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Motivated by the updated analysis of theG(3900) by the BESIII collaboration, we perform a global
analysis of the cross sections of the e+e− → DD̄, e+e− → DD̄∗ + c.c., e+e− → D∗D̄∗ processes,
especially focusing on the properties of the G(3900). As the energy region of interest is limited by
the next opening threshold, i.e. the D1D̄ threshold, we focus on the energy region [3.7, 4.25] GeV,
where three charmonia ψ(1D), ψ(3S) and ψ(2D) explicitly contribute to the cross sections. By
constructing the P -wave contact interaction between the (D,D∗) doublet and its antiparticle in the
heavy quark limit, we extract the physical scattering amplitude by solving the Lippmann-Schwinger
equation. No matter whether three or two charmonium states are included in our framework, we
always find a dynamically generated state corresponding to the G(3900), which suggests it to be
a P -wave dynamically generated state. We also predict several dynamically generated states in
the corresponding 1−+ channel. These states can be further searched for in the electron-positron
annihilation process involving the emission of a single photon.

I. INTRODUCTION

Electron-positron annihilation is one of the most im-
portant processes for shedding light on the dynamics of
the strong interaction. For instance, the number of colors
can be extracted from the ratio between the cross section
of the e+e− → hadrons process and that of the pure elec-
tromagnetic process e+e− → µ+µ−. Among the former
cross section, the open-charmed channels (either two-
body final states or many-body final states) take up the
largest fraction. The Belle [1], CLEO [2] and BaBar [3]
collaborations have measured the cross sections of a pair
of open charmed mesons. Recently, the BESIII collab-
oration measured the cross sections of two-body [4–6],
three-body [7, 8], and four-body [9] open charmed pro-
cesses more precisely. As the electron and the positron
annihilate into a virtual photon, this kind of process is
also the most important platform for studying the nor-
mal vector charmonia and exotic vector charmonium-like
states. For instance, these bring us to an opportunity
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to study the non-DD̄ decay width of the ψ(3770) [10–
13] and the time-like electromagnetic D∗ → D transi-
tion form factor [14]. Especially, the e+e− → DD̄ pro-
cess provides the most precise determination of the reso-
nance parameters of the ψ(3770) [12, 13, 15–20]. For vec-
tor charmonium-like states, the Y (4230)/Y (4260) [21–
23], Y (4360) [24, 25], Y (4660) [25, 26] are measured in
electron-positron annihilation process with different final
states.

Approximately twenty years ago, the Belle [1] and
BaBar [3, 27] collaborations measured the cross sec-
tion for the e+e− → DD̄ process. They both ob-
served a peak structure around

√
s = 3.9 GeV. In these

works, the peak is not associated to a resonance. The
BESIII Collaboration recently performed a precise mea-
surement of the Born cross sections for the e+e− → DD̄
process [4], which is consistent with previous results
from BaBar and Belle. Apart from the 1−− charmo-
nia ψ(3770), ψ(4040), ψ(4160), ψ(4360), ψ(4415) and
ψ(4660), they also observed a peak structure around
3.9 GeV. Its mass and width in the Breit-Wigner formal-
ism are 3872.5±14.2±3.0 MeV and 179.7±14.1±7.0 MeV,
respectively. Although the coupled-channel analysis of
the Belle and BESIII data could produce a peak struc-
ture around 3.9 GeV without requiring an additional new
state, accurately describing the nearby points appears
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to be highly challenging [19, 28]. In Ref. [15], a per-
turbative treatment of ψ(2S) − ψ(1D) mixing is carried
out within an effective Lagrangian approach, where the
authors interpret the G(3900) as a resonance but also
demonstrate that it can be explained by the D∗D̄ thresh-
old. Cao and Lenske have analyzed the line shape of
ψ(3770) using a coupled-channel T -matrix approach and
achieved a good fit to the experimental data, suggesting
that the broad structure G(3900) results from the distor-
tion of the ψ(3770) tail caused by theDD̄∗ threshold [17].
The K-matrix formalism is used to systematically study
e+e− → D(∗)D̄(∗) and e+e− → everything in Ref. [20].
The study indicates that no additional bare pole is need-
ed to explain the data near 3.9 GeV. In the scenario of
the one-boson-exchange (OBE) model, Lin et al. [29]
and Chen et al. [30] show that the existence of the S-
wave X(3872), Tcc(3875), Zc(3900) hadronic molecules
indicate the existence of a P -wave DD̄∗/D̄D∗ molecule
state, identified as the G(3900). Ref. [31] also assigns the
G(3900) to a P -wave DD̄∗/D̄D∗ resonance by the con-
tact interactions within the heavy quark spin symmetry
framework, with explicit inclusion of S-channel charmo-
nia contribution. Ref. [32] also obtains the same conclu-
sion by overall fitting to the lineshapes in various chan-
nels as well as the invariant distributions of their sub-
systems. Although the later references suggest that the
G(3900) can be accepted as the P -wave DD̄∗ resonance,
it does not answer the question whether the G(3900) is a
dynamically generated state or a renormalized bare char-
monium state. Another question is whether the existence
of the G(3900) is model-dependent or not.
To answer the above questions, we construct the

contact potential for the P -wave scattering between
the (D,D∗) doublet and its antiparticle in the heavy
quark limit and extract the scattering amplitudes of the
e+e− → DD̄, e+e− → D∗D̄ + c.c., e+e− → D∗D̄∗ by
solving Lippmann-Schwinger equation (Sec. II). The nu-
merical results and discussions follow as Sec. III. The
summary and outlook is given in Sec. IV).

II. FORMALISM

The formalism of this work is an SU(3) exten-
sion of that in Ref. [31], in which SU(2) flavor sym-
metry is adopted. Considering the recent progress-
es from the experimental side, i.e. the measure-
ments of the e+e− → D+

s D
−
s [33, 34] and e+e− →

D∗+
s D∗−

s [6] cross sections, we also include the charm-
strange meson pair contribution explicitly (as discussed
in the following). More specifically, the e+e− →
D(∗)+D(∗)−, D(∗)0D̄(∗)0, D

(∗)+
s D

(∗)−
s cross sections with-

in the energy region [3.7, 4.25] GeV are investigated.
Firstly, we present the transformation from the hadronic
basis to the SU(3) flavor singlet and octet basis, as well
as the isospin triplet basis. Based on the transformation,
we can construct the contact potentials with respect to
the Heavy Quark Spin Symmetry (HQSS). With these
contact potentials, we can solve the Lippmann-Schwinger
equation (LSE) to obtain the production amplitudes. In
Subsection IIC, we deduce the cross sections formula for
the direct comparison with the experimental data.

A. Transformation between the SU(3) flavor
symmetry basis and P -wave hadronic basis

Before going into details, we adopt several conven-
tions to facilitate the representation of physical quanti-
ties. Unless otherwise specified in the text, (D(∗)D̄(∗))an
denotes charmed meson pairs, with a = d, u, s denoting
the light quarks in the charmed meson pairs (ca)(c̄ā) and
n = 1, 2, 3, 4 representing different charmed meson pairs
DD̄, DD̄∗, D∗D̄∗

S=0 and D∗D̄∗
S=2. Here, the subindex

S of the later two cases is the total spin of the two
charmed meson pairs. For instance, (D(∗)D̄(∗))d1 denotes
the charmed meson pair D+D−. (D(∗)D̄(∗))a denotes all
the four charmed meson pairs with light quark pairs a.
With these conventions, the hadronic basis can be writ-
ten as |D(∗)D̄(∗)⟩an. Similarly, the SU(3) flavor basis can
be written as |D(∗)D̄(∗)⟩in, where the index i = 0, 8, 1 rep-
resents SU(3) singlet 0, the zero components of octet 800

and isospin triplet 110, in order, where the superscripts
denote the isospin I and its third component, respective-
ly. Similarly, if the index n is absent, |D(∗)D̄(∗)⟩i denotes
all the four charmed meson pairs of the SU(3) represen-
tation i.

As we consider the cross sections of the charmed me-
son pairs in electron-positron annihilation, only the third
component of various SU(3) flavor representations is pro-
duced. As a result, we present the third components of
SU(3) singlet and octet as

|0⟩ = 1√
3

(
|dd̄+ uū+ ss̄⟩

)
, (1)

|8⟩ = 1√
6

(
|dd̄+ uū− 2ss̄⟩

)
, (2)

and the third component of the isospin triplet

|1⟩ = 1√
2
(|dd̄− uū⟩). (3)

The above equations transform into charmed meson pair
basis as

|D(∗)D̄(∗)⟩0 =
1√
3

(
|D(∗)+D(∗)−⟩+ |D(∗)0D̄(∗)0⟩+ |D(∗)+

s D(∗)−
s ⟩

)
, (4)
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|D(∗)D̄(∗)⟩8 =
1√
6

(
|D(∗)+D(∗)−⟩+ |D(∗)0D̄(∗)0⟩ − 2|D(∗)+

s D(∗)−
s ⟩

)
, (5)

|D(∗)D̄(∗)⟩1 =
1√
2

(
|D(∗)+D(∗)−⟩ − |D(∗)0D̄(∗)0⟩

)
. (6)

With the above formulae, one can easily transform from
the hadronic basis to the SU(3) flavor basis.

For a given SU(3) representation, one can perform a
heavy-light decomposition to obtain the contact poten-
tials. In the HQSS limit, the heavy and light degrees of
freedom are conserved individually. The former one is re-
flected by the total spin sQ of the heavy quark pair. The
latter one is the sum of the total spin sq of light quark pair
and the relative orbital angular momentum l between the
two hadrons. Therefore, it is convenient to decompose a
charmed meson pair |l([sl1sQ1

]j1 [sl2sQ2
]j2)s⟩J into the

heavy-light basis |(l [sl1sl2 ]sq )sl [sQ1
sQ2

]sQ⟩J , which can

be simplified as |sQ ⊗ sl⟩J . Here, sli , sQi
and ji are the

spin of the light quark plus the relative orbital angular
momentum l, the heavy quark spin and the total angu-
lar momentum of the ith mesons, respectively. With this
convention, the decomposition read [31, 35]

|l([sl1 sQ1
]j1 [sl2sQ2

]j2)s⟩J

=
∑

sl,sQ,sq

(−1)l+sq+sQ+J ŝq ŝQĵ1ĵ2ŝŝl

 sl1 sQ1 j1
sl2 sQ2 j2
sq sQ S


×
{

l sq sl
sQ J S

}
|(l [sl1sl2 ]sq )sl [sQ1

sQ2
]sQ⟩J

=
∑

sl,sQ,sq

(−1)l+sq+sQ+J ŝq ŝQĵ1ĵ2ŝŝl

 sl1 sQ1
j1

sl2 sQ2
j2

sq sQ S


×
{

l sq sl
sQ J S

}
|sQ ⊗ sl⟩J , (7)

with ĵ =
√
2j + 1. In the Eq.(7), S and l denote the

total spin of the two-meson system and its relative or-
bital angular momentum, respectively, J = l + S is the
total angular momentum. As the charmed meson pair
D(∗)D̄(∗) couple to virtual photon, i.e. JPC = 1−−, is
in P -wave. The corresponding decompositions can be
obtained from the above equation

|DD̄⟩i1−− =pi
(
DD̄

)
=

1

2
|0⊗ 1⟩i + 1

2
√
3
|1⊗ 0⟩i − 1

2
|1⊗ 1⟩i + 1

2

√
5

3
|1⊗ 2⟩i, (8)

∣∣DD̄∗ + c.c.
〉i
1−− =

i

2
ϵijkpj

(
D∗

kD̄ − D̄∗
kD
)
= − 1√

3
|1⊗ 0⟩i + 1

2
|1⊗ 1⟩i + 1

2

√
5

3
|1⊗ 2⟩i, (9)

∣∣D∗D̄∗〉i s=0

1−− =
pi√
3

(
D∗

j D̄
∗
j

)
=

1

2

√
3|0⊗ 1⟩i − 1

6
|1⊗ 0⟩i + 1

2
√
3
|1⊗ 1⟩i −

√
5

6
|1⊗ 2⟩i, (10)

∣∣D∗D̄∗〉i s=2

1−− =

√
3

5

pk
2

(
D∗

i D̄
∗
k + D̄∗

iD
∗
k − 2

3
δikD

∗
j D̄

∗
j

)
=

√
5

3
|1⊗ 0⟩i + 1

2

√
5

3
|1⊗ 1⟩i + 1

6
|1⊗ 2⟩i, (11)

which can be represented as a compact transformation
matrix

C1−−
=



1
2

1
2
√
3

− 1
2

1
2

√
5
3

0 − 1√
3

1
2

1
2

√
5
3

1
2

√
3 − 1

6
1

2
√
3

−
√
5
6

0
√
5
3

1
2

√
5
3

1
6


. (12)

The wave functions on the left side of Eqs. (8)-(11), are
the hadronic basis with p⃗ the three momentum of final
particle in the center-of-mass frame. The wave functions

on the right side are in the heavy-light basis. One can
easily check that these bases are normalized and orthogo-
nal to each other from both the heavy-light basis and the
hadronic basis [31, 35] in Eqs. (8)-(11). In the hadron
basis, one can see that the wave functions are normal-
ized to |p⃗|2. The positive sign in |DD̄∗ + c.c.⟩i1−− is re-
lated to the C-parity, where we adopt the convention

D
C−→ D̄, D∗ C−→ −D̄∗. The transformation between

hadronic basis |D(∗)D̄(∗)⟩a and SU(3) flavor symmetry
basis |D(∗)D̄(∗)⟩i is

[|D(∗)+D(∗)−⟩d, |D(∗)0D̄(∗)0⟩u, |D(∗)+
s D(∗)−

s ⟩s]T

= R[|D(∗)D̄(∗)⟩0, |D(∗)D̄(∗)⟩8, |D(∗)D̄(∗)⟩1]T , (13)
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where the transformation matrix R is

R =


1√
3

1√
6

1√
2

1√
3

1√
6

−1√
2

1√
3

−2√
6

0

⊗ 14×4, (14)

with 14×4 the 4× 4 identity matrix.

In the HQSS limit, one can define the low-energy con-
stants

Ci
1 ≡ i⟨0⊗ 1|HCT |0⊗ 1⟩jδij , (15)

Ci
2 ≡ i⟨1⊗ 0|HCT |1⊗ 0⟩jδij , (16)

Ci
3 ≡ i⟨1⊗ 1|HCT |1⊗ 1⟩jδij , (17)

Ci
4 ≡ i⟨1⊗ 2|HCT |1⊗ 2⟩jδij , (18)

where the repeated indices do not imply summation.
Here, HCT represents the leading order Hamiltonian
which respects HQSS. Since we focus on the energy region
[3.7, 4.25] GeV, only the leading order contact potentials
Ci

1,2,3,4 are considered as constants within such a small
energy region. The contact potentials read

V i
nn′ = i

n⟨D(∗)D̄(∗)|HCT |D(∗)D̄(∗)⟩jn′δij . (19)

Substituting Eq. (8)-Eq. (11) into Eq. (19) and combining
with Eq. (15)-Eq. (18), one can obtain the explicit form
of V i

nn′

V i
11 =

1

4
Ci

1 +
1

12
Ci

2 +
1

4
Ci

3 +
5

12
Ci

4, V i
12 = −1

6
Ci

2 −
1

4
Ci

3 +
5

12
Ci

4,

V i
13 =

√
3

4
Ci

1 −
1

12
√
3
Ci

2 +

√
3

12
Ci

3 −
5
√
3

36
Ci

4, V i
14 =

1

6

√
5

3
Ci

2 −
1

4

√
5

3
Ci

3 +
1

12

√
5

3
Ci

4,

V i
22 =

1

3
Ci

2 +
1

4
Ci

3 +
5

12
Ci

4, V i
23 =

1

6
√
3
Ci

2 +
1

4
√
3
Ci

3 −
5

12
√
3
Ci

4,

V i
24 = −1

3

√
5

3
Ci

2 +
1

4

√
5

3
Ci

3 +
1

12

√
5

3
Ci

4, V i
33 =

3

4
Ci

1 +
1

36
Ci

2 +
1

12
Ci

3 +
5

36
Ci

4,

V i
34 = −

√
5

18
Ci

2 +

√
5

12
Ci

3 −
√
5

36
Ci

4, V i
44 =

5

9
Ci

2 +
5

12
Ci

3 +
1

36
Ci

4. (20)

Since V i is a symmetric 4× 4 matrix, we only show the
elements Vnn′ with n < n′. One might have noticed that
the D(∗)D̄(∗) pairs are formed to a JPC = 1−− state in
P -wave, which should encode a momentum dependence
in each vertex, reflecting the P -wave interaction. Here,
we use a separable contact interaction. The momentum
in the loop is contained in the two-point propagator, and
the momentum dependence of the external particles is
contained in the amplitude, which will be discussed af-
terwards. The contact potentials in the SU(3) flavor basis
reads

VCT =

 V 0

V 8

V 1

 , (21)

where V 0, V 8 and V 1 are 4× 4 matrices whose elements
are given by the Eq. (20).

Within the energy region of interest [3.7, 4.25] GeV,
there are three vector charmonia, i.e. ψ(1D), ψ(3S),
ψ(2D). The vector charmonium ψ(2S) is slightly below
the DD̄ threshold and might also affect the cross sec-
tions of two charmed meson pairs. However, we have
checked that its effect is marginal and we neglect its
contribution in our framework. In this case, the vector
charmonia ψ(1D), ψ(3S) and ψ(2D) are included one by

one. As a result, we consider three different frameworks,
i.e. the coupled-channel effect with the three vector char-
monia (Model I), two vector charmonia (Model II), and
one vector charmonium (Model III). From the experi-
mental side, one can see significant contributions of the
ψ(1D) and ψ(3S) in the e+e− → D+D−/D0D̄0 [1, 36]
and e+e− → D+D̄∗− [5, 37] processes, respectively.
Therefore, we need to consider Model I and Model II,
without focusing on Model III. The S-wave and D-wave
charmonia can be expressed in terms of heavy-light ba-
sis |1 ⊗ 0⟩ and |1 ⊗ 2⟩, respectively. As these charmonia
are SU(3) flavor singlet, we define the coupling constants
between charmonia and the open charmed channels

g01D ≡ 0⟨1⊗ 2|Hbare|1⊗ 2⟩01D, (22)

g03S ≡ 0⟨1⊗ 0|Hbare|1⊗ 0⟩03S , (23)

g02D ≡ 0⟨1⊗ 2|Hbare|1⊗ 2⟩02D. (24)

The heavy-light structures |1 × 2⟩01D, |1 × 0⟩03S and
|1 × 2⟩02D corresponds to ψ(1D), ψ(3S) and ψ(2D), re-
spectively. Hbare is the Hamiltonian density describ-
ing the interaction between the bare state and the open
charmed meson pair, with the corresponding potential

V 0
cc̄ nj =

0
n⟨D(∗)D̄(∗)|Hbare|j⟩0, (25)
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where j = 1, 2, 3 (j = 1, 2) denote charmonia ψ(1D),
ψ(3S), ψ(2D) for Model I (ψ(1D), ψ(3S) for Model II).

B. The Lippmann-Schwinger equation

In total, there are 12 + α channels in our framework,
with 12 open charmed channels and α bare vector char-
monium states (α = 3 or 2, depending on the Moldel I or
II). The Lippmann-Schwinger equation (LSE) reads as

T (E) = V + V G(E)T (E), (26)

where E is the total energy in the center-of-mass (c.m.)
frame. V and G(E) denote the potential and two-point
loop function matrices. The potential V reads as

V =

(
[Voo]12×12 [Vob]12×α

[Vbo]α×12 0α×α

)
, (27)

where Voo represents the contact potential between two
charmed meson channels, and Vob denotes the inter-
action between the bare vector charmonium and the
charmed meson pairs. The two-point function matrix
G(E) reads [38]

G(E) =

(
diag

[
Gii

CT (E)
]
12×12

012×α

0α×12 diag [Gcc̄(E)]α×α

)
,

(28)

with

Gii
CT (E) =

∫
d3q⃗

(2π)3
q2f2Λ

(
q2
)

E −mi1 −mi2 − q2/(2µ) + iε+

= − µΛ

(2π)3/2

(
k2 +

Λ2

4

)
+
µk3

2π
e−2k2/Λ2

[
erfi

(√
2k

Λ

)
− i

]
,

Gcc̄(E) =
1

E2 −m2 + iε+
, (29)

where m and Λ denote the charmonium bare mass and
cutoff, respectively. mi1 and mi2 are the meson masses
involved in the ith channel. Here, we take the Gaussian
form factor fΛ(q

2) = exp(−q2/Λ2). The momentum q2

in the numerator reflects the P -wave interaction between
the charmed meson pairs. More details of the P -wave
two-point function Gii

CT (E) can be found in App. C. We
employ the nonrelativistic Green function because the
relevant dynamics occur near thresholds. The relativis-
tic correction can be estimated by p2/4(2µ)2 with p and
µ the c.m. three momentum and reduced mass of a giv-
en channel. This estimate is from the expansion of the

energy E = m + p2

2m + 1
8m

p4

m4 + · · · in terms of momen-
tum and mass, where ratio between the third term and
the second term is p2/4m2. For the two-body channel,
we replace the mass m by 2µ. This value for the lowest
channel at the highest energy is about 0.06 at the ampli-
tude level, which means that the relativistic correction
is at most 1.062 − 1 = 12% for physical quantities. On
the other hand, both the relativistic and non-relativistic
expressions should be compared with the experimental
data. At the end, part of this correction will be absorbed
into the redefinition of the model parameters. From this
point of view, 12% is the maximum estimate of the rela-
tivistic correction. This indicates that the nonrelativistic
approximation remains valid for the majority of channels
throughout the energy region of interest. Although rela-
tivistic effects may become significant in energy regions
far from the thresholds, they do not affect the physical
results near the thresholds. Substituting Eq. (27) and
Eq. (28) into Eq. (26), one can obtain

(
[Too]12×12 [Tob]12×α

[Tbo]α×12 [Tbb]α×α

)
=

(
[Voo + VooGCTToo + VobGcc̄Tbo]12×12 [Vob + VooGCTTob + VobGcc̄Tbb]12×α

[Vbo + VboGCTToo]α×12 [VboGCTTob]α×α

)
, (30)

where Too denotes the scattering amplitudes between
charmed meson pairs. Tob denotes the scattering ampli-
tudes between the charmonium and the charmed meson
pair, with Tbo describes the inverse process of Tob, and
GCT = diag

[
Gii

CT (E)
]
12×12

. Plugging the Tbo into Too,

one obtains

Too(E) = V̂ eff
oo + V̂ eff

oo GCT (E)Too(E), (31)

where the effective potential is defined as V̂ eff
oo ≡ Voo +

VobGcc̄Vbo. It is easy to see that

Too(E) =

[[
V̂ eff
oo (E)

]−1

−GCT (E)

]−1

(32)

by solving algebraic LSE. To ensure unitarity of the T -
matrix, the Gaussian form factor fΛ(p) appearing in the
two-point loop function Gii

CT (E) should also contribute
to the above T -matrix as 1

Too(E) = fΛ(p)

[[
V̂ eff
oo (E)

]−1

−GCT (E)

]−1

fΛ(p
′).

(33)

1 This form factor can also be added to each vertex in the potential
alternatively, instead in the two-point loop and external particles,
to satisfy the unitarity is automatically.
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Since these charmonia only couple to the SU(3) flavor
singlet, the effective potential can be represented as

V̂ eff′

oo =

 V 0 + V 0
cc̄Gcc̄V

0
cc̄

T

V 8

V 1

 . (34)

In contrast to the effective potential (Eq. (33)) in particle
basis, Eq. (34) is expressed in the SU(3) flavor basis. One

needs to transform V̂ eff′

oo into particle basis

V̂ eff
oo = RV̂ eff′

oo R−1, (35)

with the transformation matrix R given in Eq. (14).
Substituting Eq. (35) into Eq. (33), one can obtain the
full mesonic T -matrix for the coupled-channel system
(D(∗)D̄(∗))a containing the contributions from bare char-
monium states.

C. The physical production amplitude and cross
section

Analogous to the LSE, the physical production ampli-
tude reads

U(E) = F + V G(E)U(E), (36)

where F = ([Fo]
T
12×1 , [fb]

T
n×1)

T is the bare production
amplitude. The Fo matrix is the bare production be-
tween the virtual photon and charmed meson pair. The
fb matrix is the bare production between the virtual pho-
ton and the charmonia. Similarly, plugging Eq. (27) and
Eq. (28) into Eq. (36), one obtains the physical produc-
tion explicitly(

[Uo]12×1

[Ub]α×1

)
=

(
[Fo + VooGCTUo + VobGcc̄Ub]12×1

[fb + VboGCTUo]α×1

)
,

(37)

where Uo and Ub represent the physical production am-
plitudes for the charmed meson pairs and the involved
charmonia, respectively. Substituting Ub into Uo, one
we get the physical production amplitude for the open
charmed channels

Uo(E) = (112×12 − V̂ eff
oo GCT (E))−1F̂ eff

o , (38)

with F̂ eff
o ≡ Fo + VobGcc̄fb the effective bare production

amplitude. Analogous to that for T -matrix, the Gaussian
form factor fΛ(p) is introduced to regularize the integral.
As the result, Eq. (39) can be rewritten as

Uo(E) = fΛ(p)(112×12 − V̂ eff
oo GCT (E))−1F̂ eff

o . (39)

As the standard QED vertex between the virtual photon
and the cc̄ state can be decomposed into both S-wave
and D-wave cc̄ pairs [39, 40], one can define the coupling

(b)

FIG. 1: Feynman diagram for the processes
e+e− → (D(∗)D̄(∗))a.

between the virtual photon and the m-th open charmed
channel in the same SU(3) flavor basis as

F i
m ≡ C1−−

m2 f iS + C1−−

m4 f iD, (40)

with m = 1, 2, 3, 4, and f iS ≡ i⟨1 ⊗ 0|HEM|γ∗⟩i, f iD ≡
i⟨1 ⊗ 2|HEM|γ∗⟩i. Here, HEM is the electromagnetic
Hamiltonian density describing the interaction between
the virtual photon and vector charmonia. The explic-
it form of the bare production (for Model I) amplitude
reads

F = ([Fo]
T
12×1 , [fb]

T
3×1)

T

= (
[
F 0
]T
4×1

,
[
F 8
]T
4×1

,
[
F 1
]T
4×1

, [fb]
T
3×1)

T , (41)

where F i = (F i
1, F

i
2, F

i
3, F

i
4)

T and fb = (f01D, f
0
3S , f

0
2D)T

for Model I (fb = (f01D, f
0
3S)

T for Model II) which is
the couplings between the virtual photon and charmonia.
The effective bare production amplitude is given by

F̂ eff′

o =


[
F 0 + VobGcc̄fb

]
4×1[

F 8
]
4×1[

F 1
]
4×1

 . (42)

Similarly, we need to transform F̂ eff′

o in Eq.(42) into the
particle basis representation

F̂ eff
o = RF̂ eff′

o . (43)

Substituting Eq. (35) and Eq. (43) into Eq. (39), one can
obtain the physical production amplitude for the open
charmed channel containing the three charmonia. The
process e+e− → (D(∗)D̄(∗))an is shown in Fig. 1, and the
scattering amplitude for the n-th process is given by

Ma
n = v̄(p+)(−ieγµ)u(p−)

−igµν

s+ iε+
Aa

nν , (44)

where p+(p−) is the four-momentum of the positron
(electron) and s is the square of the center-of-mass en-
ergy. Aa

nν is the physical production amplitude with ν
the polarization index. Then the square of the scattering
amplitude is
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|Ma
n|2 =

1

2

∑
r

1

2

∑
s

∑
λ

∑
λ′

|Ma
n|2 =

e2

4s2

∑
r

∑
s

∑
λ

∑
λ′

v̄r(p+)γ
νus(p−)ū

s(p−)γ
ν′
vr(p+)A

a
nνA

a∗
nν′

= −4πα

s2

∑
λ

∑
λ′

(
1

2
sgij + 2pi+p

j
+)A

a
niA

a∗
nj (i, j = 1, 2, 3), (45)

where we average over the initial electron and positron
spins and sum over the polarization of the final charmed
meson. ThenAai

n is given by [35, 41, 42] (also see App. A)

Aai
1 = Ua

1 (pD̄a
− pDa

)i, (46)

Aai
2 = Ua

2 ϵ
ijk(pD̄a

− pD∗
a
)jε

∗
λk, (47)

Aai
3 =

1√
3
Ua
3 (pD̄∗

a
− pD∗

a
)iε∗αλ ε∗λ′α, (48)

Aai
4 =

√
3

5
Ua
4P

ij,mn
2 (pD̄∗

a
− pD∗

a
)jε

∗
λmε

∗
λ′n, (49)

with P ij,mn
2 = 1

2δ
imδjn+ 1

2δ
inδjm− 1

3δ
ijδmn. Here, p

D
(∗)
a

and ε∗ are the four-momentum and the polarization vec-
tor of the charmed meson, respectively. The momentum
dependence in the above four equations reflects the P -
wave interaction of the charmed meson pairs. More de-
tail can be found in App. A. Substituting Eqs. (46)-(49)
into Eq. (45), one can obtain the explicit form of the
corresponding amplitudes squared

|Ma
1 |2 =

8πα

s
|pDa |2|Ua

1 |2(1− cos2θ), (50)

|Ma
2 |2 =

8πα

s
|pDa |2|Ua

2 |2(1 + cos2θ), (51)

|Ma
3 |2 =

8πα

s
|pD∗a |2|Ua

3 |2(1− cos2θ), (52)

|Ma
4 |2 =

28πα

5s
|pD∗a |2|Ua

4 |2(1−
1

7
cos2θ), (53)

with the fine-structure constant α = e2

4π . Here, θ is the
relative angle between the incoming electron and out-
going charmed meson. More details can be found in
Appendix B. For the two-body scattering, the differential
cross section is given by

dσa
n

dcosθ
=

|pD(∗)a |
16πs3/2

|Ma
n|2. (54)

One can obtain the total cross section

σa
1 =

2α|pDa |3

3s5/2
|Ua

1 |2, (55)

σa
2 =

4α|pDa |3

3s5/2
|Ua

2 |2, (56)

σa
3 =

2α|pD∗a |3

3s5/2
|Ua

3 |2, (57)

σa
4 =

2α|pD∗a |3

3s5/2
|Ua

4 |2, (58)

by plugging Eqs. (50)-(53) into Eq. (54) and integrating
over the angle θ.

D. The 1−+ P -wave coupled channel system

The scattering between two heavy-quark-spin multi-
plets can be described by the same set of low-energy
constants, which relates the dynamics of various sys-
tems to each other. For the P -wave scattering between

the sPl = 1
2

−
doublet, i.e. (D,D∗) doublet, and its

anti-doublet, there is also JPC = 1−+ exotic quantum
number [31, 43] in addition to the vector channel, i.e.
JPC = 1−−. For this exotic quantum number, which is
beyond the conventional quark model, there is no con-
ventional charmonium coupling to this channel. The dy-
namic of this quantum number is described by the low-
energy constants. Similarly to that in vector channel, the
1−+ hadronic basis can be represented by the heavy-light
basis as

|DD̄∗ + c.c.⟩i1−+ = − 1√
2
|0⊗ 1⟩i + 1√

2
|1⊗ 1⟩i, (59)

|D∗D̄∗⟩i s=1
1−+ =

1√
2
|0⊗ 1⟩i + 1√

2
|1⊗ 1⟩i, (60)

where only |0⊗ 1⟩i and |1⊗ 1⟩i components appear. The
contact potential reads

V 1−+

=

 V 0
1−+

V 8
1−+

V 1
1−+

 , (61)

where V i
1−+ is given by

V i
1−+ =

(
Ci

1

2 +
Ci

3

2 −Ci
1

2 +
Ci

3

2

−Ci
1

2 +
Ci

3

2
Ci

1

2 +
Ci

3

2

)
, (62)

which is represented in the SU(3) flavor basis. Similarly,
we need to transform the above contact potential into
the particle basis

V 1−+

CT = R′

(
Ci

1

2 +
Ci

3

2 −Ci
1

2 +
Ci

3

2

−Ci
1

2 +
Ci

3

2
Ci

1

2 +
Ci

3

2

)
R′−1, (63)

with

R′ =


1√
3

1√
6

1√
2

1√
3

1√
6

−1√
2

1√
3

−2√
6

0

⊗ 12×2. (64)
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(a)

threshold

Re E

Im E (b)

Re k

Im k

FIG. 2: Pole positions on the complex energy E-plane
(left) and momentum k-plane (right). The red line on
the real axis represents the energy region above the
threshold. The green solid circle represents a bound
state, located below the threshold on the physical RS,
the blue hollow triangle denotes a virtual state, located
below the threshold on the unphysical RS, and the
orange square represents a resonance state, located
above the threshold on the unphysical RS, with a
non-zero imaginary part.

The T -matrix of 1−+ system is given by

T (E)1−+ = fΛ(p)

[[
V 1−+

CT

]−1

−GCT (E)

]−1

fΛ(p
′).

(65)

One can also study the pole structure of the 1−+

system through the T -matrix, which involves solving

det
[
16×6 − V 1−+

CT GCT (E)
]
= 0.

III. RESULTS AND DISCUSSION

In this section, we perform a global fit to the latest
experimental cross sections of the e+e− → DD̄ [1, 4, 36],
e+e− → D∗D̄ + c.c. [5, 37], e+e− → D∗D̄∗ [5, 37] pro-
cesses within the energy region [3.7, 4.25] GeV. More
specifically, we fit the cross sections of the eight processes

e+e− → (DD̄)u,d,s, (DD̄∗)d, (D∗D̄∗)d,sS=0,2. The fitting is

performed by imimuit [44] with over 1000 starting values
to find the global minimum value. The fitted cross sec-
tions and the dynamical parameters governing the scat-
tering amplitudes Eq. (26) (and thus the pole positions)
of the two models are presented in Fig. 3 and Tab. I. The
other parameters are listed in Table VII of App. D.

From Fig. 3, one can see significant contributions of the
ψ(3770) in the D+D− and D0D̄0 channels. The signals
of the ψ(4040) in the D+D∗− and D+

s D
−
s channels are

more pronounced than that in the DD̄ channel. Whether
the vector chamronium-like state G(3900) exists or not
needs further pole analysis. As shown in the standard-
ized residual plot in Fig. 3, a large proportion of the
standardized residuals are distributed within the inter-
val [-3, 3]. Figures (a), (b), (e), and (f) show that the

TABLE I: The dynamical parameters governing the
scattering amplitudes Eq. (26) in the fitting.

Parameters Model I Model II

g01D [GeV−1] 0.66± 0.04 −12.93± 0.26

g03S [GeV−1] −14.66± 0.37 −14.11± 0.96

g02D [GeV−1] −17.09± 0.23 −

m0
1D [GeV] 3.807± 0.001 3.804± 0.001

m0
3S [GeV] 4.229± 0.002 4.253± 0.005

m0
2D [GeV] 3.692± 0.003 −

Λ [GeV] 0.50± 0.00 0.50± 0.00

χ2/d.o.f. 2.17 2.66

standardized residuals are approximately randomly dis-
tributed around zero, suggesting that the fit is satisfacto-
ry. However, there are more standardized residuals below
zero than above in Figures (c) and (d), a similar results
also observed in Ref. [20]. This result can be attributed
to two main reasons. First, there exist significant dis-
crepancies between the data points of BESIII and Belle
collaborations in certain regions for the e+e− → D+D∗−

and e+e− → D∗+D∗− processes, which reduces the qual-
ity of the fit and prevents the standardized residuals from
being randomly distributed around zero. Secondly, un-
der the consideration of coupled-channel effects, there
is still a deviation from the experimental data in the
e+e− → D+D∗− and e+e− → D∗+D∗− channels for
both the LSE and the K-matrix approaches. The pro-
jection of all standardized residuals onto the vertical axis
yields a distribution that closely resembles a Gaussian
distribution which are presented in Figs. 10 and 11 in
App. F. The standardized residuals of Model I show a
slight deviation from the Gaussian distribution, which
may indicate mild overfitting. In comparison, the resid-
uals of Model II are more consistent with a Gaussian
distribution, suggesting a higher quality of fit. Overall,
the fitting performance of both models remains within
an acceptable range.

In Tab. I, the parameters g01D, g03S and g02D denote
the bare couplings between the charmonia ψ(1D), ψ(3S)
and ψ(2D) and an open charmed meson pairs. m0

1D,
m0

3S and m0
2D represent the bare mass of ψ(1D), ψ(3S)

and ψ(2D), respectively. Λ is the cutoff parameter in
the two-point loop function. The reduced chi-squares
are χ2/d.o.f = 2.17 and χ2/d.o.f = 2.66 for Model I and
Model II, respectively, which indicates that an addition-
al bare vector charmonium state greatly optimizes the fit
result. With the fitted parameters, we can extract the
physical quantities of interest, such as pole positions in
the complex E-plane, the effective couplings, and so on.
With the fitted parameters, we can extract the physical
quantities of interest, such as pole positions in the com-
plex E-plane, the effective couplings, and so on.



9

0

1

2

3

4

(e
+

e
D

+
D

)  
(n

b)

(a) Model I
Model II
BESIII
BESIII
Belle

3.7 3.8 3.9 4.0 4.1 4.2
E  (GeV)

5

0

5

(f
it-

da
ta

)/

0

1

2

3

4

5

6

(e
+

e
D

0 D
0 ) 

 (n
b)

(b) BESIII 
BESIII
Belle

3.7 3.8 3.9 4.0 4.1 4.2
E  (GeV)

5

0

5

(f
it-

da
ta

)/

0

1

2

3

4

5

6

(e
+

e
D

+
D

*
)  

(n
b)

(c) Belle 
BESIII

3.7 3.8 3.9 4.0 4.1 4.2
E  (GeV)

5

0

5

(f
it-

da
ta

)/

0.0

0.2

0.4

0.6

(e
+

e
D

+ s
D

s
)  

(n
b)

(d) BESIII
BaBar

3.7 3.8 3.9 4.0 4.1 4.2
E  (GeV)

5

0

5

(f
it-

da
ta

)/

0

1

2

3

4

(e
+

e
D

*+
D

*
)  

(n
b)

(e)

Belle
BESIII

3.7 3.8 3.9 4.0 4.1 4.2
E  (GeV)

5

0

5

(f
it-

da
ta

)/

0.0

0.2

0.4

0.6

(e
+

e
D

*+ s
D

* s
)  

(n
b) (f)

BESIII

4.21 4.22 4.23 4.24 4.25
E  (GeV)

5

0

5

(f
it-

da
ta

)/

FIG. 3: The line shapes of Model I (solid curve) and Model II (dashed curve) in comparison with the experimental
data. Panels (a)-(f) show the line shapes of the channels e+e− → D+D−, D0D̄0, D+D∗−, D+

s D
−
s , D

∗+D∗− and
D∗+

s D∗−
s , respectively. The DD̄ data is from both BESIII [4, 36] and Belle [1] collaborations. The experimental

data in the DD̄∗ and D∗D̄∗ channels are from BESIII [5] and Belle [37] collaborations. The D+
s D

−
s data are from

BESIII [33] and BaBar [34] collaborations. The data in the D∗+
s D∗−

s are from BESIII collaboration [6]. The blue
and the purple region denote the 99% confidence levels for Model I and Model II, respectively. The six vertical gray
dashed lines represent the DD̄, DD̄∗, D+

s D
−
s , D

∗D̄∗, D+
s D

∗−
s and D∗+

s D∗−
s thresholds from left to right,

respectively. The lower panel of each figure is the standardized residual plot, where the orange and green points
represent the standard residuals of Model I and Model II, respectively.
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Im E

Re E

FIG. 4: Paths from poles in Model I on unphysical RSs
to the physical RS. Poles are represented by solid circles.
The blue, green, orange, dark blue, purple and red solid
line denote the cuts form the DD̄, DD̄∗, D+

s D
−
s , D

∗D̄∗,
D+

s D
∗−
s and D∗+

s D∗−
s thresholds, respectively.

A. Pole analysis

A state is identified as a pole of the T -matrix in the
complex energy plane, either bound state, virtual state,
or resonance (Fig. 2). The pole positions can be obtained
by solving the equation

det
[
1− V̂ eff

oo GCT (Er)
]
= 0 . (66)

Through analytic continuation, the complex E-plane
can be extended to 2n (with n the number of involved
channels) Riemann sheets (RSs) which are labeled by
(±, . . . ,±) according to the signs of the imaginary parts
of the c.m. three-momenta in the two-body channels.
The physical RS is denoted by (+, . . . ,+), whereas the
others represent the unphysical RSs. The physical and
unphysical RSs are connected by branch cuts where the
two-point function satisfies

GII
ii (E − iε) = GI

ii(E + iε). (67)

Here, the indices I and II represent the two-point func-
tions on the first (physical) and second (unphysical) RSs,
and i = 1, . . . , n denote the ith channel.

We assume that the D(∗)+ meson mass is equal to
the D(∗)0 meson mass, because its mass difference is
very small. As the result, it is unnecessary to search
for poles in the region [D0D̄0]Thr < Er < [D+D−]Thr,
[D0D̄∗0]Thr < Er < [D+D∗−]Thr and [D∗0D̄∗0]Thr <
Er < [D∗+D∗−]Thr, where [(D(∗)D̄(∗))u,d]Thr represent
the threshold of the (DD̄)u,d meson pair. Therefore,
there are six thresholds in our coupled-channel sys-
tem, i.e. [DD̄]Thr, [DD̄∗]Thr, [D+

s D̄
−
s ]Thr, [D∗D̄∗]Thr,

[D+
s D̄

∗−
s ]Thr and [D∗+

s D̄∗−
s ]Thr in order, where we use

D(∗) to denote D(∗)+ and D(∗)0 mesons. In the following,
we use the abbreviations Thr1, Thr2,. . . , Thr6 to denote
the six thresholds. In general, we need to find the poles
on 26 RSs. However, in practice, we are only concerned
with the poles on the physical RS (+,+,+,+,+,+) and
those on the unphysical RSs close to the physical region.
These unphysical RSs are labeled by sequentially replac-
ing the plus signs with minus signs, i.e. (−,+, . . . ,+),

TABLE II: Pole positions on the various RSs. The
numbers in square brackets represent energy distances
of the poles to the physical RS, in units of MeV.

Riemann sheets Model I Model II

(+,+,+,+,+,+) 3.691.60 −

(−,+,+,+,+,+)
− 3743.07± 7.36i [7]

3778.42± 11.81i [12] 3775.29± 14.31i [14]

(−,+,−,+,+,+) 3832.52± 74.53i −

(−,−,+,+,+,+) − 3883.91± 46.53i [47]

(−,−,−,−,+,+) 4011.05± 10.13i [16] 4019.42± 17.40i [17]

(−,−,−,−,−,−) 4232.78± 23.96i [24] 4278.21± 21.59i [22]

(−,−, . . . ,+),. . . , (−,−, . . . ,−). Therefore, we find poles
for the following cases:

1. Poles below all the thresholds on the physical RS
(+,+,+,+,+,+).

2. Poles above the i-th threshold and below the
(i + 1)-th threshold on the unphysical RS
(−, , . . . ,−i,+(i+1), . . . ,+).

3. Poles below but close to the i-th threshold on the
unphysical RS (−, , . . . ,−i,+(i+1), . . . ,+), which
also have impact on the physical observables.

Whether the above poles have a significant physical im-
pact or not depends on their distance Ed to the phys-
ical RS. In Fig. 4, we present a schematic diagram of
the distance Ed of the poles on different unphysical RSs.
Although the poles of the resonance states are symmetric
about the real axis, only the poles on the lower half-plane
are close to the physical RS as shown in Fig. 4. For Case
1, since the pole is already on the physical RS, the dis-
tance to the physical sheet is zero. For Case 2, since
the unphysical RS (−, . . . ,−i,+(i+1), . . . ,+) is connect-
ed to the physical RS (+,+,+,+,+,+) along the region
[Thri,Thri+1] on the real axis, where Thri denotes the
i-th threshold. Those poles can reach to the physical RS
by moving the energy distance along the direction of pos-
itive imaginary axis, where Ed is equal to the modulus of
the imaginary part of the pole. Finally, for Case 3, the
pole can firstly move Er along the direction of positive
real axis, with Er the difference between the threshold
and the real part of the pole. Furthermore, they move
along the direction of positive imaginary axis as that for
Case 2. Thus, Ed is Er plus the modulus of the imagi-
nary part of the pole. The poles in Model I and Model II
are presented in Tab. II. The effective couplings of the
poles to the ith-channel in model I and model II are list-
ed in Tables VIII and IX of App. D, respectively. In
Tab. II, one can see the two poles corresponding to the
ψ(3770) and ψ(4040) in both Model I and Model II. In
Model I, a pole 3832.52± 74.53i around 3.9 GeV on the



11

(−,+,−,+,+,+) contributes to the broader peak struc-
ture in experiment. In Model II, a pole 3883.91± 46.53i
on the (−,−,+,+,+,+) sheet corresponds to the peak
structure around 3.9 GeV.
However, so far, we are unable to directly determine

which poles are dynamically generated states and which
are from a strong renormalization of bare vector charmo-
nia. One can distinguish them by plotting the trajectory
of the poles when the coupling constants vary. Since the
procedures for calculating the pole trajectory are simi-
lar between the two models, only the pole trajectories
for Model I are presented. The specific procedure is as
follows:

1. Vary the coupling constant g02D from the fitted val-
ue to 0 with g01D and g03S fixed to their fitted values
and plot the trajectory of all the poles.

2. Vary the coupling constant g01D from the fitted val-
ue to 0 with g03S and g02D fixed to the fitted value
and 0, respectively. Plot the trajectory of all the
poles.

3. Perform the same procedure for the coupling con-
stant g03S with the couplings g02D and g01D fixed to
0. Plot the trajectory of all the poles as g03S varies.

When the coupling constants gradually change to zero,
if the pole moves towards the bare mass obtained from
the fitting on the real axis, it indicates that the pole is
a state renormalized from a bare state. For the sake of
convenience, we illustrate the reason for the case of one
open charmed channel and one bare charmonium state.
In this case, the T -matrix reads as

T =
vCT + g2

s−m2

1− (vCT + g2

s−m2 )G(s)
, (68)

where vCT and g, which are both real numbers, are the
contact potential and the coupling between the bare char-
monium and open charmed meson pair. The pole s0 is

the solution of 1− (vCT + g2

s−m2 )G(s) = 0. When g = 0,
one obtains

1− vCTG(s0) = 0. (69)

In this case,
√
s0 corresponds to the dynamically gen-

erated state, and the contribution of any charmonium
vanishes. When g ̸= 0, we can extract the pole from

s0 =
g2G(s0)

1− vCTG(s0)
+m2. (70)

When g gradually decreases to zero, the term
g2G(s0)

1−vCTG(s0)
→ 0. Therefore, the pole

√
s0 will move to-

wards the bare mass of the charmonium. Similarly, for
the system with many open charmed channels and many
bare charmonia, this property still works. As long as we
gradually adjust all the couplings to zero, the renormal-
ized charmonium state will move to its bare mass. The

TABLE III: The pole position of the G(3900), in
comparison with other works. Exp. represents the
experimental data from Ref. [4] (Supplemental
materials). I and II stand for our Model I and Model II
results, respectively.

This work
I 3832.6+0.9

−0.8 − 74.5+0.7
−2.2i

II 3883.9+0.4
−0.5 − 46.5+1.2

−1.2i

Ref. [20] −

Ref. [29] 3869.2+6.7
−6.7 − 29.0+5.2

−5.2i

Ref. [32] 3896.0+1.4
−1.4 − 72.0+3.9

−3.9i

Exp. 3872.5+14.2+3.0
−14.2−3.0 − 89.9+7.0+2.5

−7.0−2.5i

pole trajectories in Model I are presented in Fig. 5 and
the zoomed-in diagram of all poles in the left diagram
can be found in App. E.

The pole trajectories of Model I are illustrated in
Fig. 5. When the couplings g02D, g01D and g03S vary from
their fitted values to zero, the 3691.60 MeV, 3778.42 ±
11.81i MeV and 4232.78 ± 23.96i MeV poles approach
to the bare masses m0

2D, m0
1D and m0

3S , respectively.
These three poles are considered as the ψ(2D), ψ(1D)
and ψ(3S) vector charmonia. The significant discrepan-
cy between the 3691.60 MeV pole and the experimental
result indicates that the ψ(2D) charmonium acts as a re-
dundant free parameter in the fit without any physical
significance. This suggests that an additional charmoni-
um ψ(2D) is unnecessary, even though it has improved
the fitting results a little bit. On the contrary, the pole
4011.05±10.13iMeV undergoes only slight movement on
the RSs which is considered as a dynamically generated
state.

After carefully searching for poles on other RSs, we find
another dynamically generated state at 3832.57+0.91

−0.79 ±
74.53+0.68

−2.15i MeV, about 40 MeV below the [DD̄∗]Thr,
on (−,+,−,+,+,+) sheet. To check its impact on
the physical observables, we plot the three-dimensional
representation of |T11| which is the modulus of the
first row and first column element of T -matrix on both
(−,+,−,+,+,+) and the physical RS. From Fig. 6, the
curvature of |T11| on the physical plane is nearly the same
as that on the (−,+,−,+,+,+) sheet, which indicates
that despite the (−,+,−,+,+,+) sheet being relative-
ly far from the physical RS, it still exerts a significant
influence on the physical region.

For Model II, the poles and the corresponding effec-
tive couplings are presented in App. D. Through a pole
trajectory analysis similar to that of Model I, the poles
3775.29±14.31iMeV and 4278.21±21.59iMeV approach
to the bare masses m0

1D and m0
3S , corresponding to the

ψ(1D) and ψ(3S) charmonia, respectively. The other
poles, interpreted as dynamically generated states, re-
main largely stationary as the couplings g01D and g03S
change from their fitted values to zero. In contrast to
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FIG. 5: Left: The trajectories of the poles in Model I on various RSs with the coupling constants g02D, g01D and g03S
varying sequentially from the fitted values to zero. Right: The trajectory of pole 3832.57+0.91

−0.79 ± 74.53+0.68
−2.15i MeV on

the (−,+,−,+,+,+) RS. Different shapes represent the trajectories of distinct poles. The red dashed rectangular
boxes represent the initial positions of the poles and the colors of the poles gradually become darker as the
parameters g02D, g01D and g03S vary sequentially from the fitted values to zero.

TABLE IV: The pole positions of ψ(3770) and ψ(4040), in comparison with the results of other works. I and II
stand for Model I and Model II.

ψ(3770) ψ(4040)

This work I 3778.42− 11.81i II 3775.29− 14.31i I 4011.05− 10.13i II 4019.42− 17.40i

Ref. [20] 3778.7+0.7
−0.7 − 17.0+0.2

−0.2i 4044.0+1.5
−1.5 − 65.0+1.5

−1.5i

Ref. [29] 3778.0+0.3
−0.3 − 12.3+0.3

−0.3i 4019.5+0.5
−0.5 − 22.9+1.1

−1.1i

Ref. [32] 3780.0+1.3
−1.3 − 15.2+1.1

−1.1i 4029.2+0.4
−0.4 − 14.0+0.5

−0.5i

PDG 3773.7+0.7
−0.7 − 13.6+0.5

−0.5i 4039.6+4.3
−4.3 − 42.3+6.2

−6.2i

Model I, a new pole 3743.07 ± 7.36i MeV emerges on
(−,+,+,+,+,+) sheet in Model II. This state does not
manifest itself as a visible peak in the e+e− → DD̄ cross
section, possibly because it couples weakly to the DD̄
channel and lies close to ψ(3770). Alternatively, shown,
the pole couples predominantly to the D∗D̄∗ channel in-
stead of the DD̄ channel (App. D). Consequently, its
contribution to the e+e− → DD̄ cross section is sup-
pressed, and further obscured by the overlapping of the
nearby ψ(3770), making it difficult to be observed in
experiment. The pole 3883.91+0.38

−0.46 ± 46.53+1.22
−1.22i MeV,

9 MeV above the [DD̄∗]Thr threshold, locates on the
(−,−,+,+,+,+) sheet and can be considered as a can-
didate of the G(3900). The central value of the real part
is consistent with the experimental mass of the G(3900)
within the uncertainty. The width of this pole is consid-
erably narrower than that obtained by BESIII, suggest-
ing that the Breit-Wigner fit used by BESIII may not be
suitable for describing a near-threshold state.

In Model I, we identify the pole located at 3832.6+0.9
−0.8−

74.5+0.7
−2.2i MeV as the candidate of the G(3900). The

central value of the real part is approximately 40 MeV

lower than the mass of the G(3900). While its width is
consistent with the experimental large value, making it
still a visual broad structure in experiment. Although
the real part of the pole lies below [DD̄∗]Thr, the state
can still decay into the DD̄∗ final state, which makes it
a plausible candidate for the G(3900).

The comparison between our results and other
works [20, 29, 32] is presented in Tab. III and Fig. 7.
Ref. [20] uses the K-matrix parametrization to describe
the cross sections of the e+e− → D(∗)D̄(∗) processes, but
without hidden strange channels. Their overall fitting
indicates that the G(3900) is only a threshold enhance-
ment of the D∗D̄ channel. Ref. [29] uses the One-Boson-
Exchanged (OBE) model to connect the dynamics of the
S-wave hadronic molecule χc1(3872), Zc(3900), Tcc(3875)
to the P -wave G(3900). The proper S-wave pole po-
sitions indicate the existence of the P -wave hadronic
molecule G(3900). Ref. [32] obtains the same conclu-
sion by fitting to 18 two-body and three-body hadronic
channels, which also needs to deal with the three-body
dynamics properly.

The results obtained from both Model I and Model



13

TABLE V: Poles positions and effective couplings of the 1−+ system in Model I on different RSs. The dimension of

coupling is GeV−3/2. The square brackets represent energy distance the poles move to the physical RS. The unit is
MeV. The effective couplings with underline are the largest couplings for a given pole, which indicate the dominant
channel.

Riemann Sheets Poles [MeV] gDD̄∗ gD∗D̄∗ g
D+

s D∗−
s

g
D∗+

s D∗−
s

(+,+,+,+) 3836.57 8.59 32.04 0.04 0.14

(−,+,+,+) 3885.42± 9.48i [10] 2.21 6.70 7.66 29.46

(−,−,+,+) 4001.56± 3.94i [19] 0.31 1.50 0.01 0.03

(−,−,−,+) 4085.70± 27.08i [27] 0.13 0.42 2.25 6.75

(−,−,−,−) 4224.18± 31.26i [31] 0.04 0.08 0.50 1.99

TABLE VI: Poles positions and effective couplings of the 1−+ system in Model II on different RSs. Other details are
similar to Tab. V.

Riemann Sheets Poles [MeV] gDD̄∗ gD∗D̄∗ g
D+

s D∗−
s

g
D∗+

s D∗−
s

(+,+,+,+) 3869.57 4.38 8.19 0.02 0.09

(−,+,+,+) 3891.73± 26.19i [26] 1.77 13.68 0.92 39.25

(−,−,+,+) 4017.93± 2.71i [3] 0.21 2.34 0.01 0.04

(−,−,−,+) 4087.76± 21.92i [22] 0.18 0.30 2.35 12.02

(−,−,−,−) 4213.85± 9.63i [20] 0.07 0.21 0.40 2.11

FIG. 6: The modulus of the scattering amplitude |T11|
on the complex E-plane. The orange and green surfaces
are the lower half plane of the (−,+,−,+,+,+) RS and
the upper half plane of physical RS, respectively.

II are in agreement with those reported in Ref. [29, 32],
supporting the interpretation of G(3900) as a P -wave
DD̄∗/D̄D∗ molecule state. While the inclusion of the
bare ψ(2D) state in Model I introduces three addition-
al parameters, potentially causing overfitting in Model I.
Given that χ2/d.o.f of Model II is already satisfactory
and that its residue analysis shows better performance,
we place greater emphasis on the poles found in Model
II. Although both models yield consistent conclusions re-
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□ PRL133,241903

◦ Model I

△ Model II

3800 3850 3900 3950 4000
0

20

40

60

80

100

M [MeV]

Γ
/2

[M
eV

]

FIG. 7: The pole positions of Model I (purple hollow
circle) and Model II (black hollow triangle) in
comparison with other works. Blue triangle and green
hollow box are the results from Ref. [32] and Ref. [29],
respectively. Red box is the experimental result [4].

garding the dynamical origin of the pole, we adopt the
pole positions from Model II due to its good residue per-
formance (the lower panel of Fig. 3).

Similarly, we also compare the results for ψ(3770) and
ψ(4040) with those reported in Refs. [20, 29, 32], pre-
sented in Tab. IV. We note that the pole positions of
the ψ(3770) extracted from Models I and II are in good
agreement with the results reported in Refs. [20, 29, 32]
and the value listed by the PDG. In this work, the pole
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position of the ψ(4040) is essentially consistent with that
in Ref. [29], and its width is smaller than the value re-
ported by the PDG, which suggests the Breit-Winger
fit may not be suitable for describing a near-threshold
state. Compared with Refs. [20, 29, 32], we note that al-
though all these studies incorporate a bare state ψ(4040),
Refs. [20, 29, 32] do not investigate whether the pole orig-
inates from the bare state or a dynamic state. Based on
our tests, we find that within our framework, ψ(4040)
is a dynamically generated state, and the bare state we
introduce is shifted to 4232.78 − 23.96i MeV for Model
I and 4278.21 − 21.59i MeV for Model II. One possible
explanation for this shift is the presence of high thresh-
olds in the coupled-channel dynamics, which may have
significantly effect on the bare state positions.

In a short summary, our analysis indicates that the
G(3900) originates from a dynamically generated pole,
consistent with the conclusions of Ref. [29, 32]. Although
Model II yields a slightly larger χ2/d.o.f compared to
Model I, the potential overfitting in Model I caused by
additional parameters leads us to place greater emphasis
on the results of Model II. This suggests that two bare
states are sufficient to describe the experimental data
in the energy region [3.7, 4.25] GeV. Additionally, we
extract the differential cross section (presented in Fig. 9
of App. E) of the DD̄ channel at

√
s = 3.873 GeV, which

is the experimental mass position of the G(3900).

At last, we stress that the D(∗)D̄(∗) system with quan-
tum number JPC = 1−− in a P -wave configuration
presents challenges within the framework of effective field
theories (EFTs). Such P -wave interactions in hadronic
systems are claimed to induce non-trivial renormalization
behavior by some authors [45, 46]. Specifically, it is ar-
gued that the implementation of consistent power count-
ing requires the introduction of higher-order counter
terms to preserve renormalization group invariance, par-
ticularly when dealing with singular potentials character-
istic of P -wave interactions. However, this point of view
is challenged in Refs. [47–50], where it is shown that a
self-consistent and practically applicable solution to the
problem of non-perturbative renormalization is provided
by the cutoff EFT. In the present work, we intentionally
circumvent this debate by performing a phenomenolog-
ical study as we focus on pole extraction rather than
pursuing a complete renormalization procedure. The de-
scription of the data thus relies on the choice of the cut-
off as a consequence of omitting these necessary counter
terms. The phenomenological approach used in this work
remains justified for our primary objective of identifying
and characterizing possible pole structures in the com-
plex energy plane, while acknowledging that a more fun-
damental EFT treatment would require systematic in-
clusion of higher-order counter terms to achieve prop-
er renormalization. The extracted pole positions, while
regulator-dependent in technical terms, nevertheless still
provide crucial physical insights into the possible exis-
tence and qualitative features of exotic hadronic states
in this channel.

B. Searching the 1−+ exotic candidate

As discussed in the previous section, the dynamics of
the JPC = 1−+ channel is described by the same param-
eter set as that of the JPC = 1−− channel. We can also
extract the pole positions by plugging the fit parameters
into Eq.(65) and solving det [16×6−V 1−+

CT GCT (E)] = 0.
The only relevant parameters are Ci

1 and Ci
3 due to the

appearance of the |0×1⟩i and |1×1⟩i components and the
bare charmonium state is absent in this channel. There
are four thresholds in the 1−+ system, i.e. [DD̄∗]Thr,
[D∗D̄∗]Thr, [D

+
s D

−
s ]Thr and [D∗+

s D∗−
s ]Thr. The pole po-

sitions on the E-plane of the 1−+ channel and their effec-
tive couplings to all the channels are presented in Tab. V
and Tab. VI, respectively. For the effective couplings, the
T -matrix exhibits the following behavior

Tij ∼
gigj

E − Er
(71)

around the pole Er = Mr − iΓr/2, with Mr and Γr the
mass and width of a given state. Here, gi is the coupling
of the state to the ith-channel. gi is generally a complex
number, and its modulus is conventionally used to repre-
sent its magnitude. The coupling constant gi is obtained
from the residues of the T -matrix via

gigi = lim
E→Er

(E − Er)Tii(E), (72)

where Tii can be obtained by Eq. (33).
Since the 1−+ system does not contain bare states and

only has contact interactions, all the poles are dynam-
ically generated states. In Model I, we find a bound
state at 3836.57 MeV on the physical RS, which is around
38 MeV below the [DD̄∗]Thr. There are also other four
resonances at 3885.42±9.48i MeV, 4001.56±3.94i MeV,
4085.70± 27.08i MeV, and 4224.18± 31.26i MeV on un-
physical RSs close to the physical region. The situation
of the poles for Model II (shown in Tab. VI) is similar
to that of Model I. The lower bound state mainly cou-
ples to the D∗D̄∗ channel. Besides the second resonance,
the other resonances mainly couple to the D∗+

s D∗−
s chan-

nel. These 1−+ exotic states can be searched for in the
electron-positron annihilation process with an emission
of one photon [31, 43].

IV. SUMMARY AND OUTLOOK

We perform a phenomenological study on the cross
sections of the e+e− → DD̄, e+e− → DD̄∗ + c.c.,
e+e− → D∗D̄∗ processes. By constructing P -wave con-

tact interaction between the sPl = 1
2

−
HQSS doublet

(D,D∗) and its antiparticle, we do a global analysis
for the energy region [3.7, 4.25] GeV, especially focusing
on the property of the newly observed G(3900). The
upper limit energy is restricted by the next opening
threshold D1D̄. To accommodate the open-charmed-
strange meson pair channels, we work within the SU(3)
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flavor symmetry framework. In the considered energy
region, there are three well-established charmonia, i.e.
ψ(1D), ψ(3S) and ψ(2D), which affect the cross sec-
tions. We work in two models for a comparison: three
bare charmonia scenario (Model I) and two bare char-
monia scenario (Model II). In Model I (Model II), we
find three (two) renormalized poles corresponding to the
input bare poles. Besides these poles, we find a pole at
3832.57+0.91

−0.79±74.53+0.68
−2.15iMeV, about 40 MeV below the

[DD̄∗]Thr, on the (−,+,−,+,+,+) sheet in Model I. In
Model II, a pole 3883.91+0.38

−0.46 ± 46.53+1.22
−1.22i MeV on the

(−,−,+,+,+,+) sheet is 9 MeV above the [DD̄∗]Thr

threshold, connecting to the physical sheet above the
DD̄∗ threshold and below the D+

s D
−
s threshold. Both of

them are dynamically generated states based on the tra-
jectory of the pole renormalization. In this sense, we con-
clude that the G(3900) is a dynamically generated state.
With the parameters fixed in the JPC = 1−− channel,

we also predict several dynamically generated states in
the JPC = 1−+ channel, which can be investigated in
the electron-positron annihilation process involving the
emission of a single photon.
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SUPPLEMENTAL MATERIALS

Appendix A: The production amplitude

According to Ref. [42], the covariant amplitude is built from pure orbital angular momentum covariant tensors and
covariant spin wave functions ϕµ1...µs which are interpreted as the polarization vectors of the final state particles,
together with the operators gµν , ϵµνλσ and momenta of parent particles. From Ref. [41], we can find that the explicit
expression for the pure orbital angular momentum covariant tensors with relative orbital angular momentum l = 1 in
a→ b+ c process reads as

t(1)µ = g̃µν(pa)r
ν (A1)

where

g̃µν(pa) = gµν − pµap
ν
a

p2a
, r = pb − pc. (A2)

The projection operator for spin-0 and spin-2 are

P
(0)
αβ =

1√
3
gαβ ,

P
(2)
αβγδ =

1

2
(g̃αγ g̃βδ + g̃αδ g̃βγ)−

1

3
g̃αβ g̃γδ, (A3)

respectively.
In the following, we show how Eqs. (46)–(49) are obtained by combining Eqs. (A1)–(A3). Eq. (A1) provides

the covariant amplitude for the process a → b + c with l = 1. However, in our production vertex, the particle a
corresponds to a virtual photon rather than a real particle. As a result, the factor g̃µν should be absorbed into the
photon propagator, as shown in Eq. (44). Since the photon has a transversal polarization, only the transverse part
contributes. Therefore, Eq. (A3) should be rewritten as

P
(2)
ij,mn =

1

2
(gimgjn + gingjm)− 1

3
gijgmn. (A4)

Due to Eq. (45), we have reduced the Lorentz indices from four-dimensional to three-dimensional form. As a result,
all the indices in Eq. (A4) refer to three-dimensional components. The production amplitude is required to contain
a Lorentz index so that it can be contracted with the photon propagator.

1. For γ∗ → DD̄ process, l = 1 ,S = 0 and JPC = 1−−. Since the polarization vector εD = 1, the production
amplitude takes the form:

Ai
1 = U1r

i = U1(pD̄ − pD)i. (A5)

Here Ui is the physical production amplitude, which can be interpreted as a form factors.

2. For γ∗ → DD̄∗ + c.c. process, l = 1, S = 1 and JPC = 1−−. Since the D∗ meson provides a polarization vector
ε∗λk with one Lorentz index and the relative momentum also carries a Lorentz index, we introduce the tensor
ϵijk perform index contraction, so that the production amplitude contains only a single Lorentz index. The
production amplitude reads as

Ai
2 = U2ϵ

ijkrjε
∗
λk = U2ϵ

ijk(pD̄ − pD)jε
∗
λk, (A6)

where λ is the helicity index.

3. For γ∗ → D∗D̄∗
S=0 process, l = 1, S = 0 and JPC = 1−−. In this case, the polarization vectors of D∗ and D̄∗

mesons form a rank-2 tensor ε∗mλ ε∗nλ′ . The coupling of two vector particles allows total spin 0, 1 or 2. Since
we focus on spin-0 case, we employ the spin-0 projection operator to extract the corresponding spin 0. The
production amplitude reads as

Ai
3 = U3P

(0) mnrjε
∗
λ mε

∗
λ′ n,

=
1√
3
U3(pD̄∗ − pD∗)iε∗λ · ε∗λ′ . (A7)
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4. For γ∗ → D∗D̄∗
S=2 process, l = 1, S = 2 and JPC = 1−−. Similarly, we employ the spin-2 projection operator

to extract the corresponding spin 2. The production amplitude reads as

Ai
4 = U4P

(2) ij,mnrjε
∗
λ mε

∗
λ′ n,

→
√

3

5
U4P

(2) ij,mn(pD̄∗ − pD∗)jε
∗
λ mε

∗
λ′ n. (A8)

In the last step, the normalization factor
√
3/5 is multiplied.

Only when the normalization factor is considered in the amplitude level, all the four amplitude squares satisfy
Ai

nA
i
n = Un|pD̄(∗) − pD(∗) |2 for n = 1, 2, 3, 4.

Appendix B: The detailed calculation on amplitude squared

The amplitudes squared for e+e− → (D(∗)D̄(∗))an read as

|Ma
n|2 =

1

2

∑
r

1

2

∑
s

∑
λ

∑
λ′

|Ma
n|2 =

e2

4s2

∑
r

∑
s

∑
λ

∑
λ′

v̄r(p+)γ
νus(p−)ū

s(p−)γ
ν′
vr(p+)Aa

nνA∗a
nν′

=
e2

4s2

∑
λ

∑
λ′

Tr[/p+γ
ν
/p−γ

ν′
]Aa

nνA∗a
nν′

=
e2

s2

∑
λ

∑
λ′

(pν+p
ν′

− + pν
′

+ p
ν
− − gνν

′
p+p−)Aa

nνA∗a
nν′ . (B1)

In the center of mass frame, s = 4E2 and p+ · p− = 2E2, where E is the energy of electron. Plugging them into above
equation, one can obtain

|Ma
n|2 =

4πα

s2

∑
λ

∑
λ′

(pν+p
ν′

− + pν
′

+ p
ν
− − gνν

′
p+p−)Aa

nνA∗a
nν′

=
∑
λ

∑
λ′

[
4πα

s2
(p0+p

0
− + p0+p

0
−)Aa

n0A∗a
n0 +

4πα

s2
(p0+p

j
− + pj+p

0
−)Aa

n0A∗a
nj

+
4πα

s2
(pi+p

0
− + p0+p

i
−)Aa

niA∗a
n0 +

4πα

s2
(pi+p

j
− + pj+p

i
−)Aa

niA∗a
nj

−4πα

s2
1

2
g00sAa

n0A∗a
n0 −

4πα

s2
1

2
gijsAa

niA∗a
nj

]
=− 4πα

s2

∑
λ

∑
λ′

(
1

2
sgij + 2pi+p

j
+)Aa

niA∗a
nj (i, j = 1, 2, 3). (B2)

Substituting Eqs.(46)−(49) into above equation and using relation pi+ · (pD̄(∗) −pD(∗))i = −2E|pD(∗) |cosθ and (pD̄(∗) −
pD(∗))i(pD̄(∗) − pD(∗))i = −4|pD(∗) |2 in the center of mass frame, one can obtain

|Ma
1 |2 = −4πα

s2

∑
λ

∑
λ′

(
1

2
sgij + 2pi+p

j
+)Aa

1iA∗a
1j

= −4πα

s2
(
1

2
sgij + 2pi+p

j
+) [Ua

1 (pD̄ − pD)i] [U∗a
1 (pD̄ − pD)j ]

= −2πα

s
|Ua

1 |2(pD̄ − pD)i(pD̄ − pD)i − 8πα

s2
|Ua

1 |2
[
pi+ · (pD̄ − pD)i

]
[pj+ · (pD̄ − pD)j ]

=
8πα

s
|pD|2|Ua

1 |2(1− cos2θ), (B3)

|Ma
2 |2 = −4πα

s2

∑
λ

∑
λ′

(
1

2
sgij + 2pi+p

j
+)Aa

2iA∗a
2j
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= −4πα

s2

∑
λ

(
1

2
sgij + 2pi+p

j
+)
[
Ua
2 ϵiγk(pD̄ − pD∗)γε∗kλ

] [
U∗a
2 ϵjαβ(pD̄ − pD∗)αεβλ

]
= −2πα

s
|Ua

2 |2ϵiγkϵiαβ(pD̄ − pD∗)γ(pD̄ − pD∗)α(−gkβ)−
8πα

s2
|Ua

2 |2p+ip
j
+ϵ

iαβϵjρσ(pD̄ − pD∗)α(pD̄ − pD∗)ρ(−gσβ )

=
2πα

s
|Ua

2 |2(−2gαγ )(pD̄ − pD∗)γ(pD̄ − pD∗)α +
8πα

s2
|Ua

2 |2(−gijgαρ + giρg
α
j )p+i(pD̄ − pD∗)ρpj+(pD̄ − pD∗)α

=
8πα

s
|Ua

2 |2|pD|2(1 + cos2θ), (B4)

where the completeness relation
∑

λ=0,±1 ε
∗
λiελj = −gij + pipj

m2 has been used, and it is easily to prove that only the
first term will contribute to the amplitude squared. Similarly,

|Ma
3 |2 =− 4πα

s2

∑
λ

∑
λ′

(
1

2
sgij + 2pi+p

j
+)Aa

3iA∗a
3j

=− 2πα

3s

∑
λ

∑
λ′

[(pD̄∗ − pD∗)iε
∗α
λ ε∗λ′α][(pD̄∗ − pD∗)iερλελ′ρ]|Ua

3 |2

− 8πα

3s2

∑
λ

∑
λ′

pi+p
j
+[(pD̄∗ − pD∗)iε

∗α
λ ε∗λ′α][(pD̄∗ − pD∗)jε

ρ
λελ′ρ]|Ua

3 |2

=− 2πα

3s
(pD̄∗ − pD∗)i(pD̄∗ − pD∗)i(−gαρ)(−gαρ)|Ua

3 |2 −
8πα

3s2
pi+p

j
+(pD̄∗ − pD∗)i(pD̄∗ − pD∗)j(−gαρ)(−gαρ)|Ua

3 |2

=
8πα

s
|pD∗ |2|Ua

3 |2(1− cos2θ), (B5)

|Ma
4 |2 =− 4πα

s2

∑
λ

∑
λ′

(
1

2
sgij + 2pi+p

j
+)Aa

4iA∗a
4j

=− 2πα

s

∑
λ

∑
λ′

[Pij,mn(pD̄∗ − pD∗)jε∗mλ ε∗nλ′ ][P iα,βγ(pD̄∗ − pD∗)αελβελ′γ ]|Ua
4 |2

− 8πα

s2

∑
λ

∑
λ′

pi+p
j
+[Piα,mn(pD̄∗ − pD∗)αε∗mλ ε∗nλ′ ][Pjβ,ρσ(pD̄∗ − pD∗)βερλε

σ
λ′ ]|Ua

4 |2

=− 2πα

s
Pij,mnP

iα,βγ(pD̄∗ − pD∗)j(pD̄∗ − pD∗)α|Ua
4 |2(−gmβ )(−gnγ )

− 8πα

s2
pi+p

j
+Piα,mnPjβ,ρσ(pD̄∗ − pD∗)α(pD̄∗ − pD∗)β |Ua

4 |2(−gmρ)(−gnσ)

=− 2πα

s
Pij,mnP

iα,mn(pD̄∗ − pD∗)j(pD̄∗ − pD∗)α|Ua
4 |2 −

8πα

s2
pi+p

j
+Piα,mnP

mn
jβ (pD̄∗ − pD∗)α(pD̄∗ − pD∗)β |Ua

4 |2

=− 2πα

s
δαj (pD̄∗ − pD∗)j(pD̄∗ − pD∗)α|Ua

4 |2

− 8πα

s2
(
3

10
δijδαβ +

3

10
δiβδiα − 1

5
δiαδjβ)p

i
+p

j
+(pD̄∗ − pD∗)α(pD̄∗ − pD∗)β |Ua

4 |2

=
28πα

5s
|pD∗ |2|Ua

4 |2(1−
1

7
cos2θ), (B6)

where we have used the relation

Pij,mnP
iα,mn =

3

5
(
1

2
δimδjn +

1

2
δinδjm − 1

3
δijδmn)(

1

2
δimδαn +

1

2
δinδαm − 1

3
δiαδmn) = δαj ,

Piα,mnP
mn
jβ =

3

5
(
1

2
δimδαn +

1

2
δinδαm − 1

3
δiαδmn)(

1

2
δmj δ

n
β +

1

2
δnj δ

m
β − 1

3
δjβδ

mn)

=
3

10
δijδαβ +

3

10
δiβδjα − 1

5
δiαδjβ . (B7)
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Appendix C: The P -wave two-point function in the non-relativistic limit

In the relativistic expression, the two-point function reads as

B(E,m1,m2) = i

∫ b

a

d4q

(2π)4
f(|q⃗|2)

(q2 −m2
1 + iε+)((p− q)2 −m2

2 + iε+)

= i

∫ b

a

d4q

(2π)4
f(|q⃗|2)

q20 − (|q⃗|2 +m2
1) + iε+)((E − q0)2 − (|q⃗|2 +m2

2) + iε+)

= i

∫ b

a

d4q

(2π)4
f(|q⃗|2)

(q20 − ω2
1 + iε+)((E − q0)2 − ω2

2 + iε+)
, (C1)

where E is the center-of-mass energy and ωi =
√

|q⃗|2 +m2
i with i = 1, 2. Here, f(|q⃗|2) is a form factor, whose

specific form depends on the truncation scheme. In the non-relativistic approximation, q⃗ → 0, one can rewrite the
denominator of above equation

q20 − ω2
1 + iε+ = (q0 + ω1 − iε)(q0 − ω1 + iϵ)

≈ (q0 +m1 +
|q⃗|2

2m1
− iε+)(q0 −m1 −

|q⃗|2

2m1
+ iε+)

≈ 2m1(q0 −m1 −
|q⃗|2

2m1
+ iε+). (C2)

Similarly

(E − q0)
2 − ω2

2 + iε+ = (E − q0 + ω2 − iε+)(E − q0 − ω2 + iε+)

≈ (E − q0 +m2 +
|q⃗|2

2m2
− iε+)(E − q0 −m2 −

|q⃗|2

2m2
+ iε+)

≈ 2m2(E − q0 −m2 −
|q⃗|2

2m2
+ iε+). (C3)

Therefore, Eq.(C1) can be rewritten as

B(E,m1,m2) =
i

4m1m2

∫ b

a

d4q

(2π)4
f(|q⃗|2)

(q0 −m1 − |q⃗|2
2m1

+ iε+)(E − q0 −m2 − |q⃗|2
2m2

+ iε+)

=
1

4m1m2

∫
d3q

(2π)3
f(|q⃗|2)

E −m1 −m2 − |q⃗|2
2µ + iε+

=
2µ

4m1m2

∫
d3q

(2π)3
f(|q⃗|2)

k2 − |q⃗|2 + iε+
, (C4)

with k =
√

2µ(E −m1 −m2). In the calculations of this paper, we have neglected the 1/(4m1m2) factor. Since the
factor can be obtained by dividing

∏
i

√
2mi with mi the masses of the particle fields in the corresponding vertex, it

can be absorbed by the fitting parameters of the contact interaction, and these parameters will add a squared energy
dimension.

In order to calculate the P -wave two-point function, we need to compute the S-wave two-point function firstly

GS(E) = 2µ

∫
d3q

(2π3)

e−
2|q⃗|2

Λ2

k2 − |q⃗|2 + iε+

= − µΛ

(2π)3/2
+
µk2

π2
e−

2|q⃗|2

Λ2 P
∫ ∞

0

d|q⃗|
k2 − |q⃗|2

e−
2(k2−|q⃗|2)

Λ2 − i
µk

2π
e−

2|q⃗|2

Λ2 , (C5)

where we use a Gaussian form factor to regulate the ultraviolet divergence. Here, the Cauchy principal value integral
is used to simplify above equation

1

k2 − |q⃗|2 + iε+
= P 1

k2 − |q⃗|2
− i

π

2|q⃗|
δ(k − |q⃗|). (C6)
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One can define the function

f(x) = P
∫ ∞

0

1

k2 − |q⃗|2
ex(k

2−|q⃗|2), (C7)

whose first derivative reads as

f ′(x) = P
∫ ∞

0

d|q⃗|ex(k
2−|q⃗|2) =

√
π

2
√
x
e(

√
xk)2 . (C8)

According to the Newton-Leibniz formula, one can obtain

f(x)− f(0) =

√
π

2

∫ x

0

dt
1√
t
e(

√
tk)2

=

√
π

k

∫ √
xk

0

d(
√
tk)e(

√
tk)2

=
π

k
erfi(

√
xk), (C9)

where erfi(z) = 2√
π

∫ z

0
dtet

2

is the imaginary error function. It is easy to obtain f(0) = 0, therefore, one can obtain

f(
2

Λ2
) = P

∫ ∞

0

1

k2 − |q⃗|2
e

2
Λ2 (k2−|q⃗|2) =

π

2k
erfi(

√
2

Λ
k) (C10)

Substituting Eq.(C10) into Eq.(C5), one can obtain

GS(E) = − µΛ

(2π)3/2
+
µk

2π
e−

2k2

Λ2

[
erfi(

√
2k

Λ
)− i

]
(C11)

There exists the following relationship between the P -wave two-point function and the first derivative of the S-wave
two-point function

GP (E) = 2µ

∫
d3q

(2π3)

|q⃗|2e−
2|q⃗|2

Λ2

k2 − |q⃗|2 + iε
=

Λ3

4

∂GS(E)

∂Λ

=
Λ3

4

∂

∂Λ

(
− µΛ

(2π)3/2
+
µk

2π
e−

2k2

Λ2

[
erfi(

√
2k

Λ
)− i

])

= − µΛ

(2π)3/2
(k2 +

Λ2

4
) +

µk3

2π
e−

2k2

Λ2

[
erfi(

√
2k

Λ
)− i

]
. (C12)
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Appendix D: Fitted parameters and effective couplings of poles

TABLE VII: The fitted parameters of Model I and Model II. The parameters Ci
n and g01D, g03S and g02D are contact

interaction defined in Eqs. (15)−(18) and bare couplings between charmonium and charmed meson pair,
respectively. F i

S,D and f01D, f03S and f02D are the coupling of the virtual photon to the charmed meson pair and the

charmonium, respectively. m1D, m3S and m2D denote the bare masses of charmounia ψ(1D), ψ(3S) and ψ(2D).

Parameters Model I Model II

C0
1 [GeV−4] −672.91± 8.39 −593.56± 17.11

C0
2 [GeV−4] 182.93± 15.36 −109.96± 16.28

C0
3 [GeV−4] −0.11± 10.60 797.37± 32.52

C0
4 [GeV−4] 613.97± 17.17 9.28± 9.4

C8
1 [GeV−4] −208.49± 16.96 −357.46± 15.66

C8
2 [GeV−4] 15.25± 9.82 −63.08± 12.13

C8
3 [GeV−4] −33.28± 9.43 109.12± 26.50

C8
4 [GeV−4] 638.27± 26.30 475.96± 38.51

C1
1 [GeV−4] −1159.87± 19.31 −739.76± 23.82

C1
2 [GeV−4] 321.28± 17.50 263.68± 21.22

C1
3 [GeV−4] 375.02± 25.13 −292.25± 8.56

C1
4 [GeV−4] 438.66± 17.70 −223.61± 8.68

g01D [GeV−1] 0.66± 0.04 −12.93± 0.26

g03S [GeV−1] −14.66± 0.37 −14.11± 0.96

g02D [GeV−1] −17.09± 0.23 −

f0
S [GeV0] −12.82± 0.34 −4.92± 0.48

f0
D [GeV0] 10.16± 0.28 −4.62± 0.29

f8
S [GeV0] −16.72± 0.30 −20.63± 0.76

f8
D [GeV0] 8.75± 0.24 7.3± 0.46

f1
S [GeV0] 10.13± 0.21 21.75± 0.45

f1
D [GeV0] −3.01± 0.11 −5.38± 0.16

f0
1D [GeV3] −0.30± 0.02 0.13± 0.00

f0
3S [GeV3] −11.96± 0.63 −0.47± 0.05

f0
2D [GeV3] −0.15± 0.00 −

m0
1D [GeV] 3.807± 0.001 3.804± 0.001

m0
3S [GeV] 4.229± 0.002 4.253± 0.005

m0
2D [GeV] 3.692± 0.003 −

Λ [GeV] 0.50± 0.00 0.50± 0.00

χ2/d.o.f. 2.17 2.66
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TABLE VIII: Pole positions and effective couplings of 1−− system in Model I on various RSs. The dimension of

coupling is GeV−3/2. The square brackets represent energy distance of the poles to the physical RS, with unit MeV.

RSs Poles [MeV] gDD̄ gDD̄∗ g
D+

s D−
s

gD∗D̄∗
s=0

gD∗D̄∗
s=2

g
D+

s D∗−
s

g
D∗+

s D∗−
s s=0

g
D∗+

s D∗−
s s=2

(+,+,+,+,+,+) 3691.60 0.11 0.30 0.66 0.30 0.24 2.10 3.18 2.01

(−,+,+,+,+,+) 3778.42± 11.81i [12] 1.31 2.72 8.54 12.13 2.33 22.97 35.91 20.09

(−,+,−,+,+,+) 3832.52± 74.53i 1.02 4.29 0.14 29.63 5.18 17.71 172.75 26.36

(−,−,−,−,+,+) 4011.05± 10.13i [16] 0.16 0.32 0.34 1.73 0.28 0.83 8.81 0.69

(−,−,−,−,−,−) 4232.78± 23.96i [24] 0.02 0.08 0.12 0.04 0.27 0.37 1.22 1.52

TABLE IX: Pole positions and effective couplings of 1−− system in Model II on various RSs. Other details are the
same as Tab. VIII.

RSs Poles [MeV] gDD̄ gDD̄∗ g
D+

s D−
s

gD∗D̄∗
s=0

gD∗D̄∗
s=2

g
D+

s D∗−
s

g
D∗+

s D∗−
s s=0

g
D∗+

s D∗−
s s=2

(−,+,+,+,+,+) 3743.07± 7.36i [7] 2.39 0.92 0.01 19.15 6.28 0.02 0.10 0.03

(−,+,+,+,+,+) 3775.29± 14.31i [14] 1.55 4.24 8.94 13.50 8.89 33.29 27.29 56.34

(−,−,+,+,+,+) 3883.91± 46.53i [47] 0.08 1.41 0.00 2.57 8.68 0.01 0.03 0.01

(−,−,−,−,+,+) 4019.42± 17.40i [17] 0.21 0.24 0.22 1.58 0.86 0.63 2.92 4.59

(−,−,−,−,−,−) 4278.21± 21.59i [22] 0.03 0.09 0.12 0.07 0.13 0.46 0.57 0.55
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Appendix E: The trajectory of poles in Model I and the angular distribution of D meson.
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FIG. 8: The zoomed-in trajectory of poles in Model I on various RSs with the couplings g02D, g01D and g03S varying
sequentially from the fitted values to zero. The (a), (b), (c) and (d) figures represent the trajectories of the poles
3691.60 GeV, 3778.42± 11.81i GeV, 4011.05± 10.31i GeV, and 4232.78± 23.96i GeV. R±,...,± represent the RSs
where the poles locate. The red dashed rectangular boxes represent the initial positions of the poles points represent
the initial positions of the poles. The colors of the poles gradually become darker as the parameters g02D, g01D and
g03S vary sequentially from the fitted values to zero.
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FIG. 9: The D meson scattering angle distribution at
√
s = 3.873 GeV.
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Appendix F: The distribution of the standardized residuals for Model I and Model II
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FIG. 10: The distribution of the standardized residuals for Models I (orange) and II (green). There are 15 bins in
region [-7, 7].
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FIG. 11: The distribution of the standardized residuals for Models I (orange) and II (green). There are 20 bins in
region [-7, 7].
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