quadratic terms is negligible due to
|z(q2)|max < 0.1.

Table 3: Summary of the resonance masses with distinct quantum numbers appearing in the z-series expansion
of the B → K∗ form factors in Eq. (74).

F i
B→K∗(q2) JP mi,pole [GeV]

V(q2), T1(q2) 1− 5.415

A0(q
2) 0− 5.366

A1(q
2), A12(q

2), T2(q2), T23(q2) 1+ 5.829

We are now in the position to determine the z-series coefficients bi0,1,2 of the B → K∗ form factors F i(q2)
by performing the correlated minimum-χ2 fit of the updated LCSR predictions in the large recoil region, in
combination with the available lattice QCD data in the small recoil region [13, 14]. The ingredients of the
minimum-χ2 fit can be summarized as follows:

• In the low q2 region, we generate the improved LCSR form factors with uncertainties at three distinct
kinematic points q2 = {−4, 0, 4}GeV2. In order to obtain the pseudo-data samples, we vary the theoret-
ical input parameters randomly within the error ranges and generate an ensemble of N = 300 parameter
sets that follow uncorrelated priors, which are either uniform or Gaussian distributed [38].

• We multiply each form factor F i
LCSR(q

2) by an enhancement factor WK∗ = 1.09(1) to account for the
finite K∗ width effect in B → K∗ transition, as discussed in Ref. [34]. In the lattice QCD simulation,
K∗ is a stable particle [13, 14].

• In the high q2 region, we reproduce the central values and correlation matrix of the lattice QCD results
of the B → K∗ form factors at three different points q2 = {12, 14, 16}GeV2 as well as physical-mass
bottom quark and 2+1 flavors of sea quarks. To ensure the positive definiteness of the correlation matrix
from the lattice QCD results, we modify the original matrix by adding an additional diagonal matrix of
order O(10−6), namely Clatt = Clatt,original + 10−6I.
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• Taking into account the kinematic constraints,

mB +mV

2mV
A1(0)−

mB −mV

2mV
A2(0) = A0(0), T1(0) = T2(0), (75)

we can derive the following exact relations between the expansion coefficients,

m2
V

m2
B +m2

V

bA1
0 −

2m2
B +m2

V

m2
B +m2

V

bA12
0 = bA0

0 ,
m2

B

m2
B +m2

V

bT1
0 = bT2

0 . (76)

• We then construct

χ2 =
∑
ij

[
F i

LCSR

(
q2
)
−F i

fit

(
q2; bik

)] (
C−1

LCSR

)
ij

[
F j

LCSR

(
q2
)
−F j

fit

(
q2; bjk

)]
+
∑
ij

[
F i

latt

(
q2
)
−F i

fit

(
q2; bik

)] (
C−1

latt

)
ij

[
F j

latt

(
q2
)
−F j

fit

(
q2; bjk

)]
,

(77)

where F i denote the central values of the form factors and Cij is the corresponding covariance matrix.
We then extract the central values and the covariance of the coefficients bik by minimizing the χ2 function,
yielding χ2

min/d.o.f = 40.1/23. Our inputs as well as the fit results for the z-series coefficients, including
the central values, uncertainties and all correlations, will be presented as supplemental material on the
arXiv page.

To further clarify the momentum-transfer dependence of the updated LCSR predictions and lattice QCD
results, we present the combined fit results for the seven B → K∗ form factors across the entire kinematic
region in Fig. 8. BCL parametrization incorporates both our updated LCSR data (pink points) and lattice
QCD data (blue points). For reference, lattice QCD predictions from prior studies are shown as a blue dot-
dashed line. The inclusion of newly derived LCSR data in the low q2 region substantially enhances the accuracy
of theoretical predictions for the B → K∗ form factors throughout the kinematic region, as demonstrated by
the combined fit with lattice QCD simulations.

4.3 Phenomenological analysis of the B → K∗ νℓ ν̄ℓ observables

The B → K∗ νℓ ν̄ℓ decays induced by the b→ s flavor-changing neutral current (FCNC) represent one of
the theoretically cleanest decay channels in heavy flavor physics. We now begin to explore the phenomenological
implications of the newly determined B → K∗ form factors for the electroweak penguin B → K∗ νℓ ν̄ℓ decays.
Thanks to the high luminosity of the Belle II experiment, the exclusive rare B → K∗ νℓ ν̄ℓ decays are expected
to be observed with 10 ab−1 of the data [79, 80] and the previous experimental measurements by BaBar [81]
and Belle [82, 83] are also presented here. Notably, the precision of the total branching fraction measurement
for B → K∗ νℓ ν̄ℓ with 50 ab−1 integrated luminosity is expected to reach approximately 10%, rendering the
experimental sensitivity comparable to the current theoretical uncertainty in Standard Model predictions.
Additionally, the longitudinal K∗ polarization fraction, which is highly sensitive to right-handed currents [79],
is projected to be measured with an absolute uncertainty of 0.1, providing critical insights into potential
beyond-Standard Model contributions.

We are therefore well motivated to further investigate the phenomenological aspects of the B → K∗ νℓ ν̄ℓ
process, both to gain a deeper understanding of the strong interaction dynamics of the B → K∗ form factors
and to explore the potential role of exotic particles X in the context of dark matter, utilizing the form factors
derived in this work. It is straightforward to derive the differential decay width formula [10, 84]

dΓ(B → K∗ νℓ ν̄ℓ)

dq2
=
G2

F α
2
em

256π5

λ3/2(m2
B ,m

2
K∗ , q2)

m3
B sin4 θW

|λt|2
[
Xt

(
m2

t

m2
W

,
m2

H

m2
t

, sin θW , µ

)]2
×
[
HV (q

2) +HA1(q
2) +HA12(q

2)

]
, (78)
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Figure 8: Theoretical predictions of the B → K∗ decay form factors (red band) obtained from the combined fit
of updated LCSR (pink points) and lattice QCD (blue points) in the entire kinematical region. The “ lattice
QCD only ” predictions for these form factors are indicated by the blue dot-dashed line for a comparison.

where λ(x, y, z) = x2+y2+z2−2xy−2xz−2yz is the Kállen function. The CKM matrix elements λt = |VtbV ∗
ts|

can be determined by the UT fit collaboration [73] and the input parameters appearing in the differential
decay width are collected in Tab. 1. The short-distance Wilson coefficient Xt can be expanded perturbatively
in terms of the Standard Model coupling constants

Xt = X
(0)
t +

αs

4π
X

QCD(1)
t +

αem

4π
X

EW(1)
t + · · · , (79)

where the leading-order (LO) contributionX
(0)
t [85], the next-to-leading-order (NLO)QCD correctionX

QCD(1)
t

[86, 87, 88] and the two-loop electroweak correction X
EW(1)
t [72] are already known analytically. We adopt

Xt = 1.469 in our work. The three invariant functions Hi can be further expressed by the B → K∗ form
factors as

HV (q
2) =

2q2

(mB +mK∗)2
[V (q2)]2,

HA1
(q2) =

2q2(mB +mK∗)2

λ(m2
B ,m

2
K∗ , q2)

[A1(q
2)]2,

HA12(q
2) =

64m2
Bm

2
K∗

λ(m2
B ,m

2
K∗ , q2)

[A12(q
2)]2, (80)
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with the helicity form factors A12 [13]

A12(q
2) =

(mB +mK∗)2(m2
B −m2

K∗ − q2)A1(q
2)− λ(m2

B ,m
2
K∗ , q2)A2(q

2)

16mBm2
K∗(mB +mK∗)

. (81)

To probe new physics effects beyond the SM, λt is typically determined through CKM unitarity. However,
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Figure 9: Theory predictions for the CKM-independent differential branching fraction of B0 → K∗0 νℓ ν̄ℓ by
applying the form factors determined from the combined fits (pink band) and from the lattice simulations
(blue band) [13, 14].

inconsistencies persist in the extracted values of the CKM matrix element Vcb across different processes. For
future studies, we present the CKM-independent branching ratio |λt|−2BR(B0 → K∗0νℓ ν̄ℓ) estimated with
various strategies in Tab. 4. The branching ratios derived from updated B → K∗ form factors agree within 2.5σ
with the results obtained from sum rules based on K∗ distribution amplitudes [27]. Additionally, in Fig. 9, we
display our theoretical prediction for the CKM-independent differential branching fraction of B0 → K∗0 νℓ ν̄ℓ
and show the result from lattice QCD calculations for comparison. It is evident that the combined fit result
exhibits significantly smaller uncertainty than lattice QCD predictions across the entire momentum region.
Finally, our numerical results for the differential branching ratio of B → K∗ νℓ ν̄ℓ are summarized in Tab. 5,
where we have adopt λt = 41.25 × 10−3. The total uncertainty is dominated by the uncertainties in the
hadronic form factors.

Table 4: The CKM-independent branching ratio of B0 → K∗0 νℓ ν̄ℓ process from updated form factors (left),
lattice QCD FFs (middle) and LCSRs with K∗-meson LCDAs (right).

10−3 × (λt)
−2BR This work Ref. [13, 14] Ref. [27]

B0 → K∗0νℓ ν̄ℓ 4.76(56) 5.86(93) 5.85(58)

There is an additional long-distance (LD) contribution to the counterpart channel B+ → K∗+ νℓ ν̄ℓ involv-
ing a charged B-meson due to the double-charged current interaction B+ → τ+(→ K∗+ντ )ν̄τ , as originally
discussed in Ref. [89]. In the narrow τ -lepton width limit, we express the tree-level LD contribution to the
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Table 5: Theory predictions for the integrated differential observables ∆BR(q21 , q22), and ∆FL(q
2
1 , q

2
2) obtained

from the exclusive B → K∗ form factors and additional long-distance contribution.

[q21 , q
2
2 ] (inGeV2) 106 ×∆BRB0→K∗0 νℓ ν̄ℓ(q21 , q

2
2) 106 ×∆BRB+→K∗+ νℓ ν̄ℓ(q21 , q

2
2) ∆FL(q

2
1 , q

2
2)

[0.0, 1.0] 0.23(5) 0.33(5) 0.93(2)

[1.0, 2.5] 0.40(7) 0.55(8) 0.79(4)

[2.5, 4.0] 0.46(8) 0.61(9) 0.67(5)

[4.0, 6.0] 0.71(12) 0.91(13) 0.57(5)

[6.0, 8.0] 0.83(13) 1.03(14) 0.48(5)

[8.0, 12.0] 1.99(26) 2.39(28) 0.40(4)

[12.0, 16.0] 2.22(20) 2.61(22) 0.33(2)

[16.0, (mB −mK∗)2] 1.26(6) 1.53(7) 0.31(1)

[0.0, (mB −mK∗)2] 8.09(96) 9.95(1.05) 0.44(4)

differential decay rate

dΓ(B+ → K∗+ νℓ ν̄ℓ)

dq2

∣∣∣
LD

=
G4

F |VubV ∗
us|2

64π2m3
B

|fBfK∗ |2m
3
τ

Γτ

× [(m2
B −m2

τ )(m
2
τ −m2

K∗)− (m2
τ − 2m2

K∗)q2].

(82)

This long-distance effect arising from weak annihilation mediated by the on-shell τ -lepton accounts for approx-
imately 10% of the electroweak penguin amplitude, which is numerically significant for the charged channel
B+ → K∗+ νℓ ν̄ℓ. Moreover, the interference effect between the tree and penguin amplitudes turns out to be
negligible numerically due to extremely small width of τ -lepton [89].

We then proceed to define the differential longitudinal K∗ polarization fraction FL of the electroweak
penguin decays B → K∗ νℓ ν̄ℓ

FL(q
2) =

HA12
(q2)

HV (q2) +HA1(q
2) +HA12(q

2)
. (83)

In addition, we introduce two q2-binned observables for comparison with future high-luminosity Belle II data

∆BR(q21 , q22) = τB

∫ q22

q21

dq2
dΓ(B → K∗ νℓ ν̄ℓ)

dq2
,

∆FL(q
2
1 , q

2
2) =

∫ q22
q21
dq2λ3/2(m2

B ,m
2
K∗ , q2)HA12

(q2)∫ q22
q21
dq2λ3/2(m2

B ,m
2
K∗ , q2)[HV (q2) +HA1(q

2) +HA12(q
2)]
.

(84)

Our predictions for these observables, with the choice of q2-intervals following [79], are summarized in Tab. 5.
The theoretical uncertainties of the q2-binned longitudinal K∗ polarization fractions, ∆FL, are significantly
smaller than those of the branching ratio predictions, ∆BR, due to the reduced sensitivity of the form-factor
ratios to the precise shapes of the B-meson distribution amplitudes.

5 Summary

In this work, we have comprehensively investigated subleading-power corrections to the B → K∗ form
factors up to twist-six within the framework of light-cone sum rules (LCSR) with B-meson LCDAs. The
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corrections arise from two-particle and three-particle B-meson higher-twist light-cone distribution amplitudes,
power-suppressed terms in the expansion of the strange quark propagator, the subleading-power effective
current q̄Γ[i /D⊥/(2mb)]hv in HQET, and the four-particle twist-five and twist-six B-meson LCDAs in the
factorization approximation. Incorporating the leading-power contribution at NLL accuracy from Ref. [31] with
our newly derived NLP contributions, we ultimately obtain updated predictions for the B → K∗ form factors
with SCET sum rules in the large recoil region. It is shown that power corrections account for approximately
a 30% correction to the tree-level result, which is comparable to the NLL contribution. Moreover, we reach
a similar conclusion that the dominant source of power corrections arises from the two-particle higher-twist
B-meson LCDAs as in Ref. [29], while the impact of the four-particle corrections is numerically insignificant.

We employ a three-parameter model to describe the B-meson LCDAs and adopt the conventional inverse
moment λB = 350(150) MeV. In addtion, we estimate the B → K∗ form factors by adopting the inverse
moment λB = 389(35) MeV from recent lattice QCD calculations for comparison. The dominant uncertainties
in the form factors originate from the inverse moments λB and {σ1, σ2}. In the future, lattice QCD studies may
reduce the uncertainties of the inverse moments by systematically investigating subleading-power contributions
via this first principle approach. By adopting the BCL parameterization and performing a combined fit of
the newly derived LCSR predictions in the low q2 region and the lattice QCD results in the high q2 region,
we extrapolate the B → K∗ form factors to the entire momentum region. We find that the B → K∗ form
factors derived from the combined fits exhibit smaller uncertainties than those obtained solely using lattice
data points. Furthermore, the combined fits to the LCSR and lattice QCD inputs for the B → K∗ form factors
not only provide predictions for the form factors that are applicable across the entire kinematic range, but
also confirm the consistency of the two complementary methods by ensuring their agreement at intermediate
q2 values. Having at our disposal the B → K∗ form factors in the entire momentum region, we proceed to
predict the differential decay widths for B → K∗ νℓ ν̄ℓ processes, including long-distance effects in the charged
B → K∗ νℓ ν̄ℓ decay. We present the CKM-independent differential branching ratio of B0 → K∗0 νℓ ν̄ℓ obtained
from the combined fits, alongside the lattice simulation result for comparison. The results with different fit data
inputs are consistent with each other and the combined fits to the differential branching ratio of B0 → K∗0 νℓ ν̄ℓ
yield smaller uncertainties. Finally, we obtain the branching ratios BR(B̄0 → K̄∗0νℓν̄ℓ) = 8.09(96) × 10−6,
BR(B̄+ → K̄∗+νℓν̄ℓ) = 9.95(1.05)× 10−6, and the longitudinal K∗ polarization fraction FL = 0.44(4).

For the b→ s induced flavor-changing neutral current processes, a crucial task is to improve the precision
of the B → K∗ form factors. It can be further improved with respect to the following three aspects: developing
model-independent methods for accurately describing the B-meson light-cone distribution amplitudes, reducing
the uncertainties in the non-perturbative input parameters, such as the inverse moment λB of the leading-
twist B-meson LCDA, extending calculations to next-to-next-to-leading order (NNLO) at leading power and
next-to-leading order (NLO) at subleading power, and imposing stricter unitarity bounds on the z-series
parameterizations to further constrain uncertainties.

Ultimately, we emphasize that our improved B → K∗ form factors are crucial for investigating flavor-
changing neutral current processes and determining the branching ratios of the electroweak penguin processes
B → K∗ νℓ ν̄ℓ. With the high luminosity Belle II experimental data upcoming, our predictions will be further
tested in the future.
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A Hard function for the SCET curents at O(αs)
Here we present the hard coefficient functions of A0-type and B1-type SCETI currents in B → K∗ form

factors up to O(αs)

C
(A0)
f+

= 1 +
αsCF

4π

{
− 2 ln2(

r

µ̂
) + 5 ln(

r

µ̂
)− 2Li2(1− r)− 3 ln r − π2

12
− 6

}
, (85)

C
(A0)
f0

= 1 +
αsCF

4π

{
− 2 ln2(

r

µ̂
) + 5 ln(

r

µ̂
)− 2Li2(1− r)−

3− 5r

1− r
ln r − π2

12
− 4

}
, (86)

C
(A0)
fT

= 1 +
αsCF

4π

{
− 2 ln ν̂ − 2 ln2(

r

µ̂
) + 5 ln(

r

µ̂
)− 2Li2(1− r)−

3− r
1− r

ln r − π2

12
− 6

}
, (87)

C
(A0)
V = 1 +

αsCF

4π

{
− 2 ln2(

r

µ̂
) + 5 ln(

r

µ̂
)− 2Li2(1− r)−

3− 2r

1− r
ln r − π2

12
− 6

}
, (88)

C
(A0)
T1

= 1 +
αsCF

4π

{
− 2 ln ν̂ − 2 ln2(

r

µ̂
) + 5 ln(

r

µ̂
)− 2Li2(1− r)− 3 ln r − π2

12
− 6

}
, (89)

C
(B1)
f+

= (−2 + 1/r) +O(αs), C
(B1)
f0

= (−1/r) +O(αs), (90)

C
(B1)
fT

= (1/r) +O(αs), C
(B1)
V = 0 +O(αs), C

(B1)
T1

= −1 +O(αs), (91)

where we introduced three variables

r =
n · p
mb

, µ̂ =
µ

mb
, ν̂ =

ν

mb
. (92)

B Effective B-meson distribution amplitudes

For brevity, we introduce the effective B-meson distribution amplitudes ϕ−B,eff, ϕ̃
−
B,eff and ϕ+B,m absorbing

the hard-collinear fluctuations,

ϕ−B,eff(ω
′, µ) = ϕ−B(ω

′, µ) +
αsCF

4π

{∫ ω′

0
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2
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6
− 1

]
dϕ−B(ω, µ)
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}
, (93)

ϕ̃−B,eff(ω
′, µ, ν) = ϕ−B(ω

′, µ) +
αsCF

4π
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(
ln

µ2

n · pω′ − 2 ln
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, (94)

ϕ+B,m(ω′, µ) =
αsCF

4π
mq

∫ ∞

ω′
dω ln

ω − ω′

ω′
d

dω

ϕ+B(ω, µ)

ω
, (95)

the plus function appeared in the above equations is defined by∫ ω′

0

dω[f(ω, ω′)]⊕g(ω) =

∫ ω′

0

dωf(ω, ω′)[g(ω)− g(ω′)]. (96)
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C Dispersion integral formulas

After Borel transformation, the dispersion functions appearing in the factorization formulas of B → K∗

form factors are listed in the following

f2,1[ϕ(ω)] =−
∫ ωs

0

dωe
− ω

ωM ϕ(ω),

f2,2[ϕ(ω)] =e
− ωs

ωM ϕ(ωs) +

∫ ωs

0

dω
e
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ωM

ωM
ϕ(ω),

f3,2[ϕ(ω1, ω2, u)] =e
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ωM
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(97)

where ϕ stands for the general B-meson LCDAs or their combinations appearing in the function fi,j . The
function fi,j describes the contribution of terms in the form ϕ(ω)/(ω − · · · )j , with ϕ(ω) being the i-particle
LCDA and the denominator raised to the j-th power.

D Modeling the B-meson LCDAs

The general ansatz for leading- and higher-twist B-meson LCDAs at the reference scale µ0 = 1 GeV [54]
can be systematically established in such a way that both tree-level equations of motion constraints and the
normalization conditions of the LCDAs [45, 50] are satisfied.

ϕ+B(ω) = ω F(ω;−1) , ϕ−WW
B (ω) = F(ω; 0) ,

ϕ−t3
B (ω) =

1

6
N (λ2E − λ2H)

[
− ω2 F(ω;−2) + 4ω F(ω;−1)− 2F(ω; 0)

]
,

ϕ3(ω1, ω2) =
1

2
N (λ2E − λ2H)ω1 ω

2
2 F(ω1 + ω2;−2) ,

ĝ+B(ω) =
1

4

[
2ω (ω − Λ̄)F(ω; 0) + (3ω − 2Λ̄)F(ω; 1) + 3F(ω; 2)

− 1

6
N (λ2E − λ2H)ω2 F(ω; 0)

]
,

ĝ−B(ω) =
1

4

{
(3ω − 2Λ̄)F(ω; 1) + 3F(ω; 2)

+
1

3
N (λ2E − λ2H)ω

[
ω (Λ̄− ω)F(ω;−1)−

(
2 Λ̄− 3

2
ω
)
F(ω; 0)

]}
,

ϕ4(ω1, ω2) =
1

2
N (λ2E + λ2H)ω2

2 F(ω1 + ω2;−1) ,

ψ4(ω1, ω2) = N λ2E ω1 ω2 F(ω1 + ω2;−1) , ψ̃4(ω1, ω2) = N λ2H ω1 ω2 F(ω1 + ω2;−1) ,
ϕ5(ω1, ω2) = N (λ2E + λ2H)ω1 F(ω1 + ω2; 0) , ψ5(ω1, ω2) = −N λ2E ω2 F(ω1 + ω2; 0) ,

ψ̃5(ω1, ω2) = −N λ2H ω2 F(ω1 + ω2; 0) ,
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ϕ6(ω1, ω2) = N (λ2E − λ2H)F(ω1 + ω2; 1) , (98)

where

N =
1

3

β (β + 1)

α (α+ 1)

1

ω2
0

, Λ̄ =
3

2

α

β
ω0 ,

F(ω;n) ≡ ωn−1
0 U(β − α, 2− n− α, ω/ω0)

Γ(β)

Γ(α)
e−ω/ω0 , (99)

with U(a, b, z) is the hypergeometric U function. The appearing HQET parameters λ2E and λ2H at the reference
scale µ0 = 1 GeV are defined by the matrix element of local quark-gluon-quark operator,

⟨0|q̄(0)gsGµν(0)Γhv(0)|B̄(v)⟩ = − i
6
f̃B(µ)mBλ

2
HTr

[
γ5ΓP+σµν

]
(100)

− 1

6
f̃B(µ)mB

(
λ2H − λ2E

)
Tr
[
γ5ΓP+(vµγν − vνγµ)

]
.

The matrix element can be estimated adopting QCD sum rules yielding,

λ2E = 0.11± 0.06 GeV2, λ2H = 0.18± 0.07 GeV2, [45] (101)

λ2E = 0.03± 0.02 GeV2, λ2H = 0.06± 0.03 GeV2, [90] (102)

λ2E = 0.01± 0.01 GeV2, λ2H = 0.15± 0.05 GeV2, [91] (103)

where we take into account that the method used to estimate λ2E and λ2H , as discussed in Ref. [91], unfor-
tunately not only disrupts the convergence of the operator-product-expansion (OPE), but also enhances the
contributions from the continuum and higher excited states. Therefore, we will use the numerical results of
λ2E and λ2H from the Tab. 1, which can cover the ranges allowed by Refs. [45, 90], and simultaneously satisfy
the upper bounds imposed by Ref. [91].

We expect that the model for B-meson light-cone distribution amplitudes is only valid in the small
momenta region and the inverse logarithmic moments are only sensitive to the small momentum behavior
of the distribution amplitude. Employing the definitions of inverse logarithmic moments of the leading-twist
B-meson LCDA

1

λB(µ)
=

∫ ∞

0

dω

ω
ϕ+B(ω, µ) ,

σ̂n(µ)

λB(µ)
=

∫ ∞

0

dω

ω
lnn

e−γEλB(µ)

ω
ϕ+B(ω, µ) , (104)

we can determine the parameters of three-parameter model for B-meson light-cone distribution amplitudes in
Eq. (98)

λB(µ) =
α− 1

β − 1
ω0 ,

σ̂1(µ) = ψ(β − 1)− ψ(α− 1) + ln
α− 1

β − 1
,

σ̂2(µ) = σ̂2
1(µ) + ψ′(α− 1)− ψ′(β − 1) +

π2

6
, (105)

where γE and ψ(x) denote the Euler-Mascheroni constant and the digamma function, respectively. The scale
dependence of these moments at one-loop level is given by

λB(µ0)

λB(µ)
= 1 +

αs(µ0)CF

4π
ln

µ

µ0

[
2− 2 ln

µ
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]
,
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αs(µ0)CF

4π
4 ln

µ

µ0

[
σ̂2
1(µ0)− σ̂2(µ0)

]
. (106)
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Then we construct the LL resummation (evolution) for the twist-2 and 3 two-particle B-meson LCDAs. The
explicit expressions can be found in Ref. [54]

ϕ+B(ω, µ) = Uϕ(µ, µ0)
1

ωp+1

Γ(β)
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, (107)

where p =
Γ
(0)
cusp

2β0
ln[αs(µ)/αs(µ0)], the twist-3 two-particle LCDA ϕ−B(ω, µ) = ϕ−WW

B (ω, µ) + ϕ−t3
B (ω, µ) is a

linear combination of the (twist-2) WW term and the genuine twist-3 term, and

G(ω; l,m, n) ≡ G21
23

( ω
ω0

∣∣∣ 1,β+l
p+m,α,p+n

)
, (108)

denotes the Meijer G-function. The evolution factors Uϕ(µ, µ0) and U
t3
ϕ (µ, µ0) are given explicitly at one-loop

order [50, 92]

Uϕ(µ, µ0) = exp

{
−Γ

(0)
cusp

4β2
0

(
4π

αs(µ0)

[
ln r − 1 +

1

r

]

− β1
2β0

ln2 r +

(
Γ
(1)
cusp

Γ
(0)
cusp

− β1
β0

)
[r − 1− ln r]

)} (
e2γEµ0

)Γ
(0)
cusp
2β0

ln r
r

γ
(0)
t2

2β0 ,

U t3
ϕ (µ, µ0) = Uϕ(µ, µ0)

∣∣∣∣
γ
(0)
t2 →γ

(0)
t2 +γ

(0)
t3

, (109)

where r = αs(µ)/αs(µ0), Γ
(i)
cusp are the cusp anomalous dimensions at various orders and

γ
(0)
t2 = −2CF , γ

(0)
t3 = 2Nc . (110)

Both evolution factors satisfy the boundary condition at the reference scale µ0

Uϕ(µ0, µ0) = 1 , U t3
ϕ (µ0, µ0) = 1. (111)
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