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Motivated by the updated analysis of the G(3900) by the BESIII Collaboration, we perform a global
analysis of the cross sections of the e*e™ — DD, ete”™ — DD* 4 c.c.,, ete” — D*D* processes,
especially focusing on the properties of the G(3900). As the energy region of interest is limited by
the next opening threshold, i.e., the D, D threshold, we focus on the energy region [3.7, 4.25] GeV, where
three charmonia y(1D), y(3S), and w(2D) explicitly contribute to the cross sections. By constructing the
P-wave contact interaction between the (D, D*) doublet and its antiparticle in the heavy quark limit, we
extract the physical scattering amplitude by solving the Lippmann-Schwinger equation. No matter whether
three or two charmonium states are included in our framework, we always find a dynamically generated
state corresponding to the G(3900), which suggests it to be a P-wave dynamically generated state.
We also predict several dynamically generated states in the corresponding 1= channel. These states can be
further searched for in the electron-positron annihilation process involving the emission of a single

photon.

DOI: 10.1103/qq61-ncln

I. INTRODUCTION

Electron-positron annihilation is one of the most impor-
tant processes for shedding light on the dynamics of the
strong interaction. For instance, the number of colors
can be extracted from the ratio between the cross section
of the e'e™ — hadrons process and that of the pure
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electromagnetic process ete™ — u"u~. Among the former
cross section, the open-charmed channels (either two-body
final states or many-body final states) take up the largest
fraction. The Belle [1], CLEO [2], and BABAR |[3]
Collaborations have measured the cross sections of a
pair of open charmed mesons. Recently, the BESIII
Collaboration measured the cross sections of two-body
[4-6], three-body [7,8], and four-body [9] open charmed
processes more precisely. As the electron and the positron
annihilate into a virtual photon, this kind of process is also
the most important platform for studying the normal vector
charmonia and exotic vector charmoniumlike states. For
instance, these bring us to an opportunity to study the non-
DD decay width of the w(3770) [10-13] and the timelike
electromagnetic D* — D transition form factor [14].
Especially, the e*e~ — DD process provides the most
precise determination of the resonance parameters of the
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w(3770) [12,13,15-20]. For vector charmoniumlike
states, the Y(4230)/Y(4260) [21-23], Y(4360) [24,25],
Y (4660) [25,26] are measured in electron-positron anni-
hilation process with different final states.

Approximately twenty years ago, the Belle [1] and
BABAR [3,27] Collaborations measured the cross section
for the ete~ — DD process. They both observed a peak
structure around /s = 3.9 GeV. In these works, the peak is
not associated to a resonance. The BESIII Collaboration
recently performed a precise measurement of the Born
cross sections for the ete™ — DD process [4], which is
consistent with previous results from BABAR and Belle.
Apart from the 17~ charmonia w(3770), y(4040),
w(4160), w(4360), w(4415), and y(4660), they also
observed a peak structure around 3.9 GeV. Its mass and
width in the Breit-Wigner formalism are 3872.5 + 14.2 +
3.0 MeV and 179.7+14.1 £7.0 MeV, respectively.
Although the coupled-channel analysis of the Belle and
BESIII data could produce a peak structure around 3.9 GeV
without requiring an additional new state, accurately
describing the nearby points appears to be highly chal-
lenging [19,28]. In Ref. [15], a perturbative treatment of
w(2S) —w(1D) mixing is carried out within an effective
Lagrangian approach, where the authors interpret the
G(3900) as a resonance but also demonstrate that it can
be explained by the D*D threshold. Cao and Lenske have
analyzed the line shape of w(3770) using a coupled-
channel 7-matrix approach and achieved a good fit to
the experimental data, suggesting that the broad structure
G(3900) results from the distortion of the w(3770) tail
caused by the DD* threshold [17]. The K-matrix formalism
is used to systematically study ete” — D®D®) and
ete™ — everything in Ref. [20]. The study indicates that
no additional bare pole is needed to explain the data near
3.9 GeV. In the scenario of the one-boson-exchange (OBE)
model, Lin ef al. [29] and Chen et al. [30] show that the
existence of the S-wave X(3872), T..(3875), Z.(3900)
hadronic molecules indicate the existence of a P-wave
DD*/DD* molecule state, identified as the G(3900).
Reference [31] also assigns the G(3900) to a P-wave
DD*/DD* resonance by the contact interactions within
the heavy quark spin symmetry framework, with
explicit inclusion of S-channel charmonia contribution.
Reference [32] also obtains the same conclusion by overall
fitting to the line shapes in various channels as well as the
invariant distributions of their subsystems. Although the
later references suggest that the G(3900) can be accepted as
the P-wave DD* resonance, it does not answer the question
whether the G(3900) is a dynamically generated state or a
renormalized bare charmonium state. Another question is
whether the existence of the G(3900) is model-dependent
or not.

To answer the above questions, we construct the contact
potential for the P-wave scattering between the (D, D*)
doublet and its antiparticle in the heavy quark limit and

extract the scattering amplitudes of the ete™ — DD,
ete” - D*D+cc., ete”—D*D* by solving
Lippmann-Schwinger equation (Sec. II). The numerical
results and discussions follow as Sec. III. The summary and
outlook is given in Sec. IV.

II. FORMALISM

The formalism of this work is an SU(3) extension of that
in Ref. [31], in which SU(2) flavor symmetry is adopted.
Considering the recent progresses from the experimental
side, i.e. the measurements of the eTe™ — DI D7 [33,34]
and ete™ — D*TD*~ [6] cross sections, we also include
the charm-strange meson pair contribution explicitly
(as discussed in the following). More specifically, the
etem — DEHDE= DEOPH0 pEF R rocs sections
within the energy region [3.7, 4.25] GeV are inves-
tigated. First, we present the transformation from the
hadronic basis to the SU(3) flavor singlet and octet
basis, as well as the isospin triplet basis. Based on the
transformation, we can construct the contact potentials
with respect to the heavy quark spin symmetry
(HQSS). With these contact potentials, we can solve
the Lippmann-Schwinger equation (LSE) to obtain the
production amplitudes. In Sec. II C, we deduce the cross
sections formula for the direct comparison with the
experimental data.

A. Transformation between the SU(3) flavor symmetry
basis and P-wave hadronic basis

Before going into details, we adopt several conventions to
facilitate the representation of physical quantities. Unless
otherwise specified in the text, (D) D(*))¢ denotes charmed
meson pairs, with a = d, u, s denoting the light quarks in the
charmed meson pairs (ca)(¢a) and n = 1, 2, 3, 4 represent-
ing different charmed meson pairs DD, DD*, D*D}_, and
D*Dy_,. Here, the subindex S of the later two cases is the total
spin of the two charmed meson pairs. For instance,
(DYDM)4 denotes the charmed meson pair DD~
(D¥ D)) denotes all the four charmed meson pairs with
light quark pairs a. With these conventions, the hadronic basis
can be written as [ D) D(*))¢_ Similarly, the SU(3) flavor basis
can be written as [D*)D))i where the index i =0, 8, 1
represents SU(3) singlet 0, the zero components of
octet 8% and isospin triplet 1'°, in order, where the super-
scripts denote the isospin / and its third component, respec-
tively. Similarly, if the index n is absent, |D®*)D())i
denotes all the four charmed meson pairs of the SU(3)
representation i.

As we consider the cross sections of the charmed meson
pairs in electron-positron annihilation, only the third
component of various SU(3) flavor representations is
produced. As a result, we present the third components
of SU(3) singlet and octet as
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|0) = —(|dd+uu+ss>) (1)
V3
1 -

8) = —(|dd + un — 2s5)), 2

8) %(I ) 2)

and the third component of the isospin triplet
1) = 7= (|42 - ui) o)
=— — uit)).
V2

The above equations transform into charmed meson pair
basis as

IDHDY = f<|D D7) 4 | DEPDE0)

+ Dy DY), (4)
DD = f<|D D7) 4 | DO D0

— 2D DY), (5)

Z ( 1)l+sq+sQ+JS SQJIJZSSI

51550584

|[([s1,50,];,[s1,50,1;,)500 =

— Z ( 1)l+sq+sQ+Js SQJIJZSSI

$1,5055¢

1
\/_

IDODU)! = —(|DW*DO7) —|DEODO). (6)

With the above formulas, one can easily transform from the
hadronic basis to the SU(3) flavor basis.

For a given SU(3) representation, one can perform a
heavy-light decomposition to obtain the contact potentials.
In the HQSS limit, the heavy and light degrees of freedom
are conserved individually. The former one is reflected by
the total spin s, of the heavy quark pair. The latter one is
the sum of the total spin s, of light quark pair and the
relative orbital angular momentum [ between the two
hadrons. Therefore, it is convenient to decompose a
charmed meson pair |I([s; s¢ ]; [s1,50,];);), into the
heavy-light basis |(I[s;,s;,], )S,[sleQZ] >J, which can be
simplified as |5y ® s/) ;. Here 51550, and J; are the spin of
the light quark plus the relative orbital angular momentum
[, the heavy quark spin and the total angular momentum of
the ith mesons, respectively. With this convention, the
decomposition read [31,35]

Si, - Sg, Ji
) s, S
. q I
S, So, J2 {sQ J s }|(1[S11312]sq)s,[SleQz]sQ>J
s So S
s, S j
[ [ J.l 1 Sq S
S, So, J2 |SQ ® SI>J’ (7)
SQ J S
St] SQ S

with j = /2] + 1. In the Eq. (7), S and [ denote the total spin of the two-meson system and its relative orbital angular

momentum, respectively, J

= [ + S is the total angular momentum. As the charmed meson pair D*)D*) couple to virtual

photon, i.e., J’¢ = 17, is in P-wave. The corresponding decompositions can be obtained from the above equation

_ . o 1 . 1 .
DDYi- = pi(DD)==10Q® 1)/ + —=[1 ® 0)) == |1 ® 1)/ \/1 2)1 8
|DD); p()2|®>2\/§|® |® 1®2) (8)
_ . i .. _ 1
|DD* —|—c.c.>’1” = ie”kpj(D,’;D —DzD) = _ﬁ“ ® O) —|1 ® 1 \/7|1 ® 2 (9)
*_*is:O_p_i * Fy* _l i_l i 4 V5 i
D D)0 = T (D)) = 3 V30 @ 1)~ 1 @0} + f|1®1> She2). (10)
* yk\is=2 __ éﬂ * F)* N* *_% ) k) — Y i
|DD)1__ 55 D;D; + D;D; 35,kDJDJ |1®0 \1®1 |1®2>, (11)

which can be represented as a compact transformation matrix
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1 1 1 1./5
2 3 2 2\/3
0 L 1 1./5
c = V3 2 23 (12)
1 1 1 5
V3 -6 as %
5
0 ¥ L o

The wave functions on the left side of Egs. (8)—(11), are the
hadronic basis with p the three momentum of final particle
in the center-of-mass frame. The wave functions on the
right side are in the heavy-light basis. One can easily check
that these bases are normalized and orthogonal to each
other from both the heavy-light basis and the hadronic basis
[31,35] in Egs. (8)—(11). In the hadron basis, one can see
that the wave functions are normalized to | p|?. The positive
signin [DD* + c.c.)| - is related to the C-parity, where we

adopt the convention p-5% D, D* £, _ D*. The trans-
formation between hadronic basis [D*)D*))¢ and SU(3)
flavor symmetry basis [D*) D))/ is

I B
V3 Ve V2
R = \/% % \_/_12 ® 144, (14)
1 =2 9
V3 V6

with 14,4 the 4 x 4 identity matrix.
In the HQSS limit, one can define the low-energy
constants

Ci =10 ® 1|Hcr|0 @ 1)76,, (15)
Cy =(1® 0[Hcr|l ® 0)/6;;, (16)
Ci="(1® 1[Hcr|l @ 1)/6;;, (17)
Cy="(1 ®2Hcr|l ® 2)/6,;, (18)

where the repeated indices do not imply summation. Here,
Hcer represents the leading order Hamiltonian which
respects HQSS. Since we focus on the energy region
[3.7, 4.25] GeV, only the leading order contact potentials
C' 534 are considered as constants within such a small
energy region. The contact potentials read

[|D D) >d |DEOD) >“ |Ds £*>_>S]T Vim’:iz(D(*)D(*)|HCT|D(*>D<*)>£/5U- (19)
= R[[DYDM)0, |[DEDE)S, DD, (13)
Substituting Egs. (8)—(11) into Eq. (19) and combining
with Egs. (15)-(18), one can obtain the explicit form
where the transformation matrix R is of Vﬁm
i = V05 i |
V11:ZC1+EC2+ZC3+Ecv Vlzz—ng——C3+—C,
3 . 1 . 3 .5
w=Yla- Lo Vo fc4, Vi = \/Cz \/63 \/Cz,
4 12[ 12 36 12
5
V22 3C2 + C3 + 12C43 Vl23 \/— \/— 12\/7 45

3 1 5
Vi, =— \/Cz \/03 12\/C4, Vi, = 4C’+36C2+12C3+36C4,

V5 +£ V5

Vi _
M 18 12 36 36 O

Since V' is a symmetric 4 x 4 matrix, we only show the
elements V,,,, with n < n’. One might have noticed that the
D®) D) pairs are formed to a J*¢ = 17~ state in P-wave,
which should encode a momentum dependence in each
vertex, reflecting the P-wave interaction. Here, we use a
separable contact interaction. The momentum in the loop is
contained in the two-point propagator, and the momentum
dependence of the external particles is contained in the
amplitude, which will be discussed afterward. The contact
potentials in the SU(3) flavor basis reads

i
Vig =

5.5
3Gt 15C g

. ci. (20)

36

[
VO
VCT == V8 N
Vl

(1)

where VO, V& and V! are 4 x 4 matrices whose elements
are given by the Eq. (20).

Within the energy region of interest [3.7, 4.25] GeV,
there are three vector charmonia, i.e., w(1D), w(3S),
w(2D). The vector charmonium y(2S) is slightly below
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the DD threshold and might also affect the cross sections of
two charmed meson pairs. However, we have checked that
its effect is marginal and we neglect its contribution in our
framework. In this case, the vector charmonia w(1D),
w(3S), and w(2D) are included one by one. As a result, we
consider three different frameworks, i.e., the coupled-
channel effect with the three vector charmonia (model I),
two vector charmonia (model II), and one vector charmo-
nium (model IIT). From the experimental side, one can see
significant contributions of the w(1D) and y/(3S) in the
ete” - DD~ /D°DP [1,36] and e*e™ — DT D*~ [5,37]
processes, respectively. Therefore, we need to consider
model I and model II, without focusing on model III. The S-
wave and D-wave charmonia can be expressed in terms of
heavy-light basis |1 ® 0) and |1 ® 2), respectively. As
these charmonia are SU(3) flavor singlet, we define the
coupling constants between charmonia and the open
charmed channels

g(l)D = 0<1 ® 2’|7—£bare|l ® 2>(1)D’ (22)
9(3)5 = 0<1 ® O|,Hbatre|1 ® 0>(3)S’ (23)
g(z)D = 0<1 ® 2’|7—£bare|1 ® 2>(2)D (24)

The heavy-light structures |1 x 2)?,, |1 x 0), and |1 x
2>(2)D corresponds to w(1D), w(3S), and w(2D), respec-
tively. Hyp,e 1S the Hamiltonian density describing the
interaction between the bare state and the open charmed
meson pair, with the corresponding potential

V(C)Enj = 2<D(*)D(*) |Hbare|j>07 (25)
where j =1, 2, 3 (j =1, 2) denote charmonia y(1D),
w(3S), w(2D) for model I (w(1D), y(3S) for model II).

B. The Lippmann-Schwinger equation

In total, there are 12 + a channels in our frame-
work, with 12 open charmed channels and a bare
vector charmonium states (@ = 3 or 2, depending on the
model I or II). The Lippmann-Schwinger equation (LSE)
reads as

T(E) =V + VG(E)T(E), (26)

where E is the total energy in the center-of-mass (c.m.)
frame. V and G(E) denote the potential and two-point loop
function matrices. The potential V reads as

Voo X Vo xa
V—<[ ]12 12 [ b]12 )’

27
[Vbo]axlz Oaxa ( )

where V, represents the contact potential between two

charmed meson channels, and V, denotes the interac-
tion between the bare vector charmonium and the
charmed meson pairs. The two-point function matrix
G(E) reads [38]

012><oz

. diag[GiciT(E)]llez
G<E)_< diag[Gca(Eﬂm)’ (28)

0ax12

with

Gii (E) = / d’g 7’ fi(q)
“r (27 E —my —mp — q*/(2pu) + ie*

uA 5 A?
= — k _
(22)72 ( "

3
+ & e—2k2/1\2 [erfi (%) _ i:| .

2
1
B2 —m? 4 it

(29)

where m and A denote the charmonium bare mass and
cutoff, respectively. m;; and m; are the meson masses
involved in the ith channel. Here, we take the Gaussian
form factor f,(q?) = exp(—¢*/A?). The momentum ¢? in
the numerator reflects the P-wave interaction between the
charmed meson pairs. More details of the P-wave two-
point function GZ,(E) can be found in Appendix C.
We employ the nonrelativistic Green function because
the relevant dynamics occur near thresholds. The relativ-
istic correction can be estimated by p?/4(2u)? with p and u
the c.m. three momentum and reduced mass of a given
channel. This estimate is from the expansion of the energy
E=m +£+%mi—i+ .-+ in terms of momentum and
mass, where ratio between the third term and the second
term is p?/4m?>. For the two-body channel, we replace the
mass m by 2u. This value for the lowest channel
at the highest energy is about 0.06 at the amplitude level,
which means that the relativistic correction is at most
1.06> — 1 = 12% for physical quantities. On the other
hand, both the relativistic and nonrelativistic expressions
should be compared with the experimental data. At the end,
part of this correction will be absorbed into the redefinition
of the model parameters. From this point of view, 12% is
the maximum estimate of the relativistic correction. This
indicates that the nonrelativistic approximation remains
valid for the majority of channels throughout the energy
region of interest. Although relativistic effects may become
significant in energy regions far from the thresholds, they
do not affect the physical results near the thresholds.
Substituting Eqgs. (27) and (28) into Eq. (26), one can obtain
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< [Tooli2x12

[Tbo]aXIZ [Tbb}axa

where T, denotes the scattering amplitudes between
charmed meson pairs. T, denotes the scattering amplitudes
between the charmonium and the charmed meson pair,
with T, describes the inverse process of T, and Gy =
diag[Gi(E)] 5y, Plugging the T, into T, one obtains

Too (E) = ‘A/gf)f + ‘A/gf)fGCT(E)Too (E)’ (31)

where the effective potential is defined as Vf,g =V, +
VorGezVio. It s easy to see that

Too(E) = [V (E)™ = Ger(E)]™! (32)

by solving algebraic LSE. To ensure unitarity of the
T-matrix, the Gaussian form factor f,(p) appearing in
the two-point loop function Gii,.(E) should also contribute
to the above T-matrix as

Too(E) = fAP)IVES (E)] ™ = Ger(E) ' falp). (33)

Since these charmonia only couple to the SU(3) flavor
singlet, the effective potential can be represented as

VO+Ve%G Ve
yel — V8 . (34
Vl

In contrast to the effective potential [Eq. (33)] in particle
basis, Eq. (34) is expressed in the SU(3) flavor basis. One

needs to transform \A/gf)f' into particle basis
Vel = RVET R, (35)

with the transformation matrix R given in Eq. (14).
Substituting Eq. (35) into Eq. (33), one can obtain the
full mesonic 7-matrix for the coupled-channel system

(D™ D)@ containing the contributions from bare char-
monium states.

C. The physical production amplitude and cross section

Analogous to the LSE, the physical production ampli-
tude reads

U(E) = F + VG(E)U(E), (36)

"This form factor can also be added to each vertex in the
potential alternatively, instead in the two-point loop and external
particles, to satisfy the unitarity is automatically.

[Tob]IZXa> o ( [Voo + VooGCTToo + VochZ‘Tbo]lleZ
[Vbo + VboGCTToo}axD

[Vob + VooGCTTob + VochETbb]l2><a> (30)
[VboGCTTob] ’

axXa

|
where F = ([Fo)l. . [fo]l;)T is the bare production
amplitude. The F, matrix is the bare production between
the virtual photon and charmed meson pair. The f;, matrix
is the bare production between the virtual photon and the
charmonia. Similarly, plugging Egs. (27) and (28) into
Eq. (36), one obtains the physical production explicitly

< Us1251 ) _ ([Fo + VooGerly + Voo G sy 1oy >
U] ot b + VooGerlholaxi ’
(37)

where U, and U, represent the physical production ampli-
tudes for the charmed meson pairs and the involved
charmonia, respectively. Substituting U}, into U, one we
get the physical production amplitude for the open charmed
channels

U(E) = (Lip1n — VG (E)) T FET, (38)

with F" = F 4+ V,G..f, the effective bare production
amplitude. Analogous to that for 7-matrix, the Gaussian
form factor f,(p) is introduced to regularize the integral.
As the result, Eq. (39) can be rewritten as

U(E) = fa(p)(Liasiz — ViR Gor(E))THFET. (39)

As the standard QED vertex between the virtual photon and
the cc state can be decomposed into both S-wave and D-
wave cc pairs [39,40], one can define the coupling between
the virtual photon and the mth open charmed channel in the
same SU(3) flavor basis as

Fiy=Chy f5 4 Coy [ (40)

with m=1,2,34 and L =11Q0Hemlr")',

L ="1®2|Hgm|y*)". Here, Hgy is the electromagnetic
Hamiltonian density describing the interaction between the
virtual photon and vector charmonia. The explicit form of
the bare production (for model I) amplitude reads

F = ([Folipar: [fol3)”
- ([FO]Z{XI’ [FS]Z;X]’ [Fl}le’[ b}gxl)T7 (41)

where F' = (F’i,Fg,Fé,F;;)T and f, = ( ?D»fgSvf(z)D)T
for model I (f, = (fY,,, f35)T for model II) which is the
couplings between the virtual photon and charmonia. The
effective bare production amplitude is given by
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()
Da

D®

Da
FIG. 1. Feynman diagram for the processes ete™ —
(DHDM), .

[FO + VochZ'fb]4><l
Fgff’ = [F8]4><1 : (42)

[F1]4><]

Similarly, we need to transform F g“" in Eq. (42) into the
particle basis representation

Feff R Feff/ ( 43)

Substituting Egs. (35) and (43) into Eq. (39), one can obtain
the physical production amplitude for the open charmed
channel containing the three charmonia. The process
ete™ — (D® D)% is shown in Fig. 1, and the scattering
amplitude for the nth process is given by

M8 = 1(p.) (~ier,u(p_) — 2L

a (44
g, @)

where p,(p_) is the four-momentum of the positron
(electron) and s is the square of the center-of-mass
energy. A%, is the physical production amplitude with v
the polarization index. Then the square of the scattering
amplitude is

S 1 1
M| = EZEZ;; M2

2
- 46?2 Z Z Z v (py)riut (po)i
r s 2 J
X (p_) y'vr(
47raz Z(sg” + 2p+p+>AglAzﬂ;

(i,j=1,2,3), (45)

)AL AT,

where we average over the initial electron and positron
spins and sum over the polarization of the final charmed
meson. Then A% is given by [35,41,42] (also see
Appendix A)

=U{(pp, — Pp,)’, (46)

AST=USe" (pp, — Pp;) €3k (47)

*Q

Adl = —U“( pD*) %€ . (48)

5

. 3
T = \/:uaplj mn(pDZ - pD;)jgjmsz’n’ (49)

with P;j’m" =15Mm§n +15s/m — 185, Here, Py and
&* are the four-momentum and the polarization vector of the
charmed meson, respectively. The momentum dependence
in the above four equations reflects the P-wave interaction
of the charmed meson pairs. More detail can be found
in Appendix A. Substituting Egs. (46)—(49) into Eq. (45),
one can obtain the explicit form of the corresponding
amplitudes squared

8ra

MR = | PRSP —cos0), (50)
P =2 pp PRSP 4 cos0), (51)
G =22 pp U1~ cos?0),  (52)
WGP =22 Pl (1~ 3050 ). (53)

with the fine-structure constant a = %. Here, 0 is the
relative angle between the incoming electron and outgoing
charmed meson. More details can be found in Appendix B.
For the two-body scattering, the differential cross section is
given by

doy, |PD

M2 54
dcosf 1677.'S%/2| al” (54)

One can obtain the total cross section

ot =200y (53
oy =20l (56

g =200l e (57
ot = 280Pol o (58)

4 355/2

by plugging Egs. (50)-(53) into Eq. (54) and integrating
over the angle 6.
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D. The 1~ * P-wave coupled channel system

The scattering between two heavy-quark-spin multiplets
can be described by the same set of low-energy constants,
which relates the dynamics of various systems to each
other. For the P-wave scattering between the s/ =1~

2
doublet, i.e., (D,D*) doublet, and its antidoublet, there
is also JPC

= 17" exotic quantum number [31,43] in
addition to the vector channel, i.e., J*¢ = 17~ For this
exotic quantum number, which is beyond the conventional
quark model, there is no conventional charmonium cou-
pling to this channel. The dynamic of this quantum number
is described by the low-energy constants. Similarly to that
in vector channel, the 17+ hadronic basis can be repre-
sented by the heavy-light basis as

_ . 1 .
DD el == 50@ 1)+ f|1 ®1), (59
|D*D*)p=! = f|0® 1)’ + \fll ® 1), (60)

where only |0 ® 1)’ and |1 ® 1)’ components appear. The
contact potential reads

0
Vo,
VT = Ve, : (61)
Vi
where Vi_, is given by
c e
N PR)
Vi = c ¢ ¢ c | (62)

— 1 -3 —1 =3
2 2 2+2

which is represented in the SU(3) flavor basis. Similarly,
we need to transform the above contact potential into the
particle basis

G,.4 _a,4

1= _ pr 2 2 2 2 /-1

Ver =R ¢ ¢ o a R, (63)
T2 T2 2T

with
111
Vi Ve V2
R = % \/Lg \_715 ® Lo (64)

4 =2 9
V3 V6

The T-matrix of 1= system is given by

T(E)- = fa(P)[[Ver ™ = Ger(E) ' falp').  (65)

TABLE 1. The dynamical parameters governing the scattering
amplitudes Eq. (26) in the fitting.

Parameters Model I Model II
¢)p[GeV!] 0.66 £+ 0.04 —12.93 £0.26
G35[GeVT!] —14.66 £+ 0.37 —14.11 £ 0.96
$p[GeVT] -17.09 £0.23 e

m?D [GeV] 3.807 £ 0.001 3.804 £ 0.001
m3S [GeV] 4.229 +0.002 4.253 £ 0.005
mY,, [GeV] 3.692 + 0.003 e

A [GeV] 0.50 £ 0.00 0.50 £ 0.00
x*/d.o.f. 2.17 2.66

One can also study the pole structure of the 17
system through the 7-matrix, which involves solving

det (15,5 — Vi Ger(E)] = 0.

III. RESULTS AND DISCUSSION

In this section, we perform a global fit to the latest
experimental cross sections of the ete™ — DD [1,4,36],
ete” - D*D +c.c. [537], efe” = D*D* [5,37] proc-
esses within the energy region [3.7, 4.25] GeV. More
specifically, we fit the cross sections of the eight processes
ete” — (DD)"4s (DD*)4, (D*D*)§’,,. The fitting is
performed by imimuit [44] with over 1000 starting values
to find the global minimum value. The fitted cross sections
and the dynamical parameters governing the scattering
amplitudes Eq. (26) (and thus the pole positions) of the two
models are presented in Fig. 2 and Table 1. The other
parameters are listed in Table VII of Appendix D.

From Fig. 2, one can see significant contributions of the
w(3770) in the D*D~ and D°D° channels. The signals of
the y(4040) in the DTD*~ and D{ Dy channels are more
pronounced than that in the DD channel. Whether the vector
charmoniumlike state G(3900) exists or not needs further
pole analysis. As shown in the standardized residual plot in
Fig. 2, a large proportion of the standardized residuals are
distributed within the interval [—3,3]. Figures 2(a), 2(b),
2(e), and 2(f) show that the standardized residuals are
approximately randomly distributed around zero, sug-
gesting that the fit is satisfactory. However, there are more
standardized residuals below zero than above in Figs. 2(c)
and 2(d), similar results also observed in Ref. [20]. This
result can be attributed to two main reasons. First, there exist
significant discrepancies between the data points of BESIII
and Belle collaborations in certain regions for the ete™ —
DTD* and ete™ - D*"D*~ processes, which reduces the
quality of the fit and prevents the standardized residuals
from being randomly distributed around zero. Second, under
the consideration of coupled-channel effects, there is still a
deviation from the experimental data in the eTe~™ — DT D*~
and eTe” — D*"D*~ channels for both the LSE and the
K-matrix approaches. The projection of all standardized
residuals onto the vertical axis yields a distribution that
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FIG. 2. The line shapes of model I (solid curve) and model II (dashed curve) in comparison with the experimental data. The DD
data is from both BESII [4,36] and Belle [1] collaborations. Panels (a)—(f) show the line shapes of the channels
ete” - D*D~, D'DY D*D* D{D;, D**D* and D** D*, respectively. The experimental data in the DD* and D*D*
channels are from BESIII [5] and Belle [37] Collaborations. The D] D} data are from BESIII [33] and BABAR [34] Collaborations.
The data in the D" D}~ are from BESIII collaboration [6]. The blue and the purple region denote the 99% confidence levels for model
and model I, respectively. The six vertical gray dashed lines represent the DD, DD*, Df D7, D*D*, DY D*~, and D} D*~ thresholds
from left to right, respectively. The lower panel of each figure is the standardized residual plot, where the orange and green points
represent the standard residuals of model I and model II, respectively.
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threshold

FIG. 3. Pole positions on the complex energy E-plane (left)
and momentum k-plane (right). The red line on the real axis
represents the energy region above the threshold. The green solid
circle represents a bound state, located below the threshold on the
physical RS, the blue hollow triangle denotes a virtual state,
located below the threshold on the unphysical RS, and the orange
square represents a resonance state, located above the threshold
on the unphysical RS, with a nonzero imaginary part.

closely resembles a Gaussian distribution which are pre-
sented in Figs. 10 and 11 in Appendix F. The standardized
residuals of model I show a slight deviation from the
Gaussian distribution, which may indicate mild overfitting.
In comparison, the residuals of model II are more consistent
with a Gaussian distribution, suggesting a higher quality of
fit. Overall, the fitting performance of both models remains
within an acceptable range.

In Table I, the parameters ¢, ¢, and g9, denote the bare
couplings between the charmoniaw (1D),y(3S), and y(2D)
and an open charmed meson pairs. m{,, ml, and m9,
represent the bare mass of y(1D), w(3S), and w(2D),
respectively. A is the cutoff parameter in the two-point loop
function. The reduced chi-squares are y?/d.o.f. = 2.17 and
x*/d.o.f. =2.66 for model I and model II, respectively,
which indicates that an additional bare vector charmonium
state greatly optimizes the fit result. With the fitted param-
eters, we can extract the physical quantities of interest, such as
pole positions in the complex E-plane, the effective cou-
plings, and so on. With the fitted parameters, we can extract
the physical quantities of interest, such as pole positions in the
complex E-plane, the effective couplings, and so on.

A. Pole analysis

A state is identified as a pole of the T-matrix in the
complex energy plane, either bound state, virtual state, or
resonance (Fig. 3). The pole positions can be obtained by
solving the equation

det [1 - VEGer(E,)] = 0. (66)

Through analytic continuation, the complex E-plane can be
extended to 2" (with n the number of involved channels)
Riemann sheets (RSs) which are labeled by (&,...,+)
according to the signs of the imaginary parts of the c.m.
three-momenta in the two-body channels. The physical RS

is denoted by (+, - - -, +), whereas the others represent the
unphysical RSs. The physical and unphysical RSs are
connected by branch cuts where the two-point function
satisfies

G!(E - ie) = G!,(E + ie). (67)
Here, the indices I and II represent the two-point functions
on the first (physical) and second (unphysical) RSs, and i =
1,...,n denote the ith channel.

We assume that the D)+ meson mass is equal to the
D0 meson mass, because its mass difference is very
small. As the result, it is unnecessary to search for poles in
the region [D°D°|py, < E, < [DTD7 |y [P°D*)yy, <
E, <[D*D*|py, and [DD*y, < E, < [D*'D* |y,

where [(D"D®), lp,. represent the threshold of the
(DD), , meson pair. Therefore, there are six thresholds

in our coupled-channel system, i.e., [DD],., [DD*|rp,
[DiD;]Thr’ [D*D*]Thr’ [DiD;_]Thw and [D?+D:_]Thr
in order, where we use D) to denote D*)* and D*)°
mesons. In the following, we use the abbreviations
Thry, Thr,, ..., Thrg to denote the six thresholds. In general,
we need to find the poles on 2° RSs. However, in practice,
we are only concerned with the poles on the physical RS
(+,+,+,+,+,+) and those on the unphysical RSs close
to the physical region. These unphysical RSs are labeled by
sequentially replacing the plus signs with minus signs, i.e.
(—+, - 4), (=, — e, +)sere, (=, =, -+, —). Therefore,
we find poles for the following cases:

(1) Poles below all the thresholds on the physical
RS (+, 4.+, +.+,+).

(2) Poles above the ith threshold and below the (i + 1)th
threshold on the unphysical RS (—,,...,—,
+([+1), crey +)

(3) Poles below but close to the ith threshold on the
unphysical RS (-—,,...,=;, +(1)s .-, +), Wwhich
also have impact on the physical observables.

Whether the above poles have a significant physical impact
or not depends on their distance E,; to the physical RS. In
Fig. 4, we present a schematic diagram of the distance E,; of
the poles on different unphysical RSs. Although the poles
of the resonance states are symmetric about the real axis,
only the poles on the lower half-plane are close to the
physical RS as shown in Fig. 4. For Case 1, since the pole is
already on the physical RS, the distance to the physical
sheet is zero. For Case 2, since the unphysical RS
(=i —is Fir1)s - +) is connected to the physical RS
(+,4,+,+,+,+) along the region [Thr;, Thr;,] on the
real axis, where Thr; denotes the ith threshold. Those poles
can reach to the physical RS by moving the energy distance
along the direction of positive imaginary axis, where E; is
equal to the modulus of the imaginary part of the pole.
Finally, for Case 3, the pole can first move E, along the
direction of positive real axis, with E, the difference
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FIG. 4. Paths from poles in model I on unphysical RSs to the
physical RS. Poles are represented by solid circles. The blue,
green, orange, dark blue, purple, and red solid line denote the cuts
form the DD, DD*, D{D;, D*D*, D{D:~, and D**D*~
thresholds, respectively.

between the threshold and the real part of the pole.
Furthermore, they move along the direction of positive
imaginary axis as that for Case 2. Thus, E,; is E, plus the
modulus of the imaginary part of the pole. The poles in
model I and model II are presented in Table II. The effective
couplings of the poles to the ith-channel in model I and
model II are listed in Tables VIII and IX of Appendix D. In
Table II, one can see the two poles corresponding to the
w(3770) and y(4040) in both model I and model II. In
model I, a pole 3832.52 £ 74.53i around 3.9 GeV on the
(=, +,—, +, +, +) contributes to the broader peak structure
in experiment. In model 11, a pole 3883.91 £ 46.53i on the
(=, —,+,+,+,+) sheet corresponds to the peak structure
around 3.9 GeV.

However, so far, we are unable to directly determine
which poles are dynamically generated states and which are
from a strong renormalization of bare vector charmonia.
One can distinguish them by plotting the trajectory of the
poles when the coupling constants vary. Since the proce-
dures for calculating the pole trajectory are similar between
the two models, only the pole trajectories for model I are
presented. The specific procedure is as follows:

(1) Vary the coupling constant g3, from the fitted value
to 0 with ¢¥, and ¢ fixed to their fitted values and
plot the trajectory of all the poles.

(2) Vary the coupling constant ¢?, from the fitted value
to 0 with ¢3¢ and g9, fixed to the fitted value and 0,
respectively. Plot the trajectory of all the poles.

(3) Perform the same procedure for the coupling con-
stant ¢3¢ with the couplings ¢9,, and ¢?), fixed to 0.
Plot the trajectory of all the poles as g3, varies.

TABLE II.  Pole positions on the various RSs. The numbers in
square brackets represent energy distances of the poles to the
physical RS, in units of MeV.

Model I
3.691.60

Riemann sheets Model II

o+ )

3743.07 £ 7.36i [7]

-+, + 4+ ) .

3778.42 £ 11.81i [12] 3775.29 4 14.31i [14]
— +. = 4.+ +) 3832524 74.53i -
- =+ +++ 3883.91 + 46.53i [47]
— — = —+.4) 4011.05+10.13i [16] 4019.42 + 17.40i [17]

423278 £23.96i [24] 4278.21 £ 21.59i [22]

When the coupling constants gradually change to zero, if
the pole moves toward the bare mass obtained from the
fitting on the real axis, it indicates that the pole is a state
renormalized from a bare state. For the sake of conven-
ience, we illustrate the reason for the case of one open
charmed channel and one bare charmonium state. In this
case, the T-matrix reads as

e
ver + —m2

=1 (UCT n Sj’}) G(s)

: (68)

where v~ and g, which are both real numbers, are the contact
potential and the coupling between the bare charmonium and
open charmed meson pair. The pole s, is the solution of

1 = (ver +-25)G(s) = 0. When g = 0, one obtains

1- UCTG(S()) =0. (69)

In this case, /s, corresponds to the dynamically generated
state, and the contribution of any charmonium vanishes.
When ¢ # 0, we can extract the pole from

2

9°G(sp) 2
S) = —————+m". 70
0T - verGo(so) 70

g*G(s0)
ey 0

Therefore, the pole /sy will move toward the bare mass of the
charmonium. Similarly, for the system with many open
charmed channels and many bare charmonia, this property
still works. As long as we gradually adjust all the couplings to
zero, the renormalized charmonium state will move to its bare
mass. The pole trajectories in model I are presented in Fig. 5
and the zoomed-in diagram of all poles in the left diagram can
be found in Fig. 8 of Appendix E.

The pole trajectories of model I are illustrated in Fig. 5.
When the couplings ¢3,, g%, and ¢35 vary from their fitted
values to zero, the 3691.60 MeV, 3778.42 + 11.81i MeV,
and 4232.78 £23.96i MeV poles approach to the bare
masses m$,, m?,, and m3, respectively. These three poles
are considered as the w(2D), w(1D), and w(3S) vector
charmonia. The significant discrepancy between the
3691.60 MeV pole and the experimental result indicates
that the w(2D) charmonium acts as a redundant free
parameter in the fit without any physical significance.
This suggests that an additional charmonium w(2D) is
unnecessary, even though it has improved the fitting results
a little bit. On the contrary, the pole 4011.05 £ 10.13; MeV
undergoes only slight movement on the RSs which is
considered as a dynamically generated state.

After carefully searching for poles on other RSs,
we find another dynamically generated state at
3832.5710795 4 74.5319%iMeV, about 40 MeV below
the [DD*]p,, on (=, +.,—,+,+,+) sheet. To check its

When g gradually decreases to zero, the term
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FIG. 5. Left: the trajectories of the poles in model I on various RSs with the coupling constants g3, ¢}, and g3, varying sequentially
from the fitted values to zero. Right: the trajectory of pole 3832.57f8;7991 + 74.533};16?1' MeV on the (-, +, —, +,+,+) RS. Different
shapes represent the trajectories of distinct poles. The red dashed rectangular boxes represent the initial positions of the poles and the
colors of the poles gradually become darker as the parameters ¢3,,, g7, and g3 vary sequentially from the fitted values to zero.

impact on the physical observables, we plot the three-
dimensional representation of |7}, | which is the modulus of
the first row and first column element of 7-matrix on both
(=, +,—,+,+,+) and the physical RS. From Fig. 6, the
curvature of |T;| on the physical plane is nearly the same
as that on the (—, 4, —, +, +, +) sheet, which indicates that
despite the (—,+,—,+,+,+) sheet being relatively far
from the physical RS, it still exerts a significant influence
on the physical region.

For model II, the poles and the corresponding effec-
tive couplings are presented in Appendix D. Through a
pole trajectory analysis similar to that of model I, the
poles 3775.29 £ 14.31iMeV and 4278.21 £ 21.59i MeV
approach to the bare masses m!, and mgs, corresponding to
the yw(1D) and w(3S) charmonia, respectively. The other
poles, interpreted as dynamically generated states, remain

\ &
SRR
S

\:t‘\\“ 0.00
Im E [GeV]

-0.10

FIG. 6. The modulus of the scattering amplitude |Tj;| on the
complex E-plane. The orange and green surfaces are the lower
half plane of the (—, +, —, +, +, +) RS and the upper half plane
of physical RS, respectively.

largely stationary as the couplings 9(1) p and 9(3)3 change from
their fitted values to zero. In contrast to model I, a new pole
3743.07 £+ 7.36i MeV emerges on (—, +, +, +, +, +) sheet
in model II. This state does not manifest itself as a visible
peak in the ete™ — DD cross section, possibly because it
couples weakly to the DD channel and lies close to
w(3770). Alternatively, shown, the pole couples pre-
dominantly to the D* D* channel instead of the DD channel
(Appendix D). Consequently, its contribution to the
ete” — DD cross section is suppressed, and further
obscured by the overlapping of the nearby w/(3770),
making it difficult to be observed in experiment. The
pole 3883.91702% 4+ 46.537/33iMeV, 9 MeV above the
[DD*)1,, threshold, locates on the (—, —, +, +, +, +) sheet
and can be considered as a candidate of the G(3900). The
central value of the real part is consistent with the
experimental mass of the G(3900) within the uncertainty.
The width of this pole is considerably narrower than that
obtained by BESIII, suggesting that the Breit-Wigner fit
used by BESIII may not be suitable for describing a near-
threshold state.

In model I, we identify the pole located at 3832.6"% —
74.5797iMeV as the candidate of the G(3900). The central
value of the real part is approximately 40 MeV lower than the
mass of the G(3900). While its width is consistent with the
experimental large value, making it still a visual broad
structure in experiment. Although the real part of the pole
lies below [DD*| .., the state can still decay into the DD* final
state, which makes it a plausible candidate for the G(3900).

The comparison between our results and other
works [20,29,32] is presented in Table III and Fig. 7.
Reference [20] uses the K-matrix parametrization to
describe the cross sections of the ete~ — D*)D*) proc-
esses, but without hidden strange channels. Their overall
fitting indicates that the G(3900) is only a threshold
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TABLE III. The pole position of the G(3900), in comparison
with other works. “Exp.” represents the experimental data from
Ref. [4] (Supplemental Materials). I and II stand for our model I
and model II results, respectively.

13832.6105 —74.5197i
This work 11 3883.9704 — 46.51]3i

Reference [20]

Reference [29] 3869.2787 —29.0133i
Reference [32] 3896.01 1 —72.0137i
Exp. 3872511350 — 89.917933i

enhancement of the D*D channel. Reference [29] uses the
one-boson-exchanged (OBE) model to connect the dynam-
ics of the S-wave hadronic molecule y,.(3872), Z.(3900),
T..(3875) to the P-wave G(3900). The proper S-wave pole
positions indicate the existence of the P-wave hadronic
molecule G(3900). Reference [32] obtains the same con-
clusion by fitting to 18 two-body and three-body hadronic
channels, which also needs to deal with the three-body
dynamics properly.

The results obtained from both model I and model II are
in agreement with those reported in Refs. [29,32], support-
ing the interpretation of G(3900) as a P-wave DD*/DD*
molecule state. While the inclusion of the bare y(2D) state
in model I introduces three additional parameters, poten-
tially causing overfitting in model I. Given that y?/d.o.f. of
model II is already satisfactory and that its residue analysis
shows better performance, we place greater emphasis on
the poles found in model II. Although both models yield
consistent conclusions regarding the dynamical origin of
the pole, we adopt the pole positions from model II due to
its good residue performance (the lower panel of Fig. 2).

Similarly, we also compare the results for y(3770) and
w(4040) with those reported in Refs. [20,29,32], presented
in Table IV. We note that the pole positions of the y(3770)
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FIG.7. The pole positions of model I (purple hollow circle) and

model II (black hollow triangle) in comparison with other works.
Blue triangle and green hollow box are the results from Refs. [32]
and [29], respectively. Red box is the experimental result [4].

extracted from models I and II are in good agreement with
the results reported in Refs. [20,29,32] and the value listed
by the PDG. In this work, the pole position of the y(4040) is
essentially consistent with that in Ref. [29], and its width is
smaller than the value reported by the PDG, which suggests
the Breit-Winger fit may not be suitable for describing a
near-threshold state. Compared with Refs. [20,29,32], we
note that although all these studies incorporate a bare state
y(4040), Refs. [20,29,32] do not investigate whether the
pole originates from the bare state or a dynamic state. Based
on our tests, we find that within our framework, y(4040) is a
dynamically generated state, and the bare state we intro-
duce is shifted to 4232.78 —23.96i MeV for model I and
4278.21 —21.59i MeV for model II. One possible explan-
ation for this shift is the presence of high thresholds in the
coupled-channel dynamics, which may have significantly
effect on the bare state positions.

In a short summary, our analysis indicates that the
G(3900) originates from a dynamically generated pole,
consistent with the conclusions of Refs. [29,32]. Although
model II yields a slightly larger y?/d.o.f. compared to
model I, the potential overfitting in model I caused by
additional parameters leads us to place greater emphasis on
the results of model II. This suggests that two bare states are
sufficient to describe the experimental data in the energy
region [3.7, 4.25] GeV. Additionally, we extract the differ-
ential cross section (presented in Fig. 9 of Appendix E) of
the DD channel at /s = 3.873 GeV, which is the exper-
imental mass position of the G(3900).

At last, we stress that the D) D) system with quantum
number JP¢ =17~ in a P-wave configuration presents
challenges within the framework of effective field theories
(EFTs). Such P-wave interactions in hadronic systems are
claimed to induce nontrivial renormalization behavior by
some authors [45,46]. Specifically, it is argued that the
implementation of consistent power counting requires the
introduction of higher-order counter terms to preserve
renormalization group invariance, particularly when deal-
ing with singular potentials characteristic of P-wave
interactions. However, this point of view is challenged in
Refs. [47-50], where it is shown that a self-consistent and
practically applicable solution to the problem of non-
perturbative renormalization is provided by the cutoff
EFT. In the present work, we intentionally circumvent this
debate by performing a phenomenological study as we
focus on pole extraction rather than pursuing a complete
renormalization procedure. The description of the data thus
relies on the choice of the cutoff as a consequence of
omitting these necessary counter terms. The phenomeno-
logical approach used in this work remains justified for
our primary objective of identifying and characterizing
possible pole structures in the complex energy plane, while
acknowledging that a more fundamental EFT treatment
would require systematic inclusion of higher-order counter
terms to achieve proper renormalization. The extracted pole
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TABLEIV. The pole positions of y(3770) and y(4040), in comparison with the results of other works. I and II stand for model I and

model II.

w(3770)

w(4040)

This work 13778.42 —11.81i

II 3775.29 — 14.31i

14011.05 —10.13i II 4019.42 — 17.40i

Reference [20]
Reference [29]
Reference [32]
PDG

3778.7107 —17.0803i
3778.0103 — 12.3105i
3780.01)3 — 152114
3773.7507 - 13.6103i

4044.01]2 — 65.013i
4019.5702 — 22,911
4029.2704 — 14.0102i
4039.6143 — 42.3783i

positions, while regulator-dependent in technical terms,
nevertheless still provide crucial physical insights into the
possible existence and qualitative features of exotic had-
ronic states in this channel.

B. Searching the 1~ * exotic candidate

As discussed in the previous section, the dynamics of the
JP€ = 17+ channel is described by the same parameter set
as that of the J°¢ = 17~ channel. We can also extract the
pole positions by plugging the fit parameters into Eq. (65)
and solving det[l4.¢ — Viy Ger(E)] = 0. The only rel-
evant parameters are C} and C} due to the appearance of the
|0 x 1) and |1 x 1)’ components and the bare charmonium
state is absent in this channel. There are four thresholds in
the 17" system, i.e. [DD*]g,» [D*D*|qy» [PY D5 Jppye» @and
[DiT D |y, The pole positions on the E-plane of the 17+
channel and their effective couplings to all the channels are
presented in Tables V and VI, respectively. For the effective
couplings, the 7T-matrix exhibits the following behavior

TABLE V. Poles positions and effective couplings of the 17"
system in model I on different RSs. The dimension of coupling is
GeV~3/2, The square brackets represent energy distance the poles
move to the physical RS. The unit is MeV. The effective
couplings with italics are the largest couplings for a given pole,
which indicate the dominant channel.

Riemann sheets Poles [MeV] 9ob  9p'd* Ipip-  YIprp-
+.+.+.+) 3836.57 8.59 32.04 0.04 0.14
-+, +,+) 3885.42 £9.48i [10] 221 6.0 7.66 29.46
- —=+.+) 4001.56 & 3.94i [19] 031  1.50 0.01 0.03
-——+) 4085.70 £27.08i [27] 0.13  0.42 2.25 6.75
- = =) 4224.18 £31.261 [31] 0.04  0.08 0.50 1.99

TABLE VL. Poles positions and effective couplings of the 1=

system in model II on different RSs. Other details are similar to
Table V.

Riemann sheets Poles [MeV]

9pb* 9p*b* Yp!D;~ YD:* D}~

+,+,+.+) 3869.57 438 819 0.02 0.09
— -+, +,+)  3891.73 £26.19i [26] 1.77 13.68 0.92 39.25
- =+ 4017.93 £2.71i [3] 0.21 2.34 0.01 0.04
- ==+ 4087.76 £21.92i [22] 0.18 030 235 12.02

s T T

4213.85 £9.63i [20] 0.07 0.21 040 2.11

9i9;j

ij~ E — Er (71)
around the pole E, = M, — il',/2, with M, and ", the mass
and width of a given state. Here, g; is the coupling of the
state to the ith-channel. g; is generally a complex number,
and its modulus is conventionally used to represent its
magnitude. The coupling constant g; is obtained from the
residues of the T-matrix via

9i9i = Ehf% (E-E,)T;(E), (72)

where T'; can be obtained by Eq. (33).

Since the 17 system does not contain bare states and
only has contact interactions, all the poles are dynamically
generated states. In model I, we find a bound state at
3836.57 MeV on the physical RS, which is around 38 MeV
below the [DD*|y,,.. There are also other four resonances at
3885.42 +9.48i MeV, 4001.56 + 3.94i MeV, 4085.70 £+
27.08i MeV, and 4224.18 +31.26i MeV on unphysical
RSs close to the physical region. The situation of the poles
for model II (shown in Table VI) is similar to that of
model 1. The lower bound state mainly couples to the
D*D* channel. Besides the second resonance, the other
resonances mainly couple to the D" D}~ channel. These
1~* exotic states can be searched for in the electron-
positron annihilation process with an emission of one
photon [31,43].

IV. SUMMARY AND OUTLOOK

We perform a phenomenological study on the cross
sections of the ete™ — DD, ete™ - DD* +c.c.,ete” —
D*D* processes. By constructing P-wave contact inter-
action between the s = 1~ HQSS doublet (D, D*) and its
antiparticle, we do a global analysis for the energy region
[3.7, 4.25] GeV, especially focusing on the property of
the newly observed G(3900). The upper limit energy is
restricted by the next opening threshold D;D. To accom-
modate the open-charmed-strange meson pair channels,
we work within the SU(3) flavor symmetry framework.
In the considered energy region, there are three well-
established charmonia, i.e., y(1D), w(3S), and w(2D),
which affect the cross sections. We work in two models for
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a comparison: three bare charmonia scenario (model I) and
two bare charmonia scenario (model II). In model I (model
IT), we find three (two) renormalized poles corresponding
to the input bare poles. Besides these poles, we find a pole
at 3832.5710% & 74.5379%%i MeV, about 40 MeV below
the [DD*]yy,, on the (—, +, —, +, +, +) sheet in model L. In
model TI, a pole 3883.917)3% +46.53"/37iMeV on the
(=, =, +,+,+,+) sheet is 9 MeV above the [DD*|y,
threshold, connecting to the physical sheet above the DD*
threshold and below the D} D7 threshold. Both of them are
dynamically generated states based on the trajectory of
the pole renormalization. In this sense, we conclude that
the G(3900) is a dynamically generated state. With the
parameters fixed in the J*¢ = 17~ channel, we also predict
several dynamically generated states in the JPC¢ = 1=
channel, which can be investigated in the electron-positron
annihilation process involving the emission of a single
photon.
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APPENDIX A: THE PRODUCTION AMPLITUDE

According to Ref. [42], the covariant amplitude is built
from pure orbital angular momentum covariant tensors and
covariant spin wave functions ¢, _, which are interpreted
as the polarization vectors of the final state particles,
together with the operators g,,, €,,, and momenta of
parent particles. From Ref. [41], we can find that the
explicit expression for the pure orbital angular momentum
covariant tensors with relative orbital angular momentum
[ =11in a — b + ¢ process reads as

5 = Gupa)r (A1)
where
papt
g/u/(pa):g/w_ pz ’ r=Dpp = DPe- (AZ)

The projection operator for spin-0 and spin-2 are

1
P ((1(;}) = 7§gaﬁ s

@ _ L. I
Pa/jyé = 5 (gayg/ié + gaégﬁy) - ggaﬁgy(sv (A3)
respectively.

In the following, we show how Egs. (46)-(49) are
obtained by combining Eqs. (Al)—(A3). Equation (Al)
provides the covariant amplitude for the process a — b + ¢
with [ =1. However, in our production vertex, the
particle a corresponds to a virtual photon rather than a
real particle. As a result, the factor g,, should be absorbed
into the photon propagator, as shown in Eq. (44). Since
the photon has a transversal polarization, only the trans-
verse part contributes. Therefore, Eq. (A3) should be
rewritten as

1 1

PS/Z,)mn = 5 (gimgjn + gingjm) - ggijgmn' (A4)

Due to Eq. (45), we have reduced the Lorentz indices from

four-dimensional to three-dimensional form. As a result, all

the indices in Eq. (A4) refer to three-dimensional compo-

nents. The production amplitude is required to contain a

Lorentz index so that it can be contracted with the photon

propagator.

(1) Fory* — DD process, = 1,8 = 0,and J*¢ = 1.
Since the polarization vector £ = 1, the production
amplitude takes the form

A =Ur" =U(pp - Pp)"- (AS)
Here U, is the physical production amplitude, which
can be interpreted as a form factors.

(2) For y* — DD* +c.c. process, [=1, S=1, and
JPC€ =17 Since the D* meson provides a polari-
zation vector &), with one Lorentz index and the
relative momentum also carries a Lorentz index, we
introduce the tensor €% perform index contraction,
so that the production amplitude contains only a
single Lorentz index. The production amplitude
reads as

Ay = Userjey, = Use" (pp — Pp)j€ix:  (AO)

where 4 is the helicity index.
(3) For y*— D*Dg_, process, [ =1, §=0, and
JP€ =177, In this case, the polarization vectors

of D* and D* mesons form a rank-2 tensor ey
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The coupling of two vector particles allows total
spin 0, 1, or 2. Since we focus on spin-0 case, we
employ the spin-0 projection operator to extract the
corresponding spin 0. The production amplitude
reads as

A13 — Z/{}P(O)mn

1 .
=—=U;3(pp- — pp-)'€e] - €.
\/§ 3(pD pD) A !

—
rjsimsll/n,

(A7)

(4) For y* - D*Di_, process, [ =1, S=2, and
JP€ = 17~. Similarly, we employ the spin-2 projec-
tion operator to extract the corresponding spin 2. The
production amplitude reads as

i zgzgzzzwzv ST I ISR

4 12 Z Z TI' p—}—yylﬁ }/ AZDA*Q

e ! / !
= ZA: > (LY + plpt = ¢ pipo) An AL,
ﬂ/

ij.mn . o

Al =UPRTmny e e

\/:u4 )ij, mn

In the last step, the normalization factor /3/5 is
multiplied.
Only when the normalization factor is considered in the
amplitude level, all the four amplitude squares satisfy
ALAL =U,|ppe — 2forn=1,2,3,4.

(A8)

* £
— Pp* ) gﬁmgl’n .

APPENDIX B: THE DETAILED CALCULATION
ON AMPLITUDE SQUARED

The amplitudes squared for e*e™ — (D*)D*))¢ read as

(p-)r’ v"(py) AL Az,

(B1)

In the center of mass frame, s = 4E? and p, - p_ = 2E?, where E is the energy of electron. Plugging them into above

equation, one can obtain

— dra
MiP = ZZ Py + Pt — ¢ pip-) An A

dra . ;
—ZZ[ (P4P2 + PEp) AL ALl + —= (PLpL + P p?) A AL

dra
+t L (pip® + PO pi) A e +

dral

4ﬂa1
_ 00 .A
2 27

T . . .
= (Ppl+ PLpl) AL A

U Aa A*ai|

4
MZZ(—SQU + 2p+p+>AziA,t? (i.j=1.2.73).

(B2)

Substituting Eqs. (46)—(49) into above equation and using relation p. - (ppe) — ppe); = —2E|ppe|cos@ and (ppe) —
Ppe)i(Ppe — Ppw)t = —=4|ppe |* in the center of mass frame, one can obtain
——n 4ﬂa ;
MiP=—"32.2. 3597+ 209
dra (1
=7 (5 sg” + 2p+p+)[ 1(po = pp)llUi*(Pp = Pp))]
2za . 8z ;
=== Wi (po = Po)i(pp = Pp)' =5 Ui P[P - (Pp = Pp)illP’ - (PD = PD))]
8
- ﬂ |Po P (1 = cos™). (B3)
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M§P = 4”“2 Z (— sg’ + 2p+p+>

dro 1 .. o
= ——ZZ (— sgi + 2p’+p]+) Useii(pp — Pp ) €U as (P — PD )]
A

s 2
2za a2 iaf ¥ k 8ma a|2 J iap P c
= —— Ul eine™ (pp = P ) (Pb = P )al= gﬂ) — 2 Ul piph e ejp0(pp = Po)a(PD = PD ) (=05)
27[“ a a 4 a Pl
= U 2(=262) (5 = Po- ) (P = P ) + o [US[2(— 9595 + 9,9 P+i(Pp — P )’ Ph(PD = Pp )
8ra
= W5PIpp (1 + cos?0), (B4)
where the completeness relation ) ", ., €};6,; = —¢;; + % has been used, and it is easily to prove that only the first term

will contribute to the amplitude squared. Similarly,

— 47ra
M;5)? = Z Z (— s’ + 2p+p+> § AL

27m )
ZZ Pp — PD* o 51 M(pb* - PD*)leﬁgll’p] |u§l|2

8ra o
~ 52 2 > PP (P = po )€ (i = po) €hen, | USP
PR
2na i » wp dma y .
= —K(PD* = Pp)i(Pp — Pp*) (=9 ) (=Gap) U5 _¥p+p+(pb* - pp)i(pp — pD*)j(_g (=g )44
8ra
= |PD* 2US (1 = cos?d), (55)

S 47ra
|MZ|2 § E < 39” + 2P+p+> Zi'AZ?
27Ta J g gn ia,fy al2
E E ij.mn pD* pD*) & ][P (pD* - pD*)aeﬁﬁgxl’y] |Z’{4|

87m
ZZPerJr ia,mn pD* — Pp* ) 8/1 8}/ ][Pj/}./)o'(pl_)* - PD*)ﬁfﬁ)Sff”uﬂz
2ra . .
= _—Plj mnPlaﬁy(pD* - pD*)J<pD* - pD*)a|uZ|2(_g/rjn)(_g;r})

ra .
- ?pq-pipia,mnpjﬁ.pa(p[)* - PD*)a(PD* - PD*)ﬂ|uZ|2<—gmp)(_9"U)
2ra ) . Sra .
= —Tpij.mnpm’m"(l’b* - pp) (P — Ppe) UG — s—zpipﬁpia,mnpﬁn(l’b* - pp)* (P — po )P U4

2o
= -5 (pp - Po ) (Pp = Pp)allf

8ra [ 3 3 1 o
- 2 ( 5; 5aﬂ +1_05iﬂ5m —§5ia5j/3) P’+Pi (PD* - PD*)“(PD* — Ppr )ﬂ|Z/{f{|2

| 2

1079

2
:@|pl,| |L{“|2<1——cos 9) (B6)

where we have used the relation
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. 3/1 1 1 1 1 1.
P.. piemn — S 5 5 6 —25::5 —§imgon 4 — gingam _ _ giagmn ) — sa
ij,mn 5 <2 im 2 3 mn) <2 + D) 3 > J
n 31 1 1 1 m Sn 1 RN/ 1 mn
Pia,mnPjﬂ = 5 < alméan 7 6 5am - gaiaémn) (E 5] 6ﬂ + Eéjéﬂ 3 5//15 >
3 3 1
105:/5043 + 105,/;5 - géiab‘jﬁ- (B7)

APPENDIX C: THE P-WAVE TWO-POINT FUNCTION IN THE NONRELATIVISTIC LIMIT

In the relativistic expression, the two-point function reads as

b d'q £(4P)
(2n)* (q* = mi +ie")((p — q)* — m3 + ie")

B(E,ml,mz) = l/
a

i / b dt (I3
o 2n)* g3 = (P + ) + ie" ) (E = q0)* — (1gI” + m3) + ie")
oy / d'q _ /(aP) - -

(27)* (g3 — @? + ie")((E — qo)> — @} + ie™)

where E is the center-of-mass energy and w; = \/|g|*> + m? with i = 1, 2. Here, f(|g|?) is a form factor, whose specific
form depends on the truncation scheme. In the nonrelativistic approximation, ¢ — 0, one can rewrite the denominator of
above equation

g3 — 0t +iet = (qy + w; —i€)(q

Similarly
(E—qo)* — 5 +ie" = (E—qo+ wy —ie")(E — gy — wy + ie")

- > .,
E—-qgy+my+_———ie E—-qy—my——+ic
2m 2m2
ar . . .
R2my| E—qo—my ——+ie" |. (C3)
2m2

Therefore, Eq. (C1) can be rewritten as

et [ fa
Amymy Jo (27)* (qo —m —%‘F ie*) (E— qo — My —%+ ie*)

__1 /d3 (I41*)
4mlm2 (2’”)3E— mp — ny —%—F i8+

2 f (d%; £(aP) )

= dmym, 27)3 k2 —|g|> + iet’

with k = \/2u(E — m; — m,). In the calculations of this paper, we have neglected the 1/(4m;m,) factor. Since the factor
can be obtained by dividing [[; v/2m; with m; the masses of the particle fields in the corresponding vertex, it can be
absorbed by the fitting parameters of the contact interaction, and these parameters will add a squared energy dimension.
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In order to calculate the P-wave two-point function, we
need to compute the S-wave two-point function first

2132

d*q e A
Gy(E) =2 .
0= | e
pA opk? / o d|g] = _wea
= - —_— A 55 € A
(2x)? o kK —lqf

k
—ig—”e (C5)

where we use a Gaussian form factor to regulate the
ultraviolet divergence. Here, the Cauchy principal value
integral is used to simplify above equation

1 1 b1
=P i s(k—1|g]). (C6)
—|g]* +ie" K> —1q)* 2lq|

One can define the function

©0 1 2 =2
X :7»/ L e, 7
=P ) e=@r (€7

whose first derivative reads as
i) = P [T dlate®-a) — YT 0w (s
7w =P [ dle e (c8)

According to the Newton-Leibniz formula, one can obtain

= \/_E/X dti e(\/;k)z
2 Jo Wi
N
— ﬁ/ d(\/fk)e(\/?k)z
k Jo
- %erﬁ(\/;k), (C9)

f(x) = f(0)

where erfi(z)
It is easy to obtain f(0) = 0, therefore, one can obtain

2 © 1 awgp_7 (V2
=) = L fi =
f(AQ) PA k2—|§|26 2kerl A k

(C10)

= \/L; 15 dre" is the imaginary error function.

Substituting Eq. (C10) into Eq. (C5), one can obtain

(2,“/)\3 /2+‘2‘—k e [erﬁ(\/_k) —z} (C11)

GS(E) =

There exists the following relationship between the P-wave
two-point function and the first derivative of the S-wave
two-point function

d’q |gPe A 9Gs(E)
Gp(E)=2 _
p(E) ”/(2n3)k2—|c7|2+ig 4 oA

(et )

_pA - A\ pkd e V2k\
——(2ﬂ)3/2(k T —I—Ee 22 |erfi N —1i].

(C12)

APPENDIX D: FITTED PARAMETERS
AND EFFECTIVE COUPLINGS OF POLES

TABLE VII.  The fitted parameters of model I and model II. The
parameters Ci, and ¢%,, g%, and ¢35, are contact interaction
defined in Eqgs. (15)—(18) and bare couplings between charmo-
nium and charmed meson pair, respectively. F% ,, and f9,,, f3,
and f9,, are the coupling of the virtual photon to the charmed
meson pair and the charmonium, respectively. mp, msg, and m,p,

denote the bare masses of charmounia w(1D), w(3S), and
w(2D).
Parameters Model I Model II
CY [GeV™] —672.91 £8.39 -593.56 £17.11
C9[GeV 182.93 +15.36 —109.96 + 16.28
CY[GeV™ —0.11 £ 10.60 797.37 +£32.52
CY[GeV™] 613.97 £ 17.17 9.28+9.4
C8[GeV™] —208.49 £ 16.96 —357.46 £ 15.66
C5 [GeV™] 1525 +£9.82 —-63.08 £ 12.13
C8 [GeV™] —33.28 £9.43 109.12 4 26.50
C8[GeV™] 638.27 +26.30 475.96 +38.51
Cl[GeV™] —1159.87 £19.31 =739.76 £ 23.82
Cl[GeV™] 321.28 £17.50 263.68 £21.22
Cl [GeV™] 375.02 £25.13 —292.25 £8.56
Cl [Gev™ 438.66 + 17.70 —223.61 £ 8.68
&) [GeVT] 0.66 = 0.04 —12.93 £0.26
A [GeVT] —14.66 £ 0.37 —14.11 £0.96
&p [GeVT] —17.09 £0.23 e
19[GeVY] —12.82 £0.34 —4.92+0.48
19 [GeVY] 10.16 +0.28 —4.62 £0.29
13 [GeV] -16.72 £ 0.30 —-20.63 £0.76
13, [GeVY] 8.75£0.24 7.3+£0.46
15 [GeVY] 10.13 £0.21 21.75 £ 0.45
11 GeVY] -3.01 £0.11 -5.38 £0.16
0 [GeV?] —-0.30 £ 0.02 0.13 +£0.00
% [GeV?] —11.96 £ 0.63 —0.47 +£0.05
sz [GeV?] —-0.15+0.00 e
mlD [GeV] 3.807 £ 0.001 3.804 £ 0.001
m35 [GeV] 4.229 +0.002 4.253 +0.005
mY,, [GeV] 3.692 £ 0.003 e
A [GeV] 0.50 = 0.00 0.50 £ 0.00
7*/d.o.f. 2.17 2.66
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TABLE VIIL

The square brackets represent energy distance of the poles to the physical RS, with unit MeV.

Pole positions and effective couplings of 1~ system in model I on various RSs. The dimension of coupling is GeV /2.

RSs Poles [MeV] 9ob  9pb*  Ypip;  Y9p'D:, 9p'D, Y9p/py  Ypi'pi, 9D,
(+.+ 4+ ++) 3691.60 0.11 0.30 0.66 0.30 0.24 2.10 3.18 2.01
(=4, +.+.++) 377842+ 11.81i[12] 131 272 8.54 12.13 233 2297 3591 20.09
(=4 =+ ++) 3832.52 £ 74.53i .02 429 0.14 29.63 5.18 17.71 172.75 26.36
(=== =++) 4011.05 £10.13i [16]  0.16 0.32 0.34 1.73 0.28 0.83 8.81 0.69
(-, — == =) 423278 £23.96i [24] 0.02  0.08 0.12 0.04 0.27 0.37 1.22 1.52

TABLE IX. Pole positions and effective couplings of 17~ system in model II on various RSs. Other details are the same as Table VIII.

RSs Poles [MeV] 9pb 9Ipb* 9IpiD; 9p*b:_, 9pb:_, 9Ipipi- 9pi*piz, 9ot D,
(= +.+,+,+,4) 3743.07 £ 7.36i [7] 2.39 0.92 0.01 19.15 6.28 0.02 0.10 0.03
(= +.+,+,+,+)  3775.29 £ 14.31i [14] 1.55 4.24 8.94 13.50 8.89 33.29 27.29 56.34
(-, —+,+,+.+) 3883.91 £ 46.53i [47] 0.08 1.41 0.00 2.57 8.68 0.01 0.03 0.01
(-, —— =+, 1) 4019.42 4+ 17.40i [17] 0.21 0.24 0.22 1.58 0.86 0.63 2.92 4.59
(= === =) 4278.21 + 21.59i [22] 0.03 0.09 0.12 0.07 0.13 0.46 0.57 0.55
APPENDIX E: THE TRAJECTORY POLES IN MODEL 1
AND THE ANGULAR DISTRIBUTION OF D MESON
1x107"
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FIG. 8. The zoomed-in trajectory of poles in model I on various RSs with the couplings ¢, ¢%p, and g3, varying sequentially from
the fitted values to zero. The (a)—(d) figures represent the trajectories of the poles 3691.60 GeV, 3778.42 + 11.81i GeV,
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APPENDIX F: THE DISTRIBUTION OF THE STANDARDIZED RESIDUALS
FOR MODEL I AND MODEL II
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FIG. 10. The distribution of the standardized residuals for models I (orange) and II (green). There are 15 bins in region [-7,7].
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