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Motivated by the updated analysis of the Gð3900Þ by the BESIII Collaboration, we perform a global
analysis of the cross sections of the eþe− → DD̄, eþe− → DD̄� þ c:c:, eþe− → D�D̄� processes,
especially focusing on the properties of the Gð3900Þ. As the energy region of interest is limited by
the next opening threshold, i.e., the D1D̄ threshold, we focus on the energy region [3.7, 4.25] GeV, where
three charmonia ψð1DÞ, ψð3SÞ, and ψð2DÞ explicitly contribute to the cross sections. By constructing the
P-wave contact interaction between the ðD;D�Þ doublet and its antiparticle in the heavy quark limit, we
extract the physical scattering amplitude by solving the Lippmann-Schwinger equation. No matter whether
three or two charmonium states are included in our framework, we always find a dynamically generated
state corresponding to the Gð3900Þ, which suggests it to be a P-wave dynamically generated state.
We also predict several dynamically generated states in the corresponding 1−þ channel. These states can be
further searched for in the electron-positron annihilation process involving the emission of a single
photon.

DOI: 10.1103/qq61-ncln

I. INTRODUCTION

Electron-positron annihilation is one of the most impor-
tant processes for shedding light on the dynamics of the
strong interaction. For instance, the number of colors
can be extracted from the ratio between the cross section
of the eþe− → hadrons process and that of the pure

electromagnetic process eþe− → μþμ−. Among the former
cross section, the open-charmed channels (either two-body
final states or many-body final states) take up the largest
fraction. The Belle [1], CLEO [2], and BABAR [3]
Collaborations have measured the cross sections of a
pair of open charmed mesons. Recently, the BESIII
Collaboration measured the cross sections of two-body
[4–6], three-body [7,8], and four-body [9] open charmed
processes more precisely. As the electron and the positron
annihilate into a virtual photon, this kind of process is also
the most important platform for studying the normal vector
charmonia and exotic vector charmoniumlike states. For
instance, these bring us to an opportunity to study the non-
DD̄ decay width of the ψð3770Þ [10–13] and the timelike
electromagnetic D� → D transition form factor [14].
Especially, the eþe− → DD̄ process provides the most
precise determination of the resonance parameters of the
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ψð3770Þ [12,13,15–20]. For vector charmoniumlike
states, the Yð4230Þ=Yð4260Þ [21–23], Yð4360Þ [24,25],
Yð4660Þ [25,26] are measured in electron-positron anni-
hilation process with different final states.
Approximately twenty years ago, the Belle [1] and

BABAR [3,27] Collaborations measured the cross section
for the eþe− → DD̄ process. They both observed a peak
structure around

ffiffiffi
s

p ¼ 3.9 GeV. In these works, the peak is
not associated to a resonance. The BESIII Collaboration
recently performed a precise measurement of the Born
cross sections for the eþe− → DD̄ process [4], which is
consistent with previous results from BABAR and Belle.
Apart from the 1−− charmonia ψð3770Þ, ψð4040Þ,
ψð4160Þ, ψð4360Þ, ψð4415Þ, and ψð4660Þ, they also
observed a peak structure around 3.9 GeV. Its mass and
width in the Breit-Wigner formalism are 3872.5� 14.2�
3.0 MeV and 179.7� 14.1� 7.0 MeV, respectively.
Although the coupled-channel analysis of the Belle and
BESIII data could produce a peak structure around 3.9 GeV
without requiring an additional new state, accurately
describing the nearby points appears to be highly chal-
lenging [19,28]. In Ref. [15], a perturbative treatment of
ψð2SÞ − ψð1DÞ mixing is carried out within an effective
Lagrangian approach, where the authors interpret the
Gð3900Þ as a resonance but also demonstrate that it can
be explained by the D�D̄ threshold. Cao and Lenske have
analyzed the line shape of ψð3770Þ using a coupled-
channel T-matrix approach and achieved a good fit to
the experimental data, suggesting that the broad structure
Gð3900Þ results from the distortion of the ψð3770Þ tail
caused by theDD̄� threshold [17]. The K-matrix formalism
is used to systematically study eþe− → Dð�ÞD̄ð�Þ and
eþe− → everything in Ref. [20]. The study indicates that
no additional bare pole is needed to explain the data near
3.9 GeV. In the scenario of the one-boson-exchange (OBE)
model, Lin et al. [29] and Chen et al. [30] show that the
existence of the S-wave Xð3872Þ, Tccð3875Þ, Zcð3900Þ
hadronic molecules indicate the existence of a P-wave
DD̄�=D̄D� molecule state, identified as the Gð3900Þ.
Reference [31] also assigns the Gð3900Þ to a P-wave
DD̄�=D̄D� resonance by the contact interactions within
the heavy quark spin symmetry framework, with
explicit inclusion of S-channel charmonia contribution.
Reference [32] also obtains the same conclusion by overall
fitting to the line shapes in various channels as well as the
invariant distributions of their subsystems. Although the
later references suggest that theGð3900Þ can be accepted as
the P-waveDD̄� resonance, it does not answer the question
whether the Gð3900Þ is a dynamically generated state or a
renormalized bare charmonium state. Another question is
whether the existence of the Gð3900Þ is model-dependent
or not.
To answer the above questions, we construct the contact

potential for the P-wave scattering between the ðD;D�Þ
doublet and its antiparticle in the heavy quark limit and

extract the scattering amplitudes of the eþe− → DD̄,
eþe− → D�D̄þ c:c:, eþe− → D�D̄� by solving
Lippmann-Schwinger equation (Sec. II). The numerical
results and discussions follow as Sec. III. The summary and
outlook is given in Sec. IV.

II. FORMALISM

The formalism of this work is an SU(3) extension of that
in Ref. [31], in which SU(2) flavor symmetry is adopted.
Considering the recent progresses from the experimental
side, i.e. the measurements of the eþe− → Dþ

s D−
s [33,34]

and eþe− → D�þ
s D�−

s [6] cross sections, we also include
the charm-strange meson pair contribution explicitly
(as discussed in the following). More specifically, the

eþe− → Dð�ÞþDð�Þ−; Dð�Þ0D̄ð�Þ0; Dð�Þþ
s Dð�Þ−

s cross sections
within the energy region [3.7, 4.25] GeV are inves-
tigated. First, we present the transformation from the
hadronic basis to the SU(3) flavor singlet and octet
basis, as well as the isospin triplet basis. Based on the
transformation, we can construct the contact potentials
with respect to the heavy quark spin symmetry
(HQSS). With these contact potentials, we can solve
the Lippmann-Schwinger equation (LSE) to obtain the
production amplitudes. In Sec. II C, we deduce the cross
sections formula for the direct comparison with the
experimental data.

A. Transformation between the SU(3) flavor symmetry
basis and P-wave hadronic basis

Before going into details, we adopt several conventions to
facilitate the representation of physical quantities. Unless
otherwise specified in the text, ðDð�ÞD̄ð�ÞÞan denotes charmed
meson pairs, with a ¼ d, u, s denoting the light quarks in the
charmed meson pairs ðcaÞðc̄ āÞ and n ¼ 1, 2, 3, 4 represent-
ing different charmed meson pairs DD̄, DD̄�, D�D̄�

S¼0 and
D�D̄�

S¼2.Here, the subindexS of the later two cases is the total
spin of the two charmed meson pairs. For instance,
ðDð�ÞD̄ð�ÞÞd1 denotes the charmed meson pair DþD−.
ðDð�ÞD̄ð�ÞÞa denotes all the four charmed meson pairs with
light quark pairsa.With these conventions, the hadronic basis
canbewritten as jDð�ÞD̄ð�Þian. Similarly, theSU(3) flavorbasis
can be written as jDð�ÞD̄ð�Þiin, where the index i ¼ 0, 8, 1
represents SU(3) singlet 0, the zero components of
octet 800 and isospin triplet 110, in order, where the super-
scripts denote the isospin I and its third component, respec-
tively. Similarly, if the index n is absent, jDð�ÞD̄ð�Þii
denotes all the four charmed meson pairs of the SU(3)
representation i.
As we consider the cross sections of the charmed meson

pairs in electron-positron annihilation, only the third
component of various SU(3) flavor representations is
produced. As a result, we present the third components
of SU(3) singlet and octet as
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j0i ¼ 1ffiffiffi
3

p ðjdd̄þ uūþ ss̄iÞ; ð1Þ

j8i ¼ 1ffiffiffi
6

p ðjdd̄þ uū − 2ss̄iÞ; ð2Þ

and the third component of the isospin triplet

j1i ¼ 1ffiffiffi
2

p ðjdd̄ − uūiÞ: ð3Þ

The above equations transform into charmed meson pair
basis as

jDð�ÞD̄ð�Þi0 ¼ 1ffiffiffi
3

p ðjDð�ÞþDð�Þ−i þ jDð�Þ0D̄ð�Þ0i

þ jDð�Þþ
s Dð�Þ−

s iÞ; ð4Þ

jDð�ÞD̄ð�Þi8 ¼ 1ffiffiffi
6

p ðjDð�ÞþDð�Þ−i þ jDð�Þ0D̄ð�Þ0i

− 2jDð�Þþ
s Dð�Þ−

s iÞ; ð5Þ

jDð�ÞD̄ð�Þi1 ¼ 1ffiffiffi
2

p ðjDð�ÞþDð�Þ−i − jDð�Þ0D̄ð�Þ0iÞ: ð6Þ

With the above formulas, one can easily transform from the
hadronic basis to the SU(3) flavor basis.
For a given SU(3) representation, one can perform a

heavy-light decomposition to obtain the contact potentials.
In the HQSS limit, the heavy and light degrees of freedom
are conserved individually. The former one is reflected by
the total spin sQ of the heavy quark pair. The latter one is
the sum of the total spin sq of light quark pair and the
relative orbital angular momentum l between the two
hadrons. Therefore, it is convenient to decompose a
charmed meson pair jlð½sl1sQ1

�j1 ½sl2sQ2
�j2ÞsiJ into the

heavy-light basis jðl½sl1sl2 �sqÞsl ½sQ1
sQ2

�sQiJ, which can be

simplified as jsQ ⊗ sliJ. Here, sli , sQi
, and ji are the spin of

the light quark plus the relative orbital angular momentum
l, the heavy quark spin and the total angular momentum of
the ith mesons, respectively. With this convention, the
decomposition read [31,35]

jlð½sl1sQ1
�j1 ½sl2sQ2

�j2ÞsiJ ¼
X

sl;sQ;sq

ð−1ÞlþsqþsQþJŝq ŝQ ĵ1 ĵ2 ŝ ŝl

8>><
>>:

sl1 sQ1
j1

sl2 sQ2
j2

sq sQ S

9>>=
>>;
�
l sq sl
sQ J S

�
jðl½sl1sl2 �sqÞsl ½sQ1

sQ2
�sQiJ

¼
X

sl;sQ;sq

ð−1ÞlþsqþsQþJŝq ŝQ ĵ1 ĵ2 ŝ ŝl

8>><
>>:

sl1 sQ1
j1

sl2 sQ2
j2

sq sQ S

9>>=
>>;
�
l sq sl
sQ J S

�
jsQ ⊗ sliJ; ð7Þ

with ĵ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
. In the Eq. (7), S and l denote the total spin of the two-meson system and its relative orbital angular

momentum, respectively, J ¼ lþ S is the total angular momentum. As the charmed meson pair Dð�ÞDð�Þ couple to virtual
photon, i.e., JPC ¼ 1−−, is in P-wave. The corresponding decompositions can be obtained from the above equation

jDD̄ii1−− ¼ piðDD̄Þ ¼ 1

2
j0 ⊗ 1ii þ 1

2
ffiffiffi
3

p j1 ⊗ 0ii − 1

2
j1 ⊗ 1ii þ 1

2

ffiffiffi
5

3

r
j1 ⊗ 2ii; ð8Þ

jDD̄� þ c:c:ii1−− ¼ i
2
ϵijkpjðD�

kD̄ − D̄�
kDÞ ¼ −

1ffiffiffi
3

p j1 ⊗ 0ii þ 1

2
j1 ⊗ 1ii þ 1

2

ffiffiffi
5

3

r
j1 ⊗ 2ii; ð9Þ

jD�D̄�iis¼0
1−− ¼ piffiffiffi

3
p ðD�

j D̄
�
jÞ ¼

1

2

ffiffiffi
3

p
j0 ⊗ 1ii − 1

6
j1 ⊗ 0ii þ 1

2
ffiffiffi
3

p j1 ⊗ 1ii −
ffiffiffi
5

p

6
j1 ⊗ 2ii; ð10Þ

jD�D̄�iis¼2
1−− ¼

ffiffiffi
3

5

r
pk

2

�
D�

i D̄
�
k þ D̄�

i D
�
k −

2

3
δikD�

j D̄
�
j

�
¼

ffiffiffi
5

p

3
j1 ⊗ 0ii þ 1

2

ffiffiffi
5

3

r
j1 ⊗ 1ii þ 1

6
j1 ⊗ 2ii; ð11Þ

which can be represented as a compact transformation matrix
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C1−− ¼

0
BBBBBBBBB@

1
2

1

2
ffiffi
3

p − 1
2

1
2

ffiffi
5
3

q

0 − 1ffiffi
3

p 1
2

1
2

ffiffi
5
3

q
1
2

ffiffiffi
3

p
− 1

6
1

2
ffiffi
3

p −
ffiffi
5

p
6

0
ffiffi
5

p
3

1
2

ffiffi
5
3

q
1
6

1
CCCCCCCCCA
: ð12Þ

The wave functions on the left side of Eqs. (8)–(11), are the
hadronic basis with p⃗ the three momentum of final particle
in the center-of-mass frame. The wave functions on the
right side are in the heavy-light basis. One can easily check
that these bases are normalized and orthogonal to each
other from both the heavy-light basis and the hadronic basis
[31,35] in Eqs. (8)–(11). In the hadron basis, one can see
that the wave functions are normalized to jp⃗j2. The positive
sign in jDD̄� þ c:c:ii1−− is related to the C-parity, where we

adopt the convention D⟶
C D̄, D� ⟶C − D̄�. The trans-

formation between hadronic basis jDð�ÞD̄ð�Þia and SU(3)
flavor symmetry basis jDð�ÞD̄ð�Þii is

½jDð�ÞþDð�Þ−id; jDð�Þ0D̄ð�Þ0iu; jDð�Þþ
s Dð�Þ−

s is�T
¼ R½jDð�ÞD̄ð�Þi0; jDð�ÞD̄ð�Þi8; jDð�ÞD̄ð�Þi1�T; ð13Þ

where the transformation matrix R is

R ¼

0
BB@

1ffiffi
3

p 1ffiffi
6

p 1ffiffi
2

p

1ffiffi
3

p 1ffiffi
6

p −1ffiffi
2

p

1ffiffi
3

p −2ffiffi
6

p 0

1
CCA ⊗ 14×4; ð14Þ

with 14×4 the 4 × 4 identity matrix.
In the HQSS limit, one can define the low-energy

constants

Ci
1 ≡ ih0 ⊗ 1jHCT j0 ⊗ 1ijδij; ð15Þ

Ci
2 ≡ ih1 ⊗ 0jHCT j1 ⊗ 0ijδij; ð16Þ

Ci
3 ≡ ih1 ⊗ 1jHCT j1 ⊗ 1ijδij; ð17Þ

Ci
4 ≡ ih1 ⊗ 2jHCT j1 ⊗ 2ijδij; ð18Þ

where the repeated indices do not imply summation. Here,
HCT represents the leading order Hamiltonian which
respects HQSS. Since we focus on the energy region
[3.7, 4.25] GeV, only the leading order contact potentials
Ci
1;2;3;4 are considered as constants within such a small

energy region. The contact potentials read

Vi
nn0 ¼ i

nhDð�ÞD̄ð�ÞjHCT jDð�ÞD̄ð�Þijn0δij: ð19Þ

Substituting Eqs. (8)–(11) into Eq. (19) and combining
with Eqs. (15)–(18), one can obtain the explicit form
of Vi

nn0

Vi
11 ¼

1

4
Ci
1 þ

1

12
Ci
2 þ

1

4
Ci
3 þ

5

12
Ci
4; Vi

12 ¼ −
1

6
Ci
2 −

1

4
Ci
3 þ

5

12
Ci
4;

Vi
13 ¼

ffiffiffi
3

p

4
Ci
1 −

1

12
ffiffiffi
3

p Ci
2 þ

ffiffiffi
3

p

12
Ci
3 −

5
ffiffiffi
3

p

36
Ci
4; Vi

14 ¼
1

6

ffiffiffi
5

3

r
Ci
2 −

1

4

ffiffiffi
5

3

r
Ci
3 þ

1

12

ffiffiffi
5

3

r
Ci
4;

Vi
22 ¼

1

3
Ci
2 þ

1

4
Ci
3 þ

5

12
Ci
4; Vi

23 ¼
1

6
ffiffiffi
3

p Ci
2 þ

1

4
ffiffiffi
3

p Ci
3 −

5

12
ffiffiffi
3

p Ci
4;

Vi
24 ¼ −

1

3

ffiffiffi
5

3

r
Ci
2 þ

1

4

ffiffiffi
5

3

r
Ci
3 þ

1

12

ffiffiffi
5

3

r
Ci
4; Vi

33 ¼
3

4
Ci
1 þ

1

36
Ci
2 þ

1

12
Ci
3 þ

5

36
Ci
4;

Vi
34 ¼ −

ffiffiffi
5

p

18
Ci
2 þ

ffiffiffi
5

p

12
Ci
3 −

ffiffiffi
5

p

36
Ci
4; Vi

44 ¼
5

9
Ci
2 þ

5

12
Ci
3 þ

1

36
Ci
4: ð20Þ

Since Vi is a symmetric 4 × 4 matrix, we only show the
elements Vnn0 with n < n0. One might have noticed that the
Dð�ÞD̄ð�Þ pairs are formed to a JPC ¼ 1−− state in P-wave,
which should encode a momentum dependence in each
vertex, reflecting the P-wave interaction. Here, we use a
separable contact interaction. The momentum in the loop is
contained in the two-point propagator, and the momentum
dependence of the external particles is contained in the
amplitude, which will be discussed afterward. The contact
potentials in the SU(3) flavor basis reads

VCT ¼

0
B@

V0

V8

V1

1
CA; ð21Þ

where V0, V8, and V1 are 4 × 4 matrices whose elements
are given by the Eq. (20).
Within the energy region of interest [3.7, 4.25] GeV,

there are three vector charmonia, i.e., ψð1DÞ, ψð3SÞ,
ψð2DÞ. The vector charmonium ψð2SÞ is slightly below
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theDD̄ threshold and might also affect the cross sections of
two charmed meson pairs. However, we have checked that
its effect is marginal and we neglect its contribution in our
framework. In this case, the vector charmonia ψð1DÞ,
ψð3SÞ, and ψð2DÞ are included one by one. As a result, we
consider three different frameworks, i.e., the coupled-
channel effect with the three vector charmonia (model I),
two vector charmonia (model II), and one vector charmo-
nium (model III). From the experimental side, one can see
significant contributions of the ψð1DÞ and ψð3SÞ in the
eþe− → DþD−=D0D̄0 [1,36] and eþe− → DþD̄�− [5,37]
processes, respectively. Therefore, we need to consider
model I and model II, without focusing on model III. The S-
wave and D-wave charmonia can be expressed in terms of
heavy-light basis j1 ⊗ 0i and j1 ⊗ 2i, respectively. As
these charmonia are SU(3) flavor singlet, we define the
coupling constants between charmonia and the open
charmed channels

g01D ≡ 0h1 ⊗ 2jHbarej1 ⊗ 2i01D; ð22Þ

g03S ≡ 0h1 ⊗ 0jHbarej1 ⊗ 0i03S; ð23Þ

g02D ≡ 0h1 ⊗ 2jHbarej1 ⊗ 2i02D: ð24Þ

The heavy-light structures j1 × 2i01D, j1 × 0i03S, and j1 ×
2i02D corresponds to ψð1DÞ, ψð3SÞ, and ψð2DÞ, respec-
tively. Hbare is the Hamiltonian density describing the
interaction between the bare state and the open charmed
meson pair, with the corresponding potential

V0
cc̄nj ¼ 0

nhDð�ÞD̄ð�ÞjHbarejji0; ð25Þ

where j ¼ 1, 2, 3 (j ¼ 1, 2) denote charmonia ψð1DÞ,
ψð3SÞ, ψð2DÞ for model I (ψð1DÞ, ψð3SÞ for model II).

B. The Lippmann-Schwinger equation

In total, there are 12þ α channels in our frame-
work, with 12 open charmed channels and α bare
vector charmonium states (α ¼ 3 or 2, depending on the
model I or II). The Lippmann-Schwinger equation (LSE)
reads as

TðEÞ ¼ V þ VGðEÞTðEÞ; ð26Þ

where E is the total energy in the center-of-mass (c.m.)
frame. V and GðEÞ denote the potential and two-point loop
function matrices. The potential V reads as

V ¼
� ½Voo�12×12 ½Vob�12×α

½Vbo�α×12 0α×α

�
; ð27Þ

where Voo represents the contact potential between two

charmed meson channels, and Vob denotes the interac-
tion between the bare vector charmonium and the
charmed meson pairs. The two-point function matrix
GðEÞ reads [38]

GðEÞ ¼
�
diag½Gii

CTðEÞ�12×12 012×α
0α×12 diag½Gcc̄ðEÞ�α×α

�
; ð28Þ

with

Gii
CTðEÞ ¼

Z
d3q⃗
ð2πÞ3

q2f2Λðq2Þ
E −mi1 −mi2 − q2=ð2μÞ þ iεþ

¼ −
μΛ

ð2πÞ3=2
�
k2 þ Λ2

4

�

þ μk3

2π
e−2k

2=Λ2

�
erfi

� ffiffiffi
2

p
k

Λ

�
− i

�
;

Gcc̄ðEÞ ¼
1

E2 −m2 þ iεþ
; ð29Þ

where m and Λ denote the charmonium bare mass and
cutoff, respectively. mi1 and mi2 are the meson masses
involved in the ith channel. Here, we take the Gaussian
form factor fΛðq2Þ ¼ expð−q2=Λ2Þ. The momentum q2 in
the numerator reflects the P-wave interaction between the
charmed meson pairs. More details of the P-wave two-
point function Gii

CTðEÞ can be found in Appendix C.
We employ the nonrelativistic Green function because
the relevant dynamics occur near thresholds. The relativ-
istic correction can be estimated by p2=4ð2μÞ2 with p and μ
the c.m. three momentum and reduced mass of a given
channel. This estimate is from the expansion of the energy

E ¼ mþ p2

2m þ 1
8
m p4

m4 þ � � � in terms of momentum and
mass, where ratio between the third term and the second
term is p2=4m2. For the two-body channel, we replace the
mass m by 2μ. This value for the lowest channel
at the highest energy is about 0.06 at the amplitude level,
which means that the relativistic correction is at most
1.062 − 1 ¼ 12% for physical quantities. On the other
hand, both the relativistic and nonrelativistic expressions
should be compared with the experimental data. At the end,
part of this correction will be absorbed into the redefinition
of the model parameters. From this point of view, 12% is
the maximum estimate of the relativistic correction. This
indicates that the nonrelativistic approximation remains
valid for the majority of channels throughout the energy
region of interest. Although relativistic effects may become
significant in energy regions far from the thresholds, they
do not affect the physical results near the thresholds.
Substituting Eqs. (27) and (28) into Eq. (26), one can obtain
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� ½Too�12×12 ½Tob�12×α
½Tbo�α×12 ½Tbb�α×α

�
¼

� ½Voo þ VooGCTToo þ VobGcc̄Tbo�12×12 ½Vob þ VooGCTTob þ VobGcc̄Tbb�12×α
½Vbo þ VboGCTToo�α×12 ½VboGCTTob�α×α

�
; ð30Þ

where Too denotes the scattering amplitudes between
charmed meson pairs. Tob denotes the scattering amplitudes
between the charmonium and the charmed meson pair,
with Tbo describes the inverse process of Tob, and GCT ¼
diag½Gii

CTðEÞ�12×12. Plugging the Tbo into Too, one obtains

TooðEÞ ¼ V̂eff
oo þ V̂eff

ooGCTðEÞTooðEÞ; ð31Þ

where the effective potential is defined as V̂eff
oo ≡ Voo þ

VobGcc̄Vbo. It is easy to see that

TooðEÞ ¼ ½½V̂eff
oo ðEÞ�−1 −GCTðEÞ�−1 ð32Þ

by solving algebraic LSE. To ensure unitarity of the
T-matrix, the Gaussian form factor fΛðpÞ appearing in
the two-point loop function Gii

CTðEÞ should also contribute
to the above T-matrix as1

TooðEÞ ¼ fΛðpÞ½½V̂eff
oo ðEÞ�−1 −GCTðEÞ�−1fΛðp0Þ: ð33Þ

Since these charmonia only couple to the SU(3) flavor
singlet, the effective potential can be represented as

V̂eff 0
oo ¼

0
B@

V0 þ V0
cc̄Gcc̄V0

cc̄
T

V8

V1

1
CA: ð34Þ

In contrast to the effective potential [Eq. (33)] in particle
basis, Eq. (34) is expressed in the SU(3) flavor basis. One
needs to transform V̂eff 0

oo into particle basis

V̂eff
oo ¼ RV̂eff 0

oo R−1; ð35Þ

with the transformation matrix R given in Eq. (14).
Substituting Eq. (35) into Eq. (33), one can obtain the
full mesonic T-matrix for the coupled-channel system
ðDð�ÞD̄ð�ÞÞa containing the contributions from bare char-
monium states.

C. The physical production amplitude and cross section

Analogous to the LSE, the physical production ampli-
tude reads

UðEÞ ¼ F þ VGðEÞUðEÞ; ð36Þ

where F ¼ ð½Fo�T12×1; ½fb�Tn×1ÞT is the bare production
amplitude. The Fo matrix is the bare production between
the virtual photon and charmed meson pair. The fb matrix
is the bare production between the virtual photon and the
charmonia. Similarly, plugging Eqs. (27) and (28) into
Eq. (36), one obtains the physical production explicitly

� ½Uo�12×1
½Ub�α×1

�
¼

� ½Fo þ VooGCTUo þ VobGcc̄Ub�12×1
½fb þ VboGCTUo�α×1

�
;

ð37Þ

where Uo and Ub represent the physical production ampli-
tudes for the charmed meson pairs and the involved
charmonia, respectively. Substituting Ub into Uo, one we
get the physical production amplitude for the open charmed
channels

UoðEÞ ¼ ð112×12 − V̂eff
ooGCTðEÞÞ−1F̂eff

o ; ð38Þ

with F̂eff
o ≡ Fo þ VobGcc̄fb the effective bare production

amplitude. Analogous to that for T-matrix, the Gaussian
form factor fΛðpÞ is introduced to regularize the integral.
As the result, Eq. (39) can be rewritten as

UoðEÞ ¼ fΛðpÞð112×12 − V̂eff
ooGCTðEÞÞ−1F̂eff

o : ð39Þ

As the standard QED vertex between the virtual photon and
the cc̄ state can be decomposed into both S-wave and D-
wave cc̄ pairs [39,40], one can define the coupling between
the virtual photon and themth open charmed channel in the
same SU(3) flavor basis as

Fi
m ≡ C1−−

m2 f
i
S þ C1−−

m4 f
i
D; ð40Þ

with m ¼ 1; 2; 3; 4 and fiS≡ ih1⊗0jHEMjγ�ii;
fiD≡ ih1⊗2jHEMjγ�ii. Here, HEM is the electromagnetic
Hamiltonian density describing the interaction between the
virtual photon and vector charmonia. The explicit form of
the bare production (for model I) amplitude reads

F ¼ ð½Fo�T12×1; ½fb�T3×1ÞT
¼ ð½F0�T4×1; ½F8�T4×1; ½F1�T4×1; ½fb�T3×1ÞT; ð41Þ

where Fi ¼ ðFi
1; F

i
2; F

i
3; F

i
4ÞT and fb ¼ ðf01D; f03S; f02DÞT

for model I (fb ¼ ðf01D; f03SÞT for model II) which is the
couplings between the virtual photon and charmonia. The
effective bare production amplitude is given by

1This form factor can also be added to each vertex in the
potential alternatively, instead in the two-point loop and external
particles, to satisfy the unitarity is automatically.
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F̂eff 0
o ¼

0
B@

½F0 þ VobGcc̄fb�4×1
½F8�4×1
½F1�4×1

1
CA: ð42Þ

Similarly, we need to transform F̂eff 0
o in Eq. (42) into the

particle basis representation

F̂eff
o ¼ RF̂eff 0

o : ð43Þ

Substituting Eqs. (35) and (43) into Eq. (39), one can obtain
the physical production amplitude for the open charmed
channel containing the three charmonia. The process
eþe− → ðDð�ÞD̄ð�ÞÞan is shown in Fig. 1, and the scattering
amplitude for the nth process is given by

Ma
n ¼ v̄ðpþÞð−ieγμÞuðp−Þ

−igμν

sþ iεþ
Aa

nν; ð44Þ

where pþðp−Þ is the four-momentum of the positron
(electron) and s is the square of the center-of-mass
energy. Aa

nν is the physical production amplitude with ν
the polarization index. Then the square of the scattering
amplitude is

jMa
nj2 ¼

1

2

X
r

1

2

X
s

X
λ

X
λ0

jMa
nj2

¼ e2

4s2
X
r

X
s

X
λ

X
λ0

v̄rðpþÞγνusðp−Þūs

× ðp−Þγν0vrðpþÞAa
nνAa�

nν0

¼ −
4πα

s2
X
λ

X
λ0

�
1

2
sgij þ 2piþp

j
þ

�
Aa
niA

a�
nj

ði; j ¼ 1; 2; 3Þ; ð45Þ

where we average over the initial electron and positron
spins and sum over the polarization of the final charmed
meson. Then Aai

n is given by [35,41,42] (also see
Appendix A)

Aai
1 ¼ Ua

1ðpD̄a
− pDa

Þi; ð46Þ

Aai
2 ¼ Ua

2ϵ
ijkðpD̄a

− pD�
a
Þjε�λk; ð47Þ

Aai
3 ¼ 1ffiffiffi

3
p Ua

3ðpD̄�
a
− pD�

a
Þiε�αλ ε�λ0α; ð48Þ

Aai
4 ¼

ffiffiffi
3

5

r
Ua
4P

ij;mn
2 ðpD̄�

a
− pD�

a
Þjε�λmε�λ0n; ð49Þ

with Pij;mn
2 ¼ 1

2
δimδjn þ 1

2
δinδjm − 1

3
δijδmn. Here, p

Dð�Þ
a
and

ε� are the four-momentum and the polarization vector of the
charmed meson, respectively. The momentum dependence
in the above four equations reflects the P-wave interaction
of the charmed meson pairs. More detail can be found
in Appendix A. Substituting Eqs. (46)–(49) into Eq. (45),
one can obtain the explicit form of the corresponding
amplitudes squared

jMa
1j2 ¼

8πα

s
jpDa j2jUa

1j2ð1 − cos2θÞ; ð50Þ

jMa
2j2 ¼

8πα

s
jpDa j2jUa

2j2ð1þ cos2θÞ; ð51Þ

jMa
3j2 ¼

8πα

s
jpD�a j2jUa

3j2ð1 − cos2θÞ; ð52Þ

jMa
4j2 ¼

28πα

5s
jpD�a j2jUa

4j2
�
1 −

1

7
cos2θ

�
; ð53Þ

with the fine-structure constant α ¼ e2
4π. Here, θ is the

relative angle between the incoming electron and outgoing
charmed meson. More details can be found in Appendix B.
For the two-body scattering, the differential cross section is
given by

dσan
d cos θ

¼ jpDð�Þa j
16πs3=2

jMa
nj2: ð54Þ

One can obtain the total cross section

σa1 ¼
2αjpDa j3
3s5=2

jUa
1j2; ð55Þ

σa2 ¼
4αjpDa j3
3s5=2

jUa
2j2; ð56Þ

σa3 ¼
2αjpD�a j3
3s5=2

jUa
3j2; ð57Þ

σa4 ¼
2αjpD�a j3
3s5=2

jUa
4j2; ð58Þ

by plugging Eqs. (50)–(53) into Eq. (54) and integrating
over the angle θ.

FIG. 1. Feynman diagram for the processes eþe− →
ðDð�ÞD̄ð�ÞÞa.
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D. The 1− + P-wave coupled channel system

The scattering between two heavy-quark-spin multiplets
can be described by the same set of low-energy constants,
which relates the dynamics of various systems to each
other. For the P-wave scattering between the sPl ¼ 1

2
−

doublet, i.e., ðD;D�Þ doublet, and its antidoublet, there
is also JPC ¼ 1−þ exotic quantum number [31,43] in
addition to the vector channel, i.e., JPC ¼ 1−−. For this
exotic quantum number, which is beyond the conventional
quark model, there is no conventional charmonium cou-
pling to this channel. The dynamic of this quantum number
is described by the low-energy constants. Similarly to that
in vector channel, the 1−þ hadronic basis can be repre-
sented by the heavy-light basis as

jDD̄� þ c:c:ii
1−þ ¼ −

1ffiffiffi
2

p j0 ⊗ 1ii þ 1ffiffiffi
2

p j1 ⊗ 1ii; ð59Þ

jD�D̄�iis¼1
1−þ ¼ 1ffiffiffi

2
p j0 ⊗ 1ii þ 1ffiffiffi

2
p j1 ⊗ 1ii; ð60Þ

where only j0 ⊗ 1ii and j1 ⊗ 1ii components appear. The
contact potential reads

V1−þ ¼

0
B@

V0
1−þ

V8
1−þ

V1
1−þ

1
CA; ð61Þ

where Vi
1−þ is given by

Vi
1−þ ¼

0
B@

Ci
1

2
þ Ci

3

2
− Ci

1

2
þ Ci

3

2

− Ci
1

2
þ Ci

3

2

Ci
1

2
þ Ci

3

2

1
CA; ð62Þ

which is represented in the SU(3) flavor basis. Similarly,
we need to transform the above contact potential into the
particle basis

V1−þ
CT ¼ R0

0
B@

Ci
1

2
þ Ci

3

2
− Ci

1

2
þ Ci

3

2

− Ci
1

2
þ Ci

3

2

Ci
1

2
þ Ci

3

2

1
CAR0−1; ð63Þ

with

R0 ¼

0
BBB@

1ffiffi
3

p 1ffiffi
6

p 1ffiffi
2

p

1ffiffi
3

p 1ffiffi
6

p −1ffiffi
2

p

1ffiffi
3

p −2ffiffi
6

p 0

1
CCCA ⊗ 12×2: ð64Þ

The T-matrix of 1−þ system is given by

TðEÞ1−þ ¼ fΛðpÞ½½V1−þ
CT �−1 −GCTðEÞ�−1fΛðp0Þ: ð65Þ

One can also study the pole structure of the 1−þ
system through the T-matrix, which involves solving
det ½16×6 − V1−þ

CT GCTðEÞ� ¼ 0.

III. RESULTS AND DISCUSSION

In this section, we perform a global fit to the latest
experimental cross sections of the eþe− → DD̄ [1,4,36],
eþe− → D�D̄þ c:c: [5,37], eþe− → D�D̄� [5,37] proc-
esses within the energy region [3.7, 4.25] GeV. More
specifically, we fit the cross sections of the eight processes
eþe− → ðDD̄Þu;d;s; ðDD̄�Þd; ðD�D̄�Þd;sS¼0;2. The fitting is
performed by imimuit [44] with over 1000 starting values
to find the global minimum value. The fitted cross sections
and the dynamical parameters governing the scattering
amplitudes Eq. (26) (and thus the pole positions) of the two
models are presented in Fig. 2 and Table I. The other
parameters are listed in Table VII of Appendix D.
From Fig. 2, one can see significant contributions of the

ψð3770Þ in the DþD− and D0D̄0 channels. The signals of
the ψð4040Þ in the DþD�− and Dþ

s D−
s channels are more

pronounced than that in theDD̄ channel.Whether the vector
charmoniumlike state Gð3900Þ exists or not needs further
pole analysis. As shown in the standardized residual plot in
Fig. 2, a large proportion of the standardized residuals are
distributed within the interval ½−3; 3�. Figures 2(a), 2(b),
2(e), and 2(f) show that the standardized residuals are
approximately randomly distributed around zero, sug-
gesting that the fit is satisfactory. However, there are more
standardized residuals below zero than above in Figs. 2(c)
and 2(d), similar results also observed in Ref. [20]. This
result can be attributed to twomain reasons. First, there exist
significant discrepancies between the data points of BESIII
and Belle collaborations in certain regions for the eþe− →
DþD�− and eþe− → D�þD�− processes, which reduces the
quality of the fit and prevents the standardized residuals
frombeing randomly distributed around zero. Second, under
the consideration of coupled-channel effects, there is still a
deviation from the experimental data in the eþe− → DþD�−
and eþe− → D�þD�− channels for both the LSE and the
K-matrix approaches. The projection of all standardized
residuals onto the vertical axis yields a distribution that

TABLE I. The dynamical parameters governing the scattering
amplitudes Eq. (26) in the fitting.

Parameters Model I Model II

g01D½GeV−1� 0.66� 0.04 −12.93� 0.26
g03S½GeV−1� −14.66� 0.37 −14.11� 0.96
g02D½GeV−1� −17.09� 0.23 � � �
m0

1D [GeV] 3.807� 0.001 3.804� 0.001
m0

3S [GeV] 4.229� 0.002 4.253� 0.005
m0

2D [GeV] 3.692� 0.003 � � �
Λ [GeV] 0.50� 0.00 0.50� 0.00
χ2=d:o:f: 2.17 2.66
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FIG. 2. The line shapes of model I (solid curve) and model II (dashed curve) in comparison with the experimental data. The DD̄
data is from both BESIII [4,36] and Belle [1] collaborations. Panels (a)–(f) show the line shapes of the channels
eþe− → DþD−; D0 D̄0 ; DþD∗−; Dþ

s D−
s ; D∗þD∗− and D∗þ

s D∗−
s , respectively. The experimental data in the DD̄� and D�D̄�

channels are from BESIII [5] and Belle [37] Collaborations. The Dþ
s D−

s data are from BESIII [33] and BABAR [34] Collaborations.
The data in the D�þ

s D�−
s are from BESIII collaboration [6]. The blue and the purple region denote the 99% confidence levels for model I

and model II, respectively. The six vertical gray dashed lines represent the DD̄, DD̄�, Dþ
s D−

s , D�D̄�, Dþ
s D�−

s , and D�þ
s D�−

s thresholds
from left to right, respectively. The lower panel of each figure is the standardized residual plot, where the orange and green points
represent the standard residuals of model I and model II, respectively.
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closely resembles a Gaussian distribution which are pre-
sented in Figs. 10 and 11 in Appendix F. The standardized
residuals of model I show a slight deviation from the
Gaussian distribution, which may indicate mild overfitting.
In comparison, the residuals of model II are more consistent
with a Gaussian distribution, suggesting a higher quality of
fit. Overall, the fitting performance of both models remains
within an acceptable range.
In Table I, the parameters g01D, g

0
3S, and g

0
2D denote the bare

couplings between the charmonia ψð1DÞ, ψð3SÞ, andψð2DÞ
and an open charmed meson pairs. m0

1D, m
0
3S, and m0

2D
represent the bare mass of ψð1DÞ, ψð3SÞ, and ψð2DÞ,
respectively. Λ is the cutoff parameter in the two-point loop
function. The reduced chi-squares are χ2=d:o:f. ¼ 2.17 and
χ2=d:o:f. ¼ 2.66 for model I and model II, respectively,
which indicates that an additional bare vector charmonium
state greatly optimizes the fit result. With the fitted param-
eters, we can extract the physical quantities of interest, such as
pole positions in the complex E-plane, the effective cou-
plings, and so on. With the fitted parameters, we can extract
the physical quantities of interest, such as pole positions in the
complex E-plane, the effective couplings, and so on.

A. Pole analysis

A state is identified as a pole of the T-matrix in the
complex energy plane, either bound state, virtual state, or
resonance (Fig. 3). The pole positions can be obtained by
solving the equation

det ½1 − V̂eff
ooGCTðErÞ� ¼ 0: ð66Þ

Through analytic continuation, the complex E-plane can be
extended to 2n (with n the number of involved channels)
Riemann sheets (RSs) which are labeled by ð�;…;�Þ
according to the signs of the imaginary parts of the c.m.
three-momenta in the two-body channels. The physical RS

is denoted by ðþ; � � � ;þÞ, whereas the others represent the
unphysical RSs. The physical and unphysical RSs are
connected by branch cuts where the two-point function
satisfies

GII
ii ðE − iεÞ ¼ GI

iiðEþ iεÞ: ð67Þ

Here, the indices I and II represent the two-point functions
on the first (physical) and second (unphysical) RSs, and i ¼
1;…; n denote the ith channel.
We assume that the Dð�Þþ meson mass is equal to the

Dð�Þ0 meson mass, because its mass difference is very
small. As the result, it is unnecessary to search for poles in
the region ½D0D̄0�Thr < Er < ½DþD−�Thr, ½D0D̄�0�Thr <
Er < ½DþD�−�Thr and ½D�0D̄�0�Thr < Er < ½D�þD�−�Thr,
where ½ðDð�ÞD̄ð�ÞÞu;d�Thr represent the threshold of the
ðDD̄Þu;d meson pair. Therefore, there are six thresholds
in our coupled-channel system, i.e., ½DD̄�Thr, ½DD��Thr,
½Dþ

s D̄−
s �Thr, ½D�D̄��Thr, ½Dþ

s D̄�−
s �Thr, and ½D�þ

s D̄�−
s �Thr

in order, where we use Dð�Þ to denote Dð�Þþ and Dð�Þ0
mesons. In the following, we use the abbreviations
Thr1;Thr2;…;Thr6 to denote the six thresholds. In general,
we need to find the poles on 26 RSs. However, in practice,
we are only concerned with the poles on the physical RS
ðþ;þ;þ;þ;þ;þÞ and those on the unphysical RSs close
to the physical region. These unphysical RSs are labeled by
sequentially replacing the plus signs with minus signs, i.e.
ð−;þ; � � � ;þÞ, ð−;−;…;þÞ,…, ð−;−; � � � ;−Þ. Therefore,
we find poles for the following cases:
(1) Poles below all the thresholds on the physical

RS ðþ;þ;þ;þ;þ;þÞ.
(2) Poles above the ith threshold and below the (iþ 1)th

threshold on the unphysical RS ð−; ;…;−i;
þðiþ1Þ;…;þÞ.

(3) Poles below but close to the ith threshold on the
unphysical RS ð−; ;…;−i;þðiþ1Þ;…;þÞ, which
also have impact on the physical observables.

Whether the above poles have a significant physical impact
or not depends on their distance Ed to the physical RS. In
Fig. 4, we present a schematic diagram of the distance Ed of
the poles on different unphysical RSs. Although the poles
of the resonance states are symmetric about the real axis,
only the poles on the lower half-plane are close to the
physical RS as shown in Fig. 4. For Case 1, since the pole is
already on the physical RS, the distance to the physical
sheet is zero. For Case 2, since the unphysical RS
ð−;…;−i;þðiþ1Þ;…;þÞ is connected to the physical RS
ðþ;þ;þ;þ;þ;þÞ along the region ½Thri;Thriþ1� on the
real axis, where Thri denotes the ith threshold. Those poles
can reach to the physical RS by moving the energy distance
along the direction of positive imaginary axis, where Ed is
equal to the modulus of the imaginary part of the pole.
Finally, for Case 3, the pole can first move Er along the
direction of positive real axis, with Er the difference

FIG. 3. Pole positions on the complex energy E-plane (left)
and momentum k-plane (right). The red line on the real axis
represents the energy region above the threshold. The green solid
circle represents a bound state, located below the threshold on the
physical RS, the blue hollow triangle denotes a virtual state,
located below the threshold on the unphysical RS, and the orange
square represents a resonance state, located above the threshold
on the unphysical RS, with a nonzero imaginary part.
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between the threshold and the real part of the pole.
Furthermore, they move along the direction of positive
imaginary axis as that for Case 2. Thus, Ed is Er plus the
modulus of the imaginary part of the pole. The poles in
model I and model II are presented in Table II. The effective
couplings of the poles to the ith-channel in model I and
model II are listed in Tables VIII and IX of Appendix D. In
Table II, one can see the two poles corresponding to the
ψð3770Þ and ψð4040Þ in both model I and model II. In
model I, a pole 3832.52� 74.53i around 3.9 GeV on the
ð−;þ;−;þ;þ;þÞ contributes to the broader peak structure
in experiment. In model II, a pole 3883.91� 46.53i on the
ð−;−;þ;þ;þ;þÞ sheet corresponds to the peak structure
around 3.9 GeV.
However, so far, we are unable to directly determine

which poles are dynamically generated states and which are
from a strong renormalization of bare vector charmonia.
One can distinguish them by plotting the trajectory of the
poles when the coupling constants vary. Since the proce-
dures for calculating the pole trajectory are similar between
the two models, only the pole trajectories for model I are
presented. The specific procedure is as follows:
(1) Vary the coupling constant g02D from the fitted value

to 0 with g01D and g03S fixed to their fitted values and
plot the trajectory of all the poles.

(2) Vary the coupling constant g01D from the fitted value
to 0 with g03S and g02D fixed to the fitted value and 0,
respectively. Plot the trajectory of all the poles.

(3) Perform the same procedure for the coupling con-
stant g03S with the couplings g02D and g01D fixed to 0.
Plot the trajectory of all the poles as g03S varies.

When the coupling constants gradually change to zero, if
the pole moves toward the bare mass obtained from the
fitting on the real axis, it indicates that the pole is a state
renormalized from a bare state. For the sake of conven-
ience, we illustrate the reason for the case of one open
charmed channel and one bare charmonium state. In this
case, the T-matrix reads as

T ¼ vCT þ g2

s−m2

1 −
	
vCT þ g2

s−m2



GðsÞ

; ð68Þ

where vCT and g, which are both real numbers, are the contact
potential and the coupling between the bare charmonium and
open charmed meson pair. The pole s0 is the solution of

1 − ðvCT þ g2

s−m2ÞGðsÞ ¼ 0. When g ¼ 0, one obtains

1 − vCTGðs0Þ ¼ 0: ð69Þ

In this case,
ffiffiffiffiffi
s0

p
corresponds to the dynamically generated

state, and the contribution of any charmonium vanishes.
When g ≠ 0, we can extract the pole from

s0 ¼
g2Gðs0Þ

1 − vCTGðs0Þ
þm2: ð70Þ

When g gradually decreases to zero, the term g2Gðs0Þ
1−vCTGðs0Þ → 0.

Therefore, the pole
ffiffiffiffiffi
s0

p
willmove toward the baremass of the

charmonium. Similarly, for the system with many open
charmed channels and many bare charmonia, this property
still works. As long as we gradually adjust all the couplings to
zero, the renormalized charmonium statewill move to its bare
mass. The pole trajectories in model I are presented in Fig. 5
and the zoomed-in diagram of all poles in the left diagram can
be found in Fig. 8 of Appendix E.
The pole trajectories of model I are illustrated in Fig. 5.

When the couplings g02D, g
0
1D, and g

0
3S vary from their fitted

values to zero, the 3691.60 MeV, 3778.42� 11.81iMeV,
and 4232.78� 23.96iMeV poles approach to the bare
masses m0

2D, m
0
1D, and m0

3S, respectively. These three poles
are considered as the ψð2DÞ, ψð1DÞ, and ψð3SÞ vector
charmonia. The significant discrepancy between the
3691.60 MeV pole and the experimental result indicates
that the ψð2DÞ charmonium acts as a redundant free
parameter in the fit without any physical significance.
This suggests that an additional charmonium ψð2DÞ is
unnecessary, even though it has improved the fitting results
a little bit. On the contrary, the pole 4011.05� 10.13iMeV
undergoes only slight movement on the RSs which is
considered as a dynamically generated state.
After carefully searching for poles on other RSs,

we find another dynamically generated state at
3832.57þ0.91

−0.79 � 74.53þ0.68
−2.15 iMeV, about 40 MeV below

the ½DD̄��Thr, on ð−;þ;−;þ;þ;þÞ sheet. To check its

TABLE II. Pole positions on the various RSs. The numbers in
square brackets represent energy distances of the poles to the
physical RS, in units of MeV.

Riemann sheets Model I Model II

ðþ;þ;þ;þ;þ;þÞ 3.691.60 � � �
ð−;þ;þ;þ;þ;þÞ � � � 3743.07� 7.36i [7]

3778.42� 11.81i [12] 3775.29� 14.31i [14]
ð−;þ;−;þ;þ;þÞ 3832.52� 74.53i � � �
ð−;−;þ;þ;þ;þÞ � � � 3883.91� 46.53i [47]
ð−;−;−;−;þ;þÞ 4011.05� 10.13i [16] 4019.42� 17.40i [17]
ð−;−;−;−;−;−Þ 4232.78� 23.96i [24] 4278.21� 21.59i [22]

Im E

Re E

FIG. 4. Paths from poles in model I on unphysical RSs to the
physical RS. Poles are represented by solid circles. The blue,
green, orange, dark blue, purple, and red solid line denote the cuts
form the DD̄, DD̄�, Dþ

s D−
s , D�D̄�, Dþ

s D�−
s , and D�þ

s D�−
s

thresholds, respectively.
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impact on the physical observables, we plot the three-
dimensional representation of jT11jwhich is the modulus of
the first row and first column element of T-matrix on both
ð−;þ;−;þ;þ;þÞ and the physical RS. From Fig. 6, the
curvature of jT11j on the physical plane is nearly the same
as that on the ð−;þ;−;þ;þ;þÞ sheet, which indicates that
despite the ð−;þ;−;þ;þ;þÞ sheet being relatively far
from the physical RS, it still exerts a significant influence
on the physical region.
For model II, the poles and the corresponding effec-

tive couplings are presented in Appendix D. Through a
pole trajectory analysis similar to that of model I, the
poles 3775.29� 14.31iMeV and 4278.21� 21.59iMeV
approach to the bare massesm0

1D andm0
3S, corresponding to

the ψð1DÞ and ψð3SÞ charmonia, respectively. The other
poles, interpreted as dynamically generated states, remain

largely stationary as the couplings g01D and g03S change from
their fitted values to zero. In contrast to model I, a new pole
3743.07� 7.36iMeV emerges on ð−;þ;þ;þ;þ;þÞ sheet
in model II. This state does not manifest itself as a visible
peak in the eþe− → DD̄ cross section, possibly because it
couples weakly to the DD̄ channel and lies close to
ψð3770Þ. Alternatively, shown, the pole couples pre-
dominantly to theD�D̄� channel instead of theDD̄ channel
(Appendix D). Consequently, its contribution to the
eþe− → DD̄ cross section is suppressed, and further
obscured by the overlapping of the nearby ψð3770Þ,
making it difficult to be observed in experiment. The
pole 3883.91þ0.38

−0.46 � 46.53þ1.22
−1.22 iMeV, 9 MeV above the

½DD̄��Thr threshold, locates on the ð−;−;þ;þ;þ;þÞ sheet
and can be considered as a candidate of the Gð3900Þ. The
central value of the real part is consistent with the
experimental mass of the Gð3900Þ within the uncertainty.
The width of this pole is considerably narrower than that
obtained by BESIII, suggesting that the Breit-Wigner fit
used by BESIII may not be suitable for describing a near-
threshold state.
In model I, we identify the pole located at 3832.6þ0.9

−0.8 −
74.5þ0.7

−2.2 iMeV as the candidate of the Gð3900Þ. The central
value of the real part is approximately 40MeV lower than the
mass of the Gð3900Þ. While its width is consistent with the
experimental large value, making it still a visual broad
structure in experiment. Although the real part of the pole
lies below ½DD̄��Thr, the state can still decay into theDD̄� final
state, which makes it a plausible candidate for the Gð3900Þ.
The comparison between our results and other

works [20,29,32] is presented in Table III and Fig. 7.
Reference [20] uses the K-matrix parametrization to
describe the cross sections of the eþe− → Dð�ÞD̄ð�Þ proc-
esses, but without hidden strange channels. Their overall
fitting indicates that the Gð3900Þ is only a threshold

FIG. 6. The modulus of the scattering amplitude jT11j on the
complex E-plane. The orange and green surfaces are the lower
half plane of the ð−;þ;−;þ;þ;þÞ RS and the upper half plane
of physical RS, respectively.

FIG. 5. Left: the trajectories of the poles in model I on various RSs with the coupling constants g02D, g
0
1D, and g

0
3S varying sequentially

from the fitted values to zero. Right: the trajectory of pole 3832.57þ0.91
−0.79 � 74.53þ0.68

−2.15 iMeV on the ð−;þ;−;þ;þ;þÞ RS. Different
shapes represent the trajectories of distinct poles. The red dashed rectangular boxes represent the initial positions of the poles and the
colors of the poles gradually become darker as the parameters g02D, g

0
1D and g03S vary sequentially from the fitted values to zero.
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enhancement of the D�D̄ channel. Reference [29] uses the
one-boson-exchanged (OBE) model to connect the dynam-
ics of the S-wave hadronic molecule χc1ð3872Þ, Zcð3900Þ,
Tccð3875Þ to the P-waveGð3900Þ. The proper S-wave pole
positions indicate the existence of the P-wave hadronic
molecule Gð3900Þ. Reference [32] obtains the same con-
clusion by fitting to 18 two-body and three-body hadronic
channels, which also needs to deal with the three-body
dynamics properly.
The results obtained from both model I and model II are

in agreement with those reported in Refs. [29,32], support-
ing the interpretation of Gð3900Þ as a P-wave DD̄�=D̄D�
molecule state. While the inclusion of the bare ψð2DÞ state
in model I introduces three additional parameters, poten-
tially causing overfitting in model I. Given that χ2=d:o:f. of
model II is already satisfactory and that its residue analysis
shows better performance, we place greater emphasis on
the poles found in model II. Although both models yield
consistent conclusions regarding the dynamical origin of
the pole, we adopt the pole positions from model II due to
its good residue performance (the lower panel of Fig. 2).
Similarly, we also compare the results for ψð3770Þ and

ψð4040Þ with those reported in Refs. [20,29,32], presented
in Table IV. We note that the pole positions of the ψð3770Þ

extracted from models I and II are in good agreement with
the results reported in Refs. [20,29,32] and the value listed
by the PDG. In this work, the pole position of the ψð4040Þ is
essentially consistent with that in Ref. [29], and its width is
smaller than the value reported by the PDG, which suggests
the Breit-Winger fit may not be suitable for describing a
near-threshold state. Compared with Refs. [20,29,32], we
note that although all these studies incorporate a bare state
ψð4040Þ, Refs. [20,29,32] do not investigate whether the
pole originates from the bare state or a dynamic state. Based
on our tests, we find that within our framework, ψð4040Þ is a
dynamically generated state, and the bare state we intro-
duce is shifted to 4232.78 − 23.96i MeV for model I and
4278.21 − 21.59i MeV for model II. One possible explan-
ation for this shift is the presence of high thresholds in the
coupled-channel dynamics, which may have significantly
effect on the bare state positions.
In a short summary, our analysis indicates that the

Gð3900Þ originates from a dynamically generated pole,
consistent with the conclusions of Refs. [29,32]. Although
model II yields a slightly larger χ2=d:o:f. compared to
model I, the potential overfitting in model I caused by
additional parameters leads us to place greater emphasis on
the results of model II. This suggests that two bare states are
sufficient to describe the experimental data in the energy
region [3.7, 4.25] GeV. Additionally, we extract the differ-
ential cross section (presented in Fig. 9 of Appendix E) of
the DD̄ channel at

ffiffiffi
s

p ¼ 3.873 GeV, which is the exper-
imental mass position of the Gð3900Þ.
At last, we stress that the Dð�ÞD̄ð�Þ system with quantum

number JPC ¼ 1−− in a P-wave configuration presents
challenges within the framework of effective field theories
(EFTs). Such P-wave interactions in hadronic systems are
claimed to induce nontrivial renormalization behavior by
some authors [45,46]. Specifically, it is argued that the
implementation of consistent power counting requires the
introduction of higher-order counter terms to preserve
renormalization group invariance, particularly when deal-
ing with singular potentials characteristic of P-wave
interactions. However, this point of view is challenged in
Refs. [47–50], where it is shown that a self-consistent and
practically applicable solution to the problem of non-
perturbative renormalization is provided by the cutoff
EFT. In the present work, we intentionally circumvent this
debate by performing a phenomenological study as we
focus on pole extraction rather than pursuing a complete
renormalization procedure. The description of the data thus
relies on the choice of the cutoff as a consequence of
omitting these necessary counter terms. The phenomeno-
logical approach used in this work remains justified for
our primary objective of identifying and characterizing
possible pole structures in the complex energy plane, while
acknowledging that a more fundamental EFT treatment
would require systematic inclusion of higher-order counter
terms to achieve proper renormalization. The extracted pole

TABLE III. The pole position of the Gð3900Þ, in comparison
with other works. “Exp.” represents the experimental data from
Ref. [4] (Supplemental Materials). I and II stand for our model I
and model II results, respectively.

I 3832.6þ0.9
−0.8 − 74.5þ0.7

−2.2 i

This work II 3883.9þ0.4
−0.5 − 46.5þ1.2

−1.2 i

Reference [20] � � �
Reference [29] 3869.2þ6.7

−6.7 − 29.0þ5.2
−5.2 i

Reference [32] 3896.0þ1.4
−1.4 − 72.0þ3.9

−3.9 i
Exp. 3872.5þ14.2þ3.0

−14.2−3.0 − 89.9þ7.0þ2.5
−7.0−2.5 i

Ref. [29]

FIG. 7. The pole positions of model I (purple hollow circle) and
model II (black hollow triangle) in comparison with other works.
Blue triangle and green hollow box are the results from Refs. [32]
and [29], respectively. Red box is the experimental result [4].
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positions, while regulator-dependent in technical terms,
nevertheless still provide crucial physical insights into the
possible existence and qualitative features of exotic had-
ronic states in this channel.

B. Searching the 1− + exotic candidate

As discussed in the previous section, the dynamics of the
JPC ¼ 1−þ channel is described by the same parameter set
as that of the JPC ¼ 1−− channel. We can also extract the
pole positions by plugging the fit parameters into Eq. (65)
and solving det½16×6 − V1−þ

CT GCTðEÞ� ¼ 0. The only rel-
evant parameters are Ci

1 andC
i
3 due to the appearance of the

j0 × 1ii and j1 × 1ii components and the bare charmonium
state is absent in this channel. There are four thresholds in
the 1−þ system, i.e. ½DD̄��Thr, ½D�D̄��Thr, ½Dþ

s D−
s �Thr, and

½D�þ
s D�−

s �Thr. The pole positions on the E-plane of the 1−þ
channel and their effective couplings to all the channels are
presented in Tables Vand VI, respectively. For the effective
couplings, the T-matrix exhibits the following behavior

Tij ∼
gigj

E − Er
ð71Þ

around the pole Er ¼ Mr − iΓr=2, withMr and Γr the mass
and width of a given state. Here, gi is the coupling of the
state to the ith-channel. gi is generally a complex number,
and its modulus is conventionally used to represent its
magnitude. The coupling constant gi is obtained from the
residues of the T-matrix via

gigi ¼ lim
E→Er

ðE − ErÞTiiðEÞ; ð72Þ

where Tii can be obtained by Eq. (33).
Since the 1−þ system does not contain bare states and

only has contact interactions, all the poles are dynamically
generated states. In model I, we find a bound state at
3836.57 MeVon the physical RS, which is around 38 MeV
below the ½DD̄��Thr. There are also other four resonances at
3885.42� 9.48iMeV, 4001.56� 3.94iMeV, 4085.70�
27.08iMeV, and 4224.18� 31.26iMeV on unphysical
RSs close to the physical region. The situation of the poles
for model II (shown in Table VI) is similar to that of
model I. The lower bound state mainly couples to the
D�D̄� channel. Besides the second resonance, the other
resonances mainly couple to the D�þ

s D�−
s channel. These

1−þ exotic states can be searched for in the electron-
positron annihilation process with an emission of one
photon [31,43].

IV. SUMMARY AND OUTLOOK

We perform a phenomenological study on the cross
sections of the eþe− → DD̄, eþe− → DD̄� þ c:c:, eþe− →
D�D̄� processes. By constructing P-wave contact inter-
action between the sPl ¼ 1

2
− HQSS doublet ðD;D�Þ and its

antiparticle, we do a global analysis for the energy region
[3.7, 4.25] GeV, especially focusing on the property of
the newly observed Gð3900Þ. The upper limit energy is
restricted by the next opening threshold D1D̄. To accom-
modate the open-charmed-strange meson pair channels,
we work within the SU(3) flavor symmetry framework.
In the considered energy region, there are three well-
established charmonia, i.e., ψð1DÞ, ψð3SÞ, and ψð2DÞ,
which affect the cross sections. We work in two models for

TABLE VI. Poles positions and effective couplings of the 1−þ
system in model II on different RSs. Other details are similar to
Table V.

Riemann sheets Poles [MeV] gDD̄� gD�D̄� gDþ
s D�−

s
gD�þ

s D�−
s

ðþ;þ;þ;þÞ 3869.57 4.38 8.19 0.02 0.09
ð−;þ;þ;þÞ 3891.73� 26.19i [26] 1.77 13.68 0.92 39.25
ð−;−;þ;þÞ 4017.93� 2.71i [3] 0.21 2.34 0.01 0.04
ð−;−;−;þÞ 4087.76� 21.92i [22] 0.18 0.30 2.35 12.02
ð−;−;−;−Þ 4213.85� 9.63i [20] 0.07 0.21 0.40 2.11

TABLE V. Poles positions and effective couplings of the 1−þ
system in model I on different RSs. The dimension of coupling is
GeV−3=2. The square brackets represent energy distance the poles
move to the physical RS. The unit is MeV. The effective
couplings with italics are the largest couplings for a given pole,
which indicate the dominant channel.

Riemann sheets Poles [MeV] gDD̄� gD�D̄� gDþ
s D�−

s
gD�þ

s D�−
s

ðþ;þ;þ;þÞ 3836.57 8.59 32.04 0.04 0.14
ð−;þ;þ;þÞ 3885.42� 9.48i [10] 2.21 6.70 7.66 29.46
ð−;−;þ;þÞ 4001.56� 3.94i [19] 0.31 1.50 0.01 0.03
ð−;−;−;þÞ 4085.70� 27.08i [27] 0.13 0.42 2.25 6.75
ð−;−;−;−Þ 4224.18� 31.26i [31] 0.04 0.08 0.50 1.99

TABLE IV. The pole positions of ψð3770Þ and ψð4040Þ, in comparison with the results of other works. I and II stand for model I and
model II.

ψð3770Þ ψð4040Þ
This work I 3778.42 − 11.81i II 3775.29 − 14.31i I 4011.05 − 10.13i II 4019.42 − 17.40i

Reference [20] 3778.7þ0.7
−0.7 − 17.0þ0.2

−0.2 i 4044.0þ1.5
−1.5 − 65.0þ1.5

−1.5 i
Reference [29] 3778.0þ0.3

−0.3 − 12.3þ0.3
−0.3 i 4019.5þ0.5

−0.5 − 22.9þ1.1
−1.1 i

Reference [32] 3780.0þ1.3
−1.3 − 15.2þ1.1

−1.1 i 4029.2þ0.4
−0.4 − 14.0þ0.5

−0.5 i
PDG 3773.7þ0.7

−0.7 − 13.6þ0.5
−0.5 i 4039.6þ4.3

−4.3 − 42.3þ6.2
−6.2 i

YE, ZHANG, DU, MEIßNER, NIU, and WANG PHYS. REV. D 112, 016015 (2025)

016015-14



a comparison: three bare charmonia scenario (model I) and
two bare charmonia scenario (model II). In model I (model
II), we find three (two) renormalized poles corresponding
to the input bare poles. Besides these poles, we find a pole
at 3832.57þ0.91

−0.79 � 74.53þ0.68
−2.15 iMeV, about 40 MeV below

the ½DD̄��Thr, on the ð−;þ;−;þ;þ;þÞ sheet in model I. In
model II, a pole 3883.91þ0.38

−0.46 � 46.53þ1.22
−1.22 iMeV on the

ð−;−;þ;þ;þ;þÞ sheet is 9 MeV above the ½DD̄��Thr
threshold, connecting to the physical sheet above the DD̄�
threshold and below the Dþ

s D−
s threshold. Both of them are

dynamically generated states based on the trajectory of
the pole renormalization. In this sense, we conclude that
the Gð3900Þ is a dynamically generated state. With the
parameters fixed in the JPC ¼ 1−− channel, we also predict
several dynamically generated states in the JPC ¼ 1−þ
channel, which can be investigated in the electron-positron
annihilation process involving the emission of a single
photon.
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APPENDIX A: THE PRODUCTION AMPLITUDE

According to Ref. [42], the covariant amplitude is built
from pure orbital angular momentum covariant tensors and
covariant spin wave functions ϕμ1…μs which are interpreted
as the polarization vectors of the final state particles,
together with the operators gμν, ϵμνλσ and momenta of
parent particles. From Ref. [41], we can find that the
explicit expression for the pure orbital angular momentum
covariant tensors with relative orbital angular momentum
l ¼ 1 in a → bþ c process reads as

tð1Þμ ¼ g̃μνðpaÞrν ðA1Þ

where

g̃μνðpaÞ ¼ gμν −
pμ
apν

a

p2
a

; r ¼ pb − pc: ðA2Þ

The projection operator for spin-0 and spin-2 are

Pð0Þ
αβ ¼ 1ffiffiffi

3
p gαβ;

Pð2Þ
αβγδ ¼

1

2
ðg̃αγ g̃βδ þ g̃αδg̃βγÞ −

1

3
g̃αβg̃γδ; ðA3Þ

respectively.
In the following, we show how Eqs. (46)–(49) are

obtained by combining Eqs. (A1)–(A3). Equation (A1)
provides the covariant amplitude for the process a → bþ c
with l ¼ 1. However, in our production vertex, the
particle a corresponds to a virtual photon rather than a
real particle. As a result, the factor g̃μν should be absorbed
into the photon propagator, as shown in Eq. (44). Since
the photon has a transversal polarization, only the trans-
verse part contributes. Therefore, Eq. (A3) should be
rewritten as

Pð2Þ
ij;mn ¼

1

2
ðgimgjn þ gingjmÞ −

1

3
gijgmn: ðA4Þ

Due to Eq. (45), we have reduced the Lorentz indices from
four-dimensional to three-dimensional form. As a result, all
the indices in Eq. (A4) refer to three-dimensional compo-
nents. The production amplitude is required to contain a
Lorentz index so that it can be contracted with the photon
propagator.
(1) For γ� → DD̄ process, l ¼ 1, S ¼ 0, and JPC ¼ 1−−.

Since the polarization vector εD ¼ 1, the production
amplitude takes the form

Ai
1 ¼ U1ri ¼ U1ðpD̄ − pDÞi: ðA5Þ

Here U i is the physical production amplitude, which
can be interpreted as a form factors.

(2) For γ� → DD̄� þ c:c: process, l ¼ 1, S ¼ 1, and
JPC ¼ 1−−. Since the D� meson provides a polari-
zation vector ε�λk with one Lorentz index and the
relative momentum also carries a Lorentz index, we
introduce the tensor ϵijk perform index contraction,
so that the production amplitude contains only a
single Lorentz index. The production amplitude
reads as

Ai
2 ¼ U2ϵ

ijkrjε�λk ¼ U2ϵ
ijkðpD̄ − pDÞjε�λk; ðA6Þ

where λ is the helicity index.
(3) For γ� → D�D̄�

S¼0 process, l ¼ 1, S ¼ 0, and
JPC ¼ 1−−. In this case, the polarization vectors
of D� and D̄� mesons form a rank-2 tensor ε�mλ ε�nλ0 .
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The coupling of two vector particles allows total
spin 0, 1, or 2. Since we focus on spin-0 case, we
employ the spin-0 projection operator to extract the
corresponding spin 0. The production amplitude
reads as

Ai
3 ¼ U3Pð0Þmnrjε�λmε

�
λ0n;

¼ 1ffiffiffi
3

p U3ðpD̄� − pD� Þiε�λ · ε�λ0 : ðA7Þ

(4) For γ� → D�D̄�
S¼2 process, l ¼ 1, S ¼ 2, and

JPC ¼ 1−−. Similarly, we employ the spin-2 projec-
tion operator to extract the corresponding spin 2. The
production amplitude reads as

Ai
4 ¼ U4Pð2Þij;mnrjε�λmε

�
λ0n;

→

ffiffiffi
3

5

r
U4Pð2Þij;mnðpD̄� − pD� Þjε�λmε�λ0n: ðA8Þ

In the last step, the normalization factor
ffiffiffiffiffiffiffiffi
3=5

p
is

multiplied.
Only when the normalization factor is considered in the
amplitude level, all the four amplitude squares satisfy
Ai
nAi

n ¼ UnjpD̄ð�Þ − pDð�Þ j2 for n ¼ 1, 2, 3, 4.

APPENDIX B: THE DETAILED CALCULATION
ON AMPLITUDE SQUARED

The amplitudes squared for eþe− → ðDð�ÞD̄ð�ÞÞan read as

jMa
nj2 ¼

1

2

X
r

1

2

X
s

X
λ

X
λ0

jMa
nj2 ¼

e2

4s2
X
r

X
s

X
λ

X
λ0

v̄rðpþÞγνusðp−Þūsðp−Þγν0vrðpþÞAa
nνA�a

nν0

¼ e2

4s2
X
λ

X
λ0

Tr½=pþγν=p−γ
ν0 �Aa

nνA�a
nν0

¼ e2

s2
X
λ

X
λ0
ðpνþpν0

− þ pν0þpν
− − gνν

0
pþp−ÞAa

nνA�a
nν0 : ðB1Þ

In the center of mass frame, s ¼ 4E2 and pþ · p− ¼ 2E2, where E is the energy of electron. Plugging them into above
equation, one can obtain

jMa
nj2 ¼

4πα

s2
X
λ

X
λ0
ðpνþpν0

− þ pν0þpν
− − gνν

0
pþp−ÞAa

nνA�a
nν0

¼
X
λ

X
λ0

�
4πα

s2
ðp0þp0

− þ p0þp0
−ÞAa

n0A
�a
n0 þ

4πα

s2
ðp0þpj

− þ pj
þp0

−ÞAa
n0A

�a
nj

þ 4πα

s2
ðpiþp0

− þ p0þpi
−ÞAa

niA
�a
n0 þ

4πα

s2
ðpiþpj

− þ pj
þpi

−ÞAa
niA

�a
nj

−
4πα

s2
1

2
g00sAa

n0A
�a
n0 −

4πα

s2
1

2
gijsAa

niA
�a
nj

�

¼ −
4πα

s2
X
λ

X
λ0

�
1

2
sgij þ 2piþp

j
þ

�
Aa

niA
�a
nj ði; j ¼ 1; 2; 3Þ: ðB2Þ

Substituting Eqs. (46)–(49) into above equation and using relation piþ · ðpD̄ð�Þ − pDð�Þ Þi ¼ −2EjpDð�Þ j cos θ and ðpD̄ð�Þ −
pDð�Þ ÞiðpD̄ð�Þ − pDð�Þ Þi ¼ −4jpDð�Þ j2 in the center of mass frame, one can obtain

jMa
1j2 ¼ −

4πα

s2
X
λ

X
λ0

�
1

2
sgij þ 2piþp

j
þ

�
Aa

1iA
�a
1j

¼ −
4πα

s2

�
1

2
sgij þ 2piþp

j
þ

�
½Ua

1ðpD̄ − pDÞi�½U�a
1 ðpD̄ − pDÞj�

¼ −
2πα

s
jUa

1j2ðpD̄ − pDÞiðpD̄ − pDÞi −
8πα

s2
jUa

1j2½piþ · ðpD̄ − pDÞi�½pj
þ · ðpD̄ − pDÞj�

¼ 8πα

s
jpDj2jUa

1j2ð1 − cos2θÞ; ðB3Þ
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jMa
2j2 ¼ −

4πα

s2
X
λ

X
λ0

�
1

2
sgij þ 2piþp

j
þ

�
Aa

2iA
�a
2j

¼ −
4πα

s2
X
λ

�
1

2
sgij þ 2piþp

j
þ

�
½Ua

2ϵiγkðpD̄ − pD� Þγε�kλ �½U�a
2 ϵjαβðpD̄ − pD� Þαεβλ �

¼ −
2πα

s
jUa

2j2ϵiγkϵiαβðpD̄ − pD� ÞγðpD̄ − pD� Þαð−gkβÞ −
8πα

s2
jUa

2j2pþip
j
þϵiαβϵjρσðpD̄ − pD� ÞαðpD̄ − pD�Þρð−gσβÞ

¼ 2πα

s
jUa

2j2ð−2gαγ ÞðpD̄ − pD� ÞγðpD̄ − pD� Þα þ
8πα

s2
jUa

2j2ð−gijgαρ þ giρgαj ÞpþiðpD̄ − pD�Þρpj
þðpD̄ − pD� Þα

¼ 8πα

s
jUa

2j2jpDj2ð1þ cos2 θÞ; ðB4Þ

where the completeness relation
P

λ¼0;�1 ε
�
λiελj ¼ −gij þ pipj

m2 has been used, and it is easily to prove that only the first term
will contribute to the amplitude squared. Similarly,

jMa
3j2 ¼ −

4πα

s2
X
λ

X
λ0

�
1

2
sgij þ 2piþp

j
þ

�
Aa

3iA
�a
3j

¼ −
2πα

3s

X
λ

X
λ0
½ðpD̄� − pD�Þiε�αλ ε�λ0α�½ðpD̄� − pD� Þiερλελ0ρ�jUa

3j2

−
8πα

3s2
X
λ

X
λ0

piþp
j
þ½ðpD̄� − pD�Þiε�αλ ε�λ0α�½ðpD̄� − pD� Þjερλελ0ρ�jUa

3j2

¼ −
2πα

3s
ðpD̄� − pD� ÞiðpD̄� − pD�Þið−gαρÞð−gαρÞjUa

3j2 −
8πα

3s2
piþp

j
þðpD̄� − pD� ÞiðpD̄� − pD� Þjð−gαρÞð−gαρÞjUa

3j2

¼ 8πα

s
jpD� j2jUa

3j2ð1 − cos2θÞ; ðB5Þ

jMa
4j2 ¼ −

4πα

s2
X
λ

X
λ0

�
1

2
sgij þ 2piþp

j
þ

�
Aa

4iA
�a
4j

¼ −
2πα

s

X
λ

X
λ0
½Pij;mnðpD̄� − pD� Þjε�mλ ε�nλ0 �½Piα;βγðpD̄� − pD� Þαελβελ0γ�jUa

4j2

−
8πα

s2
X
λ

X
λ0

piþp
j
þ½Piα;mnðpD̄� − pD� Þαε�mλ ε�nλ0 �½Pjβ;ρσðpD̄� − pD� Þβερλεσλ0 �jUa

4j2

¼ −
2πα

s
Pij;mnPiα;βγðpD̄� − pD� ÞjðpD̄� − pD�ÞαjUa

4j2ð−gmβ Þð−gnγ Þ

−
8πα

s2
piþp

j
þPiα;mnPjβ;ρσðpD̄� − pD� ÞαðpD̄� − pD� ÞβjUa

4j2ð−gmρÞð−gnσÞ

¼ −
2πα

s
Pij;mnPiα;mnðpD̄� − pD�ÞjðpD̄� − pD� ÞαjUa

4j2 −
8πα

s2
piþp

j
þPiα;mnPmn

jβ ðpD̄� − pD� ÞαðpD̄� − pD� ÞβjUa
4j2

¼ −
2πα

s
δαj ðpD̄� − pD� ÞjðpD̄� − pD� ÞαjUa

4j2

−
8πα

s2

�
3

10
δijδαβ þ

3

10
δiβδiα −

1

5
δiαδjβ

�
piþp

j
þðpD̄� − pD� ÞαðpD̄� − pD� ÞβjUa

4j2

¼ 28πα

5s
jpD� j2jUa

4j2
�
1 −

1

7
cos2 θ

�
; ðB6Þ

where we have used the relation
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Pij;mnPiα;mn ¼ 3

5

�
1

2
δimδjn þ

1

2
δinδjm −

1

3
δijδmn

��
1

2
δimδαn þ 1

2
δinδαm −

1

3
δiαδmn

�
¼ δαj ;

Piα;mnPmn
jβ ¼ 3

5

�
1

2
δimδαn þ

1

2
δinδαm −

1

3
δiαδmn

��
1

2
δmj δ

n
β þ

1

2
δnjδ

m
β −

1

3
δjβδ

mn

�

¼ 3

10
δijδαβ þ

3

10
δiβδjα −

1

5
δiαδjβ: ðB7Þ

APPENDIX C: THE P-WAVE TWO-POINT FUNCTION IN THE NONRELATIVISTIC LIMIT

In the relativistic expression, the two-point function reads as

BðE;m1; m2Þ ¼ i
Z

b

a

d4q
ð2πÞ4

fðjq⃗j2Þ
ðq2 −m2

1 þ iεþÞððp − qÞ2 −m2
2 þ iεþÞ

¼ i
Z

b

a

d4q
ð2πÞ4

fðjq⃗j2Þ
q20 − ðjq⃗j2 þm2

1Þ þ iεþÞððE − q0Þ2 − ðjq⃗j2 þm2
2Þ þ iεþÞ

¼ i
Z

b

a

d4q
ð2πÞ4

fðjq⃗j2Þ
ðq20 − ω2

1 þ iεþÞððE − q0Þ2 − ω2
2 þ iεþÞ ; ðC1Þ

where E is the center-of-mass energy and ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq⃗j2 þm2

i

p
with i ¼ 1, 2. Here, fðjq⃗j2Þ is a form factor, whose specific

form depends on the truncation scheme. In the nonrelativistic approximation, q⃗ → 0, one can rewrite the denominator of
above equation

q20 − ω2
1 þ iεþ ¼ ðq0 þ ω1 − iεÞðq0 − ω1 þ iϵÞ

≈
�
q0 þm1 þ

jq⃗j2
2m1

− iεþ
��

q0 −m1 −
jq⃗j2
2m1

þ iεþ
�

≈ 2m1

�
q0 −m1 −

jq⃗j2
2m1

þ iεþ
�
: ðC2Þ

Similarly

ðE − q0Þ2 − ω2
2 þ iεþ ¼ ðE − q0 þ ω2 − iεþÞðE − q0 − ω2 þ iεþÞ

≈
�
E − q0 þm2 þ

jq⃗j2
2m2

− iεþ
��

E − q0 −m2 −
jq⃗j2
2m2

þ iεþ
�

≈ 2m2

�
E − q0 −m2 −

jq⃗j2
2m2

þ iεþ
�
: ðC3Þ

Therefore, Eq. (C1) can be rewritten as

BðE;m1; m2Þ ¼
i

4m1m2

Z
b

a

d4q
ð2πÞ4

fðjq⃗j2Þ	
q0 −m1 −

jq⃗j2
2m1

þ iεþ

	

E − q0 −m2 −
jq⃗j2
2m2

þ iεþ



¼ 1

4m1m2

Z
d3q
ð2πÞ3

fðjq⃗j2Þ
E −m1 −m2 −

jq⃗j2
2μ þ iεþ

¼ 2μ

4m1m2

Z
d3q
ð2πÞ3

fðjq⃗j2Þ
k2 − jq⃗j2 þ iεþ

; ðC4Þ

with k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðE −m1 −m2Þ

p
. In the calculations of this paper, we have neglected the 1=ð4m1m2Þ factor. Since the factor

can be obtained by dividing
Q

i
ffiffiffiffiffiffiffiffi
2mi

p
with mi the masses of the particle fields in the corresponding vertex, it can be

absorbed by the fitting parameters of the contact interaction, and these parameters will add a squared energy dimension.
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In order to calculate the P-wave two-point function, we
need to compute the S-wave two-point function first

GSðEÞ ¼ 2μ

Z
d3q
ð2π3Þ

e−
2jq⃗j2
Λ2

k2 − jq⃗j2 þ iεþ

¼ −
μΛ

ð2πÞ3=2 þ
μk2

π2
e−

2jq⃗j2
Λ2 P

Z
∞

0

djq⃗j
k2 − jq⃗j2 e

−2ðk2−jq⃗j2Þ
Λ2

− i
μk
2π

e−
2jq⃗j2
Λ2 ; ðC5Þ

where we use a Gaussian form factor to regulate the
ultraviolet divergence. Here, the Cauchy principal value
integral is used to simplify above equation

1

k2 − jq⃗j2 þ iεþ
¼ P

1

k2 − jq⃗j2 − i
π

2jq⃗j δðk − jq⃗jÞ: ðC6Þ

One can define the function

fðxÞ ¼ P
Z

∞

0

1

k2 − jq⃗j2 e
xðk2−jq⃗j2Þ; ðC7Þ

whose first derivative reads as

f0ðxÞ ¼ P
Z

∞

0

djq⃗jexðk2−jq⃗j2Þ ¼
ffiffiffi
π

p
2

ffiffiffi
x

p eð
ffiffi
x

p
kÞ2 : ðC8Þ

According to the Newton-Leibniz formula, one can obtain

fðxÞ − fð0Þ ¼
ffiffiffi
π

p
2

Z
x

0

dt
1ffiffi
t

p eð
ffiffi
t

p
kÞ2

¼
ffiffiffi
π

p
k

Z ffiffi
x

p
k

0

dð ffiffi
t

p
kÞeð

ffiffi
t

p
kÞ2

¼ π

k
erfið ffiffiffi

x
p

kÞ; ðC9Þ

where erfiðzÞ ¼ 2ffiffi
π

p
R
z
0 dte

t2 is the imaginary error function.

It is easy to obtain fð0Þ ¼ 0, therefore, one can obtain

f

�
2

Λ2

�
¼ P

Z
∞

0

1

k2 − jq⃗j2 e
2

Λ2
ðk2−jq⃗j2Þ ¼ π

2k
erfi

� ffiffiffi
2

p

Λ
k

�

ðC10Þ

Substituting Eq. (C10) into Eq. (C5), one can obtain

GSðEÞ ¼ −
μΛ

ð2πÞ3=2 þ
μk
2π

e−
2k2

Λ2

�
erfi

� ffiffiffi
2

p
k

Λ

�
− i

�
ðC11Þ

There exists the following relationship between the P-wave
two-point function and the first derivative of the S-wave
two-point function

GPðEÞ¼2μ

Z
d3q
ð2π3Þ

jq⃗j2e−2jq⃗j2
Λ2

k2− jq⃗j2þ iε
¼Λ3

4

∂GSðEÞ
∂Λ

¼Λ3

4

∂

∂Λ

�
−

μΛ
ð2πÞ3=2þ

μk
2π

e−
2k2

Λ2

�
erfi

� ffiffiffi
2

p
k

Λ

�
− i

��

¼−
μΛ

ð2πÞ3=2
�
k2þΛ2

4

�
þμk3

2π
e−

2k2

Λ2

�
erfi

� ffiffiffi
2

p
k

Λ

�
− i

�
:

ðC12Þ

APPENDIX D: FITTED PARAMETERS
AND EFFECTIVE COUPLINGS OF POLES

TABLE VII. The fitted parameters of model I and model II. The
parameters Ci

n and g01D, g03S, and g02D are contact interaction
defined in Eqs. (15)–(18) and bare couplings between charmo-
nium and charmed meson pair, respectively. Fi

S;D and f01D, f
0
3S,

and f02D are the coupling of the virtual photon to the charmed
meson pair and the charmonium, respectively.m1D,m3S, andm2D
denote the bare masses of charmounia ψð1DÞ, ψð3SÞ, and
ψð2DÞ.
Parameters Model I Model II

C0
1 ½GeV−4� −672.91� 8.39 −593.56� 17.11

C0
2 ½GeV−4� 182.93� 15.36 −109.96� 16.28

C0
3 ½GeV−4� −0.11� 10.60 797.37� 32.52

C0
4 ½GeV−4� 613.97� 17.17 9.28� 9.4

C8
1 ½GeV−4� −208.49� 16.96 −357.46� 15.66

C8
2 ½GeV−4� 15.25� 9.82 −63.08� 12.13

C8
3 ½GeV−4� −33.28� 9.43 109.12� 26.50

C8
4 ½GeV−4� 638.27� 26.30 475.96� 38.51

C1
1 ½GeV−4� −1159.87� 19.31 −739.76� 23.82

C1
2 ½GeV−4� 321.28� 17.50 263.68� 21.22

C1
3 ½GeV−4� 375.02� 25.13 −292.25� 8.56

C1
4 ½GeV−4� 438.66� 17.70 −223.61� 8.68

g01D ½GeV−1� 0.66� 0.04 −12.93� 0.26
g03S ½GeV−1� −14.66� 0.37 −14.11� 0.96
g02D ½GeV−1� −17.09� 0.23 � � �
f0S ½GeV0� −12.82� 0.34 −4.92� 0.48
f0D ½GeV0� 10.16� 0.28 −4.62� 0.29
f8S ½GeV0� −16.72� 0.30 −20.63� 0.76
f8D ½GeV0� 8.75� 0.24 7.3� 0.46
f1S ½GeV0� 10.13� 0.21 21.75� 0.45
f1D ½GeV0� −3.01� 0.11 −5.38� 0.16
f01D ½GeV3� −0.30� 0.02 0.13� 0.00
f03S ½GeV3� −11.96� 0.63 −0.47� 0.05
f02D ½GeV3� −0.15� 0.00 � � �
m0

1D [GeV] 3.807� 0.001 3.804� 0.001
m0

3S [GeV] 4.229� 0.002 4.253� 0.005
m0

2D [GeV] 3.692� 0.003 � � �
Λ [GeV] 0.50� 0.00 0.50� 0.00
χ2=d:o:f: 2.17 2.66
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APPENDIX E: THE TRAJECTORY POLES IN MODEL I
AND THE ANGULAR DISTRIBUTION OF D MESON

TABLE VIII. Pole positions and effective couplings of 1−− system in model I on various RSs. The dimension of coupling is GeV−3=2.
The square brackets represent energy distance of the poles to the physical RS, with unit MeV.

RSs Poles [MeV] gDD̄ gDD̄� gDþ
s D−

s
gD�D̄�

s¼0
gD�D̄�

s¼2
gDþ

s D�−
s

gD�þ
s D�−

ss¼0
gD�þ

s D�−
ss¼2

ðþ;þ;þ;þ;þ;þÞ 3691.60 0.11 0.30 0.66 0.30 0.24 2.10 3.18 2.01
ð−;þ;þ;þ;þ;þÞ 3778.42� 11.81i [12] 1.31 2.72 8.54 12.13 2.33 22.97 35.91 20.09
ð−;þ;−;þ;þ;þÞ 3832.52� 74.53i 1.02 4.29 0.14 29.63 5.18 17.71 172.75 26.36
ð−;−;−;−;þ;þÞ 4011.05� 10.13i [16] 0.16 0.32 0.34 1.73 0.28 0.83 8.81 0.69
ð−;−;−;−;−;−Þ 4232.78� 23.96i [24] 0.02 0.08 0.12 0.04 0.27 0.37 1.22 1.52

TABLE IX. Pole positions and effective couplings of 1−− system in model II on various RSs. Other details are the same as Table VIII.

RSs Poles [MeV] gDD̄ gDD̄� gDþ
s D−

s
gD�D̄�

s¼0
gD�D̄�

s¼2
gDþ

s D�−
s

gD�þ
s D�−

ss¼0
gD�þ

s D�−
ss¼2

ð−;þ;þ;þ;þ;þÞ 3743.07� 7.36i [7] 2.39 0.92 0.01 19.15 6.28 0.02 0.10 0.03
ð−;þ;þ;þ;þ;þÞ 3775.29� 14.31i [14] 1.55 4.24 8.94 13.50 8.89 33.29 27.29 56.34
ð−;−;þ;þ;þ;þÞ 3883.91� 46.53i [47] 0.08 1.41 0.00 2.57 8.68 0.01 0.03 0.01
ð−;−;−;−;þ;þÞ 4019.42� 17.40i [17] 0.21 0.24 0.22 1.58 0.86 0.63 2.92 4.59
ð−;−;−;−;−;−Þ 4278.21� 21.59i [22] 0.03 0.09 0.12 0.07 0.13 0.46 0.57 0.55

1�10�19

FIG. 8. The zoomed-in trajectory of poles in model I on various RSs with the couplings g02D, g
0
1D, and g03S varying sequentially from

the fitted values to zero. The (a)–(d) figures represent the trajectories of the poles 3691.60 GeV, 3778.42� 11.81i GeV,
4011.05� 10.31i GeV, and 4232.78� 23.96i GeV. R�;…;� represent the RSs where the poles locate. The red dashed rectangular
boxes represent the initial positions of the poles points represent the initial positions of the poles. The colors of the poles gradually
become darker as the parameters g02D, g

0
1D, and g03S vary sequentially from the fitted values to zero.
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APPENDIX F: THE DISTRIBUTION OF THE STANDARDIZED RESIDUALS
FOR MODEL I AND MODEL II

FIG. 9. The D meson scattering angle distribution at
ffiffiffi
s

p ¼ 3.873 GeV.

FIG. 10. The distribution of the standardized residuals for models I (orange) and II (green). There are 15 bins in region ½−7; 7�.

FIG. 11. The distribution of the standardized residuals for models I (orange) and II (green). There are 20 bins in region ½−7; 7�.
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