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We construct light cone sum rules (LCSR) for the B → K� form factors in the large recoil region using
vacuum-to-B-meson correlation functions, and systematically calculate subleading-power corrections to
these form factors at tree level, including next-to-leading power contributions from the hard-collinear
propagator, the subleading effective current q̄Γ½iD⊥=ð2mbÞ�hv, and twist-five/six four-particle higher-twist
effects. By incorporating the available leading-power results at OðαsÞ and the corrections to higher-twist
B-meson light cone distribution amplitudes from our previous work, we improve the precision of
theoretical predictions for B → K� form factors and find that the subleading-power contributions amount to
30% of the corresponding leading-power results. Employing the Bourrely-Caprini-Lellouch parametriza-
tion, we determine the numerical results for B → K� form factors across the full kinematic range through a
combined fit of LCSR predictions in the large recoil region and lattice QCD results in the small recoil
region. Using the newly obtained B → K� form factors, we compute the branching fractions for the rare
decays B → K�νlν̄l in the Standard Model, obtaining BRðB̄0 → K̄�0νlν̄lÞ ¼ 8.09ð96Þ × 10−6 and
BRðB̄þ → K̄�þνlν̄lÞ ¼ 9.95ð1.05Þ × 10−6. Additionally, we predict that the longitudinal K� polarization
fraction is FL ¼ 0.44ð4Þ.
DOI: 10.1103/yvjd-2ymn

I. INTRODUCTION

The semileptonic B decays induced by the flavor-changing
neutral current (FCNC) and accompanied by clean experi-
mental signals, serve as powerful probes of physics beyond
the Standard Model (SM). In the prominent semileptonic
b → slþl− decays, several flavor anomalies have been
observed, including a 4.0σ deviation in the experimentally
measured BRðBþ → Kþμþμ−Þ compared to the Standard
Model predictions in the low q2 region, where q denotes the
momentum of the lepton pair, and the discrepancy between
the angular observable P0

5ðB → K�0μþμ−Þ measured by the

LHCb Collaboration and the SM predictions in two

q2 bins [1–3]. Notably, the branching ratio of B → Kνlν̄l

reported by the Belle II Collaboration exceeds the Standard
Model prediction by 2.7σ [4]. B-meson decays with a pair of
neutrinos in the final state are one of the cleanest channels in
the SM, since the electroweak effects in these processes are
under control and the QCD effects are fully encoded in the
corresponding hadronic form factors. Meanwhile, the b →
slþl− decays are affected by various “nonfactorizable”
contributions, including the short-distance hard spectator
scattering [5,6], weak annihilation effects [7], and the
power-suppressed long-distance quark loop contribu-
tion [5,8,9]. Studying the b → sνν̄ process also allows us
to distinguish among different Z0 models introduced to
explain the anomalies in b → slþl−, or further constrain
the Wilson coefficients of high-dimensional operators within
the Standard Model effective field theory [10–12].
In order to make precise theoretical predictions for

observables in B → K�νlν̄l decay, precision calculations
of B → K� form factors are of paramount importance.
In the high q2 region, the form factors have been computed
using lattice QCD simulations in Refs. [13,14] and
extrapolated to the entire kinetic region. In the low q2
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region, several QCD based methods have been developed
to derive the factorization formulas involved in the heavy-
to-light transition processes with the help of the heavy
quark expansion. At leading power in ΛQCD=mQ, the seven
B → V form factors can be expressed as a product of the
four effective operators in soft-collinear effective theory
(SCET), the so-called A0-type and B1-type SCET form
factors, and corresponding coefficient functions with hard
fluctuations [15–19],

FB→V
i ðn · pÞ ¼ CðA0Þ

i ðn · pÞξaðn · pÞ

þ
Z

dτCðB1Þ
i ðτ; n · pÞΞaðτ; n · pÞ;

ða ¼ k;⊥Þ; ð1Þ

where CðA0Þ
i and CðB1Þ

i are the hard functions corresponding
to A0-type and B1-type operators, respectively, with their
explicit expressions up to OðαsÞ provided in Appendix A
[20–23]. Specifically, a ¼ k for FB→V

i ∈ fA0;A12;T 23g
and a ¼ ⊥ for FB→V

i ∈ fV;A1; T 1; T 2g. Owing to the
endpoint divergences arising in the convolution of the jet
functions and the light cone distribution amplitudes, the
soft-collinear factorization of form factors ξa cannot be
directly accessed. In contrast, the B1-type effective matrix
elements can be expressed as the convolution of jet
functions and hadronic distribution amplitudes.
Starting from the vacuum-to-light-meson correlation

functions with heavy meson interpolating current, light
cone sum rules (LCSRs) with light-meson distribution
amplitudes has been used to study the B → V form
factors up to twist-four at tree level and to twist-two at
OðαsÞ in Refs. [24–27]. Following the analogous strat-
egies, the light cone sum rules for B → V form factors
with B-meson light cone distribution amplitudes at tree
level were constructed in Ref. [28], and the subleading-
power corrections up to twist-four at tree level were
calculated in Ref. [29]. The next-to-leading-logarithmic
contribution with SCET sum rules was studied in
Ref. [30]. The power corrections to B → V form factors
from two-particle and three-particle higher-twist B-meson
light cone distribution amplitudes (LCDAs) have been
computed in Ref. [31]. These computations rely on the
universal B-meson distribution amplitudes with duality
assumption of the light-meson channel and the narrow-
width approximation for the vector mesons [32,33].
The finite-width effects in the B → K� form factors were
investigated in Refs. [34,35]. Compared to QCD

factorization, the LCSR approach eliminates the endpoint
singularity but introduces a systematic uncertainty due to
the quark-hadron duality assumption above a continuum
threshold s0, which is used to determine the lowest-lying
hadronic parameters.
This work aims to systematically investigate the

subleading-power effects of B → K� form factors in
QCD by constructing sum rules with B-meson LCDAs,
following the approach adopted in Refs. [36–38]. The
subleading-power corrections explored in the present
work arise from three distinct sources: (I) the power-
suppressed terms from the heavy quark expansion
(HQE) of the hard-collinear propagator, (II) the sub-
leading effective current q̄Γ½iD⊥=ð2mbÞ�hv from the
weak current q̄Γb, and (III) the twist-five and twist-
six four-body higher-twist contributions. By performing
combined fits with lattice QCD results in the high q2

region and the improved LCSR form factors in the low
q2 region with the Bourrely-Caprini-Lellouch (BCL)
parametrization [39–41], we determine the central val-
ues and correlation matrix of the BCL
z-expansion coefficients. We then explore the observ-
ables in the B̄ → K̄�νlν̄l process, including the dif-
ferential branching ratios and the longitudinal K�
polarization fraction.
The organization of the article is as follows: In

Sec. II, we present the definitions, notations, and
leading power effective SCET form factors at OðαsÞ.
In Sec. III, we show the computation of various power-
suppressed contributions up to twist-six and provide the
corresponding B → K� form factors in the low q2 region
with LCSR. In Sec. IV, we apply the BCL parametriza-
tion in order to get the B → K� form factors in the entire
momentum region, and determine the z-series expansion
coefficients and their correlation matrix by a combined
fit of form factors from lattice QCD and LCSR. The
updated predictions for the branching ratio B̄ → K̄�νlν̄l
and longitudinal K� polarization fraction are also pro-
vided. Finally, we discuss our results and future pros-
pects in Sec. V. Various technical details are collected in
the Appendixes.

II. NLL CORRECTION TO THE B → K�
FORM FACTORS AT LEADING POWER

According to the standard Lorentz decomposition of the
bilinear quark currents, the B → K� form factors are
defined in the standard way [15]:
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cVhVðp; ε�Þjq̄γμbjB̄ðpþ qÞi ¼ −
2iVðq2Þ
mB þmV

ϵμνρσε
�νpρqσ;

cVhVðp; ε�Þjq̄γμγ5bjB̄ðpþ qÞi ¼ 2mVε
� · q

q2
qμA0ðq2Þ þ ðmB þmVÞ

�
ε�μ −

ε� · q
q2

qμ

�
A1ðq2Þ

−
ε� · q

mB þmV

�
ð2pþ qÞμ −

m2
B −m2

V

q2
qμ

�
A2ðq2Þ;

cVhVðp; ε�Þjq̄iσμνqνbjB̄ðpþ qÞi ¼ −2iT1ðq2Þϵμνρσε�νpρqσ;

cVhVðp; ε�Þjq̄iσμνγ5qνbjB̄ðpþ qÞi ¼ T2ðq2Þ½ðm2
B −m2

VÞε�μ − ðε� · qÞð2pþ qÞμ�

þ T3ðq2Þðε� · qÞ
�
qμ −

q2

m2
B −m2

V
ð2pþ qÞμ

�
; ð2Þ

with the convention ϵ0123 ¼ −1. The factor cV denotes
the flavor structure of a vector meson with cV ¼ 1 for the
K� meson. Additionally, mV and mB denote the mass of
the K� meson and B meson, respectively. p and q
correspond to the momentum of the K� meson and the

momentum transfer of weak current, respectively, with
q ¼ pB − p ¼ mBv − p.
In the following subsection, the calligraphic form factors

F i represent the linear combinations of the conventionally
defined form factors in Eq. (2):

Vðq2Þ ¼ mB

mB þmV
Vðq2Þ; A0ðq2Þ ¼

mV

EV
A0ðq2Þ; A1ðq2Þ ¼

mB þmV

2EV
A1ðq2Þ;

A2ðq2Þ ¼
mB −mV

mB
A2ðq2Þ; T 1ðq2Þ ¼ T1ðq2Þ; T 2ðq2Þ ¼

mB

2EV
T2ðq2Þ;

A12ðq2Þ ¼ A1ðq2Þ −A2ðq2Þ; T 23ðq2Þ ¼ T 2ðq2Þ − T3ðq2Þ: ð3Þ

Following the procedure outlined in Refs. [30,42–44], we
can construct the vacuum-to-B-meson correlation functions
as follows:

ΠðaÞ
νμ;kðp; qÞ ¼

Z
d4xeip·xh0jTfjνðxÞ; q̄ð0ÞΓðaÞ

μ bð0ÞgjB̄i;

ΠðaÞ
νδμ;⊥ðp; qÞ ¼

Z
d4xeip·xh0jTfjνδðxÞ; q̄ð0ÞΓðaÞ

μ bð0ÞgjB̄i;

ð4Þ
where jνðxÞ ¼ q̄0ðxÞγνqðxÞ and jνδðxÞ ¼ q̄0ðxÞγνγδ⊥qðxÞ
are the interpolating currents corresponding to the longi-
tudinal and transverse polarization vector meson states with
momentum p, respectively. The superscript (a) denotes
different Dirac structures. We further introduce two light
cone vectors nμ and n̄μ, which satisfy the relations n · n̄ ¼ 2

and n2 ¼ n̄2 ¼ 0. In this work we do not intend to study the
power-suppressed contribution arising from the interpolat-
ing currents; therefore we keep the leading-power term of
the interpolating currents in our calculations. Subsequently,
the correlation functions in Eq. (4) can be expressed as

ΠðaÞ
νμ;kðp; qÞ ¼ n̄νΠ

ðaÞ
μ;kðp; qÞ;ΠðaÞ

νδμ;⊥ðp; qÞ ¼ n̄νΠ
ðaÞ
δμ;⊥ðp; qÞ;

ð5Þ

with

ΠðaÞ
μ;kðp;qÞ¼

Z
d4xeip·xh0jTfq̄0ðxÞ=n

2
qðxÞ;q̄ð0ÞΓðaÞ

μ bð0Þg

× jB̄ðpþqÞi;

ΠðaÞ
δμ;⊥ðp;qÞ¼

Z
d4xeip·xh0jTfq̄0ðxÞ=n

2
γδ⊥qðxÞ;q̄ð0ÞΓðaÞ

μ bð0Þg

× jB̄ðpþqÞi: ð6Þ

For convenience, we conduct our research in the rest frame of
the B meson, which allows us to express the four-velocity
vector of the B meson as vμ ¼ pB=mB ¼ ðnμ þ n̄μÞ=2. In
addition, the power counting scheme for the momentum of
interpolating currents, as well as the masses of strange quark
is assigned to

n · p ∼OðmbÞ; jn̄ · pj ∼OðΛQCD=mbÞ;
mq ∼mq0 ∼OðΛQCD=mbÞ: ð7Þ

The correlation functions defined in Eq. (4) can be system-
atically calculated within the framework of SCET. Since the
momentum of the interpolation current is spacelike, there is
no endpoint singularity in the convolution integral between
the perturbation function and the B-meson distribution
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amplitudes, which guarantees factorization of the correlation
function. The two-particle leading-twist B-meson LCDA is
defined in terms of the nonlocal operators in SCETII [15,45]:

h0jðq̄sYsÞβðtn̄ÞðY†
shvÞαð0ÞjB̄vi

¼ −
if̃BðμÞmB

4

�
1þ v
2

½2ϕ̃þ
B ðt; μÞ

þ ðϕ̃−
Bðt; μÞ − ϕ̃þ

B ðt; μÞÞ=̄n�γ5
�

αβ

; ð8Þ

where

ϕ̃�
B ðtÞ≡

Z
∞

0

dωe−iω·tϕ�
B ðωÞ: ð9Þ

The scale-dependent decay constant f̃BðμÞ in Heavy Quark
Effective Theory (HQET) is related to the decay constant fB
in QCD by the following relation [46]:

f̃BðμÞ ¼ fB

�
1 −

αsCF

4π

�
3 ln

mb

μ
− 2

�
þOðα2sÞ

�
: ð10Þ

SCETII is an infrared effective theory, which contains only
soft and collinear fields (in thiswork it is equivalent toHQET
since no collinear field is taken into account), and it describes
all the long distance degrees of freedom. There also exist
quark and gluon fields at intermediate scale called hard-
collinear scale that is described by SCETI operators, which
deals with the interaction between hard-collinear and soft
fields. The hard-collinear field is at the perturbation region,
and should be integrated out to obtain the jet function.
Therefore,weneed to perform the two-stepmatchingprocess
QCD → SCETI → SCETII, and then the perturbation func-
tions, including the hard function and jet function, can be
obtained step by step.
Matching the QCD heavy-to-light current to SCETI

operators, which can contribute to the correlation function
at leading power, is shown as follows (see Ref. [21] for the
explicit expressions of the A-type and B-type SCET
operators):

ðψ̄ΓiQÞð0Þ¼
Z

dŝ
X
j

C̃ðA0Þ
ij ðŝÞOðA0Þ

j ðs;0Þ

þ
Z

dŝ
X
j

C̃ðA1Þ
ijμ ðŝÞOðA1Þμ

j ðs;0Þ

þ
Z

dŝ1

Z
dŝ2

X
j

C̃ðB1Þ
ijμ ðŝ1; ŝ2ÞOðB1Þμ

j ðs1;s2;0Þ

þ��� ; ð11Þ

where the hard functions C̃ðA0Þ
ij ðsÞ and C̃ðB1Þ

ijμ ðŝ1; ŝ2Þ are
given in position space; they could be transformed into

momentum space through Fourier transformation, and the
corresponding momentum space hard function is written by

CðA0Þ
i ðn · p; μÞ and CðB1Þ

i ðn · p; τ; μÞ. Because the hard

functions CðA0Þ
i and CðB1Þ

i contain the enhanced logarithms
lnnðmb=ΛQCDÞ, they should be summed up to all orders in
perturbation theory with Next-to-Leading Logarithmic
(NLL) and Leading Logarithmic (LL) accuracy by solving
the renormalization equation [20,21]. The general solutions
to the RG equations are

CðA0Þ
i ðn · p; μÞ ¼ U1ðn · p; μh; μÞCðA0Þ

i ðn · p; μhÞ; ð12Þ

CðB1Þ
i ðn · p; τ; μÞ ¼ exp½−Sðn · p; μh; μÞ�

×
Z

1

0

dτ0UðB1Þ
i ðτ; τ0; μh; μÞ

× CðB1Þ
i ðn · p; τ0; μhÞ; ð13Þ

where the NLL resummation evolution factor U1 and LL
expansion of the S function are detailed in Refs. [21,46].
The jet function can be obtained by matching the matrix
element of the time-ordered product of SCETI operators
and the SCETI Lagrangian [47] to the matrix elements of
SCETII operators. In practical operation, one can just
evaluate the Feynman diagrams in Fig. 1 for the tree-level
result, and the OðαsÞ contribution has been calculated in
Ref. [31]. To extract the form factors of the B → K�
process, we utilize a dispersion relation and express the
partonic correlation function as a dispersion integral [48],

Πðn · p; n̄ · pÞ ¼ 1

π

Z
∞

0

dω0 ImΠðn · p;ω0Þ
ω0 − n̄ · p − iϵ

: ð14Þ

At the hadronic level, the correlation function with different
interpolating currents can be expressed by the following
formulas:

FIG. 1. Diagrammatic representations of the vacuum-to-
B-meson correlation functions at tree level, where the double
line stands for the effective heavy quark field in HQET, the wave
line indicates the interpolating current, and the square box
denotes the weak vertex.
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ΠðV−AÞ
μ;k ðp; qÞ ¼ fkVmV

m2
V=n · p − n̄ · p − i0

�
n · p
2mV

�
2
�

mB

mB − n · p
nμ

��
−
2mV

n · p
A0ðq2Þ

�

þ
�
mB þmV

n · p
A1ðq2Þ −

mB −mV

mB
A2ðq2Þ

��

− n̄μ

��
2mV

n · p
A0ðq2Þ

�
þ
�
mB þmV

n · p
A1ðq2Þ −

mB −mV

mB
A2ðq2Þ

���

þ
Z

dω0 1

ω0 − n̄ · p − i0
½nμϱðV−AÞn;k ðω0; n · pÞ þ n̄μϱ

ðV−AÞ
n̄;k ðω0; n · pÞ�; ð15Þ

ΠðV−AÞ
δμ;⊥ ðp; qÞ ¼ −

1

2

f⊥Vn · p
m2

V=n · p − n̄ · p − i0
×

�
g⊥δμ

�
mB þmV

n · p
A1ðq2Þ

�
þ iϵ⊥δμ

�
mB

mB þmV
Vðq2Þ

��

þ
Z

dω0 1

ω0 − n̄ · p − i0
½g⊥δμϱðV−AÞ⊥;A1

ðω0; n · pÞ þ iϵ⊥δμϱ
ðV−AÞ
⊥;V ðω0; n · pÞ�; ð16Þ

ΠðTþT̃Þ
μ;k ðp; qÞ ¼ 1

2

fkVmV

m2
V=n · p − n̄ · p − i0

�
n · p
2mV

�
2

½n · qn̄μ − n̄ · qnμ�
�
mB

n · p
T2ðq2Þ − T3ðq2Þ

�

þ
Z

dω0 1

ω0 − n̄ · p − i0
½n · qn̄μ − n̄ · qnμ�ϱðTþT̃Þ

k ðω0; n · pÞ; ð17Þ

ΠðTþT̃Þ
δμ;⊥ ðp; qÞ ¼ 1

2

f⊥Vn · pmB

m2
V=n · p − n̄ · p − i0

�
g⊥δμ

�
mB

n · p
T2ðq2Þ

�
þ iϵ⊥δμT1ðq2Þ

�

þ
Z

dω0 1

ω0 − n̄ · p − i0
½g⊥δμϱðTþT̃Þ

⊥;T2
ðω0; n · pÞ þ iϵ⊥δμϱ

ðTþT̃Þ
⊥;T1

ðω0; n · pÞ�; ð18Þ

where the definitions of decay constants for the longi-
tudinal and transverse K� meson are given by Ref. [30],

h0jq̄0ðxÞ =n
2
qðxÞjVðp; εÞi ¼ i

2
fkVmVn · ε;

h0jq̄0ðxÞ =n
2
γ⊥δ qðxÞjVðp; εÞi ¼ −n · p

i
2
f⊥V ε⊥δ ðpÞ: ð19Þ

At leading power, the large recoil symmetry reduces the
seven B → V form factors to two, namely, ξkðn · pÞ and
ξ⊥ðn · pÞ. The relation between the QCD form factors in

the above equation and the SCET form factors ξk;⊥ðn̄ · pÞ
can be found in Ref. [31]. Taking advantage of these
relations, all the correlation functions can be expressed in
terms of the SCET form factors. We then apply quark-
hadron duality and Borel transformation to both the
partonic and hadronic correlation functions in the SCET
representation to eliminate the continuum and resonance
contributions, thereby reducing the uncertainties from the
duality ansatz. We finally obtain the four effective SCET
form factors at OðαsÞ [31]:

ξk;NLLðn · pÞ ¼ U2ðμh2; μÞf̃Bðμh2Þ
fkV

2mBmV

ðn · pÞ2
Z

ωk
s

0

dω0 exp
�
−
n · pω0 −m2

V

n · pωM

�
½ϕ−

B;effðω0; μÞ þ ϕþ
B;mðω0; μÞ�; ð20Þ

ξ⊥;NLLðn · pÞ ¼ U2ðμh2; μÞf̃Bðμh2Þ
f⊥V ðνÞ

mB

n · p

Z
ω⊥
s

0

dω0 exp
�
−
n · pω0 −m2

V

n · pωM

�
ϕ̃−
B;effðω0; μ; νÞ; ð21Þ

Ξk;NLLðn · pÞ ¼ −
αsCF

π

U2ðμh2; μÞf̃Bðμh2Þ
fkV

mBmV

n · pmb
½ð1 − τÞθðτÞθð1 − τÞ�

×
Z

ωk
s

0

dω0 exp
�
−
n · pω0 −m2

V

n · pωM

� Z
∞

ω0
dω

ϕþ
B ðω; μÞ
ω

; ð22Þ
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Ξ⊥;NLLðn · pÞ ¼ −
αsCF

2π

U2ðμh2; μÞf̃Bðμh2Þ
f⊥V ðνÞ

mB

mb
½ð1 − τÞθðτÞθð1 − τÞ�

×
Z

ω⊥
s

0

dω0 exp
�
−
n · pω0 −m2

V

n · pωM

� Z
∞

ω0
dω

ϕþ
B ðω; μÞ
ω

; ð23Þ

where ωk;⊥
s ¼ sk;⊥0 =n · p and ωM ¼ M2=n · p denote the

effective threshold and Borel mass, respectively, which are
two fundamental inputs of LCSR. μ and ν correspond to the
factorization scale and renormalization scale, respectively.
Additionally, the effective B-meson distribution amplitudes
are introduced to describe both the hard-collinear and soft
fluctuations [31,43,44], as given in Appendix B. The quark
mass contributions in SCET have been investigated in
Ref. [49], and the leading-power spectator-quark mass
corrections to BðsÞ-meson decay form factors at one-loop
accuracy have been calculated in Refs. [36,38]. In this work,
we do not include the spectator-quarkmass corrections to the
effective SCET form factors at one-loop accuracy. The
omission is justified because the spectator quark in the B →
K� decay process is either a u quark or d quark, whosemass-
induced corrections are significantly suppressed compared to
those from the s quark inBs-meson decays.Wewill estimate
the spectator-quark correction to the B → K� form factors
with the SCET sum rules in our future work.

III. SUBLEADING-POWER CONTRIBUTIONS

In this section, we investigate the power corrections
arising from various sources to the B → K� form factors
within the LCSR approach. Utilizing the equations of
motion in HQET and the factorization formula of correla-
tion functions at subleading power, we ultimately obtain the
tree-level power corrections to the B → K� form factors in
the large hadronic recoil region and analyze the scaling
behavior of these form factors.

A. Higher-twist B-meson LCDA contribution

The contributions from the higher-twist B-meson
LCDAs of two particle and three particle are shown in
Fig. 2. In order to define higher-twist B-meson LCDAs, the
general parametrization of the vacuum-to-B-meson matrix
element of the three-body HQET operator is given
by Ref. [50],

h0jq̄αðz1n̄ÞgsGμνðz2n̄Þhvβj0i¼
f̃BðμÞmB

4
½ð1þvÞfðvμγν−vνγμÞ½ΨAðz1;z2;μÞ−ΨVðz1;z2;μÞ�

− iσμνΨVðz1;z2;μÞ− ðn̄μvν− n̄νvμÞXAðz1;z2;μÞþðn̄μγν− n̄νγμÞ½Wðz1;z2;μÞþYAðz1;z2;μÞ�
þ iϵμναβn̄αvβγ5X̃Aðz1;z2;μÞ− iϵμναβn̄αγβγ5ỸAðz1;z2;μÞ
− ðn̄μvν− n̄νvμÞ=̄nWðz1;z2;μÞþðn̄μγν− n̄νγμÞ=̄nZðz1;z2;μÞgγ5�βα; ð24Þ

where ϵ0123 ¼ −1, and we also introduce three-particle HQET distribution amplitudes of definite collinear twist as follows:

Φ3 ¼ ΨA − ΨV; Φ4 ¼ ΨA þΨV;

Ψ4 ¼ ΨA þ XA; Ψ̃4 ¼ ΨV − X̃A;

Φ̃5 ¼ ΨA þ ΨV þ 2YA − 2ỸA þ 2W; Ψ5 ¼ −ΨA þ XA − 2YA;

Ψ̃5 ¼ −ΨV − X̃A þ 2ỸA; Φ6 ¼ ΨA −ΨV þ 2YA þ 2W þ 2ỸA − 4Z: ð25Þ

FIG. 2. Diagrammatic representations of two-particle (a) and three-particle (b) corrections to the vacuum-to-B-meson correlation
functions at tree level, where the square box indicates the weak vertex and the wavy line represents the interpolating current.
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To facilitate the calculation of the contributions from high-twist LCDAs more effectively, we introduce the light cone
expansion of the quark propagator within the background gluon field,

h0jTfq̄ðxÞ; qð0Þgj0i ⊃ igs

Z
d4l
ð2πÞ4 e

−il·x
Z

1

0

du

�
uxμγν
l2 −m2

q
−
ð=lþmqÞσμν
2ðl2 −m2

qÞ2
�
GμνðuxÞ; ð26Þ

which can be found in Ref. [51].
First, we evaluate the correlation function ΠðaÞ

k ðp; qÞ in Eq. (6), which corresponds to the longitudinally polarized vector
meson. Contracting the quark fields qðxÞ and q̄ð0Þ [leads to the propagator in Eq. (26)], taking advantage of the three-
particle higher-twist B-meson LCDA in Eq. (24), the three-particle higher-twist correction to the correlation function can be
written as

ΠðaÞ;3PHT
k;NLP ðp; qÞ ¼ f̃BðμÞmB

2n · p
½ΓðaÞ

k Π3PHT
k;NLP þ Γ̃ðaÞ

k Π̃3PHT
k;NLP�; ð27Þ

with

Π3PHT
k;NLP ¼

Z
∞

0

dω1

Z
∞

0

dω2

Z
1

0

du
−2ūΦ4ðω1;ω2Þ

ðn̄ · p − ω1 − uω2 − ωqÞ2
þ mq

n · p
Ψ5ðω1;ω2Þ − Ψ̃5ðω1;ω2Þ
ðn̄ · p − ω1 − uω2 − ωqÞ2

;

Π̃3PHT
k;NLP ¼

Z
∞

0

dω1

Z
∞

0

dω2

Z
1

0

du
Ψ̃5ðω1;ω2Þ − ð2u − 1ÞΦ5ðω1;ω2Þ

ðn̄ · p − ω1 − uω2 − ωqÞ2
−

mq

n · p
2Φ̃6ðω1;ω2Þ

ðn̄ · p − ω1 − uω2 − ωqÞ2
; ð28Þ

where the factors ΓðaÞ
k and Γ̃ðaÞ

k take the form

fΓðV−AÞ
k ;ΓðTþT̃Þ

k g∈
�
nμ; n̄μ

n · q
2

− nμ
n̄ · q
2

�
; fΓ̃ðV−AÞ

k ;ΓðTþT̃Þ
k g∈

�
n̄μ; nμ

n̄ · q
2

− n̄μ
n · q
2

�
; ð29Þ

and a∈ fV − A;Tþ T̃g denotes the different Dirac structures γμð1 − γ5Þ and iσμνð1þ γ5Þqν of the heavy-to-light weak
current, respectively. Additionally, we set ωq ¼ m2

q=n · p for brevity.
Along the same lines, the three-particle higher-twist correction to the correlation function ΠðaÞ

⊥ ðp; qÞ in Eq. (6), which
corresponds to a transversely polarized vector meson, can be expressed as

ΠðaÞ;3PHT
⊥;NLP ðp; qÞ ¼ f̃BðμÞmB

2n · p

Z
∞

0

dω1

Z
∞

0

dω2

Z
1

0

du

�
ΓðaÞ
⊥

ð1 − 2uÞΨ5ðω1;ω2Þ − Ψ̃5ðω1;ω2Þ
ðn̄ · p − ω1 − uω2 − ωqÞ2

− Γ̃ðaÞ
⊥

mq

n · p
Ψ5ðω1;ω2Þ þ Ψ̃5ðω1;ω2Þ
ðn̄ · p − ω1 − uω2 − ωqÞ2

�
ð30Þ

by taking ϵ⊥δμ ≡ 1
2
ϵδμρσnρn̄σ and

fΓðV−AÞ
⊥ ;ΓðTþT̃Þ

⊥ g∈ fg⊥δμ þ iϵδμ; g⊥δμ − iϵ⊥δμg; fΓ̃ðV−AÞ
⊥ ; Γ̃ðTþT̃Þ

⊥ g∈ − fn̄ · qðg⊥δμ þ iϵδμÞ; n · qðg⊥δμ − iϵ⊥δμÞg: ð31Þ

In addition, the two-particle higher-twist B-meson LCDAs, for example g�B ðωÞ, also generate subleading-power
contributions. The off-light cone corrections to the renormalized two-body nonlocal HQET matrix element at Oðx2Þ
accuracy is given by Ref. [50]:

h0jðq̄sYsÞβðxÞðY†
shvÞαjB̄vi ¼ −i

f̃BðμÞmB

4

Z
∞

0

dωe−iωv·x
�
1þ v
2

f2½ϕþ
B ðω; μÞ þ x2gþB ðω; μÞ�

−
x

v · x
½ðϕþ

B ðω; μÞ − ϕ−
Bðω; μÞÞ þ x2ðgþB ðω; μÞ − g−Bðω; μÞÞ�gγ5

�
αβ

; ð32Þ
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where the higher-twist LCDA g−Bðω; μÞ can be decomposed into the “genuine” twist-five three-particle LCDAΨ5ðω1;ω2; μÞ
and the lower-twist “Wandzura-Wilczek” two-particle LCDA ĝ−Bðω; μÞ,

g−BðxÞ ¼ ĝ−BðxÞ −
1

2

Z
1

0

duūΨ5ðx; uxÞ: ð33Þ

After inserting the two-particle higher-twist B-meson LCDAs given in Eq. (32) into the correlation functions, we obtain the
factorization formulas for the two-particle higher-twist contributions

ΠðaÞ;2PHT
k;⊥ ðp; qÞ ¼ f̃BðμÞmB

2n · p
ΓðaÞ
k;⊥

�Z
∞

0

dω
4ĝ−Bðω; μÞ
ðn̄ · p − ωÞ2 −

Z
∞

0

dω1

Z
∞

0

dω2

Z
1

0

du
2ūΨ5ðω1;ω2Þ

ðn̄ · p − ω1 − uω2Þ2
�
; ð34Þ

with ΓðaÞ
k ∈ fn̄μ; nμ n̄·q

2
− n̄μ

n·q
2
g and ΓðaÞ

⊥ ∈ fg⊥δμ þ iϵ⊥δμ;−n̄ ·
qðg⊥δμ þ iϵ⊥δμÞg for a∈ fV − A;Tþ T̃g.
Summing up the two-particle and three-particle higher-

twist contributions, we obtain the higher-twist corrections
to the correlation functionsΠðaÞ

k;⊥ðp; qÞ at tree level. We then

implement the dispersion relation to the correlation func-
tions at the partonic level and apply the quark-hadron
duality ansatz and Borel transformation. This procedure
yields the following sum rules for the higher-twist correc-
tions to the B → K� form factors [31]:

f⊥V exp

�
−

m2
V

n · pωM

�
fVHT

NLPðq2Þ;AHT
1;NLPðq2Þ; T HT

1;NLPðq2Þ; T HT
2;NLPðq2Þg

¼ f̃BðμÞmB

ðn · pÞ2
�
f2;1½τ1� þ f3;2½τ2� − κi

mq

n · p
f3;2½τ2�

�
;

fkV exp
�
−

m2
V

n · pωM

�
fAHT

0;NLPðq2Þ;AHT
12;NLPðq2Þ; T HT

23;NLPðq2Þg

¼ 2f̃BðμÞmBmV

ðn · pÞ3
�
f2;1½τ1� þ f3;2½τ3� þ

mq

n · p
f3;2½τ4� þ ιi

�
f3;2½τ5� þ

mq

n · p
f3;2½−τ3�

��
; ð35Þ

with the symmetry-breaking factors

κi∈
�
þ1;−1;

n ·q
n̄ ·q

;−
n ·q
n̄ ·q

�
; ιi∈

�
n ·q
mB

;−
n ·q
mB

;−1
�
; ð36Þ

where the function fi;j describes the contribution of terms in the form ϕðωÞ=ðω − � � �Þj, with ϕðωÞ being the i-particle
LCDA and the denominator raised to the j-th power. The explicit expressions of fi;j are listed in Appendix C, and the
density functions are expressed by

τ1ðωÞ ¼ 4
d
dω

ĝ−BðωÞ; τ2ðω1;ω2; uÞ ¼ Ψ5ðω1;ω2Þ þ Ψ̃5ðω1;ω2Þ;
τ3ðω1;ω2; uÞ ¼ Ψ5ðω1;ω2Þ − Ψ̃5ðω1;ω2Þ; τ4ðω1;ω2; uÞ ¼ 2Φ6ðω1;ω2Þ;
τ5ðω1;ω2; uÞ ¼ 2ūΦ4ðω1;ω2Þ: ð37Þ

B. Higher-order terms in hard-collinear propagator

Adopting the approach detailed in Refs. [36–38], we carry out the calculation of the subleading power corrections
stemming from the hard-collinear propagator in the correlation functions expressed by Eq. (6). Given that the momentum in
the interpolating current lies in the hard-collinear regime, the quark propagator connecting this interpolating current and a
soft quark also possesses hard-collinear momentum. Expanding the hard-collinear propagator in terms of powers of
ΛQCD=mb gives rise to
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=p − kþmq

ðp − kÞ2 −m2
q þ iϵ

¼

�
n · p

=̄n
2

zfflffl}|fflffl{LP

þ ðn̄ · p
=n
2
− kþmqÞ þ

n · p =̄n
2
n̄ · pn · k

n · pðn̄ · p − n̄ · kÞ þ
n · p =̄n

2
ðm2

q −m2
q0 Þ

n · pðn̄ · p − n̄ · kÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{NLP

�

n · pðn̄ · p − n̄ · kÞ ; ð38Þ

wheremq is the mass of the hard-collinear quark propagator andmq0 is the mass of the B-meson spectator quark. “LP” refers
to the leading-power contribution of hard-collinear propagator at tree level, while “NLP” represents the next-to-leading
power contributions resulting from the expansion of the hard-collinear propagator.
We then insert the NLP terms into the correlation functions ΠðaÞ

k;⊥, and apply the HQET operator identities [50,52],

vρ
∂

∂xρ
q̄ðxÞΓ½x; 0�hvð0Þ ¼ v · ∂q̄ðxÞΓ½x; 0�hvð0Þ þ i

Z
1

0

duūq̄ðxÞ½x; ux�xλgsGλρðuxÞ½ux; 0�vρΓhvð0Þ;

iv · ∂h0jq̄ðxÞΓ½x; 0�hvð0ÞjB̄vi ¼ Λ̄h0jq̄ðxÞΓ½x; 0�hvð0ÞjB̄vi;
∂

∂xρ
q̄ðxÞγρΓ½x; 0�hvð0Þ ¼ −i

Z
1

0

duuq̄ðxÞ½x; ux�xλgsGλρðuxÞ½ux; 0�γρΓhvð0Þ þ imq0 q̄ðxÞΓ½x; 0�hvð0Þ: ð39Þ

Taking advantage of the three-body light cone HQET matrix element up to twist-six accuracy in Eq. (24), we are able to
derive the results for the first NLP term presented in Eq. (38),

ΠI;QPE
NLP ¼

�
f̃BðμÞmB

2n · p

��Z
∞

0

dω
ðω − 2Λ̄Þϕþ

B ðωÞ
n̄ · p − ω

þ ðmq0 −mqÞ
Z

∞

0

dω
ϕ−
BðωÞ

n̄ · p − ω

−
Z

1

0

du
Z

∞

0

dω1

Z
∞

0

dω2

2½uΦ4ðω1;ω2Þ þΨ4ðω1;ω2Þ�
ðn̄ · p − ω1 − uω2Þ2

�
;

Π̃I;QPE
NLP ¼

�
f̃BðμÞmB

2n · p

��Z
∞

0

dω
ðω − 2Λ̄Þ
n̄ · p − ω

ϕ−
BðωÞ−

Z
1

0

du
Z

∞

0

dω1

Z
∞

0

dω2

2ūΨ5ðω1;ω2Þ
ðn̄ · p − ω1 − uω2Þ2

�
; ð40Þ

where the hadronic parameter Λ̄ characterizes the “effective mass” of the B-meson state in HQET. It can be defined as [53]

Λ̄≡ h0jq̄iv · D⃖ΓhvjB̄qðvÞi
h0jq̄iΓhvjB̄qðvÞi

: ð41Þ

Noting the relation nα ¼ 2vα − n̄α, we can further compute the contribution of the second NLP term along the same lines,

ΠII;QPE
NLP ¼ 0; Π̃II;QPE

NLP ¼
�
f̃BðμÞmB

2n ·p

��Z
∞

0

dω
n̄ ·pð2Λ̄−ωÞ
ðn̄ ·p−ωÞ2 ϕ−

BðωÞþ
Z

1

0

du
Z

∞

0

dω1

Z
∞

0

dω2

4ū n̄ ·pΨ5ðω1;ω2Þ
ðn̄ ·p−ω1−uω2Þ3

�
: ð42Þ

Subsequently, the contribution of the third NLP term of the hard-collinear propagator expansion can be easily derived by
applying the standard factorization procedure,

ΠIII;QPE
NLP ¼ 0; Π̃III;QPE

NLP ¼ ðm2
q −m2

q0 Þ
Z

∞

0

dω
1

ðn̄ · p − ωÞ2 ϕ
−
BðωÞ: ð43Þ

Ultimately, we obtain the factorization formulas for the NLP contributions stemming from the quark propagator expansion
at tree level:

ΠðaÞ;QPE
j;NLP ¼ ΓðaÞ

j ðΠI;QPE
NLP þ ΠII;QPE

NLP þ ΠIII;QPE
NLP Þ þ Γ̃ðaÞ

j ðΠ̃I;QPE
NLP þ Π̃II;QPE

NLP þ Π̃III;QPE
NLP Þ; ð44Þ

with

ΓðV−AÞ
k;⊥ ¼ fnμ; g⊥δμ − iϵ⊥δμg; Γ̃ðV−AÞ

k;⊥ ¼ fn̄μ; g⊥δμ þ iϵ⊥δμg; ð45Þ
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and

ΓðTþT̃Þ
k;⊥ ¼ −

�
nμ

n̄ · q
2

− n̄μ
n · q
2

; ðg⊥δμ − iϵ⊥δμÞ
n · q
2

�
;

Γ̃ðTþT̃Þ
k;⊥ ¼ −

�
n̄μ

n · q
2

− nμ
n̄ · q
2

; ðg⊥δμ þ iϵ⊥δμÞ
n̄ · q
2

�
: ð46Þ

Adopting the standard LCSR strategy, we formulate the
correlation functions in the dispersion relation formalism
and match them to the hadronic representation given from
Eqs. (15) to (18). Finally, the desired B → K� form factors
for the power-suppressed contribution stemming from the
hard-collinear propagator can be expressed as

fV exp

�
−

m2
V

n · pωM

�
FQPE

i;NLPðq2Þ

¼ f̃BðμÞmB

ðn · pÞ2 fκiðf2;1½η1� − f3;2½η2�Þ

þ κ̃iðf2;1½η3� − f3;2½η4� − f2;2½η5� − f3;3½η6�Þg; ð47Þ

where form factors F i ∈ fV;A1; T 1; T 2;A0;A12;T 23g
with the replacement fV → f⊥V for the first four F i and

fV → fkV for the last three F i, and the corresponding
symmetry-breaking factors read as

κi ∈
�
1;−1;

n · q
mB

;−
n · q
mB

;−
2mVn · q
mBn · p

;
2mVn · q
mBn · p

;
2mV

n · p

�
;

ð48Þ

κ̃i ∈
�
1; 1;

n̄ · q
mB

;
n̄ · q
mB

;
2mV

n · p
;
2mV

n · p
;
2mV

n · p

�
; ð49Þ

and the density functions ηi are given as follows:

η1ðωÞ ¼ ðω − 2Λ̄Þϕþ
B ðωÞ þ ðmq0 �mqÞϕ−

BðωÞ;
η2ðω1;ω2; uÞ ¼ 2½uΦ4ðω1;ω2Þ þ Ψ4ðω1;ω2Þ�;

η3ðωÞ ¼ 0; η4ðω1;ω2; uÞ ¼ 2ūΨ5ðω1;ω2Þ;
η5ðωÞ ¼ ωð2Λ̄ − ωÞϕ−

BðωÞ þ ðm2
q −m2

q0 Þϕ−
BðωÞ;

η6ðω1;ω2; uÞ ¼ 2ðω1 þ uω2Þη4ðω1;ω2; uÞ; ð50Þ

where the þ sign and − sign in η1ðωÞ are assigned to
F i∈fV;A1;T 1;T 2g and F i∈fA0;A12;T 23g, respectively.

C. Subleading heavy-quark effective current

We now proceed to consider the contributions of the
power-suppressed terms in the heavy quark expansion to
the B → K� form factors. In HQET, the bottom quark
can be replaced by the effective heavy quark field, and
the heavy-to-light weak current is expanded up to NLP
accuracy [47,54],

q̄Γμb ¼ q̄Γμhv|fflffl{zfflffl}
LP

þ 1

2mb
q̄ΓμiD⃗hv|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
NLP

þ � � � ; ð51Þ

where D⃗ ¼ D − ðv ·DÞv and D⃗hvð0Þ ¼ ½D − ðv ·
DÞv�hvð0Þ ¼ Dhvð0Þ due to the HQET equations of
motion. The ellipses denote the terms in powers of
Oð1=m2

bÞ, whose contributions to the correlation functions
are beyond the scope of our current work. Substituting the
heavy-to-light effective current in the correlation functions
with the NLP term and taking advantage of the operator
identities in Eq. (39) and the following equation,

q̄ðxÞΓ½x; 0�Dρ
	!

hvð0Þ ¼ ∂ρ½qðxÞΓ½x; 0�hvð0Þ� þ i
Z

1

0

duū q̄ðxÞ½x; ux�gsGλρðuxÞ½ux; 0�xλΓhvð0Þ

−
∂

∂xρ
q̄ðxÞΓ½x; 0�hvð0Þ; ð52Þ

the correlation functions can be directly presented in the following form:

ΠðaÞ;HQE
j;NLP ðp; qÞ ¼

Z
d4xeip·xh0jTfq̄0ðxÞΓjqðxÞ;

1

2mb
q̄ð0ÞΓðaÞ

μ i⃗DhvgjB̄ðpþ qÞi

¼ −1
2mb

Z
d4x

Z
d4k
ð2πÞ4

eik·x

n̄ · p − n̄ · kþ iϵ

�
∂ξ

�
q̄ðxÞΓj

=̄n
2
ΓðaÞ
μ γξhvð0Þ

�

þi
Z

1

0

duū q̄ðxÞxρgsGρξðuxÞΓj
=̄n
2
ΓðaÞ
μ γξhvð0Þ −

∂

∂xξ
½q̄ðxÞ�Γj

=̄n
2
ΓðaÞ
μ γξhvð0Þ

�
; ð53Þ

where a∈ fV − A;Tþ T̃g denotes the different Dirac structures ΓðaÞ
μ ∈ fγμð1 − γ5Þ; iσμνð1þ γ5Þqνg and Γj ∈ f=n

2
; =n
2
γ⊥δ g for

j ¼ k;⊥, respectively. We can further derive the factorization formula by utilizing analogous techniques at tree level:
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ΠðaÞ;HQE
j;NLP ¼ ΓðaÞ

j
f̃BðμÞmB

4mb

�Z
∞

0

dω
1

n̄ · p − ω
½ð2Λ̄ − ωÞϕþ

B ðωÞ þ ðΛ̄ − ω −mq0 Þϕ−
BðωÞ�

þ
Z

∞

0

dω1

Z
∞

0

dω2

Z
1

0

du
2½Φ4ðω1;ω2Þ þ Ψ4ðω1;ω2Þ�

ðn̄ · p − ω1 − uω2Þ2
�
; ð54Þ

with

ΓV−A
k;⊥ ∈ f−n̄μ; g⊥δμ þ iϵ⊥δμg;

ΓTþT̃
k;⊥ ∈

�
nμ

n̄ · q
2

− n̄μ
n · q
2

; n̄ · qðg⊥δμ þ iϵ⊥δμÞ
�
: ð55Þ

By matching the partonic representation with the hadronic
dispersion relations given from Eqs. (15) to (18), we can
derive the subleading-power heavy-quark effective current
correction to the B → K� form factors

fV exp

�
−

m2
V

n · pωM

�
FHQE

i;NLPðq2Þ

¼ f̃BðμÞmB

2ðn · pÞmb
ciff2;1½ζ1� þ f3;2½ζ2�g; ð56Þ

where the coefficient factors ci are determined from the
correlation functions at the hadronic level,

ci ∈
�
−1;−1;

n̄ · q
mB

;
n̄ · q
mB

;
2mV

n · p
;
2mV

n · p
;
−2mV

n · p

�
; ð57Þ

and the density functions ζi can be derived from the
correlation functions at the partonic level in Eq. (54):

ζ1ðωÞ ¼ ð2Λ̄ − ωÞϕþ
B ðωÞ þ ðΛ̄ − ω −mq0 Þϕ−

BðωÞ;
ζ2ðω1;ω2; uÞ ¼ 2½Φ4ðω1;ω2Þ þ Ψ4ðω1;ω2Þ�: ð58Þ
Both the correction from the hard-collinear propagator and
the correction from the subleading effective current to the
B → K� form factors show excellent agreement with the
previous calculation for the B → D� process reported in
Ref. [38], upon substituting the charm quark mass with the
strange quark mass.

D. Higher-twist four-particle contribution

We are now in the position to calculate the heavy-to-light
B-meson decay form factors from the twist-five and twist-
six four-particle LCDAs in the factorization approximation.
The subleading-power correction to the B → K� form
factors can be factorized into a product of the lower-twist
two-particle LCDAs and the quark condensate [54,55]. By
evaluating the lowest-order Feynman diagrams shown in
Fig. 3, we obtain the nonleading Fock-state correction to
the correlation functions

FIG. 3. Diagrammatic representations of twist-five and twist-six four-particle corrections to the vaccumm-to-bottommeson correlation
functions. (a) and (f) describe the radiative correction between heavy quark and spectator quark; (b) describes the QCD correction to the
weak vertex; (c) describes the self-energy correction to the quark propagator; (d) and (e) describe the QCD correction to the K∗ vertex.
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ΠðaÞ;4P
j;NLP ¼ g2sCF

12

f̃BðμÞmB

n · p

�
ΓðaÞ
j hq̄qi

Z
∞

0

dω
ϕþ
B ðωÞ

n̄ · pðω − n̄ · pÞ2

þ Γ̃ðaÞ
j hq̄0q0i

Z
∞

0

dω
ϕþ
B ðωÞ
ω3

�
2ω

n̄ · p − ω
−

ω2

n̄ · pðn̄ · p − ωÞ þ 2 ln
n̄ · p − ω

n̄ · p

��
; ð59Þ

with ΓðaÞ
k ¼ Γ̃ðaÞ

k ¼fn̄μ;nμ n̄·q2 − n̄μ
n·q
2
g and ΓðaÞ

⊥ ¼ 0, Γ̃ðaÞ
⊥ ¼ fg⊥δμ þ iϵ⊥δμ, −n̄ · qðg⊥δμ þ iϵ⊥δμÞg for a∈ fV − A;Tþ T̃g. ΓðaÞ

j and

Γ̃ðaÞ
j denote the contributions from diagram (d) and diagram (e) in Fig. 3, respectively. The terms hq̄qi and hq̄0q0i represent

the vacuum condensate of the propagator quark q and the spectator quark q0, respectively.
It is worth mentioning that diagram (e) in Fig. 3 is analyzed using the background field expansion of the quark propagator

on the light cone [51],

h0jTfqðxÞ; q̄ð0Þgj0i ⊃ Γðd=2 − 1Þ
8πd=2ð−x2Þd=2−1

Z
1

0

duuūxgsDλGλρðuxÞxρ þ
Γðd=2 − 2Þ

16πd=2ð−x2Þd=2−2
Z

1

0

du

�
uū −

1

2

�
gsDλGλρðuxÞγρ;

ð60Þ

where the classical equation of motion in QCD reads as

DλGa
λρ ¼ −gs

X
q

q̄ γρTaq: ð61Þ

After explicitly calculating diagrams (a), (b), and (c) in
Fig. 3, the results indicate that, in comparison to the
dominant contributions from diagrams (d) and (e), these
three diagrams can only contribute to the higher power
corrections. Moreover, diagram (f) is found to be

insensitive to both the hard and hard-collinear QCD
dynamics. Furthermore, diagram (d) is power suppressed
relative to diagram (e) when the interpolating current
corresponds to a transversely polarized K�.
By applying the dispersion relation to the correlation

functions at the partonic level and employing the standard
sum rule approach, we can derive the subleading-power
corrections from four-particle contributions to the B → K�
form factors

fV exp

�
−

m2
V

n · pωM

�
F 4P

i;NLPðq2Þ ¼
2παsCFf̃BðμÞmB

3ðn · pÞ2 cihq̄0q0i
�Z

ωs

0

dωϕþ
eff-IðωÞ þ

Z
∞

ωs

dωϕþ
eff−IIðωÞ

− ri
hq̄qi
hq̄0q0i

�
e−

ωs
ωM

ϕþ
B ðωsÞ
ωs

−
Z

∞

ωs

dω
ϕþ
B ðωÞ
ω2

þ
Z

ωs

0

dωϕþ
eff-IIIðωÞ

��
; ð62Þ

where the coefficients

ci ∈
�
1; 1;

n̄ · q
mB

;
n̄ · q
mB

;
2mV

n · p
;
2mV

n · p
;
2mV

n · p

�
;

ri ∈ f0; 0; 0; 0; 1; 1; 1g ð63Þ

for F i ∈ fV;A1;T 1; T 2;A0;A12; T 23g and the explicit
expressions for the density functions ϕeff are given by

ϕþ
eff-IðωÞ ¼

�
1 − 2

ωM

ω
þ
�
1þ 2

ωM

ω

�
e−

ω
ωM

�
ϕþ
B ðωÞ
ω2

;

ϕþ
eff−IIðωÞ ¼

�
1 − 2

ωM

ω
þ 2

ωM

ω
e−

ωs
ωM

�
ϕþ
B ðωÞ
ω2

;

ϕþ
eff−IIIðωÞ ¼

��
1þ ω

ωM

�
e−

ω
ωM − 1

�
ϕþ
B ðωÞ
ω2

: ð64Þ

Collecting the next-to-leading power (NLP) contributions
estimated above, the total NLP correction to the B → K�
form factors in QCD can be expressed as

Fi
BK�;NLP ¼ Fi;HT

BK�;NLP þ Fi;QPE
BK�;NLP þ Fi;HQE

BK�;NLP

þ Fi;4P
BK�;NLP; ð65Þ

where the index i labels seven differentB → K� form factors
in QCD. Before proceeding to the numerical analysis, we
first establish the power-counting rules for the form factors at
LP and NLP, adopting the asymptotic behaviors of B-meson
LCDAs [50]. According to the power-counting scheme
ωM ∼ ωs ∼Oðλ2Þ andms ∼OðλÞ, where the scaling param-
eter λ ¼ ΛQCD=mb, we derive the scaling behavior for the
leading-power B → K� form factors,
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VLP
BK� ∼ ALP

1;BK� ∼ TLP
1;BK� ∼ TLP

2;BK� ∼Oðλ2Þ;
ALP
0;BK� ∼Oðλ3Þ; A12

LP
BK� ∼ T23

LP
BK� ∼Oðλ4Þ; ð66Þ

where A12 and T23 denote combinations of the form factors
corresponding to mBþmV

n·p A1 −
mB−mV

mB
A2 and mB

n·p T2 − T3, re-
spectively. From the relations between seven QCD form
factors and the four SCETeffective form factors in Ref. [31],
the scalings of the form factors V; A1; T1; T2 are determined
by the SCET effective form factor ξ⊥, while A0, A12, T23 are
determined by the SCET effective form factor ξk. Evidently,
ξk is suppressed by a factor of λ2 compared to ξ⊥. BecauseA0

has an enhancement factor of 1=ms, it ultimately contributes
the power ofOðλ3Þ. Applying the same analytical method as
for the leading power and considering the asymptotic
behavior of two-particle and three-particle higher-twist B-
mesonLCDAs, we further determine the scalings ofB → K�
form factors at NLP:

VNLP
BK� ∼ ANLP

1;BK� ∼ TNLP
1;BK� ∼ TNLP

2;BK� ∼Oðλ3Þ;
ANLP
0;BK� ∼Oðλ4Þ; A12

NLP
BK� ∼ T23

NLP
BK� ∼Oðλ5Þ: ð67Þ

IV. NUMERICAL ANALYSIS

Summing up both the NLL correction and the newly
derived NLP corrections, we obtain the improved B → K�
form factors with SCET sum rules in the large recoil region.
In this section, we analyze phenomenological observables
for the rare FCNC process B → K�νlν̄l. We firstly list the
relevant theoretical inputs in the factorization formula for
the heavy-to-light form factors, including quark masses,
decay constants, distribution amplitudes, sum rules param-
eters, electroweak parameters, and the inverse moments.

We compare the form factors under two scenarios: selecting
the inverse moment as either the recent lattice QCD
simulation result λB ¼ 389ð35Þ MeV or the conventional
range λB ¼ 350ð150Þ MeV. The theoretical precision of
form factors could be improved if lattice QCD simulations
systematically account for potential uncertainties [56].
After taking into account both the available lattice QCD
results in the high-q2 region and improved LCSR predic-
tions in the low-q2 region, we then perform a combined fit
to determine the coefficients in the z-series expansion,
thereby extending the B → K� form factors to the entire
kinematic region. Taking advantage of the newly updated
LCSR predictions, we investigate the differential branching
ratio and longitudinal K� polarization fraction of B →
K�νlν̄l decays. For the Bþ → K�þνlν̄l decay process,
the additional long-distance effect induced by Bþ →
τþð→K�þντÞν̄τ at tree level is included with the narrow
τ width approximation.

A. Theory inputs

In Table I, we summarize the necessary input parameters
of the Standard Model and relevant hadronic parameters,
along with the central values and uncertainties. In our
numerical calculations, we employ the three-loop evolution
of the strong coupling constant αsðμÞ in the Modified
Minimal Subtraction (MS) scheme by taking the interval

αð5Þs ðmZÞ from [57] and adopting the perturbative matching
scales μ4 ¼ 4.8 GeV and μ3 ¼ 1.3 GeV for crossing the
nf ¼ 4 and nf ¼ 3 thresholds, respectively [58,59].
Additionally, the bottom quark mass mbðmbÞ and strange
quark massmsðmsÞ are given in the MS scheme at the scale
of their respective MS masses. Using RunDec [60], we
obtain the scale dependence of the strong coupling constant

TABLE I. Numerical values of the input parameters.

Parameter Value Ref. Parameter Value Ref.

mB0 5279.66 MeV [57] mK�0 898.46 MeV [57]
mBþ 5279.34 MeV [57] mK�þ 891.67 MeV [57]
τB0 1.517(4) ps [57] τBþ 1.638(4) ps [57]
mτþ 1776.86 MeV [57] ττþ 0.2903(5) ps [57]
GF 1.166379 × 10−5 GeV−2 [57] sin2 θW 0.23126(5) [72]
jVtbV�

tsj ð41.25� 0.45Þ × 10−3 [73] αemðmZÞ 1=127.925 [57]
jVubj 3.82ð20Þ × 10−3 [57] jVusj 0.2243(8) [57]
mbðmbÞ (4.203� 0.011) GeV [57] msðmsÞ (93.5� 0.8) MeV [57]
fB (190.0� 1.3) MeV [61] μh1 ½mb=2; 2mb�
fkK� (204� 7) MeV [27] μh2 ½mb=2; 2mb�
f⊥K� ð1 GevÞ (159� 6) MeV [62] μ 1.5� 0.5 GeV
hq̄qið2 GevÞ −ð286� 23 MeVÞ3 [61] ν mb
hs̄si∶hq̄qi (0.8� 0.1) [74,75] M2 (1.7� 0.5) GeV2 [71]

sk0 (1.7� 0.1) GeV2 [28,71] s⊥0 (1.4� 0.1) GeV2 [28,71]

λB 350� 150 MeV [54] fσ̂1; σ̂2g f0.7; 6.0g [54]
ðλ2E=λ2HÞ 0.50� 0.10 [54] f0.0; π2=6g
ð2λ2E þ λ2HÞ (0.25� 0.15) GeV2 [54] f−0.7;−6.0g
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αsðμÞ and the quark masses mbðμÞ and msðμÞ. Moreover,
we incorporate the results from four-flavor lattice QCD
computations for the B-meson decay constant fB [61]. The
decay constant of the longitudinalK� can be extracted from
leptonic decays V0 → eþe− and tau lepton decays
τþ → Vþντ, while the renormalization scale-dependent
decay constant of the transverse K� is taken from a lattice
QCD simulation with 2þ 1 flavors of domain wall quarks
and the Iwasaki gauge action [62]. Two hard scales μh1 and
μh2 are introduced in the hard functions and B-meson decay
constants, respectively. The factorization scale μ is the same
as the hard-collinear scale, and the renormalization scale
for the QCD tensor current will be taken as ν ¼ mb. The
LCSR improved form factors for the B-meson semileptonic
decay processes depend on the B-meson light cone dis-
tribution amplitudes (LCDAs) as universal nonperturbative
input parameters. Therefore, we need to construct an
acceptable phenomenological model for the leading- and
higher-twist B-meson LCDAs that not only satisfies the
classical equations of motion [50], but also exhibits the
expected asymptotic behavior at sufficiently large scales. In
this work, we adopt a newly proposed three-parameter
model for all the relevant B-meson light cone distribution
amplitudes in coordinate space [54], with the details
provided in Appendix D. The three shape parameters α,
β, and ω0 in this model can be related to the inverse
logarithmic moments λB and σ̂1;2 for the leading-twist B-
meson distribution amplitude ϕþ

B with the equations

λBðμÞ ¼
α − 1

β − 1
ω0;

σ̂1ðμÞ ¼ ψðβ − 1Þ − ψðα − 1Þ þ ln
α − 1

β − 1
;

σ̂2ðμÞ ¼ σ̂21ðμÞ þ ψ 0ðα − 1Þ − ψ 0ðβ − 1Þ þ π2

6
; ð68Þ

and the definitions of the inverse logarithmic moments λB
and σ̂1;2 are

1

λBðμÞ
¼

Z
∞

0

dω
ω

ϕþ
B ðω; μÞ;

σ̂nðμÞ
λBðμÞ

¼
Z

∞

0

dω
ω

lnn
e−γEλBðμÞ

ω
ϕþ
B ðω; μÞ: ð69Þ

The numerical values for the hadronic parameters λB, σ̂1;2,
and λE;H in Table I are all given at the reference scale

μ0 ¼ 1 GeV, and these parameters will be evolved to the
factorization scale μ in the final results. Despite various
strategies being employed to investigate the inverse
moment λB [54,56,63–69], a QCD-based method for its
precise determination remains elusive due to its definition
via a nonlocal operator (see Refs. [56,70] for preliminary
results from the lattice QCD perspectives). We adopt a
conservative interval of λB ¼ ð350� 150Þ MeV in this
work and compare the resulting form factors with those
derived from λB ¼ 389ð35Þ MeV, as suggested by the
recent lattice QCD result [56,70]. For the inverse loga-
rithmic moments σ̂1;2, we prefer the choice fσ̂1; σ̂2g ¼
f0; π2=6g with the intervals

−0.7 < σ̂1 < 0.7; −6.0 < σ̂2 < 6.0: ð70Þ

Following the standard procedure outlined in
Refs. [28,31,71], the two intrinsic parameters ωM and ωs
introduced by the light cone sum rules can be determined
by effectively constraining the smallness of the continuum
contributions in the dispersion integrals and the stability of
the obtained sum rule results against the variation of ωM.

The parameters s⊥0 and sk0 correspond to the interpolating
currents q̄0=nγ⊥q and q̄0=nq, respectively, leading to the
following intervals:

s⊥0 ¼ n · pω⊥
s ¼ ð1.4� 0.1ÞGeV2;

sk0 ¼ n · pωk
s ¼ ð1.7� 0.1ÞGeV2;

M2 ¼ n · pωM ¼ ð1.7� 0.5ÞGeV2: ð71Þ

B. Numerical predictions for the B → K� form factors

Making use of the numerical inputs from Table I and the
B-meson light cone distribution amplitudes described by
the three-parameter model in Appendix D, we obtain the
B → K� form factors in the large recoil region. In Table II,
we present the numerical results of B → K� form factors
based on LCSR with heavy-meson distribution amplitudes
at q2 ¼ 0. The central values of our improved form factors
are consistent within a 1 ∼ 2σ deviation with the results
obtained from sum rules based on K� distribution
amplitudes [27]. To examine the numerical features of
the LCSR parameters to form factors, we first present the
dependence of the form factors on the Borel mass M2 in
Fig. 4. The left panel in Fig. 4 shows the variation of form

TABLE II. The B → K� form factors at q2 ¼ 0 given by our work (second row) and by sum rules with light-
meson distribution amplitudes (third row).

FB→K�
i V A0 A1 T 1 T 2 A12 T 23

This work 0.20(14) 0.066(38) 0.19(13) 0.24(16) 0.19(13) 0.066(38) 0.094(44)
Ref. [27] 0.29(3) 0.118(16) 0.306(33) 0.282(31) 0.274(31) 0.113(15) 0.095(13)
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factor V when the Borel mass M2 changes in the range of
1.2 GeV2 to 2.2 GeV2, with the effective threshold s⊥0
fixed at 1.3 GeV2, 1.4 GeV2, and 1.5 GeV2. The right
panel in Fig. 4 illustrates the effect on the form factor A0

for the same Borel mass range, with the effective threshold
set at 1.6 GeV2, 1.7 GeV2, and 1.8 GeV2, respectively. We
find that LCSR form factors exhibit a mild dependence on
the intrinsic parametersM2 and sk;⊥0 , with each introducing
10% systematic uncertainties to the form factors, which is
consistent with our previous work [31] and other sum rule
analyses [36,37].
We now proceed to explore the contributions of the

subleading-power corrections from different sources to the
B → K� form factors, with the form factors V and A0 as
illustrative examples. In Fig. 5, we present the contributions
of four different sources of the subleading-power correc-
tions as well as the total power correction in the kinematic
region of 0 ≤ q2 ≤ 6 GeV2. These subleading-power cor-
rections include the “HT ” contribution from the two-
particle and three-particle higher-twist B-meson distribu-
tion amplitudes, the “QPE ” contribution from the expan-
sion of hard-collinear quark propagator in the small
parameter ΛQCD=mb, the “HQE ” contribution from the
power-suppressed effective weak transition current

q̄Γ½iD⊥=ð2mbÞ�hv, and the “4P ” contribution from
twist-5 and twist-6 four-particle B-meson LCDAs within
the factorization approach. We can find that the NLP
contribution from twist-5 and twist-6 four-particle B-meson
LCDAs is minimal for the B → K� form factors, and this
contribution accounts for only 3% − 7% of the total NLP
contribution to the form factors V and A0, respectively. In
contrast, it is evident that the higher-twist B-meson LCDAs
provide the largest contributions to the NLP B → K� form
factors, which numerically account for 50% − 60% of the
total NLP corrections in analogy to the previous
discussions [29,36,37,76].
We now explore the contribution of the NLL resumma-

tion improved leading-power B → K� form factors and the
newly derived subleading-power corrections to the B → K�
form factors at tree level. In order to understand the impact
of one-loop and subleading-power corrections, we show the
numerical results explicitly for the resummation improved
contribution at the one-loop level and NLP corrections at
the tree level to the B → K� form factors in the region of
0 ≤ q2 ≤ 6 GeV2 in Fig. 6. For instance, the resummation
improved NLL correction reduces the form factors V and
A0 by 30% compared to the results at leading-logarithm
accuracy. In addition, the newly determined NLP

FIG. 4. Dependence of the form factors VB→K� and A0;B→K� on the Borel parameter M2.

FIG. 5. Subleading-power corrections to the B → K� form factors VB→K� (left panel) andA0;B→K� (right panel) in the kinematic region
of 0 ≤ q2 ≤ 6 GeV2. The shaded bands represent the uncertainties from the variation of factorization scale μ.
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corrections lead to an approximate 30% reduction to the
form factors V and A0, respectively. After including both
NLP and NLL corrections, we find that the total results for
the form factors V and A0 exhibit a 60% reduction relative
to the corresponding LL resummation improved tree-level
predictions.
In addition, we investigate the dependence of both the

NLL resummation improved one-loop correction and the
newly derived NLP corrections on the inverse moment λB at
q2 ¼ 0. We take fσ̂1; σ̂2g ¼ f0; π2=6g as the central values
and display the corresponding numerical results in Fig. 7.
For instance, we observe that the form factors VB→K� and
A0;B→K� exhibit a pronounced decrease with increasing λB.
By adopting λB ¼ 389ð35Þ MeV as input from the lattice
QCD in Ref. [70], we find that both the central values and
uncertainties of the form factors are reduced by approx-
imately 20% compared to those obtained with λB ¼
350ð150Þ MeV. Notably, the light cone sum rules based
on light-meson LCDA suggest λB ≈ 300 MeV, when fit-
ting λB by using the form factor values from Ref. [27].

This discrepancy between λB ≈ 300 MeV and the λB ¼
389 MeV derived by lattice QCD may stem from unac-
counted power corrections in current lattice QCD simu-
lations, which could potentially introduce additional
systematic uncertainties.
Since LCSR predictions are valid only in the large recoil

region, it is necessary to extrapolate the LCSR results for
the B → K� form factors to the entire kinematic region by
employing the BCL z-series expansion [39–41,77,78],
which is based on the positivity and analyticity of the
transition form factors. For this purpose, we apply the
conformal transformation

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ð72Þ

with the threshold parameter tþ ≡ ðmB þmK� Þ2 for the
exclusive B → K� form factors, which allows us to map the
complex cut q2 plane onto the unit disk jzðq2; t0Þj ≤ 1.
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FIG. 6. Comparison of the LL resummation improved tree-level contribution (LL), NLL resummation improved one-loop correction
(NLL), subleading-power correction at tree level (NLP), and total result (TOTAL) to the B → K� form factors VB→K� (left panel) and
A0;B→K� (right panel) in the kinematic region of 0 ≤ q2 ≤ 6 GeV2. The shaded bands represent the uncertainties from the variation of
factorization scale μ.
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FIG. 7. Comparison of LL resummation improved tree-level contribution (LL), NLL resummation improved one-loop correction
(NLL), subleading-power correction at tree level (NLP), and total result (TOTAL) of the B → K� form factors VB→K� (left panel) and
A0;B→K� (right panel) with the variation of 0.2 GeV ≤ λB ≤ 0.5 GeV. The areas with deeper color correspond to λB ¼ 0.389ð35Þ GeV
given in Ref. [70]. The upper (lower) bound represents fσ̂1; σ̂2g ¼ f−0.7;−6.0g (fσ̂1; σ̂2g ¼ f0.7; 6.0g).
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Additionally, the free parameter t0 < tþ corresponds to the
value of q2 that is mapped onto the origin in the z plane. To
minimize the z interval, we set

t0 ¼ tþ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþðtþ − t−Þ

p
; t− ¼ ðmB −mK� Þ2: ð73Þ

Taking into account the asymptotic behavior of the form
factor near the threshold of the corresponding excited
states, we can further parametrize the B → K� form factors
with the z-series expansion as follows:

F i
B→K� ðq2Þ ¼ 1

1 − q2=m2
i;pole

XN−1

k¼0

bik½zðq2; t0Þ − zð0; t0Þ�k;

ð74Þ
where m2

i;pole denotes the masses of the corresponding
resonances below the particle-pair production threshold
ðmB þmK� Þ with distinct quantum numbers. For conven-
ience, we have summarized the masses of the resonances
relevant to our parametrization in Table III as given in
Ref. [27]. We will truncate the z-series expansion at N ¼ 3
in the subsequent fitting process, since the contribution
beyond quadratic terms is negligible due to jzðq2Þjmax < 0.1.
We are now in the position to determine the z-series

coefficients bi0;1;2 of the B → K� form factors F iðq2Þ by
performing the correlated minimum-χ2 fit of the updated
LCSR predictions in the large recoil region, in combination
with the available lattice QCD data in the small recoil
region [13,14]. The ingredients of the minimum-χ2 fit can
be summarized as follows:
(1) In the low q2 region, we generate the improved

LCSR form factors with uncertainties at three dis-
tinct kinematic points q2 ¼ f−4; 0; 4g GeV2. In
order to obtain the pseudodata samples, we vary
the theoretical input parameters randomly within the
error ranges and generate an ensemble of N ¼ 300
parameter sets that follow uncorrelated priors, which
are either uniform or Gaussian distributed [38].

(2) We multiply each form factor F i
LCSRðq2Þ by an

enhancement factor WK� ¼ 1.09ð1Þ to account for
the finite K� width effect in B → K� transition, as
discussed in Ref. [34]. In the lattice QCD simulation,
K� is a stable particle [13,14].

(3) In the high q2 region, we reproduce the central values
and correlationmatrix of the lattice QCD results of the

B → K� form factors at three different points,
q2 ¼ f12; 14; 16g GeV2, as well as physical-mass
bottom quark and 2þ 1 flavors of sea quarks. To
ensure the positive definiteness of the correlation
matrix from the lattice QCD results, we modify
the original matrix by adding an additional diago-
nal matrix of order Oð10−6Þ, namely Clatt ¼
Clatt;original þ 10−6I.

(4) Taking into account the kinematic constraints,

mB þmV

2mV
A1ð0Þ −

mB −mV

2mV
A2ð0Þ ¼ A0ð0Þ;

T1ð0Þ ¼ T2ð0Þ; ð75Þ

we can derive the following exact relations between
the expansion coefficients,

m2
V

m2
B þm2

V
bA1

0 −
2m2

B þm2
V

m2
B þm2

V
bA12

0 ¼ bA0

0 ;

m2
B

m2
B þm2

V
bT 1

0 ¼ bT 2

0 : ð76Þ

(5) We then construct

χ2 ¼
X
ij

½F i
LCSRðq2Þ − F i

fitðq2; bikÞ�ðC−1
LCSRÞij

× ½F j
LCSRðq2Þ − F j

fitðq2; bjkÞ�
þ
X
ij

½F i
lattðq2Þ − F i

fitðq2;bikÞ�ðC−1
lattÞij

× ½F j
lattðq2Þ − F j

fitðq2;bjkÞ�; ð77Þ

where F i denote the central values of the form
factors and Cij is the corresponding covariance
matrix. We then extract the central values and the
covariance of the coefficients bik by minimizing the
χ2 function, yielding χ2min=d:o:f ¼ 40.1=23. Our
inputs as well as the fit results for the z-series
coefficients, including the central values, uncertain-
ties and all correlations, are presented in the
Supplemental Material [79].

To further clarify the momentum-transfer dependence of
the updated LCSR predictions and lattice QCD results, we
present the combined fit results for the seven B → K� form
factors across the entire kinematic region in Fig. 8. BCL
parametrization incorporates both our updated LCSR data
(pink points) and lattice QCD data (blue points). For
reference, lattice QCD predictions from prior studies are
shown as a blue dot-dashed line. The inclusion of newly
derived LCSR data in the low q2 region substantially
enhances the accuracy of theoretical predictions for the
B → K� form factors throughout the kinematic region, as

TABLE III. Summary of the resonance masses with distinct
quantum numbers appearing in the z-series expansion of the B →
K� form factors in Eq. (74).

F i
B→K� ðq2Þ JP mi;pole [GeV]

Vðq2Þ, T 1ðq2Þ 1− 5.415
A0ðq2Þ 0− 5.366
A1ðq2Þ, A12ðq2Þ, T 2ðq2Þ, T 23ðq2Þ 1þ 5.829
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demonstrated by the combined fit with lattice QCD
simulations.

C. Phenomenological analysis
of the B → K�νlν̄l observables

The B → K�νlν̄l decays induced by the b → s FCNC
represent one of the theoretically cleanest decay channels in
heavy flavor physics. We now begin to explore the
phenomenological implications of the newly determined
B → K� form factors for the electroweak penguin B →
K�νlν̄l decays. Thanks to the high luminosity of the Belle
II experiment, the exclusive rare B → K�νlν̄l decays are
expected to be observed with 10 ab−1 of the data [80,81],
and the previous experimental measurements by
BABAR [82] and Belle [83,84] are also presented here.
Notably, the precision of the total branching fraction
measurement for B → K�νlν̄l with 50 ab−1 integrated
luminosity is expected to reach approximately 10%, ren-
dering the experimental sensitivity comparable to the
current theoretical uncertainty in Standard Model predic-
tions. Additionally, the longitudinal K� polarization frac-
tion, which is highly sensitive to right-handed currents [80],

is projected to be measured with an absolute uncertainty of
0.1, providing critical insights into potential beyond-
Standard Model contributions.
We are therefore well motivated to further investigate the

phenomenological aspects of the B → K�νlν̄l process,
both to gain a deeper understanding of the strong inter-
action dynamics of the B → K� form factors and to explore
the potential role of exotic particles X in the context of
dark matter, utilizing the form factors derived in this work.
It is straightforward to derive the differential decay width
formula [10,85],

dΓðB → K�νlν̄lÞ
dq2

¼ G2
Fα

2
em

256π5
λ3=2ðm2

B;m
2
K� ; q2Þ

m3
Bsin

4θW
jλtj2

×

�
Xt

�
m2

t

m2
W
;
m2

H

m2
t
; sin θW; μ

��
2

× ½HVðq2Þ þHA1
ðq2Þ þHA12

ðq2Þ�;
ð78Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz is the
Kállen function. The Cabibbo-Kobayashi-Maskawa (CKM)
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FIG. 8. Theoretical predictions of the B → K� decay form factors (red band) obtained from the combined fit of updated LCSR (pink
points) and lattice QCD (blue points) in the entire kinematical region. The “lattice QCD only” predictions for these form factors are
indicated by the blue dot-dashed line for a comparison.

GAO, MEIßNER, SHEN, and LI PHYS. REV. D 112, 014032 (2025)

014032-18



matrix elements λt ¼ jVtbV�
tsj can be determined by the UT

fit Collaboration [73] and the input parameters appearing in
the differential decay width are collected in Table I. The
short-distance Wilson coefficient Xt can be expanded
perturbatively in terms of the Standard Model coupling
constants

Xt ¼ Xð0Þ
t þ αs

4π
XQCDð1Þ
t þ αem

4π
XEWð1Þ
t þ � � � ; ð79Þ

where the leading-order contribution Xð0Þ
t [86], the next-to-

leading-order (NLO) QCD correction XQCDð1Þ
t [87–89], and

the two-loop electroweak correction XEWð1Þ
t [72] are already

known analytically. We adopt Xt ¼ 1.469 in our work. The
three invariant functions Hi can be further expressed by the
B → K� form factors as

HVðq2Þ ¼
2q2

ðmB þmK�Þ2 ½Vðq
2Þ�2;

HA1
ðq2Þ ¼ 2q2ðmB þmK�Þ2

λðm2
B;m

2
K� ; q2Þ ½A1ðq2Þ�2;

HA12
ðq2Þ ¼ 64m2

Bm
2
K�

λðm2
B;m

2
K� ; q2Þ ½A12ðq2Þ�2; ð80Þ

with the helicity form factors A12 [13]

A12ðq2Þ ¼
ðmB þmK� Þ2ðm2

B −m2
K� − q2ÞA1ðq2Þ − λðm2

B;m
2
K� ; q2ÞA2ðq2Þ

16mBm2
K� ðmB þmK� Þ : ð81Þ

To probe new physics effects beyond the SM, λt is typically
determined through CKM unitarity. However, inconsisten-
cies persist in the extracted values of the CKM matrix
element Vcb across different processes. For future studies,
we present the CKM-independent branching ratio
jλtj−2BRðB0 → K�0νlν̄lÞ estimated with various strategies
in Table IV. The branching ratios derived from updated
B → K� form factors agree within 2.5σ with the results
obtained from sum rules based on K� distribution
amplitudes [27]. Additionally, in Fig. 9, we display our
theoretical prediction for the CKM-independent differential
branching fraction of B0 → K�0νlν̄l and show the result
from lattice QCD calculations for comparison. It is evident
that the combined fit result exhibits significantly smaller
uncertainty than lattice QCD predictions across the entire
momentum region. Finally, our numerical results for the
differential branching ratio of B → K�νlν̄l are summarized
in Table V, where we have adopted λt ¼ 41.25 × 10−3. The
total uncertainty is dominated by the uncertainties in the
hadronic form factors.
There is an additional long-distance (LD) contribution to

the counterpart channel Bþ → K�þνlν̄l involving a
charged B meson due to the double-charged current
interaction Bþ → τþð→ K�þντÞν̄τ, as originally discussed
in Ref. [90]. In the narrow τ-lepton width limit, we express
the tree-level LD contribution to the differential decay rate

dΓðBþ → K�þνlν̄lÞ
dq2

jLD

¼ G4
FjVubV�

usj2
64π2m3

B
jfBfK� j2m

3
τ

Γτ

× ½ðm2
B −m2

τÞðm2
τ −m2

K�Þ − ðm2
τ − 2m2

K� Þq2�: ð82Þ

This long-distance effect arising from weak annihilation
mediated by the on shell τ lepton accounts for approx-
imately 10% of the electroweak penguin amplitude,
which is numerically significant for the charged channel
Bþ → K�þνlν̄l. Moreover, the interference effect between
the tree and penguin amplitudes turns out to be negligible
numerically due to the extremely small width of the τ
lepton [90].

TABLE IV. The CKM-independent branching ratio of theB0 →
K�0νlν̄l process from updated form factors (left), lattice QCD
form factors (middle) and LCSRs with K�-meson LCDAs (right).

10−3 × ðλtÞ−2BR This work Ref. [13,14] Ref. [27]

B0 → K�0νlν̄l 4.76(56) 5.86(93) 5.85(58)
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FIG. 9. Theory predictions for the CKM-independent differ-
ential branching fraction of B0 → K�0νlν̄l by applying the form
factors determined from the combined fits (pink band) and from
the lattice simulations (blue band) [13,14].
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We then proceed to define the differential longitudinal
K� polarization fraction FL of the electroweak penguin
decays B → K�νlν̄l,

FLðq2Þ ¼
HA12

ðq2Þ
HVðq2Þ þHA1

ðq2Þ þHA12
ðq2Þ : ð83Þ

In addition, we introduce two q2-binned observables for
comparison with future high-luminosity Belle II data,

ΔBRðq21; q22Þ ¼ τB

Z
q2
2

q2
1

dq2
dΓðB → K�νlν̄lÞ

dq2
; ð84Þ

ΔFLðq21;q22Þ

¼
R q2

2

q2
1

dq2λ3=2ðm2
B;m

2
K� ;q2ÞHA12

ðq2ÞR q2
2

q2
1

dq2λ3=2ðm2
B;m

2
K� ;q2Þ½HVðq2ÞþHA1

ðq2ÞþHA12
ðq2Þ�

:

Our predictions for these observables, with the choice of q2

intervals following [80], are summarized in Table V. The
theoretical uncertainties of the q2-binned longitudinal K�
polarization fractions, ΔFL, are significantly smaller than
those of the branching ratio predictions, ΔBR, due to the
reduced sensitivity of the form-factor ratios to the precise
shapes of the B-meson distribution amplitudes.

V. SUMMARY

In this work, we have comprehensively investigated
subleading-power corrections to the B → K� form factors
up to twist six within the framework of light cone sum rules
(LCSR) with B-meson LCDAs. The corrections arise from
two-particle and three-particle B-meson higher-twist light
cone distribution amplitudes, power-suppressed terms in
the expansion of the strange quark propagator, the sub-
leading-power effective current q̄Γ½iD⊥=ð2mbÞ�hv in
HQET, and the four-particle twist-five and twist-six
B-meson LCDAs in the factorization approximation.
Incorporating the leading-power contribution at NLL

accuracy from Ref. [31] with our newly derived NLP
contributions, we ultimately obtain updated predictions for
the B → K� form factors with SCET sum rules in the large
recoil region. It is shown that power corrections account for
approximately a 30% correction to the tree-level result,
which is comparable to the NLL contribution. Moreover,
we reach a similar conclusion that the dominant source of
power corrections arises from the two-particle higher-twist
B-meson LCDAs as in Ref. [29], while the impact of the
four-particle corrections is numerically insignificant.
We employ a three-parameter model to describe the

B-meson LCDAs and adopt the conventional inverse
moment λB ¼ 350ð150Þ MeV. In addition, we estimate
the B → K� form factors by adopting the inverse moment
λB ¼ 389ð35Þ MeV from recent lattice QCD calculations
for comparison. The dominant uncertainties in the form
factors originate from the inverse moments λB and fσ1; σ2g.
In the future, lattice QCD studies may reduce the uncer-
tainties of the inverse moments by systematically inves-
tigating subleading-power contributions via this first
principle approach. By adopting the BCL parametrization
and performing a combined fit of the newly derived LCSR
predictions in the low q2 region and the lattice QCD results
in the high q2 region, we extrapolate the B → K� form
factors to the entire momentum region. We find that the
B → K� form factors derived from the combined fits
exhibit smaller uncertainties than those obtained solely
using lattice data points. Furthermore, the combined fits to
the LCSR and lattice QCD inputs for the B → K� form
factors not only provide predictions for the form factors that
are applicable across the entire kinematic range, but also
confirm the consistency of the two complementary methods
by ensuring their agreement at intermediate q2 values.
Having at our disposal the B → K� form factors in the
entire momentum region, we proceed to predict the differ-
ential decay widths for B → K�νlν̄l processes, including
long-distance effects in the charged B → K�νlν̄l decay. We
present the CKM-independent differential branching ratio
of B0 → K�0νlν̄l obtained from the combined fits, along-
side the lattice simulation result for comparison. The results

TABLE V. Theory predictions for the integrated differential observables ΔBRðq21; q22Þ, and ΔFLðq21; q22Þ obtained
from the exclusive B → K� form factors and additional long-distance contribution.

½q21; q22�ðin GeV2Þ 106 × ΔBRB0→K�0νl ν̄lðq21; q22Þ 106 × ΔBRBþ→K�þνlν̄lðq21; q22Þ ΔFLðq21; q22Þ
[0.0, 1.0] 0.23(5) 0.33(5) 0.93(2)
[1.0, 2.5] 0.40(7) 0.55(8) 0.79(4)
[2.5, 4.0] 0.46(8) 0.61(9) 0.67(5)
[4.0, 6.0] 0.71(12) 0.91(13) 0.57(5)
[6.0, 8.0] 0.83(13) 1.03(14) 0.48(5)
[8.0, 12.0] 1.99(26) 2.39(28) 0.40(4)
[12.0, 16.0] 2.22(20) 2.61(22) 0.33(2)
½16.0; ðmB −mK� Þ2� 1.26(6) 1.53(7) 0.31(1)
½0.0; ðmB −mK� Þ2� 8.09(96) 9.95(1.05) 0.44(4)
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with different fit data inputs are consistent with each
other, and the combined fits to the differential branching
ratio of B0 → K�0νlν̄l yield smaller uncertainties. Finally,
we obtain the branching ratios BRðB̄0 → K̄�0νlν̄lÞ ¼
8.09ð96Þ × 10−6, BRðB̄þ→K̄�þνlν̄lÞ¼9.95ð1.05Þ×10−6,
and the longitudinalK� polarization fraction FL ¼ 0.44ð4Þ.
For the b → s induced flavor-changing neutral current

processes, a crucial task is to improve the precision of
the B → K� form factors. It can be further improved
with respect to the following three aspects: developing
model-independent methods for accurately describing
the B-meson light cone distribution amplitudes; reduc-
ing the uncertainties in the nonperturbative input
parameters, such as the inverse moment λB of the
leading-twist B-meson LCDA; extending calculations
to next-to-next-to-leading order at leading power and
NLO at subleading power, and imposing stricter unitar-
ity bounds on the z-series parametrizations to further
constrain uncertainties.
Ultimately, we emphasize that our improved B → K�

form factors are crucial for investigating flavor-changing
neutral current processes and determining the branching
ratios of the electroweak penguin processes B → K�νlν̄l.
With the high luminosity Belle II experimental data

upcoming, our predictions will be further tested in the
future.
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APPENDIX A: HARD FUNCTION
FOR THE SCET CURRENTS AT OðαsÞ

Here we present the hard coefficient functions of A0-
type and B1-type SCETI currents in B → K� form factors
up to OðαsÞ

CðA0Þ
fþ ¼ 1þ αsCF

4π

�
−2ln2

�
r
μ̂

�
þ 5 ln

�
r
μ̂

�
− 2Li2ð1 − rÞ − 3 ln r −

π2

12
− 6

�
; ðA1Þ

CðA0Þ
f0

¼ 1þ αsCF

4π

�
−2ln2

�
r
μ̂

�
þ 5 ln

�
r
μ̂

�
− 2Li2ð1 − rÞ − 3 − 5r

1 − r
ln r −

π2

12
− 4

�
; ðA2Þ

CðA0Þ
fT

¼ 1þ αsCF

4π

�
−2 ln ν̂ − 2ln2

�
r
μ̂

�
þ 5 ln

�
r
μ̂

�
− 2Li2ð1 − rÞ − 3 − r

1 − r
ln r −

π2

12
− 6

�
; ðA3Þ

CðA0Þ
V ¼ 1þ αsCF

4π

�
−2ln2

�
r
μ̂

�
þ 5 ln

�
r
μ̂

�
− 2Li2ð1 − rÞ − 3 − 2r

1 − r
ln r −

π2

12
− 6

�
; ðA4Þ

CðA0Þ
T1

¼ 1þ αsCF

4π

�
−2 ln ν̂ − 2ln2

�
r
μ̂

�
þ 5 ln

�
r
μ̂

�
− 2Li2ð1 − rÞ − 3 ln r −

π2

12
− 6

�
; ðA5Þ

CðB1Þ
fþ ¼ ð−2þ 1=rÞ þOðαsÞ; CðB1Þ

f0
¼ ð−1=rÞ þOðαsÞ; ðA6Þ

CðB1Þ
fT

¼ ð1=rÞ þOðαsÞ; CðB1Þ
V ¼ 0þOðαsÞ; CðB1Þ

T1
¼ −1þOðαsÞ; ðA7Þ

where we introduced three variables

r ¼ n · p
mb

; μ̂ ¼ μ

mb
; ν̂ ¼ ν

mb
: ðA8Þ
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APPENDIX B: EFFECTIVE B-MESON DISTRIBUTION AMPLITUDES

For brevity, we introduce the effective B-meson distribution amplitudes ϕ−
B;eff , ϕ̃

−
B;eff and ϕþ

B;m absorbing the hard-
collinear fluctuations,

ϕ−
B;effðω0; μÞ ¼ ϕ−

Bðω0; μÞ þ αsCF

4π

�Z
ω0

0

dω

�
2

ω − ω0

�
ln

μ2

n · pω0 − 2 ln
ω0 − ω

ω0

��
⊕
ϕ−
Bðω; μÞ

−
Z

∞

ω0
dω

�
ln2

μ2

n · pω0 −
�
2 ln

μ2

n · pω0 þ 3

�
ln
ω − ω0

ω0 þ 2 ln
ω

ω0 þ
π2

6
− 1

�
dϕ−

Bðω; μÞ
dω

�
; ðB1Þ

ϕ̃−
B;effðω0;μ;νÞ¼ϕ−

Bðω0;μÞþαsCF

4π

�Z
ω0

0

dω

�
2

ω−ω0

�
ln

μ2

n ·pω0−2 ln
ω0−ω

ω0 −
1

2

��
⊕
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Bðω;μÞ

−
Z

∞

ω0
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�
ln2
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n ·pω0− ln
ν2
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�
2 ln
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�
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Bðω;μÞ
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; ðB2Þ

ϕþ
B;mðω0; μÞ ¼ αsCF

4π
mq

Z
∞

ω0
dω ln

ω − ω0

ω0
d
dω

ϕþ
B ðω; μÞ
ω

: ðB3Þ

The plus function that appeared in the above equations is defined by

Z
ω0

0

dω½fðω;ω0Þ�⊕gðωÞ ¼
Z

ω0

0

dωfðω;ω0Þ½gðωÞ − gðω0Þ�: ðB4Þ

APPENDIX C: DISPERSION INTEGRAL FORMULAS

After Borel transformation, the dispersion functions appearing in the factorization formulas of the B → K� form factors
are listed in the following:

f2;1½ϕðωÞ� ¼ −
Z

ωs

0

dωe−
ω
ωMϕðωÞ;

f2;2½ϕðωÞ� ¼ e−
ωs
ωMϕðωsÞ þ

Z
ωs

0

dω
e−

ω
ωM

ωM
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ωM
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þ
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ω2

e−
ω
ωM

ωM
ϕ

�
ω1;ω2;

ω − ω1

ω2

�
;

f3;3½ϕðω1;ω2; uÞ� ¼ −
1

2
e
−ωs
ωM

�Z
∞

ωs

dω2

ω2

ϕ

�
0;ω2;

ωs

ω2

�

þ
Z

ωs

0

dω1

Z
∞

ωs−ω1

dω2

ω2

�
d

dω1

þ 1

ωM

�
ϕ

�
ω1;ω2;

ωs − ω1

ω2

��

−
1

2ω2
M

Z
ωs

0

dω
Z

ω

0

dω1

Z
∞

ω−ω1

dω2

ω2

e
−ω
ωMϕ

�
ω1;ω2;

ω − ω1

ω2

�
; ðC1Þ

where ϕ stands for the general B-meson LCDAs or their combinations appearing in the function fi;j. The function fi;j
describes the contribution of terms in the form ϕðωÞ=ðω − � � �Þj, with ϕðωÞ being the i-particle LCDA and the denominator
raised to the j-th power.

APPENDIX D: MODELING THE B-MESON LCDAS

The general ansatz for leading- and higher-twist B-meson LCDAs at the reference scale μ0 ¼ 1 GeV [54] can be
systematically established in such a way that both tree-level equations of motion constraints and the normalization
conditions of the LCDAs [45,50] are satisfied:
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ϕþ
B ðωÞ ¼ ωFðω;−1Þ; ϕ−WW

B ðωÞ ¼ Fðω; 0Þ;

ϕ−t3
B ðωÞ ¼ 1

6
N ðλ2E − λ2HÞ½−ω2Fðω;−2Þ þ 4ωFðω;−1Þ − 2Fðω; 0Þ�;

ϕ3ðω1;ω2Þ ¼
1

2
N ðλ2E − λ2HÞω1ω

2
2Fðω1 þ ω2;−2Þ;

ĝþB ðωÞ ¼
1

4
½2ωðω − Λ̄ÞFðω; 0Þ þ ð3ω − 2Λ̄ÞFðω; 1Þ þ 3Fðω; 2Þ − 1

6
N ðλ2E − λ2HÞω2Fðω; 0Þ�;

ĝ−BðωÞ ¼
1

4
fð3ω − 2Λ̄ÞFðω; 1Þ þ 3Fðω; 2Þ

þ 1

3
N ðλ2E − λ2HÞω½ωðΛ̄ − ωÞFðω;−1Þ −

�
2Λ̄ −

3

2
ω

�
Fðω; 0Þ�g;

ϕ4ðω1;ω2Þ ¼
1

2
N ðλ2E þ λ2HÞω2

2Fðω1 þ ω2;−1Þ;
ψ4ðω1;ω2Þ ¼ N λ2Eω1ω2Fðω1 þ ω2;−1Þ; ψ̃4ðω1;ω2Þ ¼ N λ2Hω1ω2Fðω1 þ ω2;−1Þ;
ϕ5ðω1;ω2Þ ¼ N ðλ2E þ λ2HÞω1Fðω1 þ ω2; 0Þ; ψ5ðω1;ω2Þ ¼ −N λ2Eω2Fðω1 þ ω2; 0Þ;
ψ̃5ðω1;ω2Þ ¼ −N λ2Hω2Fðω1 þ ω2; 0Þ;
ϕ6ðω1;ω2Þ ¼ N ðλ2E − λ2HÞFðω1 þ ω2; 1Þ; ðD1Þ

where

N ¼ 1

3

βðβ þ 1Þ
αðαþ 1Þ

1

ω2
0

; Λ̄ ¼ 3

2

α

β
ω0;

Fðω; nÞ≡ ωn−1
0 Uðβ − α; 2 − n − α;ω=ω0Þ

ΓðβÞ
ΓðαÞ e

−ω=ω0 ; ðD2Þ

with Uða; b; zÞ as the hypergeometric U function. The appearing HQET parameters λ2E and λ2H at the reference scale
μ0 ¼ 1 GeV are defined by the matrix element of the local quark-gluon-quark operator,

h0jq̄ð0ÞgsGμνð0ÞΓhvð0ÞjB̄ðvÞi ¼ −
i
6
f̃BðμÞmBλ

2
HTr½γ5ΓPþσμν� −

1

6
f̃BðμÞmBðλ2H − λ2EÞTr½γ5ΓPþðvμγν − vνγμÞ�: ðD3Þ

The matrix element can be estimated adopting QCD sum rules yielding

λ2E ¼ 0.11� 0.06 GeV2; λ2H ¼ 0.18� 0.07 GeV2; ½45� ðD4Þ

λ2E ¼ 0.03� 0.02 GeV2; λ2H ¼ 0.06� 0.03 GeV2; ½91� ðD5Þ

λ2E ¼ 0.01� 0.01 GeV2; λ2H ¼ 0.15� 0.05 GeV2; ½92� ðD6Þ

where we take into account that the method used to estimate λ2E and λ2H, as discussed in Ref. [91], unfortunately not only
disrupts the convergence of the operator-product-expansion, but also enhances the contributions from the continuum and
higher excited states. Therefore, we will use the numerical results of λ2E and λ2H from Table I, which can cover the ranges
allowed by Refs. [45,92], and simultaneously satisfy the upper bounds imposed by Ref. [91].
We expect that the model for B-meson light cone distribution amplitudes is only valid in the small momenta region and

the inverse logarithmic moments are only sensitive to the small momentum behavior of the distribution amplitude.
Employing the definitions of inverse logarithmic moments of the leading-twist B-meson LCDA,
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1

λBðμÞ
¼

Z
∞

0

dω
ω

ϕþ
B ðω; μÞ;

σ̂nðμÞ
λBðμÞ

¼
Z

∞

0

dω
ω

lnn
e−γEλBðμÞ

ω
ϕþ
B ðω; μÞ; ðD7Þ

we can determine the parameters of the three-parameter
model for B-meson light cone distribution amplitudes in
Eq. (D1),

λBðμÞ ¼
α − 1

β − 1
ω0;

σ̂1ðμÞ ¼ ψðβ − 1Þ − ψðα − 1Þ þ ln
α − 1

β − 1
;

σ̂2ðμÞ ¼ σ̂21ðμÞ þ ψ 0ðα − 1Þ − ψ 0ðβ − 1Þ þ π2

6
; ðD8Þ

where γE and ψðxÞ denote the Euler-Mascheroni con-
stant and the digamma function, respectively. The scale
dependence of these moments at the one-loop level is
given by

λBðμ0Þ
λBðμÞ

¼ 1þ αsðμ0ÞCF

4π
ln

μ

μ0

�
2 − 2 ln

μ

μ0
− 4σ1ðμ0Þ

�
;

σ̂1ðμÞ ¼ σ̂1ðμ0Þ þ
αsðμ0ÞCF

4π
4 ln

μ

μ0
½σ̂21ðμ0Þ − σ̂2ðμ0Þ�:

ðD9Þ

Then we construct the LL resummation (evolution) for the
twist-two and three two-particle B-meson LCDAs. The
explicit expressions can be found in Ref. [54]:

ϕþ
B ðω; μÞ ¼ Uϕðμ; μ0Þ

1

ωpþ1

ΓðβÞ
ΓðαÞGðω; 0; 2; 1Þ;

ϕ−WW
B ðω; μÞ ¼ Uϕðμ; μ0Þ

1

ωpþ1

ΓðβÞ
ΓðαÞGðω; 0; 1; 1Þ;

ϕ−t3
B ðω; μÞ ¼ −

1

6
Ut3

ϕ ðμ; μ0ÞN ðλ2E − λ2HÞ
ω2
0

ωpþ3

ΓðβÞ
ΓðαÞ

�
Gðω; 0; 3; 3Þ

þ ðβ − αÞ
�
ω

ω0

Gðω; 0; 2; 2Þ − β
ω

ω0

Gðω; 1; 2; 2Þ − Gðω; 1; 3; 3Þ
��

; ðD10Þ

where p ¼ Γð0Þ
cusp

2β0
ln½αsðμÞ=αsðμ0Þ�, the twist-three two-particle LCDA ϕ−

Bðω; μÞ ¼ ϕ−WW
B ðω; μÞ þ ϕ−t3

B ðω; μÞ is a linear
combination of the (twist-two) Wandzura-Wilczek (WW) term and the genuine twist-three term, and

Gðω; l; m; nÞ≡G21
23

�
ω

ω0

����1;βþl

pþm;α;pþn

�
ðD11Þ

denotes the Meijer G function. The evolution factorsUϕðμ; μ0Þ andUt3
ϕ ðμ; μ0Þ are given explicitly at one-loop order [50,93],

Uϕðμ; μ0Þ ¼ expf−Γð0Þ
cusp

4β20

�
4π

αsðμ0Þ
�
ln r − 1þ 1

r

�
−

β1
2β0

ln2rþ
�
Γð1Þ
cusp

Γð0Þ
cusp

−
β1
β0

�
½r − 1 − ln r�

��
ðe2γEμ0Þ

Γð0Þcusp
2β0

ln rr
γ
ð0Þ
t2
2β0 ;

Ut3
ϕ ðμ; μ0Þ ¼ Uϕðμ; μ0Þjγð0Þt2 →γð0Þt2 þγð0Þt3

; ðD12Þ

where r ¼ αsðμÞ=αsðμ0Þ, ΓðiÞ
cusp are the cusp anomalous dimensions at various orders and

γð0Þt2 ¼ −2CF; γð0Þt3 ¼ 2Nc: ðD13Þ

Both evolution factors satisfy the boundary condition at the reference scale μ0:

Uϕðμ0; μ0Þ ¼ 1; Ut3
ϕ ðμ0; μ0Þ ¼ 1: ðD14Þ
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