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We construct light cone sum rules (LCSR) for the B — K* form factors in the large recoil region using
vacuum-to-B-meson correlation functions, and systematically calculate subleading-power corrections to
these form factors at tree level, including next-to-leading power contributions from the hard-collinear
propagator, the subleading effective current gI'[iD |, /(2m,,)]h,, and twist-five/six four-particle higher-twist
effects. By incorporating the available leading-power results at O(a;) and the corrections to higher-twist
B-meson light cone distribution amplitudes from our previous work, we improve the precision of
theoretical predictions for B — K* form factors and find that the subleading-power contributions amount to
30% of the corresponding leading-power results. Employing the Bourrely-Caprini-Lellouch parametriza-
tion, we determine the numerical results for B — K* form factors across the full kinematic range through a
combined fit of LCSR predictions in the large recoil region and lattice QCD results in the small recoil
region. Using the newly obtained B — K* form factors, we compute the branching fractions for the rare
decays B — K*u,D, in the Standard Model, obtaining BR(B® — K*v,0,) = 8.09(96) x 10~ and
BR(BT - K**v,b,) = 9.95(1.05) x 1075, Additionally, we predict that the longitudinal K* polarization

fraction is F; = 0.44(4).

DOI: 10.1103/yvjd-2ymn

I. INTRODUCTION

The semileptonic B decays induced by the flavor-changing
neutral current (FCNC) and accompanied by clean experi-
mental signals, serve as powerful probes of physics beyond
the Standard Model (SM). In the prominent semileptonic
b — s¢T¢~ decays, several flavor anomalies have been
observed, including a 4.0¢ deviation in the experimentally
measured BR(BT — K™pu"u~) compared to the Standard
Model predictions in the low ¢ region, where ¢ denotes the
momentum of the lepton pair, and the discrepancy between
the angular observable P5(B — K*u"u~) measured by the

LHCb Collaboration and the SM predictions in two
g* bins [1-3]. Notably, the branching ratio of B — Kv,i,
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reported by the Belle II Collaboration exceeds the Standard
Model prediction by 2.7¢ [4]. B-meson decays with a pair of
neutrinos in the final state are one of the cleanest channels in
the SM, since the electroweak effects in these processes are
under control and the QCD effects are fully encoded in the
corresponding hadronic form factors. Meanwhile, the b —
s¢T¢~ decays are affected by various “nonfactorizable”
contributions, including the short-distance hard spectator
scattering [5,6], weak annihilation effects [7], and the
power-suppressed long-distance quark loop contribu-
tion [5,8,9]. Studying the b — svv process also allows us
to distinguish among different Z' models introduced to
explain the anomalies in b — sZ+£~, or further constrain
the Wilson coefficients of high-dimensional operators within
the Standard Model effective field theory [10-12].

In order to make precise theoretical predictions for
observables in B — K*v, v, decay, precision calculations
of B — K* form factors are of paramount importance.
In the high ¢ region, the form factors have been computed
using lattice QCD simulations in Refs. [13,14] and
extrapolated to the entire kinetic region. In the low ¢?
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region, several QCD based methods have been developed
to derive the factorization formulas involved in the heavy-
to-light transition processes with the help of the heavy
quark expansion. At leading power in Agcp/m,, the seven
B — V form factors can be expressed as a product of the
four effective operators in soft-collinear effective theory
(SCET), the so-called AO-type and Bl-type SCET form
factors, and corresponding coefficient functions with hard
fluctuations [15-19],

FEV(n-p) =G0 p)éu(n- p)

- /dTCEB”(% n-p)E,(z.n-p),

(@=.1), (1)
where CEAO) and CEBU are the hard functions corresponding
to AO-type and B1-type operators, respectively, with their
explicit expressions up to O(a,) provided in Appendix A
[20-23]. Specifically, a = || for F8=V e { Ay, A5, T3}
and a= 1 for F8=Ve{V, A, 7T,,7,}. Owing to the
endpoint divergences arising in the convolution of the jet
functions and the light cone distribution amplitudes, the
soft-collinear factorization of form factors £, cannot be
directly accessed. In contrast, the B1-type effective matrix
elements can be expressed as the convolution of jet
functions and hadronic distribution amplitudes.

Starting from the vacuum-to-light-meson correlation
functions with heavy meson interpolating current, light
cone sum rules (LCSRs) with light-meson distribution
amplitudes has been used to study the B — V form
factors up to twist-four at tree level and to twist-two at
O(a,) in Refs. [24-27]. Following the analogous strat-
egies, the light cone sum rules for B — V form factors
with B-meson light cone distribution amplitudes at tree
level were constructed in Ref. [28], and the subleading-
power corrections up to twist-four at tree level were
calculated in Ref. [29]. The next-to-leading-logarithmic
contribution with SCET sum rules was studied in
Ref. [30]. The power corrections to B — V form factors
from two-particle and three-particle higher-twist B-meson
light cone distribution amplitudes (LCDAs) have been
computed in Ref. [31]. These computations rely on the
universal B-meson distribution amplitudes with duality
assumption of the light-meson channel and the narrow-
width approximation for the vector mesons [32,33].

The finite-width effects in the B — K* form factors were
investigated in Refs. [34,35]. Compared to QCD

factorization, the LCSR approach eliminates the endpoint
singularity but introduces a systematic uncertainty due to
the quark-hadron duality assumption above a continuum
threshold s,, which is used to determine the lowest-lying
hadronic parameters.

This work aims to systematically investigate the
subleading-power effects of B — K* form factors in
QCD by constructing sum rules with B-meson LCDAs,
following the approach adopted in Refs. [36-38]. The
subleading-power corrections explored in the present
work arise from three distinct sources: (I) the power-
suppressed terms from the heavy quark expansion
(HQE) of the hard-collinear propagator, (II) the sub-
leading effective current gI[iD/(2my)]h, from the
weak current gl'b, and (III) the twist-five and twist-
six four-body higher-twist contributions. By performing
combined fits with lattice QCD results in the high ¢?
region and the improved LCSR form factors in the low
g*> region with the Bourrely-Caprini-Lellouch (BCL)
parametrization [39-41], we determine the central val-
ues and correlation matrix of the BCL
z-expansion coefficients. We then explore the observ-
ables in the B — K*v,i, process, including the dif-
ferential branching ratios and the longitudinal K*
polarization fraction.

The organization of the article is as follows: In
Sec. II, we present the definitions, notations, and
leading power effective SCET form factors at O(ay).
In Sec. III, we show the computation of various power-
suppressed contributions up to twist-six and provide the
corresponding B — K* form factors in the low ¢ region
with LCSR. In Sec. IV, we apply the BCL parametriza-
tion in order to get the B — K* form factors in the entire
momentum region, and determine the z-series expansion
coefficients and their correlation matrix by a combined
fit of form factors from lattice QCD and LCSR. The
updated predictions for the branching ratio B — K*v,7,
and longitudinal K* polarization fraction are also pro-
vided. Finally, we discuss our results and future pros-
pects in Sec. V. Various technical details are collected in
the Appendixes.

II. NLL. CORRECTION TO THE B — K*
FORM FACTORS AT LEADING POWER

According to the standard Lorentz decomposition of the
bilinear quark currents, the B — K* form factors are
defined in the standard way [15]:
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*\ | 5 I 2iV q2 * 0
CV<V(pv£ )|q}/ﬂb|B(p + Q)> = _%T(’n)veuwmg yp/ qg’
[ = - 2mye* - q . g
WV (. arrsblBo + ) = 225 g 00(e?) + (mg ) (65 =2 g, )42

*

& - q
m3+mv

2 2
mp —my

{(217 +q), - T%} As(q?).

CV<V(p’ g*)|qlo-/wqyb|B(p + Q)> = _2iT1 (qz)eﬂupag*yppqgv

cy(V(p.€")|gio,,ysq*b|B(p + q)) = T»(q*)[(m

ST D)0

with the convention €y;53 = —1. The factor ¢, denotes
the flavor structure of a vector meson with ¢y, = 1 for the
K* meson. Additionally, my and mp denote the mass of
the K* meson and B meson, respectively. p and ¢
correspond to the momentum of the K* meson and the
|

5—my)e, — (€ q)(2p +q),]

q2
A A 2 + b
L+ a)

(2)

[
momentum transfer of weak current, respectively, with
q=pp—p=mpv—p.

In the following subsection, the calligraphic form factors
JF,; represent the linear combinations of the conventionally
defined form factors in Eq. (2):

2 mp 2 2 ny 2 2 mg + my 2
V(g®) pr— Vig?),  Aq?) E, olg”),  Aig?) 2E, 1(g°),
mg—m m
A (@?) =" A(q%). TP =Ti(q"). Taq*) =5Taq).
mp 2EV
Ap(q?) = Ai(@?) = A (q?),  Taulg?) = T1(q?) = Ts(q). (3)
[
Following the procedure outlined in Refs. [30,42-44], we  with
can construct the vacuum-to-B-meson correlation functions
foll . a ip-x — n — a
e ) (p.g)= / dxeP(O[T{7 (x)54(x).2(0)T S b(0)}
Y (p.q) = / d*xe?*(0|T{j, (x). g(0)TL"b(0)}|B). x|B(p+q)).
a : : _ (@ . (@) — [ d*xeir= 7 ()" )
15,4 (p.0) = [ dixe™ O/ {us(x). 2O b(0)) B). Mo (P20 Jatxer 0@ )5 a0 30 b0}
x[B(p+q))- (6)

4)

where j,(x) = 7' (¥)7,q(x) and j,s(x) = 7 ()r,7514(x)
are the interpolating currents corresponding to the longi-
tudinal and transverse polarization vector meson states with
momentum p, respectively. The superscript (a) denotes
different Dirac structures. We further introduce two light
cone vectors n, and 7, which satisfy the relations n - 1 = 2
and n?> = > = 0. In this work we do not intend to study the
power-suppressed contribution arising from the interpolat-
ing currents; therefore we keep the leading-power term of
the interpolating currents in our calculations. Subsequently,
the correlation functions in Eq. (4) can be expressed as

e (p.q) = a1 (p. @), 1L, (p.q) = A1) (p.q),

(5)

For convenience, we conduct our research in the rest frame of
the B meson, which allows us to express the four-velocity
vector of the B meson as v, = pgp/mg = (n, +,)/2. In
addition, the power counting scheme for the momentum of
interpolating currents, as well as the masses of strange quark
is assigned to

n-p~QO(my), |7+ p| ~ O(Agep/mp)-

mg~mg ~ O(AQCD/mb>‘ (7)
The correlation functions defined in Eq. (4) can be system-
atically calculated within the framework of SCET. Since the
momentum of the interpolation current is spacelike, there is
no endpoint singularity in the convolution integral between
the perturbation function and the B-meson distribution
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amplitudes, which guarantees factorization of the correlation
function. The two-particle leading-twist B-meson LCDA is
defined in terms of the nonlocal operators in SCETy; [15,45]:

(01, )5(17) (Y, )4(0)|B, )

= - L i
+<$g<r,u>—5sz<r,m>mys} C®
aff
where
i) = / ® e (o). 9)

The scale-dependent decay constant fg () in Heavy Quark
Effective Theory (HQET) is related to the decay constant fp
in QCD by the following relation [46]:

Fal) = a1 = 5" (3w -2) + 0@ (10)

u

SCETy; is an infrared effective theory, which contains only
soft and collinear fields (in this work it is equivalent to HQET
since no collinear field is taken into account), and it describes
all the long distance degrees of freedom. There also exist
quark and gluon fields at intermediate scale called hard-
collinear scale that is described by SCET; operators, which
deals with the interaction between hard-collinear and soft
fields. The hard-collinear field is at the perturbation region,
and should be integrated out to obtain the jet function.
Therefore, we need to perform the two-step matching process
QCD — SCET; — SCETy;, and then the perturbation func-
tions, including the hard function and jet function, can be
obtained step by step.

Matching the QCD heavy-to-light current to SCET;
operators, which can contribute to the correlation function
at leading power, is shown as follows (see Ref. [21] for the
explicit expressions of the A-type and B-type SCET
operators):

(wT;0)(0

/dAZCAO (5:0)

/ dAZCW ¥ (5,0)
/dsl/dszzcw $1,8,)0 BDu #(51,52;0)
, (11)
where the hard functions C (s) and Cl i (sl,ﬁz) are

given in position space; they could be transformed into

momentum space through Fourier transformation, and the

corresponding momentum space hard function is written by
A0)

c!

D (n-p,u) and CEB”(n - p,7,u). Because the hard
functions CSAO) and CgBl) contain the enhanced logarithms
In" (my,/Aqcp), they should be summed up to all orders in
perturbation theory with Next-to-Leading Logarithmic
(NLL) and Leading Logarithmic (LL) accuracy by solving
the renormalization equation [20,21]. The general solutions

to the RG equations are

A0

A0
A pou) = Uy (n- popn ))CE(n - poy),  (12)

C®V(n- p.rp) = exp[=S(n- p,pup. p))
1
x/ dT’U,(»Bl)(T,T',/th)
0

x CPV(n-p.7 ), (13)

where the NLL resummation evolution factor U; and LL
expansion of the S function are detailed in Refs. [21,46].
The jet function can be obtained by matching the matrix
element of the time-ordered product of SCET; operators
and the SCETj Lagrangian [47] to the matrix elements of
SCET}; operators. In practical operation, one can just
evaluate the Feynman diagrams in Fig. | for the tree-level
result, and the O(a,) contribution has been calculated in
Ref. [31]. To extract the form factors of the B — K*
process, we utilize a dispersion relation and express the
partonic correlation function as a dispersion integral [48],

- 1 o ImI(n-p,o
m”p““”:EA @579%;t2-(m)

At the hadronic level, the correlation function with different
interpolating currents can be expressed by the following
formulas:

pp—k

B p
k \/\/\"/\,\
— >

FIG. 1. Diagrammatic representations of the vacuum-to-
B-meson correlation functions at tree level, where the double
line stands for the effective heavy quark field in HQET, the wave
line indicates the interpolating current, and the square box
denotes the weak vertex.
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I 2
(V-A) o Sfymy n-p mpg 2my
II ,q) = _7VA
wl - (P-4) my/n-p—i- p—10<2mv) {ms—nmn"[( nep old” )>
mp+m mp—m
(P g ) - ) )|
n-p mp
B 2m mg+m mg—m
(2 ) (B gy o))
n-p n-p mp
1 (V-A)
+/dwlm[ uQ H Nwn- p) + e, (@' n-p)l, (15)

1 fyn-p

(V-A)
H&,uL (p’LI) Em%,/np—ﬁp—

1
X
i0 {95”

1 (V=A
o gl

m3+mv > .1 mp >
—A —V
n-p (g >>+l€5”<m3+mv (@)

(V-A

>(w/,n'p)+i€agl’v )(a)l9n'p)]9 (16)

) e am = and [P ) - Tole)|

™D (@' n- p), (17)

T+T 1 fm n-p\?
H(,Ir)(p’q):_ . vty
" 2my/n-p—n-p—i0 \2my
+ da)’%[n- i, —i-qn,)
o —ii-p—i0 T e
(T+T) f%f_n'me
Hé,uj_ (p’q):_ 0

2my/n-p—ii-p—i

(nml; T2(612)> + i€k T, (qz)}

(T

1 T+T T
+/ ol el @l p) el 7D l o ) (18)

where the definitions of decay constants for the longi-
tudinal and transverse K* meson are given by Ref. [30],

fvmvn £,
4V (p.e)) = -n-p;ﬁem (19)

At leading power, the large recoil symmetry reduces the
seven B — V form factors to two, namely, &(n - p) and
& (n- p). The relation between the QCD form factors in
|

the above equation and the SCET form factors & | (7 - p)
can be found in Ref. [31]. Taking advantage of these
relations, all the correlation functions can be expressed in
terms of the SCET form factors. We then apply quark-
hadron duality and Borel transformation to both the
partonic and hadronic correlation functions in the SCET
representation to eliminate the continuum and resonance
contributions, thereby reducing the uncertainties from the
duality ansatz. We finally obtain the four effective SCET
form factors at O(«y) [31]:

~ Un(ppo i) f 5 (1) 2mgmy n-pa =myl.o /
é’ll.,NLL(” p)= U/ (n-p) / do' exp[ W] [¢B,eff(w ) + ¢1J§.m (o, )], (20)
Ein(n-p) = U2(thc’;()£B<ﬂh2) nnTBp wa da eXP{ #} Ppete(@ p,v), (21)

_&Cr Up(pina, 1) f s (pia) mpmy

EH,NLL(” p)= 7 I
v

o
x/ do’ exp{
0

B [(1 = 0)0(r)0(1 =)

¢ (0, 1)

. ,— 2 (o)
nepy =y mv] / do P8 E) (22)
n-poy | Jo ®
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_aCr Us(ppa. 1) 3 (ia) my

EL,NLL(” : P) = o

wi
X dw' exp|—
0
I+ _ L

where wy™ = sy /n-p and wy = M?/n - p denote the
effective threshold and Borel mass, respectively, which are
two fundamental inputs of LCSR. y and v correspond to the
factorization scale and renormalization scale, respectively.
Additionally, the effective B-meson distribution amplitudes
are introduced to describe both the hard-collinear and soft
fluctuations [31,43,44], as given in Appendix B. The quark
mass contributions in SCET have been investigated in
Ref. [49], and the leading-power spectator-quark mass
corrections to B, -meson decay form factors at one-loop
accuracy have been calculated in Refs. [36,38]. In this work,
we do not include the spectator-quark mass corrections to the
effective SCET form factors at one-loop accuracy. The
omission is justified because the spectator quark in the B —
K* decay process is either a u quark or d quark, whose mass-
induced corrections are significantly suppressed compared to
those from the s quark in B;-meson decays. We will estimate
the spectator-quark correction to the B — K* form factors
with the SCET sum rules in our future work.

fe(p)mg

<0|Qa(zlﬁ)g‘vGﬂy(ZZﬁ)h1/‘/3|0> = 4

fv()
n-po — mzv] /°° PR ACD

[(1=7)0(r)o(1 —7)]

my,

(23)

n- poy / 0]

III. SUBLEADING-POWER CONTRIBUTIONS

In this section, we investigate the power corrections
arising from various sources to the B — K* form factors
within the LCSR approach. Utilizing the equations of
motion in HQET and the factorization formula of correla-
tion functions at subleading power, we ultimately obtain the
tree-level power corrections to the B — K* form factors in
the large hadronic recoil region and analyze the scaling
behavior of these form factors.

A. Higher-twist B-meson LCDA contribution

The contributions from the higher-twist B-meson
LCDAs of two particle and three particle are shown in
Fig. 2. In order to define higher-twist B-meson LCDAs, the
general parametrization of the vacuum-to-B-meson matrix
element of the three-body HQET operator is given
by Ref. [50],

[(1 ‘f‘ﬁ){(v,ﬁ’u— vaﬂ)[lPA(Zl’Zb:u) _LPV(ZI’ZZvﬂ)]

- io—;wlPV(Zl»ZZ’/‘> - (ﬁuvv - ﬁv

0,)Xa (21,20, 1) + Ay, = 71,7,) [W(21,22.1) + Y (21,22, 10)]

+ ieﬂuaﬂﬁavﬂySXA (21204 4) = [€4ap1"Y"Y 5 Ya(z1.20.4)

- (ﬁﬂ”u - ﬁvvﬂ)ﬂw(zl vZZv/") + (ﬁﬂ}/b - ﬁyyu)ﬂz(zl ’ Z27.“>}75]ﬂm (24)
where €y153 = —1, and we also introduce three-particle HQET distribution amplitudes of definite collinear twist as follows:
O; =, - ¥y, o, =¥, + ¥y,
Y, =¥, + Xy, li‘4:111\/_)~(A7
®5ZTA+LI’V+2YA_2?A+2W7 l},sz_‘PA—"XA_zYA,
Y= -, - X, +27,, Oy =V, -V, +2Y, +2W 42V, —4Z. (25)
—— = —— .JJJ“’
“00000V0T000V0VTTT000Y
~— | <
% VVV\,\,\
(a) (b)

FIG. 2. Diagrammatic representations of two-particle (a) and three-particle (b) corrections to the vacuum-to-B-meson correlation
functions at tree level, where the square box indicates the weak vertex and the wavy line represents the interpolating current.

014032-6



PRECISION CALCULATIONS OF B — K* FORM FACTORS ... PHYS. REV. D 112, 014032 (2025)

To facilitate the calculation of the contributions from high-twist LCDAs more effectively, we introduce the light cone
expansion of the quark propagator within the background gluon field,

4 1 ux m,)o
O (@) 00) >0, [ bz [ au ol Ut )] G ), 26)

(2r)* P—mg 2(P—m))

which can be found in Ref. [51].

First, we evaluate the correlation function H‘(‘”) (p, q) in Eq. (6), which corresponds to the longitudinally polarized vector
meson. Contracting the quark fields ¢(x) and g(0) [leads to the propagator in Eq. (26)], taking advantage of the three-
particle higher-twist B-meson LCDA in Eq. (24), the three-particle higher-twist correction to the correlation function can be
written as

H(a)ﬁPHT( q) = g(H)mp [r(a)l—pPHT +f~(“)ﬁ3PHT]’ (27)

|.NLP I e R A I

with

[[3PHT :/°° dw, /°° dwz/ldu( —2udy(wy, w,) n my Ws(wy, 0p) = ¥s(wy, 0,)
0 0 0

[l.NLP fl-p—a)l—uwz—wq)z n-p(ﬁ-p—wl—ua)z—a)q)z’
~ 0 0 L Ws(w),0y) = Qu—1)®s(wy,05)  m 2D (w;, @)
Hﬁl}'\l]‘l["‘[‘l) = / d(l)l / d(/)2/ du — _ _ _ 5 —_ .q — _ _ _ 3 (28)
0 0 0 (- p—w —uw, wq) n-p(i-p—w —uw, wq)
where the factors Fl(la) and f|<|a> take the form
V-A) ~(T+T _n-q n-q ~(V=A) (T+T _ n-q _ n-q
{Fﬁ )’1—*|(|+ >}e{nwnﬂT—l’lﬂT}, {F‘(‘ )71—“(‘ + )}e{nwnﬂT—nMT}, (29)

and a € {V — A, T + T} denotes the different Dirac structures v.(1 =7s) and ic,, (1 + ys)g" of the heavy-to-light weak
current, respectively. Additionally, we set w, = m?] /n - p for brevity.

Along the same lines, the three-particle higher-twist correction to the correlation function H(f)( p,q) in Eq. (6), which
corresponds to a transversely polarized vector meson, can be expressed as

(a).3PHT fB(ﬂ)mB /°° /°° /1 (a) (1 =2u)¥s(w;, ) = li’s(a)l,a)ﬁ
1 ,q) = ——"—— d d du |’
Lxee (P-q) 2n-p Jo R e S R (- p— o —uw, - a,)

(30)

(@) my, ¥Ys(w, o) + Li’s(wuwz)}
+ n-pi-p-o —M)z—@q)2

i 1 =1 P iC
by taking €3, = 3 €5,,,n"n° and

V-A T+T . . ~(V=A) ~(T+T _ . .
YN e N e {gh, + e, g5, —ieg,t. ALY VT e — {7 qlgg, +ies) n - a(gh, —ies)}. (31)

In addition, the two-particle higher-twist B-meson LCDAs, for example ¢ (w), also generate subleading-power
contributions. The off-light cone corrections to the renormalized two-body nonlocal HQET matrix element at O(x?)
accuracy is given by Ref. [50]:

0@y )b B) =~ EEE [ deons 2L 215 1)+ )

———(¢s (. 1) = dp(w. ) + X (gh (. 1) — gg(@. u))]}rs ; (32)
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where the higher-twist LCDA g5 (w, ) can be decomposed into the “genuine” twist-five three-particle LCDA W5 (@, @,, )
and the lower-twist “Wandzura-Wilczek” two-particle LCDA g5 (w, u),

G (x) = (x)—% A s (x, ux). (33)

After inserting the two-particle higher-twist B-meson LCDAs given in Eq. (32) into the correlation functions, we obtain the
factorization formulas for the two-particle higher-twist contributions

p p a [oe] 4 2 lP ’
H‘(‘ FPHT(p,q) _Mr(i{/ da) 95 (w, 1) / dwl/ da)z/ s (w;, ;) 2}, (34)
’ 2n-p I 0 (- p—w)? (- p—w —uw,)

with FH € {nﬂ, n, 50— i, %4} and F Je {93, + iez,, =i~ implement the dispersion relation to the correlation func-

+iex)} forae V A T+T tions at the partonic level and apply the quark-hadron
95;4 ou p pp q

Summing up the two-particle and three-particle higher- ~ duality ansatz and Borel transformation. This procedure

twist contributions, we obtain the higher-twist corrections yields the following sum rules for the higher-twist correc-
to the correlation functions H‘(‘ai( p.q) attree level. We then  tions to the B — K* form factors [31]:

e [~ ] (1), Al ). Tl TS}
= LU0 { g ol + ] = ool
berp | -] (A ) A ). TH ()
- W {at  oled + % prafea o Frated + 7% pualni )} (33)

with the symmetry-breaking factors

{+1 B "q} zie{”'q,—"'q,—l}, (36)
i-q" fi-q mg’  mp

where the function f; ; describes the contribution of terms in the form ¢(w)/(w — - - -)/, with ¢(w) being the i-particle
LCDA and the denominator raised to the j-th power. The explicit expressions of f; ; are listed in Appendix C, and the
density functions are expressed by

d . -
71 (w) = 4%93(0’)» (w1, 0,3, u) = Ys(0y, w;) + ¥s(wy, o,),
73wy, 0y 1) = Ps(w1, 0,) — Ps(0, ), Ty(w1, 0y, u) = 20 (@, 05),

5(01, 0y, u) = 20Dy (0, @,). (37)

B. Higher-order terms in hard-collinear propagator

Adopting the approach detailed in Refs. [36-38], we carry out the calculation of the subleading power corrections
stemming from the hard-collinear propagator in the correlation functions expressed by Eq. (6). Given that the momentum in
the interpolating current lies in the hard-collinear regime, the quark propagator connecting this interpolating current and a
soft quark also possesses hard-collinear momentum. Expanding the hard-collinear propagator in terms of powers of
Agcp/my, gives rise to
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NLP
LP
—= / / 2
. n n-psin-pn-k n-ph(mg—my)
.pL pZ—k
ﬁ—lé+mq _ " p2+(n p2 +mq)+np(ﬁp—}7lk) n-p(n-p—ﬁ-k) (38)
(p— k) —m + ie n-p(a-p—n-k) ’

where m,, is the mass of the hard-collinear quark propagator and m,, is the mass of the B-meson spectator quark. “LP” refers
to the leading-power contribution of hard-collinear propagator at tree level, while “NLP” represents the next-to-leading
power contributions resulting from the expansion of the hard-collinear propagator.

We then insert the NLP terms into the correlation functions H‘(‘ | » and apply the HQET operator identities [50,52],

vpaq(x)l“[x, 0]h,(0) = v - 0g(x)[x, 0]A,(0) + iAl duing(x)[x, ux]x*g,G;, (ux)[ux, 0)v’Th,(0),
iv - 0(0]g(x)Tx, 0], (0)|B,) = A{0]g(x)T[x, 0]h,(0)[B,),
%Z](x)ypl“[x, 0]h,(0) = —i/) duug(x)|x, ux]x’lgSG,lp(ux) [ux, 0]y’Th,(0) + imyq(x)I'[x,0]h,(0).  (39)

Taking advantage of the three-body light cone HQET matrix element up to twist-six accuracy in Eq. (24), we are able to
derive the results for the first NLP term presented in Eq. (38),

e _ [}(M)ms] ([7 @20 ) [ g0 9500

2n - p —
/ du/ da)l/ dor, u<D4 (w1, @) —|—‘P4(a)]2, a)Z)]}7
n p—w;— ua)z)
) 2A 2u¥
iy = [ B(M)mB] {/ da————— (a) / du/ dw, / de ¥s(w;, w,) 2}’ (40)
2n-p 0 - o pe o no)

where the hadronic parameter A characterizes the “effective mass” of the B-meson state in HQET. It can be defined as [53]

(0|giv - DT, |By ()

A= 0lgir, B, ()

(41)

Noting the relation n, = 2v, — ii,, we can further compute the contribution of the second NLP term along the same lines,

u)m © ji-p(2A-w) diun-p¥Ys(w;,w
Mys =0, M3 = [B() BHA do P 2453 /du/ da)l/ da)2 s(@1.03) | (42)

2n-p (n-p—w) (i p—w) —uw,)?

Subsequently, the contribution of the third NLP term of the hard-collinear propagator expansion can be easily derived by
applying the standard factorization procedure,

0 1 _
M <0, A= - [ o Lo (43)

Ultimately, we obtain the factorization formulas for the NLP contributions stemming from the quark propagator expansion
at tree level:

.QPE LQPE 11,QPE 1II,QPE = 1QPE 11,QPE II1,QPE
H_E‘?IEILP = F( )(HN%P + 1_[NLQP + HNL(lg ) Fﬁ'a)<HN(EP + l_INLQP "‘HNL(lg ), (44)
with

V-A . = (V-A _ :
l"‘("l ) = {nﬂ,gg” - leéLﬂ}, F‘(‘,L ) = {nﬂ,gﬁlﬂ + zeéLﬂ}, (45)
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and and the density functions #; are given as follows:
K _ _{nﬂ N N i%)néq}, M(@) = (@ = 28)¢5 (@) + (my £ m)d5(),
) ) M (@, @y, u) = 2[udy(w, 0y) + 4w, )],

- = _n- . . n-

r|<|1”) = —{nﬂTq - nﬂTq, (95, + i€5,) Tq} (46) (@) =0, Ni(01, 0y, u) = 2u¥s(w;, ),
1s(0) = 0(2A = w)py(w) + (mg —m?,) b (),

Adopting the standard LCSR strategy, we formulate the

Nt > o(@1. @2, 1) = 2wy + )y (@1, @3, u), (50)

correlation functions in the dispersion relation formalism
and match them to the hadronic representation given from
Egs. (15) to (18). Finally, the desired B — K* form factors
for the power-suppressed contribution stemming from the
hard-collinear propagator can be expressed as

where the + sign and — sign in 7, (w) are assigned to

Fie{V,A,,T,,7T,}and F,e{ Ay, A»,T 2}, respectively.

C. Subleading heavy-quark effective current

mi QPE | - We now proceed to consider the contributions of the

fvexp n- pwy iNLp(47) power-suppressed terms in the heavy quark expansion to
~ the B — K* form factors. In HQET, the bottom quark

— M{’ﬁ (farlm] = f320m]) can be replacc?d by the effective. heavy quark field, and
(n-p) the heavy-to-light weak current is expanded up to NLP

+ &i(f21lms) = f32[Ma) = f2alns) — faslne))}.  (47)  accuracy [47.54],

where form factors F,€{V, A\,7T,7,, Ay, Air,T»} gl,b =ql,h, +— ! qF zDh + - (51)

with the replacement fy — fy for the first four ; and ~

fv— fU, for the last three F;, and the corresponding NLP

symmetry-breaking factors read as R -

where D=D-(v-D)¢ and Dh,(0)=[D—(v-

n-q n-q 2myn-q 2myn-q 2my D)0)h,(0) = Dh,(0) due to the HQET equations of

Ki € {1 -1, mp T mp » mpn-p mgn-p ’n-p}’ motion. The ellipses denote the terms in powers of

O(1/m2), whose contributions to the correlation functions

(48) are beyond the scope of our current work. Substituting the

B B heavy-to-light effective current in the correlation functions

&€ {1’ 1, n-q ) n-q , 2my ) 2my , 2mv}, (49)  with the NLP term and taking advantage of the operator
mg mg n-p n-p n-p identities in Eq. (39) and the following equation,

a(0)[x, 01D, 1, (0) = 9,[g(x)T[x, 0], (0)] + i A | duii g (x) [x, ux]g,G,, (ux) [ux, 0}x*Th, (0)
0

- AT 0, 0, (52

the correlation functions can be directly presented in the following form:

a ipex _ 1 _ a7z -
M (pa) = [ et <0|T{q'<x>r,-q<x>,%q<o>r,ﬁ i} B(p + )

2mb/ / n.p—e:fkﬂe{"é{‘_’(") Z Li7eh, (0 >]

—|—i/ dub"tq(x)x/’gstg(ux)Fj%F,(f)yghv(O)—i[(_I(x)]l"j%l“(a)}’ghp(o)}» (53)

0 2 ()Xé: 2 s

where a € {V — A, T + T} denotes the different Dirac structures F le {r.(1 =75).ic,, (1 +75)g"} and T, € {4 %y} for
Jj =, L, respectively. We can further derive the factorization formula by utilizing analogous techniques at tree level:
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e =i L0 L1 gL 08— ) 0) + (3 -0 =m0
o [ [ anZE G &

with

V-A o1
It e{-n,. g5 + e}

n-q _ n-q _ .
Fﬁf {nﬂT—nﬂT,n-q(gg—i—le;)}. (55)

By matching the partonic representation with the hadronic
dispersion relations given from Egs. (15) to (18), we can
derive the subleading-power heavy-quark effective current
correction to the B — K* form factors

fvexp |— iy ]—"HQE(Z)
v €Xp 7 pay iNLP\q

_ Falw)ms

2(n- p)m, ci{falG] + /3206l (56)

where the coefficient factors ¢; are determined from the
correlation functions at the hadronic level,

e{_l,_l’fl-q’ﬁ-q 2mv 2mv —2mv}’ (57)

mp mg 'n-p'n-p’ n-p

= i

Q000000000

(a)

and the density functions ; can be derived from the
correlation functions at the partonic level in Eq. (54):

(@) = A — @) (0) + (A =0 —my)dz(o),
& (@), @5, u) = 2[Dy (@, w,) + P4(w;, @,)]. (58)

Both the correction from the hard-collinear propagator and
the correction from the subleading effective current to the
B — K* form factors show excellent agreement with the
previous calculation for the B — D* process reported in
Ref. [38], upon substituting the charm quark mass with the
strange quark mass.

D. Higher-twist four-particle contribution

We are now in the position to calculate the heavy-to-light
B-meson decay form factors from the twist-five and twist-
six four-particle LCDAs in the factorization approximation.
The subleading-power correction to the B — K* form
factors can be factorized into a product of the lower-twist
two-particle LCDAs and the quark condensate [54,55]. By
evaluating the lowest-order Feynman diagrams shown in
Fig. 3, we obtain the nonleading Fock-state correction to
the correlation functions

vy

(d) (e) (f)
FIG.3. Diagrammatic representations of twist-five and twist-six four-particle corrections to the vaccumm-to-bottom meson correlation

functions. (a) and (f) describe the radiative correction between heavy quark and spectator quark; (b) describes the QCD correction to the
weak vertex; (c) describes the self-energy correction to the quark propagator; (d) and (e) describe the QCD correction to the K* vertex.
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2C f +
(a)4P gsCFfB<:u)mB (a) /= /00 ¢B (a))
'\ _ Js = FJBV)TE )l do—PB )
j.NLP 12 n'p J <qq> 0 wﬁp(a)—ﬁp)2
o + 2 n - —
+f‘<a)<51’q’>/ dw¢B (360) — —— _a) 4 Zlnn_p—a) , (59)
/ 0 o |fi-p-—w #-pi-p-w) i-p
with FH 9 = H :{ﬁﬂ,nﬂ%"—ﬁﬂ%} and TV = 0,1 = {93, + iex,, =i - q(g5, + iez,)} fora€ {V — A, T+ T}. F;“) and

r Ja denote the contributions from diagram (d) and diagram (e) in Fig. 3, respectively. The terms (gg) and (g’

q') represent

the vacuum condensate of the propagator quark ¢ and the spectator quark ¢, respectively.
It is worth mentioning that diagram (e) in Fig. 3 is analyzed using the background field expansion of the quark propagator

on the light cone [51],

r(d/2—-1)

829/2 (—x2) 42T

(017{4(x),q(0)}|0) >

where the classical equation of motion in QCD reads as

DiGZp = _gsz Z]Y/)Taq' (61)
q

After explicitly calculating diagrams (a), (b), and (c) in
Fig. 3, the results indicate that, in comparison to the
dominant contributions from diagrams (d) and (e), these
three diagrams can only contribute to the higher power
corrections. Moreover, diagram (f) is found to be
|

m%/ 4P 2
fvexp |- ]:i,NLP(q ) =

n-pwy 3(n-p)?

1
/ duuiitgD,G" (ux)x, +
0

2ra; CFJNCB (M)mB

rd/2-2) [ [ _ 1 )
167[d/2(_x2)d/2—2A du <”” - E) 9sD,;G* (ux)y,,.

(60)

insensitive to both the hard and hard-collinear QCD
dynamics. Furthermore, diagram (d) is power suppressed
relative to diagram (e) when the interpolating current
corresponds to a transversely polarized K*.

By applying the dispersion relation to the correlation
functions at the partonic level and employing the standard
sum rule approach, we can derive the subleading-power
corrections from four-particle contributions to the B — K*
form factors

c,»<z/q’>{ [ doiystn + [ doiy o)

K <<?1’61’> ) [

where the coefficients

’

mg mg n-p'n-pn-p
r,€40,0,0,0,1,1,1} (63)

6{171’71-(] i-q 2my 2my 2mv}’

for 7, €{V,A,7,,7,, Ay, A2, 7>} and the explicit
expressions for the density functions ¢y are given by

r +
1—2“)—M+ <1+2“’M>e‘m] (1)3(;)),

()

¢;‘f—l (w) =

br_n(@) = |1 = 2;4_20;’)” —w—] ¢Ba)—(2w)’
- ) )
¢::rff—m(a’) = (1 +£> e oM — 1} ¢Bw_(2w)‘ (64)

- 5 © + o}
M¢Ba()ws)_ / dw¢zif2€‘))+ /0 da)¢e+ff_m(w)n, (62)

Collecting the next-to-leading power (NLP) contributions
estimated above, the total NLP correction to the B - K*
form factors in QCD can be expressed as

i _ piHT i,QPE i, HQE
FBK*,NLP - FBK* NLP + FBK* .NLP + FBK* NLP

+ F;_';g NLP° (65)

where the index i labels seven different B — K* form factors
in QCD. Before proceeding to the numerical analysis, we
first establish the power-counting rules for the form factors at
LP and NLP, adopting the asymptotic behaviors of B-meson
LCDAs [50]. According to the power-counting scheme
wy ~ @, ~ O(2?) and my ~ O(1), where the scaling param-
eter 1 = Agcp/m;, we derive the scaling behavior for the
leading-power B — K* form factors,
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LP LP LP LP 2
Vi NAl,BK’ ~ Tl,BK* ~ TZ.BK* ~ O('1 ),

Ak ~ O(2), Apgg ~ Tospg- ~ O(2%),  (66)

where A, and 7,3 denote combinations of the form factors
corresponding to m‘j;"VAl - mfj;;'lv A, and Z—Z T, — T, re-
spectively. From the relations between seven QCD form
factors and the four SCET effective form factors in Ref. [31],
the scalings of the form factors V, A, T, T, are determined
by the SCET effective form factor &, , while Ay, A;,, T3 are

determined by the SCET effective form factor &. Evidently,
&) is suppressed by a factor of A? compared to £ . Because A
has an enhancement factor of 1/m,, it ultimately contributes
the power of O(4?). Applying the same analytical method as
for the leading power and considering the asymptotic
behavior of two-particle and three-particle higher-twist B-
meson LCDAs, we further determine the scalings of B — K*
form factors at NLP:

NLP NLP NLP NLP 3
Vg NAI,BK* ~ TI,BK* ~ T2,BK* ~ O(/1 )’

AON,]E%* ~ 0(14)’ Alzgllé]: ~ T23I§IIL<]*) ~ O(/{S)' (67)

IV. NUMERICAL ANALYSIS

Summing up both the NLL correction and the newly
derived NLP corrections, we obtain the improved B — K*
form factors with SCET sum rules in the large recoil region.
In this section, we analyze phenomenological observables
for the rare FCNC process B — K*v,U,. We firstly list the
relevant theoretical inputs in the factorization formula for
the heavy-to-light form factors, including quark masses,
decay constants, distribution amplitudes, sum rules param-
eters, electroweak parameters, and the inverse moments.

TABLE I. Numerical values of the input parameters.

We compare the form factors under two scenarios: selecting
the inverse moment as either the recent lattice QCD
simulation result Az = 389(35) MeV or the conventional
range Az = 350(150) MeV. The theoretical precision of
form factors could be improved if lattice QCD simulations
systematically account for potential uncertainties [56].
After taking into account both the available lattice QCD
results in the high-¢> region and improved LCSR predic-
tions in the low-g? region, we then perform a combined fit
to determine the coefficients in the z-series expansion,
thereby extending the B — K* form factors to the entire
kinematic region. Taking advantage of the newly updated
LCSR predictions, we investigate the differential branching
ratio and longitudinal K* polarization fraction of B —
K*v v, decays. For the BY — K*Tv,b, decay process,
the additional long-distance effect induced by B" —
7 (=K*"v,)D, at tree level is included with the narrow
7 width approximation.

A. Theory inputs

In Table I, we summarize the necessary input parameters
of the Standard Model and relevant hadronic parameters,
along with the central values and uncertainties. In our
numerical calculations, we employ the three-loop evolution
of the strong coupling constant a,(x) in the Modified
Minimal Subtraction (MS) scheme by taking the interval
a§5) (my) from [57] and adopting the perturbative matching
scales py = 4.8 GeV and u; = 1.3 GeV for crossing the
ng=4 and ny=3 thresholds, respectively [58,59].
Additionally, the bottom quark mass m,(m,) and strange
quark mass m,(m;) are given in the MS scheme at the scale
of their respective MS masses. Using RunDec [60], we
obtain the scale dependence of the strong coupling constant

Parameter Value Ref. Parameter Value Ref.
Mo 5279.66 MeV [57] Mo 898.46 MeV [57]
my+ 5279.34 MeV [57] Mo 891.67 MeV [57]
T 1.517(4) ps [57] Tp 1.638(4) ps [57]
my+ 1776.86 MeV [57] T 0.2903(5) ps [57]
Gr 1.166379 x 1075 GeV~2 [57] sin® @y 0.23126(5) [72]
|V, Vil (41.25+0.45) x 1073 (73] Ao (M7) 1/127.925 [57]
V| 3.82(20) x 1073 [57] [V sl 0.2243(8) [57]
my(my,) (4.203 +0.011) GeV [57] my(my) (93.5 +0.8) MeV [57]
s (190.0 + 1.3) MeV [61] Ut [my,/2,2m,]

\IL* (204 & 7) MeV [27] Hin [my,/2,2m,]
fz (1 Gev) (159 & 6) MeV [62] U 1.5+0.5 GeV
(qq)(2 Gev) —(286 +23 MeV)? [61] v m,
(55):(qq) (0.8 +0.1) [74,75] M? (1.7 £0.5) GeV? [71]
sg (1.7 £0.1) GeV? [28,71] g (1440.1) GeV? [28,71]
g 350 + 150 MeV [54] 161,65} {0.7,6.0} [54]
(A2/23) 0.50 £0.10 [54] {0.0, 7% /6}
(223 + %) (0.25 £0.15) GeV? [54] {-0.7,-6.0}
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a,(pu) and the quark masses m;(u) and mg(u). Moreover,
we incorporate the results from four-flavor lattice QCD
computations for the B-meson decay constant f [61]. The
decay constant of the longitudinal K* can be extracted from
leptonic decays V° — ete™ and tau lepton decays
tt — VTu,, while the renormalization scale-dependent
decay constant of the transverse K* is taken from a lattice
QCD simulation with 2 + 1 flavors of domain wall quarks
and the Iwasaki gauge action [62]. Two hard scales y,; and
Uy are introduced in the hard functions and B-meson decay
constants, respectively. The factorization scale y is the same
as the hard-collinear scale, and the renormalization scale
for the QCD tensor current will be taken as v = m,,. The
LCSR improved form factors for the B-meson semileptonic
decay processes depend on the B-meson light cone dis-
tribution amplitudes (LCDAS) as universal nonperturbative
input parameters. Therefore, we need to construct an
acceptable phenomenological model for the leading- and
higher-twist B-meson LCDAs that not only satisfies the
classical equations of motion [50], but also exhibits the
expected asymptotic behavior at sufficiently large scales. In
this work, we adopt a newly proposed three-parameter
model for all the relevant B-meson light cone distribution
amplitudes in coordinate space [54], with the details
provided in Appendix D. The three shape parameters a,
p, and @, in this model can be related to the inverse
logarithmic moments Az and 6, , for the leading-twist B-
meson distribution amplitude ¢; with the equations

Ag(p) = %wo’
1(u) = w(p—1) —yla—1) +1n;%1,
62 = 3 +v/@=1) =W/ (B- 1)+, (68)

and the definitions of the inverse logarithmic moments 1p
and 6, are

| % d
=/ ;wqbé(w,u),

/13(/4) 0
%a(p) = °°d_a) n"% w
Ag(u) [) w : P ¢p(o.p).  (69)

The numerical values for the hadronic parameters Az, 61 »,
and Ap g in Table I are all given at the reference scale

o = 1 GeV, and these parameters will be evolved to the
factorization scale y in the final results. Despite various
strategies being employed to investigate the inverse
moment Az [54,56,63-69], a QCD-based method for its
precise determination remains elusive due to its definition
via a nonlocal operator (see Refs. [56,70] for preliminary
results from the lattice QCD perspectives). We adopt a
conservative interval of Az = (350 & 150) MeV in this
work and compare the resulting form factors with those
derived from Az = 389(35) MeV, as suggested by the
recent lattice QCD result [56,70]. For the inverse loga-
rithmic moments &,,, we prefer the choice {6,6,} =
{0,7%/6} with the intervals

-0.7 <6, <07, -6.0 < 6, < 6.0. (70)
Following the standard procedure outlined in
Refs. [28,31,71], the two intrinsic parameters m,, and @,
introduced by the light cone sum rules can be determined
by effectively constraining the smallness of the continuum
contributions in the dispersion integrals and the stability of
the obtained sum rule results against the variation of w,,.

The parameters s;- and sp) correspond to the interpolating
currents g'ny g and g'ng, respectively, leading to the
following intervals:

sy =n-por = (1.4+0.1)GeV?,
sh=n-pol = (1.7+0.1)GeV?,
M? =n- pwy = (1.7+0.5)GeV>. (71)

B. Numerical predictions for the B — K* form factors

Making use of the numerical inputs from Table I and the
B-meson light cone distribution amplitudes described by
the three-parameter model in Appendix D, we obtain the
B — K* form factors in the large recoil region. In Table II,
we present the numerical results of B — K* form factors
based on LCSR with heavy-meson distribution amplitudes
at ¢> = 0. The central values of our improved form factors
are consistent within a 1 ~2¢ deviation with the results
obtained from sum rules based on K* distribution
amplitudes [27]. To examine the numerical features of
the LCSR parameters to form factors, we first present the
dependence of the form factors on the Borel mass M? in
Fig. 4. The left panel in Fig. 4 shows the variation of form

TABLE II. The B — K* form factors at g> = 0 given by our work (second row) and by sum rules with light-
meson distribution amplitudes (third row).

Fior V Ay Ay 7, 7, App T
This work 0.20(14) 0.066(38) 0.19(13) 0.24(16) 0.19(13) 0.066(38) 0.094(44)
Ref. [27] 0.293) 0.118(16) 0.306(33) 0.282(31) 0.274(31) 0.113(15) 0.095(13)
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FIG. 4. Dependence of the form factors Vp_,x and Ajp_x- on the Borel parameter M2,

factor VV when the Borel mass M2 changes in the range of
1.2 GeV? to 2.2 GeV?, with the effective threshold sy
fixed at 1.3 GeV?, 1.4 GeV?, and 1.5 GeV?. The right
panel in Fig. 4 illustrates the effect on the form factor A,
for the same Borel mass range, with the effective threshold
setat 1.6 GeV?, 1.7 GeV?, and 1.8 GeV?, respectively. We

find that LCSR form factors exhibit a mild dependence on

the intrinsic parameters M? and sg’l, with each introducing

10% systematic uncertainties to the form factors, which is
consistent with our previous work [31] and other sum rule
analyses [36,37].

We now proceed to explore the contributions of the
subleading-power corrections from different sources to the
B — K* form factors, with the form factors V and A, as
illustrative examples. In Fig. 5, we present the contributions
of four different sources of the subleading-power correc-
tions as well as the total power correction in the kinematic
region of 0 < g*> < 6 GeV?2. These subleading-power cor-
rections include the “HT ” contribution from the two-
particle and three-particle higher-twist B-meson distribu-
tion amplitudes, the “QPE ” contribution from the expan-
sion of hard-collinear quark propagator in the small
parameter Agcp/my, the “HQE ” contribution from the

power-suppressed effective weak transition current
02f '
—— NLPtot NLP,HT —— NLP,QPE
o1k —— NLP,HQE —— NLP, 4P

7*[GeV?]

FIG. 5.

grib,/(2my)lh,, and the “4P ” contribution from
twist-5 and twist-6 four-particle B-meson LCDAs within
the factorization approach. We can find that the NLP
contribution from twist-5 and twist-6 four-particle B-meson
LCDAs is minimal for the B — K* form factors, and this
contribution accounts for only 3% — 7% of the total NLP
contribution to the form factors V and Ay, respectively. In
contrast, it is evident that the higher-twist B-meson LCDAs
provide the largest contributions to the NLP B — K* form
factors, which numerically account for 50% — 60% of the
total NLP corrections in analogy to the previous
discussions [29,36,37,76].

We now explore the contribution of the NLL resumma-
tion improved leading-power B — K* form factors and the
newly derived subleading-power corrections to the B — K*
form factors at tree level. In order to understand the impact
of one-loop and subleading-power corrections, we show the
numerical results explicitly for the resummation improved
contribution at the one-loop level and NLP corrections at
the tree level to the B — K* form factors in the region of
0 < ¢*> < 6 GeV? in Fig. 6. For instance, the resummation
improved NLL correction reduces the form factors )V and
Ay by 30% compared to the results at leading-logarithm

accuracy. In addition, the newly determined NLP
0.05L — NLPtot NLP,HT —— NLP,QPE
—— NLP,HQE —— NLP,4P

-0.10F

7*[GeV?]

Subleading-power corrections to the B — K* form factors Vp_ g+ (left panel) and A z_ ¢+ (right panel) in the kinematic region

of 0 < g*> <6 GeV?. The shaded bands represent the uncertainties from the variation of factorization scale u.
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FIG. 6. Comparison of the LL resummation improved tree-level contribution (LL), NLL resummation improved one-loop correction
(NLL), subleading-power correction at tree level (NLP), and total result (TOTAL) to the B — K* form factors Vp_ g+ (left panel) and
Ao g (right panel) in the kinematic region of 0 < g> < 6 GeV2. The shaded bands represent the uncertainties from the variation of

factorization scale u.

corrections lead to an approximate 30% reduction to the
form factors V and Ay, respectively. After including both
NLP and NLL corrections, we find that the total results for
the form factors V and A exhibit a 60% reduction relative
to the corresponding LL resummation improved tree-level
predictions.

In addition, we investigate the dependence of both the
NLL resummation improved one-loop correction and the
newly derived NLP corrections on the inverse moment Az at
q*> = 0. We take {6/,6,} = {0,7%/6} as the central values
and display the corresponding numerical results in Fig. 7.
For instance, we observe that the form factors Vp_ - and
Ao p_ k- exhibit a pronounced decrease with increasing Ap.
By adopting Az = 389(35) MeV as input from the lattice
QCD in Ref. [70], we find that both the central values and
uncertainties of the form factors are reduced by approx-
imately 20% compared to those obtained with Az =
350(150) MeV. Notably, the light cone sum rules based
on light-meson LCDA suggest iz ~ 300 MeV, when fit-
ting Ap by using the form factor values from Ref. [27].

1.0 —— TOTAL —— LL
. 0.8} ——— NLL —— NLP
X
Eg ........
5
<
@ g
g+
Q
g

0.20 0.25 0.50

This discrepancy between Ap =~ 300 MeV and the iz =
389 MeV derived by lattice QCD may stem from unac-
counted power corrections in current lattice QCD simu-
lations, which could potentially introduce additional
systematic uncertainties.

Since LCSR predictions are valid only in the large recoil
region, it is necessary to extrapolate the LCSR results for
the B — K* form factors to the entire kinematic region by
employing the BCL z-series expansion [39-41,77,78],
which is based on the positivity and analyticity of the
transition form factors. For this purpose, we apply the
conformal transformation

Z(qz,t()):\/l:ﬁ_ 2_,/l+—l‘0
Viy— ¢+ i =1

(72)

with the threshold parameter 7, = (mg + mg-)?* for the
exclusive B — K* form factors, which allows us to map the
complex cut ¢* plane onto the unit disk |z(g?,1y)| < 1.

0.3

—— TOTAL —— LL
—— NLL —— NLP

AO,B%K*

mg
Ex

-0.1E.
0.20

0.35 0.40 0.45 0.50

A5[GeV]

0.25 0.30

FIG. 7. Comparison of LL resummation improved tree-level contribution (LL), NLL resummation improved one-loop correction
(NLL), subleading-power correction at tree level (NLP), and total result (TOTAL) of the B — K* form factors Vp_ k- (left panel) and
Ay p_ k- (right panel) with the variation of 0.2 GeV < A < 0.5 GeV. The areas with deeper color correspond to Az = 0.389(35) GeV
given in Ref. [70]. The upper (lower) bound represents {6;,6,} = {-0.7,-6.0} ({6,,6,} = {0.7,6.0}).
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Additionally, the free parameter ¢, < ¢, corresponds to the

value of ¢ that is mapped onto the origin in the z plane. To

minimize the z interval, we set

—mg:)?. (73)
Mg .

1ty —1), - = (mp

Taking into account the asymptotic behavior of the form
factor near the threshold of the corresponding excited
states, we can further parametrize the B — K* form factors
with the z-series expansion as follows:

i 2 i
Foix(q®) = 1 Z/mIPOICkZb 6] to) — z(0, to)] ,
(74)
where m? pole denotes the masses of the corresponding

resonances below the particle-pair production threshold
(mg + mg+) with distinct quantum numbers. For conven-
ience, we have summarized the masses of the resonances
relevant to our parametrization in Table III as given in
Ref. [27]. We will truncate the z-series expansion at N = 3
in the subsequent fitting process, since the contribution
beyond quadratic terms is negligible due t0 |2(g?) | < 0-1.

We are now in the position to determine the z-series
coefficients b, , of the B — K* form factors F'(4*) by

performing the correlated minimum-y? fit of the updated
LCSR predictions in the large recoil region, in combination
with the available lattice QCD data in the small recoil
region [13,14]. The ingredients of the minimum-y? fit can
be summarized as follows:

(1) In the low ¢ region, we generate the improved
LCSR form factors with uncertainties at three dis-
tinct kinematic points ¢*> = {—4,0,4} GeVZ?. In
order to obtain the pseudodata samples, we vary
the theoretical input parameters randomly within the
error ranges and generate an ensemble of N = 300
parameter sets that follow uncorrelated priors, which
are either uniform or Gaussian distributed [38].

(2) We multiply each form factor Fi z(¢*) by an
enhancement factor Wy- = 1.09(1) to account for
the finite K* width effect in B — K* transition, as
discussed in Ref. [34]. In the lattice QCD simulation,
K* is a stable particle [13,14].

(3) In the high ¢ region, we reproduce the central values
and correlation matrix of the lattice QCD results of the

TABLE III. Summary of the resonance masses with distinct
quantum numbers appearing in the z-series expansion of the B —
K* form factors in Eq. (74).

f};-»l(* (q2) JP mi,[mle [GCV]
V(g?), T1(q?) 1- 5.415
Ao(q?) 0- 5.366
Ai(d@%): Ain(@?), To(q*), Tr(q?) 1" 5.829

B — K* form factors at three different points,
q*> = {12,14,16} GeV?, as well as physical-mass
bottom quark and 2 + 1 flavors of sea quarks. To
ensure the positive definiteness of the correlation
matrix from the lattice QCD results, we modify
the original matrix by adding an additional diago-
nal matrix of order O(107%), namely Cpy =
Clatt,original + 10_61‘
(4) Taking into account the kinematic constraints,

mp + mVA
2mv

mp — my

1(0) - A,(0) = A(0),

2my,
T,(0) = T»(0), (75)

we can derive the following exact relations between
the expansion coefficients,

2 2 2
my A1_2mB+mV Alz_bAo
0 o — Y0
m3 + my, m3 + my,
2
m
B T, 7,
> 20 =% (76)
mp + my

(5) We then construct

= Z[‘FLCSR(QZ) — Fi(@®: b)) (Crésp);
ij
x [‘/T{‘CSR( 2)

E : latt

x [F latt(q ) — ]:ﬁt( % bi)]? (77)

_f{it(qz.bj)]
.7:;“(5]2 bl)](cl_atlt)ij

where F' denote the central values of the form
factors and C;; is the corresponding covariance
matrix. We then extract the central values and the
covariance of the coefficients b} by minimizing the
x> function, yielding y2. /d.o.f =40.1/23. Our
inputs as well as the fit results for the z-series
coefficients, including the central values, uncertain-
ties and all correlations, are presented in the
Supplemental Material [79].

To further clarify the momentum-transfer dependence of
the updated LCSR predictions and lattice QCD results, we
present the combined fit results for the seven B — K* form
factors across the entire kinematic region in Fig. 8. BCL
parametrization incorporates both our updated LCSR data
(pink points) and lattice QCD data (blue points). For
reference, lattice QCD predictions from prior studies are
shown as a blue dot-dashed line. The inclusion of newly
derived LCSR data in the low g* region substantially
enhances the accuracy of theoretical predictions for the
B — K* form factors throughout the kinematic region, as
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FIG. 8. Theoretical predictions of the B — K* decay form factors (red band) obtained from the combined fit of updated LCSR (pink
points) and lattice QCD (blue points) in the entire kinematical region. The “lattice QCD only” predictions for these form factors are

indicated by the blue dot-dashed line for a comparison.

demonstrated by the combined fit with lattice QCD
simulations.

C. Phenomenological analysis
of the B - K*v, v, observables

The B - K*v,v, decays induced by the b — s FCNC
represent one of the theoretically cleanest decay channels in
heavy flavor physics. We now begin to explore the
phenomenological implications of the newly determined
B — K* form factors for the electroweak penguin B —
K*v,v, decays. Thanks to the high luminosity of the Belle
II experiment, the exclusive rare B — K*v, v, decays are
expected to be observed with 10 ab~! of the data [80,81],
and the previous experimental measurements by
BABAR [82] and Belle [83,84] are also presented here.
Notably, the precision of the total branching fraction
measurement for B — K*v,v, with 50 ab™! integrated
luminosity is expected to reach approximately 10%, ren-
dering the experimental sensitivity comparable to the
current theoretical uncertainty in Standard Model predic-
tions. Additionally, the longitudinal K* polarization frac-
tion, which is highly sensitive to right-handed currents [80],

is projected to be measured with an absolute uncertainty of
0.1, providing critical insights into potential beyond-
Standard Model contributions.

We are therefore well motivated to further investigate the
phenomenological aspects of the B — K*v,U, process,
both to gain a deeper understanding of the strong inter-
action dynamics of the B — K* form factors and to explore
the potential role of exotic particles X in the context of
dark matter, utilizing the form factors derived in this work.
It is straightforward to derive the differential decay width
formula [10,85],

dF(B - K*I/fpf) — G%azm )“3/2(’,”%37 m%{*ﬁ qZ)
dq? 2567°  mysin*Oy

2 2 2
m; my
X Xt —2,—2,S1naw,ﬂ
my, m;

x [Hy(q*) + Ha, (¢%) + Ha,(4?)].
(78)

A2

where A(x,y,z) = x* 4+ y* 4z — 2xy — 2xz — 2yz is the
Kallen function. The Cabibbo-Kobayashi-Maskawa (CKM)
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matrix elements 4, = |V, V7| can be determined by the UT
fit Collaboration [73] and the input parameters appearing in
the differential decay width are collected in Table I. The
short-distance Wilson coefficient X, can be expanded
perturbatively in terms of the Standard Model coupling
constants

X, = X0 4 % x QD) | Fem yEW()

, (79
Ar 4 (79)

where the leading-order contribution X 50) [86], the next-to-
leading-order (NLO) QCD correction X?CD(I) [87-89], and
the two-loop electroweak correction XFW(I) [72] are already

known analytically. We adopt X, = 1.469 in our work. The
three invariant functions H; can be further expressed by the
B — K* form factors as

5 (mp+mg ) (my —my. — ¢*)A(q%) — A(my. m%.. q*)Ay(q?)
Alz(q ) = .

To probe new physics effects beyond the SM, 4, is typically
determined through CKM unitarity. However, inconsisten-
cies persist in the extracted values of the CKM matrix
element V., across different processes. For future studies,
we present the CKM-independent branching
|A,|2BR(B® — K*v,,) estimated with various strategies

2q2
Hy(q?) = A%,
V( ) (mB + mK*)z ( )]
2¢*(mp + mg-)?
H 2\ — A 2 2’
AI(Q) l(m%’m%(*’qz) [ l(q )]
64mEm>.
Ha,(4P) = 75t [An()?, (80)
T Amp g )
with the helicity form factors A, [13]
|
2
81
16mgm?%. (mg + mg-) (81)
[
dF(BjL — K*+I/ﬂ?f)
GelVip Vi m?
=——3—=—|fpfk S
ratio 64”2’"?3 I
x [(my —mz)(mz —my.) = (m? = 2mg.)q*].  (82)

in Table IV. The branching ratios derived from updated
B — K* form factors agree within 2.5¢ with the results
obtained from sum rules based on K* distribution
amplitudes [27]. Additionally, in Fig. 9, we display our
theoretical prediction for the CKM-independent differential
branching fraction of B — K*%u,0, and show the result
from lattice QCD calculations for comparison. It is evident
that the combined fit result exhibits significantly smaller
uncertainty than lattice QCD predictions across the entire
momentum region. Finally, our numerical results for the
differential branching ratio of B - K*v,U, are summarized
in Table V, where we have adopted 1, = 41.25 x 1073. The
total uncertainty is dominated by the uncertainties in the
hadronic form factors.

There is an additional long-distance (LD) contribution to
the counterpart channel Bt — K**uv,0, involving a
charged B meson due to the double-charged current
interaction Bt — 1 (— K*tv,)r,, as originally discussed
in Ref. [90]. In the narrow z-lepton width limit, we express
the tree-level LD contribution to the differential decay rate

TABLEIV. The CKM-independent branching ratio of the B® —
K*%,, process from updated form factors (left), lattice QCD
form factors (middle) and LCSRs with K*-meson LCDAs (right).

1073 x (4,)72BR

BO i K*Ol/fljf

This work
4.76(56)

Ref. [13,14]
5.86(93)

Ref. [27]
5.85(58)

This long-distance effect arising from weak annihilation
mediated by the on shell 7 lepton accounts for approx-
imately 10% of the electroweak penguin amplitude,
which is numerically significant for the charged channel
Bt - K**v,0,. Moreover, the interference effect between
the tree and penguin amplitudes turns out to be negligible
numerically due to the extremely small width of the
lepton [90].

o
3]

mem LCSR 4+ LQCD
s LQCD

I
IS

o
w

o
[N

[A\e| 2dBR (B® — K*°vir) /d¢* x 107

o
-

o
o

6 é 1.0 1.5
7*[GeV?]

FIG. 9. Theory predictions for the CKM-independent differ-
ential branching fraction of B — K*%v,7, by applying the form
factors determined from the combined fits (pink band) and from
the lattice simulations (blue band) [13,14].
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TABLE V. Theory predictions for the integrated differential observables ABR (¢, ¢3), and AF; (g3, ¢3) obtained
from the exclusive B — K* form factors and additional long-distance contribution.

[43. 43)(in GeV?) 100 x ABRE =K"vete (g2 g3)

106 x ABRE =K"veve (g2 g2) AF (4. 43)

[0.0, 1.0] 0.23(5)
[1.0, 2.5] 0.40(7)
[2.5, 4.0] 0.46(8)
[4.0, 6.0] 0.71(12)
[6.0, 8.0] 0.83(13)
[8.0, 12.0] 1.99(26)
[12.0, 16.0] 2.22(20)
16.0, (mp — my- 7] 1.26(6)

0.33(5) 0.93(2)
0.55(8) 0.79(4)
0.61(9) 0.67(5)
0.91(13) 0.57(5)
1.03(14) 0.48(5)
2.39(28) 0.40(4)
2.61(22) 0.33(2)
1.53(7) 0.31(1)
9.95(1.05) 0.44(4)

We then proceed to define the differential longitudinal
K* polarization fraction F; of the electroweak penguin
decays B - K*v,U,,

HAlz(qz)

B ) + Hy (D) + Hy () )

FL(‘IZ) =

In addition, we introduce two g>-binned observables for
comparison with future high-luminosity Belle II data,

7 dl'(B —- K*v.U
ABR(GE. ) = s [ de? ( ) (g

4 dq® ,
AF(4}.43)
[ dgP P (. P H, ()

i .
f:{ dg* 2 (my,m%..q*)[Hy(q*) +Ha (¢*) +Ha,(q%)]

Our predictions for these observables, with the choice of >
intervals following [80], are summarized in Table V. The
theoretical uncertainties of the g>-binned longitudinal K*
polarization fractions, AF;, are significantly smaller than
those of the branching ratio predictions, ABR, due to the
reduced sensitivity of the form-factor ratios to the precise
shapes of the B-meson distribution amplitudes.

V. SUMMARY

In this work, we have comprehensively investigated
subleading-power corrections to the B — K* form factors
up to twist six within the framework of light cone sum rules
(LCSR) with B-meson LCDAs. The corrections arise from
two-particle and three-particle B-meson higher-twist light
cone distribution amplitudes, power-suppressed terms in
the expansion of the strange quark propagator, the sub-
leading-power effective current gI'[iD,/(2my)]h, in
HQET, and the four-particle twist-five and twist-six
B-meson LCDAs in the factorization approximation.
Incorporating the leading-power contribution at NLL

accuracy from Ref. [31] with our newly derived NLP
contributions, we ultimately obtain updated predictions for
the B — K* form factors with SCET sum rules in the large
recoil region. It is shown that power corrections account for
approximately a 30% correction to the tree-level result,
which is comparable to the NLL contribution. Moreover,
we reach a similar conclusion that the dominant source of
power corrections arises from the two-particle higher-twist
B-meson LCDAs as in Ref. [29], while the impact of the
four-particle corrections is numerically insignificant.

We employ a three-parameter model to describe the
B-meson LCDAs and adopt the conventional inverse
moment Az = 350(150) MeV. In addition, we estimate
the B — K* form factors by adopting the inverse moment
Ap = 389(35) MeV from recent lattice QCD calculations
for comparison. The dominant uncertainties in the form
factors originate from the inverse moments Az and {o, 0, }.
In the future, lattice QCD studies may reduce the uncer-
tainties of the inverse moments by systematically inves-
tigating subleading-power contributions via this first
principle approach. By adopting the BCL parametrization
and performing a combined fit of the newly derived LCSR
predictions in the low g” region and the lattice QCD results
in the high ¢* region, we extrapolate the B — K* form
factors to the entire momentum region. We find that the
B — K* form factors derived from the combined fits
exhibit smaller uncertainties than those obtained solely
using lattice data points. Furthermore, the combined fits to
the LCSR and lattice QCD inputs for the B — K* form
factors not only provide predictions for the form factors that
are applicable across the entire kinematic range, but also
confirm the consistency of the two complementary methods
by ensuring their agreement at intermediate g> values.
Having at our disposal the B — K* form factors in the
entire momentum region, we proceed to predict the differ-
ential decay widths for B — K*v,U, processes, including
long-distance effects in the charged B — K*v, U, decay. We
present the CKM-independent differential branching ratio
of B® - K*%,0, obtained from the combined fits, along-
side the lattice simulation result for comparison. The results
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with different fit data inputs are consistent with each
other, and the combined fits to the differential branching
ratio of B® — K*%u,7, yield smaller uncertainties. Finally,
we obtain the branching ratios BR(B? — K*v,i,) =
8.09(96) x 10=°, BR(B*—=K**v,0,)=9.95(1.05)x107°,
and the longitudinal K* polarization fraction F; = 0.44(4).

For the b — s induced flavor-changing neutral current
processes, a crucial task is to improve the precision of
the B — K* form factors. It can be further improved
with respect to the following three aspects: developing
model-independent methods for accurately describing
the B-meson light cone distribution amplitudes; reduc-
ing the uncertainties in the nonperturbative input
parameters, such as the inverse moment Az of the
leading-twist B-meson LCDA; extending calculations
to next-to-next-to-leading order at leading power and
NLO at subleading power, and imposing stricter unitar-
ity bounds on the z-series parametrizations to further
constrain uncertainties.

Ultimately, we emphasize that our improved B — K*
form factors are crucial for investigating flavor-changing
neutral current processes and determining the branching
ratios of the electroweak penguin processes B — K*v, U,.
With the high luminosity Belle II experimental data

2
o) ., &Cr 2T r . m
Cer —l—l—?{—ﬂn <7>+51n</5>—2L12(1—r)—31nr—ﬁ—6},

it

c 3-5 2
ciA = +M{—2ln2<§> +51n<§) —2Liy(1 —r) — rlnr—”——4},
Jo A i i

T

a,C . r r . 3—r ?
M =1+ : F{—Zlny—21n2<7> +51n<ﬁ> —2Liy(1—r) =5 _rlnr—ﬁ—6},

i

C o2 :
clh0 — 1 +%{—2ln2<é> +51n<£) —2Li(1-7) - 1_:1”_%—6},

c g
o {—21na—21n2 <f> +51n<§) —2Liy(1 - r) —31nr—”——6},
i i

V¥4

cj,‘j” = (=24 1/r) + O(ay),

PV = (1) +0@), PV =0+0(@). P =-1+0(,),

where we introduced three variables

upcoming, our predictions will be further tested in the
future.
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APPENDIX A: HARD FUNCTION
FOR THE SCET CURRENTS AT O(ay)

Here we present the hard coefficient functions of AO-
type and Bl-type SCET, currents in B — K* form factors
up to O(ay)

(A2)

(A3)

(A4)

12
PV = (=1/r) + O(ay). (A6)

(A7)

(A8)
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APPENDIX B: EFFECTIVE B-MESON DISTRIBUTION AMPLITUDES

For brevity, we introduce the effective B-meson distribution amplitudes ¢y ., &5 o and &}, absorbing the hard-
collinear fluctuations,

B B a,Cp o' 2 u? o' —w
Dperr(@' 1) = P’ 1) + . {A dw [a)— P (lnn . pa —2In "

0 2 2 P 2 dor=
—/ dw{lnz # ,—<21n a ,+3>1n‘” ,“’+21n3,+”——1]m}, (B1)
o n-pw n-pw ) o 6 dw

- / — oy a,Cp of 2 u? o - 1
M V) = ) d 1 -21
et ) = 3(0l) + 5] [ o) 2 (2220 | e

¢p(o, 1)
@

n-pw a)
o0 2 2 2 - 2 dos
—/ dolie i (om 4\ o @ T | @)
o n-pw n-pw n-pw 0] o 6 dw
a,C o w-o d¢ho, ,u)
B o) =5, [ dom® 7220 (B3)

The plus function that appeared in the above equations is defined by

/ " dolf(@.0f)|gg(@) = / " dof (@.0)g(@) - g(0). (B4)
0 0

APPENDIX C: DISPERSION INTEGRAL FORMULAS

After Borel transformation, the dispersion functions appearing in the factorization formulas of the B — K* form factors
are listed in the following:

Foul(@)] = - / " doe ().

—o
wpp

Faald(@)] = eFiploy) + /dw $(o).

oy [ dw w; — ®
faolgp(o, @y, u) "M/ da)l/ —2¢<w170)2, 1)
W= Q)
d oy _
/ da)/ da)l/ done v (a)l,a)z,w wl),
w—w 2]
1 o dw 10)
fa3lp(@r, 0y, u)] = ——e“’M{/ —2¢<0 ,, 2)
dw 1 W, — @
[ o))
W;—w 9] dwl Q5]
d o —
/ da)/ da)l/ @2 €“M¢<w1,0)2,w (01>’ (Cl)
2a)M W= (2]

where ¢ stands for the general B-meson LCDAs or their combinations appearing in the function f; ;. The function f; ;

describes the contribution of terms in the form ¢(w)/(w — - - -)/, with ¢(w) being the i-particle LCDA and the denominator
raised to the j-th power.

APPENDIX D: MODELING THE B-MESON LCDAS

The general ansatz for leading- and higher-twist B-meson LCDAs at the reference scale yy =1 GeV [54] can be
systematically established in such a way that both tree-level equations of motion constraints and the normalization
conditions of the LCDAs [45,50] are satisfied:
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$5(0) = oF(@i—1). ¢ () = F@;0),

() = é./\/(/l,zE - 23)[~0’F(w; =2) + 40F(w; —1) — 2F(w; 0)],
$3(w1, @2) = %N(/ﬁ“ — Xig) o1 3 F (o) + @53 -2),
05 (w) = % Ro(w — A)F(0;0) + (30 — 2A)F(w; 1) + 3F(0;2) — é/\/(ﬂ% - 23)0’F(w;0)],

g5 (w) = }L{(3w —2A)F(w; 1) + 3F(w;2)
+ %N(ﬂ% - 23 o[w(A - 0)F(o;-1) — <2/_\ - %w) F(w;0)]},
( ) = 5N (g + Ay o3F(w, + @3 -1),
( ) = NLwo,Flw; + w,; —1), iy, ) = N23w 0,F () + w,; —1),
bs(o1, @) = N (A + 2) o, F(o; + 0;0), ws(@, ;) = ~Ngo,F(o; + 0,;0),
( )
( )

= —N‘AZHO&[F(CU] + 0)2;0),
= N = 4g)F(@) + oy 1), (DI1)

where

_1pp+1) 1 = 3a
N=Faar e 725%™
Flo;n) =l 'UB-a,2—n—a, a)/wo)%ew/wo, (D2)

with U(a, b, 7) as the hypergeometric U function. The appearing HQET parameters A2 and A2, at the reference scale
1o = 1 GeV are defined by the matrix element of the local quark-gluon-quark operator,

(017(0)9. G (O)Thy (0)|B(v) = = Fo kmadiyTelysTP 3] = Fo k(g = AV TersTP (07, = way,)]. - (D3)

The matrix element can be estimated adopting QCD sum rules yielding

A2 =0.11+006 GeV?, 3, =0.18+0.07 GeV?,  [45] (D4)
A2 =003+002GeV?, 23 =006+003 GeV2,  [91] (D5)
A2 =001+001 GeV2, 2%, =0.15+0.05GeV2,  [92] (D6)

where we take into account that the method used to estimate ﬂ% and /1%,, as discussed in Ref. [91], unfortunately not only
disrupts the convergence of the operator-product-expansion, but also enhances the contributions from the continuum and
higher excited states. Therefore, we will use the numerical results of A% and 4%, from Table I, which can cover the ranges
allowed by Refs. [45,92], and simultaneously satisfy the upper bounds imposed by Ref. [91].

We expect that the model for B-meson light cone distribution amplitudes is only valid in the small momenta region and
the inverse logarithmic moments are only sensitive to the small momentum behavior of the distribution amplitude.
Employing the definitions of inverse logarithmic moments of the leading-twist B-meson LCDA,
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1 [edo & (0. 1) where y; and w(x) denote the Euler-Mascheroni con-
A(u) Sy o8 @K stant and the digamma function, respectively. The scale
R s f th h -1 level i
&0 (n) _ /m d_wlnn 725 (1) (o) o) Cglie\?:;ii;nce of these moments at the one-loop level is
Ap(n) 0o w B
we can determine the parameters of the three-parameter — },(u) a,(up)Cr . U
model for B-meson light cone distribution amplitudes in 7, (1) =1+ Tln— 2-2In——4o,(u) |,
Eq. (D1), B\H Ho Ho
. a(Ho)C Hoa .
. b1 0) = &1 o) + L 410 53u) = )
Ap(p) = 1 @y,
p— (D9)

Then we construct the LL resummation (evolution) for the
A ) / / n twist-two and three two-particle B-meson LCDAs. The
= + -1) - -1)+—, D8 . . .
W) = &1w) +w'(a=1) =y (F = 1) 6 (D8) explicit expressions can be found in Ref. [54]:

1T

b (0, ) = U(/)(%ﬂo)m%g(w; 0,2,1),
iy

¢V (@, ) = Uy po) w,,ﬂ%g(w; 0,1,1),

1 21

2 (0.1) = = ¢ U oo N U -z;,>wf33% {g<w;o,3,3>
+(f-a) [ﬂg(w;o, 2,2) = L G(@:1,2,2) - G(w; 1,3,3)] } (D10)
) 2

0
where p = Fzﬁo" Infa, (1) /s (1p)], the twist-three two-particle LCDA ¢z (w, u) = ¢V (w, 1) + ¢3°(w, ) is a linear

combination of the (twist-two) Wandzura-Wilczek (WW) term and the genuine twist-three term, and

o ) (D11)

pt+m.a.p+n

®
G(w;l,m,n) = G3 (—

@

denotes the Meijer G function. The evolution factors U, (u, uo) and U ff? (, Ho) are given explicitly at one-loop order [50,93],

o

(1) ) 0

S 477'- 1 F S Cusp 11 In

Uolporo) = et (a (o) [1“ i ?} ) 2%1 ! (F?S‘f’ ‘%) roton 4) }<62%>—2ﬂo” i,
0 s cusp

Ug (. 1) = Uy(h. po)| o, (D12)

+y(3

©)_, 0
To 7T

where r = a (1) /a,(uo), rgffsp are the cusp anomalous dimensions at various orders and
0 0
U To ) (D13)
Both evolution factors satisfy the boundary condition at the reference scale p:

Up(pospo) =1, UG (wo, o) = 1. (D14)
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