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We perform a global analysis of lattice and experimental data on negative-strangeness meson-baryon
scattering using a large set of variations of the theoretical framework based on the chiral unitary approach.
For the former, the Lüscher formalism is utilized taking into account all pertinent coupled-channel effects.
Through this, systematic uncertainties related to data scarcity, potential ambiguities, and possible
framework dependence are quantified for the first time. The implementation of information criteria
and other statistical tools is discussed. As a final result we provide pole positions for isoscalar resonances at
the physical and lattice points, including statistical and systematic uncertainties. Predictions for the
isovector states are also provided, showing large uncertainties.
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I. INTRODUCTION AND SUMMARY

The hadron spectrum provides a manifestation of struc-
ture formation of the strong interaction, which remains a
challenge to our understanding of the so successful
standard model of particle physics. Primarily due to
advances in experimental techniques, hundreds of new
and predominantly excited hadrons have been discovered
over the past century [1]. A partial ordering of the spectrum
can be achieved through a simple quark model organizing
mesons as quark-antiquark and baryons as three-quark
states. However, this simple picture does not reflect the
reality calling for a more comprehensive approach. For
recent related reviews, see Refs. [2–6]. A prominent

example of this kind is the negative-strangeness, isoscalar
Λð1405Þ baryon, which became a poster child of the
two-pole structure [7,8]. Currently, this is associated with
two states, the Λð1405Þ and Λð1380Þ. For a dedicated
review including historical aspects, see Ref. [9] as well as
Refs. [8,10] for a broader context.
Originally, the connection between the fundamental

theory of the strong interaction, quantum chromodynamics
(QCD), and the phenomenology of the two-pole structure
of the Λð1405Þ was established using chiral perturbation
theory (CHPT) while extending the range of applicability
through unitarization techniques. For details and connec-
tion to other approaches see Ref. [9]. Note further that the
isovector pole also seen in Ref. [7] (see also [11–14]) has
obtained much less attention, but this issue will also be
taken up here. Typically, the free parameters of this
approach are fixed using the data available from experi-
ments conducted over the last several decades. These
parameters originate partly from the so-called low-energy
constants, which encode the effects of integrated out heavy
degrees of freedom of QCD but also reflect a certain degree
of model dependence in the exact prescription of the
unitarization procedure. This model dependence, along
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with ambiguities in the existing experimental input, leads to
different predictions of the chiral unitary approaches
(UCHPT) in regimes not covered by the experimental
data. Illustrative examples of such systematic uncertainties
are discussed in, e.g., Refs. [9,11].
The problem can also be tackled from a different angle

using lattice QCD methodology [15–19]. In a most recent
calculation, not too far away from the physical point (that
is, quark masses that are only slightly larger than the
physical ones) and using state-of-the-art methodology, finite-
volume spectra for the isoscalar channel of negative-strange-
ness meson-baryon interaction have been determined by
BaSc collaboration [20,21]. While unphysical quark masses
are used in this setup, CHPT underlying UCHPT allows one
to extrapolate and connect these results to the physical point.
Establishingthisconnection,alongwith thestudyof themodel
dependence within the UCHPT approaches, constitutes the
maingoalsof thepresentwork.Thecentralobservationsofour
study can be summarized as follows:

(i) UCHPTapproaches based on the lowest-order chiral
Lagrangian (called typeM1 andM2 in what follows)
do capture the main features of the interaction but
fail to quantitatively describe the existing experi-
mental data.

(ii) UCHPT can accurately describe the lattice input.
Still, the latter input alone does not seems sufficient
for determining accurately both pole positions when
model variations are taken into account.

(iii) Within the most flexible models, the experimental
input does lead to the pole structure similar to that
found in the existing literature. When extrapolating
to the unphysical quark mass scenario (lattice point),
the pole structure determined by BaSc collaboration
is confirmed. For the most flexible models we

observe that ambiguities in the older cross section
data dominate the systematic uncertainties.

(iv) Combined fits including all experimental and lattice
inputs provide a very good description. Variations
between different models are assessed using infor-
mation criteria. Numerical results for the isoscalar
poles, as well as predicted isovector poles, are
collected in Table I.

This paper is organized as follows. Details on the lattice
QCD input are provided in Sec. II, which also includes
details of the finite-volume implementation. The exper-
imental data are reviewed in Sec. III, discussing also their
ambiguities. The chiral unitary approach is discussed in
Sec. IV, including variation of the methodology reflecting
systematic uncertainties. Additionally, potential complica-
tions due to three-body on-shell states are evaluated in
Sec. IV D. Fits and pertinent predictions are discussed in
Secs. V and VI, respectively. Individual fit results are
moved to the Appendices for convenience.

II. LATTICE QCD INPUT

A. Overview of the available quantities

Recent advances in both theoretical frameworks and
computational techniques have enabled lattice QCD to
make increasingly precise predictions for the properties of
strongly interacting unstable particles (resonances), such as
the ρ, Δ, and more recently, the Λð1405Þ. For recent
reviews, see Refs. [5,22,23]. In lattice calculations, one
extracts information about such states by computing the
discrete energy spectrum of multihadron scattering states in
a finite Euclidean volume. This is achieved through
Markov chain Monte Carlo integration and analyzing the
exponential decay of correlation functions constructed
from suitably designed interpolating operators. In his

TABLE I. Numerical values for extracted pole positions (combined fit to lattice and experimental input) for the
isoscalar and isovector case (in GeV). Different fits refer to variations of the UCHPT approach, as explained in
Sec. IV (where M refers to the chosen interaction kernel and S to the method of regularization). The lattice point
refers to the quark mass setup used in Refs. [20,21].

Type Physical point Lattice point

I ¼ 0 S ¼ −1 M3S1 (F17) 1.342þ0.009
−0.010 − i0.028þ0.013

−0.014 1.359þ0.010
−0.014 − i0.100þ0.050

−0.050

1.432þ0.002
−0.002 − i0.025þ0.001

−0.001 1.460þ0.006
−0.005 − i0.013þ0.005

−0.004

M3S2 (F16) 1.373þ0.002
−0.005 − i0.082þ0.011

−0.009 1.389þ0.006
−0.007

1.423þ0.002
−0.001 − i0.020þ0.001

−0.002 1.466þ0.003
−0.004 − i0.020þ0.001

−0.001

M3S3 (F12) 1.352þ0.004
−0.007 − i0.091þ0.005

−0.006 1.401þ0.003
−0.003

1.420þ0.001
−0.001 − i0.018þ0.001

−0.001 1.478þ0.005
−0.004 − i0.026þ0.001

−0.001

I ¼ 1 S ¼ −1 M3S1 (F17) 1.351þ0.022
−0.015 − i0.112þ0.010

−0.011 1.333þ0.018
−0.024 − i0.144þ0.008

−0.012

1.356þ0.005
−0.011 − i0.035þ0.022

−0.014
M3S2 (F16) 1.430þ0.090

−0.040 − i0.281þ0.170
−0.002 1.430þ0.050

−0.060 − i0.208þ0.090
−0.000

M3S3 (F12) 1.338þ0.021
−0.023 − i0.215þ0.007

−0.004 1.335þ0.025
−0.017 − i0.143þ0.008

−0.005
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seminal work, Lüscher showed that the energy levels of two
interacting hadrons in a finite spatial volume are shifted
from their noninteracting values by an amount that is only
power-law suppressed in the box size [24,25]. These finite-
volume energy shifts are directly related to the infinite-
volume scattering phase shift [26,27], and hence to the
scattering amplitudes themselves. Subsequent works
extended Lüscher’s formalism to arbitrary spins and multi-
ple coupled channels [28–32]. In the following subsection,
we briefly summarize the quantization condition used in the
present work.

B. Implementation of the quantization
condition

Experimental observables, such as cross sections and the
finite-volume energy spectrum obtained from lattice sim-
ulations, can both be described using effective models in
which the scattering amplitude is parametrized using a
small number of input parameters. These parameters are
constrained through a correlated χ2 fit to both types of data:
the finite-volume lattice energy spectrum and experimental
observables.
Instead of parametrizing the unitary S-matrix directly, we

work with the real, symmetric K-matrix, which is related to
the S-matrix via

S ¼ ð1 − iKÞ−1ð1þ iKÞ: ð2:1Þ

Due to rotational invariance, the infinite dimensional K-
matrix is diagonal in angular momentum space,

hJ0mJ0l0S0a0jKjJmJlSai ¼ δJJ0δmJm0
J
KðJÞ

l0S0a0;lSaðsÞ; ð2:2Þ

where the states jJmJlSai are labeled by the total angular
momentum J, its projection on the z-axis mJ, the total
orbital angular momentum l, and the spin angular momen-
tum S of the two particles, respectively, a is the channel
index, and lastly, s is the Mandelstam variable, the square

of the total energy in the center-of-mass frame. In this
section, we connect the parametrization of the K-matrix
used in the quantization condition [20] with the UCHPT
parametrizations (e.g., Refs. [33–35]), which provide what
is often referred to as the Höhler’s partial-wave amplitudes
fl�ðsÞ [36,37], described later in Sec. IV B in terms of the
T-matrix. We also briefly summarize the quantization
condition in multichannel space applied in this work,
closely following [22,38].
To connect the two parametrizations, physical quantities

are extracted from both meson-baryon scattering MB →
MB Höhler partial-wave amplitudes and K̃ [38]. For
example, using the former, the elastic scattering phase
shifts can be computed through a K-matrix-like quantity as

f0þðsÞ ¼
1

ðK̃−1
E ðsÞ − ipcmðsÞÞ

⇒ cot δ ¼ Ref0þ
Im f0þ

¼ K̃−1
E

pcm
⇒ pcm cot δ ¼ K̃−1

E : ð2:3Þ

Here, pcm denotes the magnitude of the three-momentum in
the center-of-mass frame. In the same region, the phase
shifts can also be extracted using K̃, the matrix in the
quantization condition for the finite-volume energy
spectrum [38],

detð1 − K̃BP⃗Þ ¼ 0; ð2:4Þ

where P⃗ is the total momentum of the two-particle system,
K̃ ¼ 2π

Lpcm
K ¼ 2π

L
1

pcm cot δ ¼ 2π
L K̃E, and here the first two

equalities follow from Eqs. (16) and (18) in [38] and

(2.3) is used in the last one. The so-called box matrix BP⃗

does not depend on interactions—it is a known, purely
kinematical matrix that depends on the finite volume. For

real scattering momenta, BP⃗ is Hermitian and diagonal in
the channel space,

hJ0mJ0l0S0a0jBp⃗jJmJlSai ¼ −iδaa0δSS0plþl0þ1
cm;a WP⃗a

l0ml0 ;lml
hJ0mJ0 jl0ml0 ; SmSihlml; SmSjJmJi; ð2:5Þ

where hj1m1j2m2jJMi are the familiar Clebsch-Gordan
coefficients andW is defined in Eq. (6) in [38]. In practice,
the infinite-dimensional matrix in the determinant (2.4) is
block-diagonalized by projecting onto the superposition of
states that transforms according to the irreducible repre-
sentation (irrep) of the little group of P⃗, i.e., by performing
a unitary basis transformation,

jΛλnJlSai ¼
X
mJ

cJð−1Þ
l;Λλn

mJ jJmJlSai; ð2:6Þ

where Λ is the irrep of the little group of P⃗, λ is the irrep
row, and n is the occurrence of the particular irrep in the
reducible representation jJmJlSai. In each block, a trun-
cation to l ≤ lmax is imposed to make the determinant
condition manageable. In the present work, we consider
only the S-wave, lmax ¼ 0. We include energy levels from
the rest frame up to total momenta of three units of lattice
momenta [20]. The interchannel interactions are encoded in
the dense K̃E matrix, while the box matrix remains diagonal
in the channel space. The matrix K̃E is a 10 × 10 matrix in
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the space of meson-baryon channels with strangeness
S ¼ −1, as determined by the underlying SUð3Þ symmetry

S ¼ fK−p; K̄0n; π0Λ; π0Σ0; πþΣ−; π−Σþ;

× ηΛ; ηΣ0; KþΞ−; K0Ξ0g: ð2:7Þ

For lattice energy spectrum analysis, we further convert
from the physical basis to the isospin basis and project onto
channels with total isospin zero,

SI¼0 ¼ fK̄N; πΣ; ηΛ; KΞg: ð2:8Þ

For phase convention and explicit forms of the projectors
see, e.g., Ref. [39]. In predicting the finite-volume energy
spectrum we compute the box matrix for the appropriate
total momentum and irrep (a 4 × 4 diagonal matrix), and
combine it with the corresponding 4 × 4 dense K̃E to
evaluate the determinant in (2.4). An illustration of how the
energy spectrum constrains the scattering amplitude is
shown on the right part of Fig. 1 for the zero-momentum
case (G1u irrep).
In the spectrum we consider 14 energy levels, from all

irreps dominated by l ¼ 0 lying below the first relevant
three-particle threshold ππΛ. On the left part of Fig. 1 we
show all the input energy levels together with our best
estimates using three different regularizations S1, S2, and
S3, as discussed later in Sec. IV.

C. Details of lattice calculation

The finite-volume lattice energy spectra have been
generated using the D200 ensemble of CLS collaboration
[40], which uses 2þ 1 flavor of nonperturbatively
improved Wilson fermions and Lüscher-Weisz gauge
action. The pion mass is slightly higher than the physical
one, and the kaon mass is slightly lower than the physical
one. We summarize the details of the ensemble relevant
to the present work in Table II. Correlation functions,
including two-hadron interpolating fields at the source/sink
with different combinations of momenta [πðp⃗1ÞΣðp⃗2Þ;
K̄ðp⃗1ÞNðp⃗2Þ up to three lattice units of p⃗1 þ p⃗2 total
momentum], were produced in order to determine all the
energy levels in the isospin 0 sector below the lowest lying
three-particle threshold (ππΛ). Correlation functions were
evaluated using the stochastic Laplacian-Heaviside
(sLapH) method [41,42]. The energy levels were obtained
using the ratio method, i.e., taking the ratio of properly
diagonalized correlation matrices (generalized eigenvalue
problem principal correlators) with the single hadron
correlators, directly determining the relevant energy shift
[43]. The statistical errors are estimated via bootstrap
resampling using 800 samples.

III. EXPERIMENTAL INPUT

Below we review all experimental input included in the
present study. To have a more transparent picture of the

FIG. 1. Left: summary of energy levels used as input in this work (black dots with error bars), together with our model estimates using
different regularization schemes (S1, S2, and S3). Right: illustration of the quantization condition as a function of the center-of-mass
energy for the rest frameG1u irrep. Red band highlights the area where the quantization condition is closely fulfilled, red circles indicate
the prediction of UCHPT, and orange circles with error bars show the lattice results.

TABLE II. Properties of the D200 ensemble including the masses of the light meson and baryon octet at the
isospin symmetric point.

L[fm] a[fm] Mπ[GeV] MK[GeV] Mη[GeV] mN[GeV] mΣ[GeV] mΛ[GeV] mΞ[GeV]

4.05(4) 0.0633(7) 0.2036(8) 0.4864(5) 0.5511 0.979(11) 1.193(6) 1.132(4) 1.322(3)
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systematic uncertainties discussed in Sec. IV, we restrict
ourselves only to data which are directly related to the
meson-baryon scattering amplitudes in the energy region
most relevant for the Λð1380Þ and Λð1405Þ states. Other
input from, e.g., photon-induced reactions [44–47], is not
included, as it typically requires further parametrization of
the reaction mechanism. For some studies of that type of
data, see Refs. [48–51].

(i) Cross sections: Most of the experimental data in the
energy region relevant for a study of the first
resonance region stem from the time not long after
the initiation of the first large experimental programs
on production of kaons in the 1950s. For this, mostly
data from bubble chamber setups at CERN, LBNL,
BNL, or Bevatron were used until the mid 1980s.
For a historical overview, see Ref. [9]. The data
have, therefore, quite large error bars and in certain
cases there are systematic discrepancies between
different datasets. Encouragingly, in the 2020s, some
progress occurred. As one of the most relevant
recent developments in the field, AMADEUS col-
laboration [52] provided two new high-precision
results based on data collected by KLOE collabo-
ration [53] on the K−p → πΣ0 and K−p → πΛ total
cross sections. The impact of these data has been
studied within a UCHPT model in Ref. [35]. In the
energy range of interest, i.e., kaon momentum in the
laboratory frame below PLAB ≤ 300 MeV, there are
252 total cross section data points [52,54–57]
(83, 47, 11, 11, 51, and 49, corresponding to

K−p → K−p, K−p → K̄0n, K−p → π0Λ,
K−p → π0Σ0, K−p → πþΣ−, and K−p → π−Σþ
transitions).1 These data can be related to the
partial-wave fl� derived form a given model.
Neglecting higher partial waves, the explicit formula
for the transition ϕαBα → ϕβBβ reads

σαβ ¼ 4π
pβðsÞ
pαðsÞ

jf0þ;αβðsÞj2; ð3:1Þ

where pα refers to pcm in the meson baryon channel
α. For formulas including higher partial waves, we
refer the reader to Refs. [36,58].

By plotting the cross section data with different
colors for separate experiments (along with a cor-
responding Gaussian process fit if applicable), as we
have in Fig. 2, it is readily seen that for several
channels (K−p, K̄0n, and π−Σþ), the data are not
only widely varying at some energies, but are even
inconsistent. This is likely due to the effect of
different systematic uncertainties in each experi-
ment. By using squares of residuals to determine
a χ2 statistic, as is typically employed in analyses
including this work, there is a chance that fits are
drawn to the average of values, some of which are
systematically wrong.

FIG. 2. Total cross sections considered in this work. Different colors distinguish between various experiments [52,54–57]. Shaded
bands represent a Gaussian process fit, which is included to guide the eye [59].

1The total cross section data in digitalized form can be
accessed under: https://github.com/maxim-mai/Experimental-
Data/tree/master/Lambda1405.
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This issue is further illustrated in Fig. 3, where the
log probability surfaces for the data in Fig. 2 are
depicted. The procedure for generating these surfa-
ces is described in [59]. Particularly in the case of the
K−p → K̄0n channel, the multiple bands suggest
inconsistent data.
Note also that we consider the scattering data for

energies high enough so that the Coulomb effect in
the charged channels can be neglected.

(ii) Threshold data: At the K−p threshold, several ratios
of the cross sections were measured some decades
ago [60,61]. Specifically, the values are
γ ¼ 2.38� 0.04, Rc ¼ 0.664� 0.011, and
Rn ¼ 0.189� 0.015, which are related to the total
cross section ratios as

γ ¼ ΓK−p→πþΣ−

ΓK−p→π−Σþ
; Rc ¼

ΓK−p→charged states

ΓK−p→all final states
;

Rn ¼
ΓK−p→π0Λ

ΓK−p→neutral states
: ð3:2Þ

Additionally, in a more recent kaonic hydrogen
experiment at DAPHNE, SIDDHARTA collabora-
tion [62] determined to a very high precision the
energy shift and width due to strong interaction of
the K−p system, i.e., ΔE ¼ 283� 42 eV and
Γ=2 ¼ 271� 55 eV. The complex energy shift in
kaonic hydrogen is related to the K−p scattering
length through the modified Deser formula [63] (and
similarly for kaonic deuterium [64]),

ΔE− iΓ=2¼−2α3μ2caK−pð1−2aK−pαμcðlnα−1ÞÞ;
ð3:3Þ

where α ≃ 1=137 is the fine-structure constant, and
μc is the reduced mass of the K−p system. For the
discussion of higher-order corrections, see
Refs. [65,66]. We note that, recently, a new meas-
urement of the kaonic deuteron system has been
performed [67] as well, which, however, is not part
of this work. We wish to note that while older values
(γ; Rc; Rn) offer very little constraint on the scatter-
ing amplitude, the SIDDHARTA results, indeed,
do and should, thus, always be taken into account.
A dedicated discussion can be found in Ref. [9].

(iii) AMADEUS: One of the latest experimental data
points was taken by AMADEUS collaboration [68].
Through the analysis of K− absorption processes on
4He, the modulus of jfπ−Λ→K−n

0þ ð ffiffiffi
s

p ¼ 1.4 GeVÞj was
extracted to high precision as 0.334� 0.018 fm. This
is given in terms of Höhler’s partial waves fl� as

fπ
−Λ→K−n

0þ ¼ 1ffiffiffi
2

p �
−fπ

0Λ→K−p
0þ þ fπ

0Λ→K̄0n
0þ

�
: ð3:4Þ

IV. EFFECTIVE FIELD THEORY
AND UNITARIZED CHIRAL
PERTURBATION APPROACH

Lattice QCD provides a systematic way to access QCD
Green’s functions in the nonperturbative regime. In the

FIG. 3. Log probability surfaces derived from the data illustrated in Fig. 2.
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intermediate steps, however, the methodology introduces
by construction several approximations to the real world
(for a pedagogical introduction, see Ref. [69]). Specifically,
the calculation is performed with quarks occupying only
intersections of typically cubic and finite-volume lattice in
Euclidean space-time (imaginary time). Additionally, a
scale needs to be set defining the obtained quantities in
physical units, since the computer algorithm does not have a
notion of units. Finally, on a more practical side, quarks are
often heavier than the physical ones for two reasons: (i) the
physical pion appears in nature to be very light, which
means very large lattice volumes are required to
fit it in, and (ii) systems with heavier-than-physical pions
have inelastic thresholds pushed to higher energies, which
effectively extends the range of applicability of the existing
two- and three-body quantization conditions [24,70,71].
For the present case, scale-setting continuum extrapola-

tion can be assumed to be addressed in the provided finite-
volume energy eigenvalues [20,21]. A procedure for the
finite-volume mapping including the related breakdown of
rotational symmetry is discussed in Sec. II B. What remains
is to establish a connection between the heavier-than-
physical pion mass results from the lattice with the
experimental ones, often referred to as chiral extrapolation.
As the name suggests, the key point here is to use chiral
symmetry to provide guidance on how hadron-hadron
interactions behave with the changing pion mass.
Specifically, we use CHPT extended to the meson-baryon
sector [72–76] to define a three-flavor meson-baryon
interaction kernel at leading and next-to-leading order.
However, since the energy regime of interest is large,
nonperturbative effects are unavoidable. For the explicit
calculation and breakdown of the convergence of the
perturbative expansion, see, e.g., Ref. [77]. Therefore,
the interaction kernel is iterated through a unitarization
approach described in the following Sec. IV B. This means
that the extrapolation of the model-independent lattice

QCD results to the physical point (physical quark masses)
is not accomplished through model-independent CHPT but
a unitarized, somewhat model-dependent approach. This
model dependence of the obtained results is one of the key
questions we wish to discuss in this paper.
There is a plethora of approaches aiming to extend the

range of applicability of the chiral series to the energy
region of the Λð1405Þ. An in-depth description of those,
including their differences and similarities, is provided in
the review in [9]. For alternative approaches, see also
Refs. [78–82]. To make the model dependence discussion
more transparent, we rely here on one class of models
described there, one which unites the simplicity of an
algebraic formulation (vs., e.g., more sophisticated dia-
grammatic four-dimensional integral equations of
Refs. [33,34]) with the phenomenological flexibility, result-
ing in a wide range of applications [7,12,83–85].

A. Chiral Lagrangian and interaction kernel

The general form of the chiral meson-baryon Lagrangian
is written as an infinite series

LϕB ¼ Lð1Þ
ϕB þ Lð2Þ

ϕB þ Lð3Þ
ϕB þ… ð4:1Þ

of infinitely many terms ordered in Lagrangians with a
fixed chiral order denoted above by the superscript. For the
specific case of meson-baryon scattering, the leading-order
(LO) Lagrangian contains three independent structures,

Lð1Þ
ϕB ¼ hB̄ðiγμDμ −m0ÞBi þ

D
2
hB̄γμγ5fuμ; Bgi

þ F
2
hB̄γμγ5½uμ; B�i; ð4:2Þ

whereas the next-to-leading-order Lagrangian [86] in its
minimal form contains 14 independent structures [87],

Lð2Þ
ϕB ¼ b0hB̄Bihχþi þ bDhB̄fχþ; Bgi þ bFhB̄½χþ; B�i

þ b1hB̄½uμ; ½uμ; B��i þ b2hB̄½uμ; fuμ; Bg�i þ b3hB̄fuμ; fuμ; Bggi þ b4hB̄Bihuμuμi
þ iðb5hB̄σμν½½uμ; uν�; B�i þ b6hB̄σμνf½uμ; uν�; Bgi þ b7hB̄σμνuμihuνBiÞ

þ ib8
2m0

ðhB̄γμ½uμ; ½uν; ½Dν; B���i þ hB̄γμ½Dν; ½uν; ½uμ; B���iÞ

þ ib9
2m0

ðhB̄γμ½uμ; fuν; ½Dν; B�g�i þ hB̄γμ½Dν; fuν; ½uμ; B�g�iÞ

þ ib10
2m0

ðhB̄γμfuμ; fuν; ½Dν; B�ggi þ hB̄γμ½Dν; fuν; fuμ; Bgg�iÞ

þ ib11
2m0

ð2hB̄γμ½Dν; B�ihuμuνi þ hB̄γμBih½Dν; uμ�uν þ uμ½Dν; uν�iÞ; ð4:3Þ
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where h…i denotes the trace in flavor space, DμB ≔ ∂μBþ 1
2
½½u†; ∂μu�; B�, m0 is the baryon octet mass in the chiral limit,

and D and F are the axial coupling constants. The next-to-leading-order (NLO) low-energy constants (LECs) bi split into
the so-called symmetry breakers b0;D;F, parametrizing the explicit chiral symmetry breaking through the nonvanishing
quark masses and fbiji ¼ 1;…; 11g, being referred to as dynamical LECs. All external currents except the scalar one are set
to zero and

U ¼ exp
�
i
ϕ

F0

�
; u2 ≔ U; uμ ≔ iu†∂μuþ iu∂μu†;

χ� ≔ u†χu† � uχ†u; χ ≔ 2B0 diagðmu;md;msÞ; ð4:4Þ

where F0 and B0 denote the pion decay constant and the constant related to the quark condensate in the chiral limit,
respectively. The ground state octet mesons (Goldstone bosons of the theory) and baryons are included through

ϕ ¼
ffiffiffi
2

p
0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ffiffi
6

p η

1
CCCA; B ¼

0
BBB@

Σ0ffiffi
2

p þ Λffiffi
6

p Σþ p

Σ− − Σ0ffiffi
2

p þ Λffiffi
6

p n

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCCA: ð4:5Þ

The above general Lagrangian defines all the Feynman diagrams, as shown in Ref. [77], calculating meson-baryon
scattering in three-flavor CHPT. The completeness of momentum structures plays a crucial role, for instance, when
constructing unitary gauge-invariant models for meson photoproduction [88–90], and warrants full accounting of all chiral
logarithms. This may indeed become relevant when approaching the chiral limit, as discussed and shown in Ref. [91]. It was
shown, however, in Ref. [34] that for antikaon-nucleon scattering in the physical region not too far from the two-body
thresholds, such effects are subdominant. An approach neglecting such effects was studied in Ref. [50] and later including
coupled-channel S- and P-waves in Ref. [35].
Instead of this path, we proceed here with a closely related but computationally less expensive approach. It relies on

calculating the chiral potential V and iterating it to restore two-body unitarity. We use the normalization of Refs. [12,85] and
study three types of meson-baryon potentials,

M1∶ VαβðsÞ ¼ VWT
αβ ðsÞ; ð4:6Þ

M2∶ VαβðsÞ ¼ VWT
αβ ðsÞ þ VBORNs

αβ þ VBORNu
αβ ðsÞ; ð4:7Þ

M3∶VαβðsÞ¼VWT
αβ ðsÞþVBORNs

αβ þVBORNu
αβ ðsÞþVNLO

αβ ðsÞ; ð4:8Þ

where α=β collect the indices of the in/outgoing meson-baryon states S. Here, WT denotes the time-honored Weinberg-
Tomozawa term and BORNx (x=u, s) the s- and u-channel Born terms, respectively. Specifically, for the total strangeness
S ¼ −1, the relevant channels are listed in (2.7). All potentials except VNLO

αβ ðsÞ are obtained from the LO chiral Lagrangian
Eq. (4.2), while the latter is deduced from the relevant part of the NLO Lagrangian,

Lð2Þ
ϕB ¼ b0hB̄Bihχþi þ bDhB̄fχþ; Bgi þ bFhB̄½χþ; B�i

þ d1hB̄fuμ; ½uμ; B�gi þ d2hB̄½uμ; fuμ; Bg�i
þ d3hB̄uμihBuμi þ d4hB̄Bihuμuμi: ð4:9Þ

It is notable that only the potentials in M2 and M3 include all terms at the given chiral order, namely, leading and next-to-
leading, respectively. Still, in the M1 potential, the so-called Weinberg-Tomozawa term already captures the major aspects
of the dynamics of the system correctly, but is at odds with the most recent threshold data [62] even after the unitarization
procedure, see, e.g., Ref. [12], or to foreshadow the results discussed later, see M1SxP fits in Fig. 7.
Explicitly,2 the above required potentials read as

2These formulas are quite standard in the literature. However, a certain amount of typos and convention inconsistencies also became
standard. To avoid this, explicit formulas are provided here.
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VWT
ðaiÞðbjÞðsÞ ¼ −

N aN b

8FiFj
CWT
ðaiÞðbjÞð2

ffiffiffi
s

p
−ma −mbÞ;

VBORNs
ðaiÞðbjÞðsÞ ¼

N aN b

12FiFj

X8
c¼1

C½DF�
ðbjÞðcÞC

½DF�
ðaiÞðcÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþmc

p ðs − ffiffiffi
s

p ðma þmbÞ þmambÞ;

VBORNu
ðaiÞðbjÞðsÞ ¼ −

N aN b

12FiFj

X8
c¼1

C½DF�
ðicÞðbÞC

½DF�
ðjcÞðaÞ

� ffiffiffi
s

p þmc −
ðma þmcÞðmb þmcÞ

2N 2
aN 2

b

ð ffiffiffi
s

p þma þmb −mcÞ

þ
� ffiffiffi

s
p þmc −ma −mb −

sþm2
c −M2

i −M2
j − 2EaEb

2N 2
aN 2

b

ð ffiffiffi
s

p þma þmb −mcÞ
�

×
ðma þmcÞðmb þmcÞ

4pbjpai
ln

�
sþm2

c −M2
i −M2

j − 2EaEb − 2pbjpai

sþm2
c −M2

i −M2
j − 2EaEb þ 2pbjpai

��
;

VNLO
ðaiÞðbjÞðsÞ ¼

N iN j

FiFj

�
C½b0bDbF�
ðaiÞðbjÞ − 2C½d1d2d3d4�

ij

�
EiEj þ

p2
bjp

2
ai

3N 2
aN 2

b

��
: ð4:10Þ

Here, we have explicitly written out the baryon/meson
octet indices fa; b; cg=fi; jg of the corresponding
channel. Further, s is the total energy squared,
N a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma þ Ea

p
, Ea ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a þ p2
ai

p
, Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

i þ p2
ai

p
,

and pai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðMi þmaÞ2Þðs − ðMi −maÞ2Þ

p
=ð2 ffiffiffi

s
p Þ.

Meson and baryon masses are denoted by M and m,
respectively. The coefficient matrices CWT, C½DF�, C½b0bDbF�,
and C½d1d2d3d4� are obtained from Eq. (4.9) but can also be
obtained from the Appendix of Ref. [85]. The first matrix
contains the LECs Fπ;K;η, which appear explicitly in the
denominator,while the latter threematrices include additional
LECs, with the pertinent parameters put into the superscript
square brackets, for convenience. Note that the leading-order
LECsD,F arefixed,andonly thebi,di are tobedeterminedby
the fits.Additionally,C½b0bDbF� depends explicitlyon thequark
masses, given in terms of the meson masses.

B. Unitarization procedure and connection to
observables

With the interaction kernel at hand, a nonperturbative
amplitude can be constructed. This typically involves some
sort of resummation of an infinite set of diagrams. Usually
guided by the S-matrix unitarity, typical methods are the
full four-dimensional Bethe-Salpeter, three-dimensional
reduced Lippmann-Schwinger equations, N=D, or other
dispersive tools. Using the above defined on-shell poten-
tials projected to the S-wave in Eq. (4.10), the Bethe-
Salpeter integral equation indeed reduces to an algebraic
matrix equation (with respect to the channel space S),

TðsÞ ¼ −VðsÞ þ TðsÞGðsÞVðsÞ ¼ −VðsÞ − VðsÞGðsÞVðsÞ
− VðsÞGðsÞVðsÞGðsÞVðsÞ − � � �

¼ −VðsÞ 1
1 − VðsÞGðsÞ : ð4:11Þ

The infinite series on the right-hand side of the first line is
written out to show the connection to an infinite set of loop
diagrams. Clearly, this set is still incomplete compared to
all possible diagrams in CHPT to all orders. This is one of
the sources of the model dependence acquired in this step.
For further details, see the dedicated review in [9].
The meson-baryon one-loop (channel α) function is

defined as

GαðsÞ ¼
Z

d4l
ð2πÞ4

i
ðl2 −M2

α þ iϵÞððP − lÞ2 −m2
α þ iϵÞ ;

ð4:12Þ

which has an imaginary part ImGαðsÞ ¼ −pα=ð8π
ffiffiffi
s

p Þ.
Therefore, the T-matrix, indeed, automatically fulfills the
partial-wave unitarity DiscTðsÞ ¼ ipα=ð4π

ffiffiffi
s

p ÞjTðsÞj2 for
energy between s ¼ ðmα þMαÞ2 and the next higher two-
body threshold. For an introductory discussion of
the S-matrix theory for hadron spectroscopy, see the
review in [92]. This also allows one to relate the T-matrix
to the K-matrix form used in Sec. II B. In terms of the
Höhler partial wave [36,37] f0þ relevant for this study
[cf. Eq. (2.3)],

f0þðsÞ ¼
1

8π
ffiffiffi
s

p TðsÞ; f0þðsÞ ¼
1

K̃−1
E ðsÞ − ip

: ð4:13Þ

Here, all quantities are matrices with respect to the channel
space, i.e., K̃E ∈RS×S and p ≔ Diagfpαjα∈Sg. The
above nomenclature allows for straightforward relations
to the observables. For example, the scattering length is
simply given by a ¼ f0þððmþMÞ2Þ or total cross sec-
tions, as shown in Eq. (3.1).
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C. Regularization schemes

The four-dimensional meson-baryon loop integral G is
log-divergent and can be tamed in various ways using, e.g.,
a momentum cutoff or dimensional regularization. In the
latter, and most frequently utilized form [7,12,84,85,93,94],
the loop function reads (α∈S)

Gαð
ffiffiffi
s

p Þ ¼ aα þ
1

32π2

�
log

�
m2

α

μ2

�
þ log

�
M2

α

μ2

�

−
m2

α −M2
α

s
log

�
M2

α

m2
α

�
− 2

−
8pαffiffiffi
s

p arctanh

�
2
ffiffiffi
s

p
pα

ðmα þMαÞ2 − s

��
: ð4:14Þ

For the analysis of the experimental data, all masses are
taken to their physical values, while the regularization scale
dependence is moved into the subtraction constants aα
channel-by-channel for a fixed scale μ. Note that this is the
equivalent of promoting the regularization scale μ to
channel-by-channel μα [34]. Since isospin breaking effects
are far smaller than the available experimental precision, no
distinction is made between subtraction constants in the
same particle type, leaving one with six free subtraction
constants faK̄N; aπΛ; aπΣ; aηΛ; aηΣ; aKΞg, which are treated
commonly as additional free parameters of the theory. Note
that at the lattice point, isospin symmetry is exact and input
is available for I ¼ 0 only. There, only four subtraction
constants matter corresponding to the channels in Eq. (2.8).
Besides the choice of the resummation procedure and the

choice of the interaction potential, there is yet another issue
where a choice has to be made, namely, the regularization
procedure, which is also leading to systematic uncertainties
in the UCHPTapproach. In view of the recent experimental
and more importantly lattice QCD progress, the main
phenomenological drawback of this is that by losing
connection to the usual perturbative chiral expansion, the
LECs cannot be compared easily between different
approaches or to the perturbatively determined values.
More importantly, chiral extrapolations of the amplitudes
from unphysical (lattice QCD) to physical quark masses
will differ from one approach to another, which was already
observed in Ref. [95]. Specifically, in contrast to the LECs,
it is not clear how the subtraction constants depend on the
quark masses since they absorb higher-order terms.
So far, removing the model dependence from these

approaches entirely seems rather unrealistic. Thus, one
cannot escape the imperative of quantifying how these
above choices reflect themselves on observables or on
obtained predictions, such as resonance pole positions or
chiral extrapolations of the amplitudes. Therefore, in
addition to the various choices of the interaction kernel,
we employ three types of regularization schemes widely
used in the literature:

(S1) No assumption about the quark mass dependence of
the subtraction constants. For each available quark
mass setup and for fixed μ ¼ 1 GeV, we fit a new set
faαg to the available data. Through this, no extrapo-
lation is possible, but the maximal possible freedom
of the model is achieved. Note that seven LECs are
still quark mass independent.

(S2) As proposed in Refs. [84,96], one fixes the sub-
traction constants by demanding

Tð ffiffiffi
s

p ¼mÞ ¼ Vð ffiffiffi
s

p ¼mÞ⇔ Gð ffiffiffi
s

p ¼m;aðμÞÞ ¼ 0:

ð4:15Þ
This was recently employed in Ref. [95] and boils
down to

aα¼−
1

32π2

�
log

�
m2

αM2
α

μ4

�
−
m2

α−M2
α

s
log

�
M2

α

m2
α

�

−2−
8pαffiffiffi
s

p arctanh

�
2
ffiffiffi
s

p
pα

ðmαþMαÞ2−s

��				 ffiffi
s

p ¼mp;μ¼mα

:

ð4:16Þ
Technically, this scheme is advantageous by reducing
the number of free parameters, while connecting at
the same time the lattice point (unphysical quark
masses) with the physical ones.

(S3) Another scheme was proposed in Ref. [93]. Similarly
to S2, it sets a constraint on the loop function but at a
different matching point. In particular, it is imposed
that at the two-body threshold the dimensionally and
cutoff (hard cutoff Λ) regularized loop functions are
identical. After matching the different expressions of
the loop functions, this boils down to

aα ¼
1

16π2

 
1 −

2

Mα þmα

 
mα log

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

α

Λ2

r !

þMα log

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

α

Λ2

r !!
þ log

�
μ2

Λ2

�!
:

ð4:17Þ
We fix again μ ¼ 1 GeV, but fit a common channel-
independent parameter Λ for either lattice, experi-
mental, or both points simultaneously.

In summary, the regularization scheme S1 makes no
assumptions about the quark mass dependence of the
subtraction constants but defines six free parameters
(a’s) per quark mass setup, and lacks predictive power
outside of the fitted quark mass regions. Schemes S2 (no
free parameters) and S3 (one free parameter), on the other
hand, make a certain assumption about the form of the loop
integrals resulting in a higher predictive power also at other
than fitted quark mass scenarios. We note that the S1
scheme is similar/equivalent to fitting regularization scales
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[97,98] that can be matched to those used in dimensional
regularization, see, e.g., Eq. (2.13) in [99].
We will confront each scheme with the lattice and

experimental data below. The resulting subtraction con-
stants of the best fits to combined lattice and experimental
data are collected as a function of the hadron masses
extrapolated linearly (m ¼ xmphys þ ð1 − xÞmlatt for any
generic hadron mass m and x∈ ½0; 1�) between the physical
and lattice points in Fig. 4. We observe that S3 and S2 have
a similar order of magnitude of the determined constants,
while most of the fitted constants (scheme S1) are, indeed,
substantially larger. Among different variations of the
scheme S1 fits (different starting points of the fits), we
observe some clustering in a few cases, but mostly the
obtained values are very uncertain. This indicates that either
S1 has too many/redundant parameters or the data are not
allowing to fix them uniquely due to possible inconsisten-
cies. For further details, see Sec. V C.

D. Synthesis and evaluation of the UCHPT framework

The considered approach is based on CHPT in such a
way that it matches CHPT amplitudes at the leading and
next-to-leading orders, when projecting to the S-wave. It
captures part of the nonperturbative dynamics of the full
CHPT to all orders but depends on the way the truncation of
higher orders is made. This results in a certain model
dependence, which is quantified in this work by varying the
following:

(i) Truncation order of the interaction kernel:
M1½Fπ; FK; Fη�, M2½Fπ; FK; Fη; D; F�, and
M3½Fπ; FK; Fη; b0; bd; bf; d1; d2; d3; d4�. The free
parameters are given in the square brackets, and these
are the quark-mass-independent LECs. Note that the
leading-order LECs are kept fixed as D ¼ 0.8,
F ¼ 0.46, and Fphys

π;K;η ¼ f92.4; 110.0; 118.8g MeV
and Flatt

π;K;η ¼ f93.2; 108.2; 121.1g MeV.
(ii) Regularization scheme: S1½a1; a2; a3; a4; a5; a6�,

S2½−�, and S3½Λ�. The free parameters are listed
in the square brackets. Note that Λ is quark mass

independent while the a’s need to be fitted per quark
mass setup. At the unphysical point we have only
four ½a1; a3; a4; a6� because only the isoscalar chan-
nel is available.

(iii) Data: We will study if new lattice results [20,21]
(a) allow to fix the parameters of the models by
themselves, making reliable predictions for the
physical point, and (b) are consistent with exper-
imental data. Here, various combinations of lattice
QCD and/or experimental results will be used to fit
the free parameters described before.

Finally, we wish to discuss another yet mostly ignored
limitation of the this and all current UCHPT approaches
with respect to the intermediate three-body states.
Specifically, in meson-baryon systems, processes such as
πΣ → Λ are allowed. Thus, an initial meson-baryon system
can couple to the meson-meson-baryon state in the inter-
mediate step, e.g., πΣ → ππΛ → πΣ, etc. Technically, this
leads to new singularity structures [9,92] violating the
simple unitarity condition spelled out before in Eq. (4.12).
There are several types of new singularities. Most

prominently, there is the right-hand cut, occurring when
the total energy is sufficient or higher than the sum of
the masses of all three particles in question, e.g.,
s ≥ ð2Mπ þmΛÞ2. The positions of the branch points of
these cuts are depicted as red dashed lines in the right
panel of Fig. 5, including physical and unphysical (the one
employed by BaSc collaboration [20,21], Mπ ≈ 200 MeV)
quark mass scenarios. One observes clearly that the ππΛ
cut indeed is far above the estimated pole positions of
Λð1405Þ when unphysical quark masses are employed.
However, extrapolating down to the physical point, this cut
starts at lower energies and ultimately is just between the
estimated pole positions of the Λð1380Þ and the Λð1405Þ.
Thus, one cannot avoid the conclusion that the position of
the latter state determined in the literature must carry a
systematic, yet unknown uncertainty related to the
neglected three-body states. Besides such phenomenologi-
cal implications, this will also play a crucial role in future
physical point lattice QCD simulations. The development

–0.005 0.000 0.005 0.010

physical point

lattice point

Scheme

FIG. 4. Comparison of subtraction constants obtained from global fits using different regularization schemes (S1, S2, and S3) at
different quark masses. Scheme S1 only provides values at the given quark masses obtained from global fits F17 (blue). S2 and S3 type
subtraction constants are per construction pion mass dependent.
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of pertinent tools, such as three-body scattering amplitudes
and three-body quantization conditions, has progressed
strongly over the last few years [100] but will need another
update in the future. Some steps in this direction were made
recently for the similar case of the ππN channel in relation
to the Roper resonance, see Ref. [101] and references
therein.
The exchange of a baryon in the u-channel also leads to

the occurrence of the left-hand cut or, more specifically, the
baryon short left-hand cut (sometimes called the short
baryon cut). For an in-depth discussion of such cuts, see
Ref. [102]. Recently, studies of this type of singularities
also became quite popular in the context of heavy meson
scattering, such as DD� or BB�. The reason is that the left-

hand cut lies there (in particular) for the unphysical pion
mass scenarios on the lattice close to the two-body thresh-
old, see, e.g., Refs. [103–108]. Thus, not accounting for the
left-hand cut leads to problems most apparent when dealing
with the finite-volume lattice QCD spectrum, see, e.g.,
[109–111]. For S ¼ −1, the short left-hand cut occurs
through, e.g., Λ or Σ exchange in the πΣ → πΣ transition,
referred to as πΣjΛ and πΣjΣ. Another example relevant for
the isoscalar channel is ηΛjΛ. Indeed, such transitions are
included in the UCHPT models (M2 and M3) via the chiral
potential VBORNu from Eq. (4.10). For a general transition
ϕ1B1 → ϕ2B2 including u-channel exchange of a baryon
Bx, the limits of the singular region are given by

s ¼ 1

2m2
x



M2

1M
2
2 −M2

2m
2
2 þM2

1m
2
x þM2

2m
2
x þm2

2m
2
x −m4

x þm2
1ð−M2

1 þm2
2 þm2

xÞ; ð4:18Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm4

1 þ ðM2
2 −m2

xÞ2 − 2m2
1ðM2

2 þm2
xÞÞðM4

1 þ ðm2
2 −m2

xÞ2 − 2M2
1ðm2

2 þm2
xÞÞ

q �
: ð4:19Þ

For I ¼ 0 transitions, this is depicted in the left panel of
Fig. 5 by the shaded regions. There, one clearly sees that
the chiral potential (the real part is plotted), indeed, has
singularities in the shaded region. On the right, the same
critical regions are depicted as a function of the quark mass
extrapolated from the physical to the lattice point. We note
that in the πΣ channel, this occurs at rather small energies,
well below the region of interest for the Λð1380Þ and
Λð1405Þ. However, Λ exchange in the ηΛ → ηΛ transition

is only slightly below the Λð1380Þ bound state at the lattice
point. Ultimately, this leads to a complex-valued K-matrix,
Eq. (4.13), invalidating a simple application of Lüscher’s
quantization condition. Practically, in the current state-of-
the-art of the coupled-channel UCHPT models, this is
avoided by replacing the potential slightly above the critical
region by a constant. The modified and used one-baryon
exchange potential is depicted by the long-dashed line in
the left panel of Fig. 5. So far, the coverage and precision of

FIG. 5. Three-body-related singularities for the physical and unphysical quark mass setups. Left: singularities of the u-channel Born
diagram in Eq. (4.10) projected to I ¼ 0 for the initial/final states, as specified in the legend for physical quark masses. Long-dashed
lines represent the potential implemented in the UCHPTamplitude mitigating the appearance of u-channel left-hand cuts. Right: relevant
short left-hand cut associated with the u-channel exchange (green, blue areas), cf. left figure. Black solid and red dashed lines denote the
position of the right-hand cut branching points with respect to two- and three-body states, respectively. The energy region with no
allowed three-body on-shell states is the remaining white area. Blue dots with error bars denote the averaged result from the global
analysis discussed in Sec. VI.
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experimental as well as lattice results is not sensible to these
effects. However, in the long run, we expect that an
extension of modern three-body formalisms like FVU
[71] or RFT [70] to such cases will be a better choice.
These have been shown recently of being capable of
dealing with strangeness channels [112–114], dealing with
left-hand cuts [110], and extracting resonance pole posi-
tions for three-body states [115–119] from experimental
and lattice QCD spectra.

V. ANALYSIS

A. Pilot study: Finite-volume spectrum from
UCHPT and experiment

Before fitting the freeparameters of themodels,wewish to
check if the finite-volume spectrum obtained from available
models already matches the lattice QCD spectrum [20,21].
Specifically, we consider contemporary models of next-to-
leading chiral order, including diagrammatic or potential
unitarization formalisms [12,35,50]. These models, referred
to as UCHPTNLO, represent a fair spread (includingM3 type
models) of assumptions made in the derivation, sampling
qualitatively possible model dependence, as discussed in
Sec. IV. We also include M1 (UCHPTWT) and M2
(UCHPTLO) type models available from Ref. [12]. All

considered models rely on the scheme S1 with subtraction
constants aα assumed to be quark mass independent. All
considered models describe at least the experimental data
compiled in Sec. III with similar quality (χ2dof ≈ 1).
The finite-volume spectrum is predicted through the

Lüscher formalism [24,25] implemented as discussed in
Sec. II B. The central values of the predicted energy
eigenvalues in relevant irreps are depicted in Fig. 6 together
with the lattice QCD results. We observe that (ignoring
correlations at the moment), for the most part, all NLO but
also WT and LO models agree with the provided spectrum.
There are, however, stark exceptions to this observation,
like the second and third levels of G1u where some NLO
models predict a different finite-volume spectrum. Further
examples are the third level of the Gð3Þ irrep or the fourth
lowest level of the Gð1Þ irrep, which do not agree with
either of the model predictions. It is noteworthy that the
spread of the predictions for the NLO models is indeed
expected since these models provide a better description of
the experimental data for the price of larger numbers of free
parameters. Their predictions vary stronger than those of
the WT or LO models.
Overall, we cannot escape the conclusion that new

precise lattice results will provide an important constraint
on the models.

FIG. 6. Fit-free prediction of the finite-volume spectrum relying on the contemporary WT (M1), LO (M2), and NLO type UCHPT
models [12,35,50]. Pink vertical bands show the lattice QCD results [20,21] for relevant irreps: G1u, G1ð1Þ, Gð2Þ, and Gð3Þ.
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B. Fit details: Loss function and degrees of freedom

Stemming from quite different time periods and being
results of vastly different experimental techniques, the
quality of the experimental data summarized in Sec. III
is very different. More so if one considers combined
analysis of lattice QCD finite-volume spectra (Sec. II) as
adequate input for the UCHPT fits. Thus, a simple χ2

statistic as a measure of fit quality is not sufficient and
modifications are in order.
As an example, consider one of the most modern exper-

imental data inputs, the energy shift and width of the kaonic
hydrogen, in comparison with the oldest data available, the
total cross sections for theK−p → MB. The former consists
of only two quantities measured at 10–20% accuracy at the
K−p threshold. The latter data include 252 data points at a
few 10’s% statistical uncertainty depending on the channel
and the kinematics, which also carries considerable system-
atic uncertainties due to bin sizes and possible inconsisten-
cies of the data. Using traditional χ2 definition aggregating
both sources together would, thus, simply make the modern

SIDDHARTA data entirely insignificant despite its superior
quality. Lattice finite-volume spectra consist also of only 14
points and, thus, would appear as an insignificant contribu-
tion to the total χ2. In such cases of asymmetric data
distribution among different observables, a weighted χ2

definition is more customary,

χ2dof ¼
P

aNa

AððPaNaÞ − NparÞ
χ2wt

with χ2wt ¼
XA
a¼1

χ2a
Na

with χ2a ¼
XNa

n¼1;m¼1

ðfanðℵ!Þ − f̂anÞ½Ĉ−1
a �nmðfamðℵ

!Þ − f̂amÞ:

ð5:1Þ

Here, we denote with a=A the index/number of observables,

and ℵ
!

is the parameter vector of the model. Its sizeNpar can
be read off from Fig. 7. n=Na is the index/number of data in

FIG. 7. Left: summary of the fit results minimizing χ2dof while using various model types, regularization schemes, and data subsets.
The last two columns show AIC and BIC values from Eq. (5.2), where results with large χ2dof are grayed out. Right: minimized χ2 from
fits in the table left-hand side, separated by the data type normalized by the number of data in that observable. Here, “LQCD,” “AMAD,”
and “Thr.” refer to lattice, AMADEUS, and threshold data discussed in Secs. II and III.
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the data type a, fa=f̂a is the model/datum result of the
corresponding observable type a, and Ĉ is the covariance
matrix of the data. Note that in most cases, except lattice
QCD, the latter is simplyprovidedbyadiagonalmatrixof the
form ½Ĉa�nm ¼ δnmðσ̂anÞ2,where σ̂an is theerror for eachdatum
f̂an. The total number of data is denoted by Ndata ¼

P
a Na.

The above χ2dof is minimized in the fit with respect to k
parameters. However, given the various choices of inter-
action kernel (M1, M2, and M3) and regularization scheme
(S1, S2, and S3), this analysis is both a parameter
estimation and model comparison problem. Comparing
models with different parameters should involve penalizing
models with more parameters.
A full model comparison would involve the estimation of

Bayes factors via Markov chain Monte Carlo which, given
the number of parameters of interest, would be too
computationally expensive with the current code. A crude
model comparison may be effected using an information
criterion that attempts to balance goodness of fit against
model complexity (see, for example, [120] for an example
in an adjacent research area). Such criteria make use of the
(log) maximum likelihood, with some adjustment for the
number of parameters and size of the dataset. We use the
Akaike information criterion (AIC) [121] and the Bayes
information criterion [122] (BIC), but we note that care
must be taken in interpreting the numbers calculated for
AIC=BIC too seriously, and we use them only as a guide
for revealing gross features.
For a given maximum log-likelihood logLmax, the

information criteria are defined as

AIC ¼ −2 logLmax þ 2Npar

and BIC ¼ Npar logNdata − 2 logLmax: ð5:2Þ

Comparing AIC=BIC values for different models is only
valid for fits to the same data points, but if this condition is
true then the differences in AIC or BIC values between
models can be related to the relative probability of a model
being true. In our case, we use the χ2dof , as defined in
Eq. (5.1) as −2 logLmax, and values are displayed in Fig. 7.
There, results for fits with too large χ2dof are grayed out and,
furthermore, sensible comparisons between different mod-
els can only be made for fits with an equal number of data.

C. Fit discussion

subsec:fit-discussion Following the description of the
χ2dof analysis, this section provides additional technical
details of the fitting procedures used in this work. In the fits,
subtraction constants and LECs will be constrained using
the two-hadron interacting spectrum and experimental
quantities. In addition, the parameters, related to the
explicit chiral symmetry breaking b0; bD, and bF, can
be constrained using the lattice QCD estimation of single
baryon masses provided by BaSc collaboration [20].

The NLO CHPT formulas for the baryon masses read as
follows [87,123]:

mN ¼m0 − 2ðb0þ 2bFÞM2
π − 4ðb0þbD −bFÞM2

K; ð5:3Þ

mΛ ¼ m0 −
2

3
ð3b0 − 2bDÞM2

π −
4

3
ð3b0 þ 4bD − bFÞM2

K;

ð5:4Þ

mΣ ¼ m0 − 2ðb0 þ 2bDÞM2
π − 4b0M2

K; ð5:5Þ

mΞ ¼m0− 2ðb0− 2bFÞM2
π −4ðb0þbDþbFÞM2

K; ð5:6Þ

where the low-energy constants b0; bD, and bF have
been discussed before, and m0 is the baryon octet
mass in the chiral limit. In practice we avoid fitting m0

directly with explicitly constructing the mass differences
between the lattice and the physical points. In summary, we
have 272 [258ðexperimentalÞ þ 14ðlattice finite-volume
multihadronÞ þ 4ðlattice finite-volume single baryonÞ] data
points and construct a correlated χ2dof , as described
in Sec. V B.
In the fits, we use Nelder-Mead minimization and check

for absolute convergence by performing the fits using
different initial conditions. We are fitting models (M1,
etc.) with increasing computational complexity using
regularization S1, S2, and S3, including lattice and/or
experimental data. In the end, the best fits are selected
using each regularization S1, S2, and S3 using all of the
available data. The pole positions are computed for each fit
individually and can be found in the Appendix.
The same model parameters are constrained through the

lattice and experimental data, although in the former case
via the complex partial-wave amplitude f0þ and in the
latter case via the real jf0þj2. Regularization S1 provides
maximal freedom, enabling a completely independent set
of subtraction constants at the physical and lattice points.
However, in the case of the lattice data the projection to the
isospin zero channel eliminates the dependence through
subtraction constants, aπΛ; aηΣ. In addition, during our
numerical investigation we found out that the fit to the
lattice data is insensitive to aKΞ.
To check the robustness of our fits, we select M3S1PL

(F17) and test its behavior under different random initial
conditions. In this case, the minimization is performed in a
16-dimensional parameter space, and we examine whether
and how the global minimum is consistently reached. The
results are shown in Fig. 8. In the left panel, we show the
convergence of χ2dof as a function of the iteration number. In
all cases, χ2dof converges to the same minimum value,
indicating consistent fit quality across different initializa-
tions. In the middle panel, we present the convergence of
the parameter b0, which shows only a small spread in its
final values. The right panel displays the convergence of the
subtraction constants aηΣ at the physical point, where two
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outlier trajectories are observed. We note that the spread of
the values for aηΣ is the largest among all fitting parameters.
However, as seen in the left panel from the χ2dof values, the
data are described well by all of the solutions, including the
outlier ones. For the final fit selection, we choose the one
where all subtraction constants are smaller than 0.05 in
absolute value, guided by naturalness arguments, although

all solutions lead approximately to the same two-pole
structure.
In the left panel of Fig. 9 we show the fitted spectrum for

all different available models and regularization schemes.
We would like to point out that leading chiral order models
M1 and M2 give very similar results, with the regulariza-
tion S1 providing the best χ2dof estimate. Note that in this

FIG. 8. Convergence check of Fit 17 (M3S1PL) using nine different sets of initial parameters. Left: evolution of χ2dof as a function of
iteration number. Middle: convergence behavior of the parameter b0. Right: convergence behavior of the subtraction constant aηΣ at the
physical point.

FIG. 9. Left: model (M1, M2, and M3) predictions for the lattice spectrum using different regularizations (S1, S2, and S3). Fits were
done using only the lattice data. More detailed results including cross-correlations are provided for each fit in the Appendix. Individual
χ2 values can be found in Fig. 7. Right: distribution of low-energy constants for the best combined fits for three different schemes.
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case, S3 has only one parameter, whereas the S2 prediction
is parameter-free. In the right part of Fig. 9 we show the
bootstrap samples’ distribution of the LECs using the three
different regularizations, fitting all the available data.
Dynamical LECs (d1, d2, d3) do agree in S1 and S2
schemes, but show large statistical and systematic uncer-
tainties in d4. Our results for the symmetry breaking
parameters ðb0; bD; bFÞ are compatible with those obtained
in Ref. [124] using the corresponding CLS ensembles, and
also quite close to the values obtained in perturbative
calculations [77].

VI. RESULTS AND DISCUSSION

After having determined the best parameters of each
model with respect to the lattice and experimental
input, we turn to the main goal of the paper, extracting
transition amplitudes and their analytic structures.
In the relevant energy region, the former are holomor-
phic functions, except the meson-baryon right-hand cuts
taken care of through the unitarization procedure
(Sec. IV B) and possible poles on the unphysical

Riemann sheets associated with excited hadrons, see,
e.g., [5,6,92,125].
In dealing with the 10-channel problem, there are 210

Riemann sheets associated with the right-hand meson-
baryon cuts. There are various ways to label those. Most
frequently [11,126], one denotes a Riemann sheet (full
complex energy plane) by a sequence ½�…�� referring to
sgnðImðpcmðsÞÞÞ in each two-body channel. For example,
any experimental or lattice input is obtained on the real
energy axis of the physical sheet ½þ � � � þ�. An unphysical
sheet connected to the physical one between mass-ordered
threshold n − 1 and n is denoted by ½−

1
…−

n
þ � � � þ�.

Riemann sheets with mixed order of � are sometimes
referred to as hidden sheets, as they are connected to the
physical real energy axis through a sequence of other
sheets, see Fig. 3 in Ref. [5].
The pole positions of the Λð1405Þ and Λð1380Þ have

been determined directly from lattice input using generic
(EFT independent) tools [20,21], and from experimental
results through UCHPT. While more can be said about the
latter (see Fig. 7 from Ref. [9]), we use here as a reference
the Particle data Group (PDG) and BaSc values (in MeV),

Λð1405Þ Λð1380Þ

physical point

1417.7þ6.1−7.5 − i26.1þ6.23−8.2
1429þ8−7 − i12þ2−3
1434þ2−2 − i10þ2−1
1421þ3−2 − i19þ8−5

1325þ15−15 − i90þ12−18
1330þ4−5 − i56þ17−11
1388þ9−9 − i114þ24−25
1381þ18−6 − i81þ19−8

lattice point 1455þ21−21 − i12þ6−6 1392þ18−18

ð6:1Þ

All these poles are obtained on the Riemann sheet ½þ þ
− − − −þþþþ� with respect to the two-body channels
fK−p; K̄0n; π0Λ; π0Σ0; πþΣ−; π−Σþ; ηΛ; ηΣ0; KþΞ−;
K0Ξ0g, as in Eq. (2.7).

A. From the lattice to the physical point

First, let us consider the case of lattice QCD results being
the only input to the UCHPT approach. Indeed, we have
seen in Sec. VA that the former is indeed a nontrivial input.
The M1 models F19, F31, and F18 in Fig. 7 provide an

approximate description of the lattice results, including
only few free fit parameters, as described in Sec. V C. The
S2 scheme provides such description quality even without
any fits. Similarly, the M2 type (F20, F32, and F25) provides
similar or slightly better fits to the data with no additional
parameters. This shows that the exchange diagrams (Born
terms) do matter in the description of the finite-volume
spectrum. Regarding the isoscalar pole structure, at the
lattice point we observe (see the plots, Figs. 15–41, in

Appendix A) that all models provide the Λð1405Þ narrow
pole and the Λð1380Þ broad pole. In a few but not all cases,
the latter becomes a virtual bound state, as also obtained by
the BaSc (K-matrix) analysis.3 More importantly, the S1
type of models predict a resonance Λð1380Þ with non-
negligible width, having better χ2dof than the other fits.
Extrapolating to the physical point, while neglecting the
quark mass dependence of the subtraction constants in
the S1, as in Sec. VA, we observe again a clear two-pole
structure with the spread of poles due to variations of the
model types reflecting the spread of the reference values.
Regarding the isovector states, all models except M1S1 do
predict a state whose position, however, varies strongly
with the model type.
Models of the M3 type (F01, F15, and F10 in Fig. 7) have

larger flexibility and do indeed provide an excellent

3An interesting data-driven nonparametric approach based on
Nevanlinna interpolation was proposed recently in Ref. [127].
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description of the lattice input (χ2dof ≈ 1), see Fig. 7. On the
most relevant sheet ½þ þ − − − −þþþþ�, we do again
observe two poles both for the lattice point and after an
extrapolation alsoat thephysical point, seeFig. 10.However,
allpolepositionsvarystronglybetweendifferentmodels.For
example,F01 doesagreewith the referencevalues inEq. (6.1)
on the Λð1380Þ pole position, but not on the corresponding
Λð1405Þvalue. Similar observationshold for theF10 andF15

fits. Interestingly, all chiral extrapolations to the physical
point provide a similar prediction for the Λð1380Þ, which
also qualitatively agrees with the reference values in
Eq. (6.1). The position of the Λð1405Þ pole is on the other
side, not well predicted at the physical point.
We conclude that a combination of currently available

lattice QCD finite-volume spectra combined with the
modern UCHPT approaches does indeed provide proof
for the existence of two states, Λð1405Þ and Λð1380Þ.
However, it also seems that the pole positions are not yet
fixed when taking into account systematic uncertainties of
the UCHPTapproaches. Information criteria from Sec. V B
seem to prefer the S2 and S3 types of fits due to the strong
weight on the number of parameters.

B. From the physical to the lattice point

Obviously, it is also possible to inverse the procedure of
the last section, using only experimental data as input then
predicting the pertinent lattice point results. One motivation
behind this is to test the predictive power of the UCHPT
approaches outside of the fitted quark mass domain.
TheM1 andM2 types of models do not allow an adequate

description of the experimental data, as shown in Fig. 7. A
look at the separated contributions to the χ2 value with
respect to different observable types reveals that this is
mostlydue to the thresholdvalues including the so-important
SIDDHARTA results [62] and very recent AMADEUS data
[52,68]. The corresponding extracted isoscalar and isovector
pole positions can be found inAppendixB (seeFigs. 42–66).
Clearly, since themodels are at oddswith the data, the results
scatter erratically and should not be overinterpreted.
The most flexible model type M3 (F30, F13, and F11)

provides a reasonable description of all experimental data
(χ2dof ≈ 1.5), as shown in Fig. 7. Again, S2 and S3 are
favored due to the AIC and BIC. At the physical point, we
observe again the two-pole structure of the isoscalar states

FIG. 10. Isoscalar scattering amplitude next to the physical (light pink surface for Im
ffiffiffi
s

p
> 0 in the 3D plot) and unphysical Riemann

sheets (color coded) of the solutions (M3Sx type) fitted only to the lattice QCD results. Extrapolation to the physical point is shown in
the left column. More details of the fit and predictions thereof can be found in Appendix A.
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with well-fixed Λð1405Þ and less determined Λð1380Þ
poles, see Fig. 11. At the lattice point, all three solutions
(F30, F13, and F11) provide a prediction of the pole
structure, which indeed overlaps with the BaSc determi-
nation [20] within ≈2σ. Comparing this to the pertinent
observation of the previous Sec. VI A, it is reasonable to
conclude that experimental data provide more strict con-
straints on the UCHPT approaches than the recent lattice
QCD results. In the isovector case, poles are predicted in
each model type for the lattice point. Their positions vary
strongly with the chosen model type. At the physical point,
even less can be concluded with certainty. Indeed, this
confirms the results of the previous metastudy [11] of
various unitary models, leading to vastly different predic-
tions in the isovector case. Whether this can be mitigated
through combined use of the lattice and experimental input
is discussed in the next section.

C. Combined analysis at the lattice and physical point

We have previously seen (Secs. VI A and VI B) that both
lattice and experimental input can be successfully fit

through the UCHPT model, providing in some cases also
sensible predictions outside of the fitted range. Still, a more
detailed examination also shows that uncertainties are
sizable. Thus, a combined fit to lattice and experimental
input is performed in this work for the first time.
First, as shown in Sec. VI C, Weinberg-Tomozawa and

leading chiral order UCHPT model (M1 and M2) types are
effectively ruled out by not being able to describe the
(near)-threshold SIDDHARTA and AMADEUS data. For
completeness the results of the combined fit can be found in
Fig. 7. Note that only the S3 type needs to be refit to the
combined input, while S1 and S2 types decouple χ2

contributions from lattice and experiment data when no
NLO parameters (b’s) are used.
The results of the M3 type models for all three

regularization schemes, S1, S2, and S3, are provided in
the last three rows (see F17, F16, and F12) of Fig. 7. Overall,
a good χ2dof is obtained with a relatively flat distribution of
the individual contributions from different observables,
see the right panel of Fig. 7. The biggest contributions
come from cross section data, which again points to the
systematic uncertainties within experimental data discussed

FIG. 11. Isoscalar scattering amplitude next to the physical (light pink surface for Im
ffiffiffi
s

p
> 0 in the 3D plot) and unphysical Riemann

sheets (color coded) of the solutions (M3Sx type) fitted only to the experimental input. Extrapolation to the lattice point is shown in the
right column. More details of the fit and predictions thereof can be found in Appendix B.
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in Sec. III. Further details of the fit are provided in
Appendix C (see Figs. 67–81).
Figure 12 shows the isoscalar pole positions on the

relevant unphysical Riemann sheets for the lattice and
physical points. All, except the lower pole [Λð1380Þ] of the
M3S1 type at the lattice point, agree with the reference
values (magenta in the figure). Notable is, however, that
because of the unknown quark mass dependence, the
subtraction constants a in the S1 type are fitted separately
for lattice and physical points. One consequence of this is
that the fit is too volatile, depending strongly on the starting
values, as discussed in Sec. V C. Secondly, this fit is also
disfavored in comparison to S2 and S3 by both information
criteria despite smaller χ2dof.
To further examine the uncertainty associated with

the pole positions, we resample the obtained fits by
varying the input according to the provided (statistical)
uncertainties. In the lattice QCD case, this is directly
accomplished using provided bootstrap samples, whereas

in the experimental case parametric bootstrap samples are
generated by drawing synthetic datasets from uncorre-
lated, Gaussian-distributed data points, using the reported
central values as the means and the quoted uncertainties
as the standard deviations. The final result is provided in
the summary plot in Fig. 13, where systematic (model
types) and statistical errors (resampling) are included and
compared to the reference values from the literature. Note
that the latter were obtained through fits to either exper-
imental or lattice input. The physical point result agrees
nicely with the previous phenomenological fits also
reflecting the large uncertainty of the Λð1380Þ pole
positions. The Λð1405Þ is narrowed down to a very small
region. At the lattice point, the position of the latter state
supports the CHPT-independent determination of the
lattice collaboration (BaSc [20,21]) but tends to be
slightly larger in real and imaginary parts. In fits S2
(F16) and S3 (F12), the Λð1380Þ is found for all bootstrap
samples on the real axis just below the πΣ threshold. Note

FIG. 12. Isoscalar scattering amplitude next to the physical (light pink surface for Im
ffiffiffi
s

p
> 0 in the 3D plot) and unphysical Riemann

sheets (color coded) of the M3Sx type approaches fitted to the lattice and experimental input. More details of the fit and predictions
thereof can be found in Appendix C.

FERENC PITTLER et al. PHYS. REV. D 112, 074037 (2025)

074037-20



that thresholds at the lattice point are also subject to
resampling, which is very important to keep track of.
Individual thresholds are represented by the color-coded
vertical lines. We also observe a second virtual bound-
state pole (cf.

ffiffiffi
s

p
≈ 1.33 for F16), which is required due to

analyticity. For a related discussion in the context of this
and other excited hadrons, see, e.g., Refs. [95,128–133].
Numerical values are provided in Table I. A critical
observation is, however, that there is a non-negligible
set of solutions (S1 type, F17) predicting a Λð1380Þ
resonance pole away from the real axis. We have checked
explicitly that the poles are smoothly varying when
moving along a linearized trajectory between the lattice
and physical points. While disfavored by the AIC or BIC,
the existence of such solutions draws at least a shadow
of a doubt that the pole positions of the Λð1380Þ state are
resolved through the currently available (lattice and
experimental) input. Of course the existence of both poles
is undisputed by this and seems to be now solidified by the
combination of UCHPT, lattice, and experimental inputs.
As a final observation we also provide predictions of

the pole positions for the isovector case, including

systematic and statistical uncertainties. The result is
depicted in Fig. 14, referring again to the Riemann sheet
½þ þ − − − −þþþþ� connected to the physical real
axis between πΣ and K̄N thresholds. At the physical
point, we observe for all fit types a broad state with a
width of around Γ ≈ 200–400 MeV and mass above
1300 MeV. Solution F17 provides a second state with a
lower width, which is possibly a sign of an overfit.
Other states far above the K̄N threshold also exist but
their influence on the observables at real energies is
expected to be negligible. At the lattice point the poles
mostly do not move much, except for the narrow F17

pole. Presumably, this is simply due to the large widths
of the found states, which, therefore, have little effect
on the real energy axis, where the input either from the
experiment or lattice is provided. Numerical values are
provided in Table I. We conclude that the existence of
the isovector, negative-strangeness excited baryon state
is very likely, but because of its large width its position
is currently very hard to resolve. Turning this argument
around, this means that lattice results in this sector are
highly desired.

FIG. 13. Pole positions for I ¼ 0 using best global fit models M3S1 (fit F17), M3S2 (fit F16), and M3S3 (fit F12). Pole positions are
obtained on the ½þ þ − − − −þþþþ� Riemann sheet for physical and unphysical (cf. Mπ ≈ 200 MeV, etc.) quark masses. Circled
pole positions are central fits compared to resampled fits, as described in the main text. Vertical lines show positions of the two-body
thresholds (resampled for the lattice point). Gray dots show the reference values from fits to either lattice or experimental input
[12,13,20,50].
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FIG. 14. Pole positions for I ¼ 1 using best global fit models M3S1 (fit F17), M3S2 (fit F16), and M3S3 (fit F12). Pole positions are
obtained on the ½þ þ − − − −þþþþ� Riemann sheet for physical and unphysical (cf. Mπ ≈ 200 MeV, etc.) quark masses. Circled
pole positions are central fits compared to resampled fits, as described in the main text. Vertical lines show the positions of the two-body
thresholds (resampled for the lattice point).
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APPENDIX A: DETAILED FIT RESULTS: FITS TO THE LATTICE INPUT

1. M1S1L (F19)

FIG. 17. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50].

FIG. 16. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy level on
the total fit quality.

FIG. 15. Subtraction constants at
the lattice point for M1S1L (F19).
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2. M1S2L (F31)

FIG. 18. Total χ2dof for the parameter-
free M1S2L (F31).

FIG. 19. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy
level on the total fit quality.

FIG. 20. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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FIG. 21. Total χ2dof and theΛ param-
eter for M1S3L (F18).

FIG. 22. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy
level on the total fit quality.

FIG. 23. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.

3. M1S3L (F18)

UNIVERSAL PARAMETERS OF THE Λð1380Þ, THE … PHYS. REV. D 112, 074037 (2025)

074037-25



4. M2S1L (F20)

FIG. 24. Subtraction constants at the
lattice point for the M2S1L (F20).

FIG. 25. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy
level on the total fit quality.

FIG. 26. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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5. M2S2L (F32)

FIG. 27. Total χ2dof for the parameter-
free M2S2L (F32).

FIG. 28. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy
level on the total fit quality.

FIG. 29. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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6. M2S3L (F25)

FIG. 30. Total χ2dof and the Λ param-
eter for M2S3L (F18).

FIG. 31. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy
level on the total fit quality.

FIG. 32. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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7. M3S1L (F01)

FIG. 33. The total χ2dof , subtrac-
tion constants at the lattice point,
and LECs for M3S1L (F01). FIG. 34. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy

level on the total fit quality.

FIG. 35. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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8. M3S2L (F15)

FIG. 36. The total χ2dof and
LECs for M3S2L (F15).

FIG. 37. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy
level on the total fit quality.

FIG. 38. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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9. M3S3L (F10)

FIG. 39. The total χ2dof , Λ
parameter, and LECs for
M3S3L (F10).

FIG. 40. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy
level on the total fit quality.

FIG. 41. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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APPENDIX B: DETAILED FIT RESULTS: FITS TO THE EXPERIMENTAL DATA

1. M1S1P (F21)

FIG. 42. The total χ2dof , as de-
fined in Eq. (5.1), and subtraction
constants for M1S1P (F21).

FIG. 43. Heat map of correlated χ2ij=14, highlighting the relative impact of each energy
level on the total fit quality.

FIG. 44. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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2. M1S2P (F28)

FIG. 45. The total χ2dof , as defined in Eq. (5.1), for the parameter-free fit M1S2P (F28).

FIG. 46. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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3. M1S3P (F27)

FIG. 47. The total χ2dof , as de-
fined in Eq. (5.1), and Λ param-
eter for M1S3P (F27).

FIG. 48. Heat map of correlated χ2ij=14, highlighting the relative impact of each energy
level on the total fit quality.

FIG. 49. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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4. M2S1P (F22)

FIG. 50. The total χ2dof , as de-
fined in Eq. (5.1), and subtraction
constants for M2S1P (F22).

FIG. 51. Heat map of correlated χ2ij=14, highlighting the relative impact of each energy
level on the total fit quality.

FIG. 52. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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5. M2S2P (F29)

FIG. 53. The total χ2dof , as defined in Eq. (5.1), for the parameter-free fit, M2S2P (F29).

FIG. 54. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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6. M2S3P (F26)

FIG. 55. The total χ2dof , as de-
fined in Eq. (5.1), and the Λ
parameter for M2S3P (F26).

FIG. 56. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy level
on the total fit quality.

FIG. 57. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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7. M3S1P (F30)

FIG. 58. The total χ2dof , as
defined in Eq. (5.1), subtrac-
tion constants, and LECs for
M3S1P (F30). FIG. 59. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy level

on the total fit quality.

FIG. 60. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.

FERENC PITTLER et al. PHYS. REV. D 112, 074037 (2025)

074037-38



8. M3S2P (F13)

FIG. 61. The total χ2dof , as de-
fined in Eq. (5.1), and LECs for
Fit 13 (M3S2P).

FIG. 62. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy level
on the total fit quality.

FIG. 63. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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9. M3S3P (F11)

FIG. 64. The total χ2dof , as de-
fined in Eq. (5.1), Λ parameter,
and LECs for M3S3P (F11).

FIG. 65. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy level
on the total fit quality.

FIG. 66. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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APPENDIX C: DETAILED FIT RESULTS: COMBINED FITS TO THE EXPERIMENTAL
DATA AND LATTICE INPUT

1. M1S3PL (F24)

FIG. 67. The total χ2dof , as de-
fined in Eq. (5.1), and the Λ
parameter for M1S3PL (F24).

FIG. 68. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy level
on the total fit quality.

FIG. 69. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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2. M2S3PL (F23)

FIG. 70. The total χ2dof , as de-
fined in Eq. (5.1), and the Λ
parameter for M2S3PL (F23).

FIG. 71. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy level
on the total fit quality.

FIG. 72. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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3. M3S1PL (F17)

FIG. 73. The total χ2dof , as defined in Eq. (5.1), subtraction constants for both the lattice and the physical points, and LECs for M3S1PL
(F17).

FIG. 74. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy level on the total fit quality.
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FIG. 75. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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4. M3S2PL (F16)

FIG. 76. The total χ2dof , as de-
fined in Eq. (5.1), and LECs for
M3S2PL (F16).

FIG. 77. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy level
on the total fit quality.

FIG. 78. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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5. M3S3PL (F12)

FIG. 79. The total χ2dof , as de-
fined in Eq. (5.1), Λ parameter,
and LECs for M3S3PL (F12).

FIG. 80. Heat map of correlated χ2dof;ij, highlighting the relative impact of each energy level
on the total fit quality.

FIG. 81. Isoscalar and isovector projected absolute value of the πΣ → πΣ scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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tetraquark channel in Dð�ÞDð�Þ
s scattering, Phys. Rev. D

112, 054513 (2025).
[104] Ivan Vujmilovic, Sara Collins, Luka Leskovec, Emmanuel

Ortiz-Pacheco, Padmanath Madanagopalan, and Sasa
Prelovsek, Tþ

cc via the plane wave approach and including
diquark-antidiquark operators, Proc. Sci., LATTICE2024
(2025) 112 [arXiv:2411.08646].

[105] Luka Leskovec, Stefan Meinel, Martin Pflaumer, and Marc
Wagner, Lattice QCD investigation of a doubly-bottom
b̄ b̄ ud tetraquark with quantum numbers IðJPÞ ¼ 0ð1þÞ,
Phys. Rev. D 100, 014503 (2019).

[106] Stefan Meinel, Martin Pflaumer, and Marc Wagner, Search
for b̄ b̄ us and b̄ c̄ ud tetraquark bound states using lattice
QCD, Phys. Rev. D 106, 034507 (2022).

[107] Sara Collins, Alexey Nefediev, M. Padmanath, and Sasa
Prelovsek, Toward the quark mass dependence of Tþ

cc from
lattice QCD, Phys. Rev. D 109, 094509 (2024).

[108] Meng-Lin Du, Arseniy Filin, Vadim Baru, Xiang-Kun
Dong, Evgeny Epelbaum, Feng-Kun Guo, Christoph
Hanhart, Alexey Nefediev, Juan Nieves, and Qian
Wang, Role of left-hand cut contributions on pole extrac-
tions from lattice data: Case study for Tccð3875Þþ, Phys.
Rev. Lett. 131, 131903 (2023).

[109] Lu Meng, Vadim Baru, Evgeny Epelbaum, Arseniy A.
Filin, and Ashot M. Gasparyan, Solving the left-hand
cut problem in lattice QCD: Tccð3875Þþ from finite
volume energy levels, Phys. Rev. D 109, L071506
(2024).

UNIVERSAL PARAMETERS OF THE Λð1380Þ, THE … PHYS. REV. D 112, 074037 (2025)

074037-49

https://doi.org/10.1007/PL00021673
https://doi.org/10.1007/PL00021673
https://doi.org/10.1103/PhysRevC.57.3356
https://doi.org/10.1103/PhysRevC.57.3356
https://doi.org/10.1103/PhysRevD.80.094006
https://doi.org/10.1103/PhysRevD.80.094006
https://doi.org/10.1103/PhysRevD.95.014506
https://doi.org/10.1103/PhysRevD.95.014506
https://doi.org/10.1016/j.physletb.2020.135652
https://doi.org/10.1016/j.physletb.2020.135652
https://doi.org/10.1103/PhysRevD.109.054025
https://doi.org/10.1103/PhysRevD.109.054025
https://doi.org/10.1140/epjc/s10052-024-12795-6
https://doi.org/10.1140/epjc/s10052-024-12795-6
https://doi.org/10.1140/epjp/i2018-11928-9
https://doi.org/10.1140/epjp/i2018-11928-9
https://doi.org/10.1016/S0375-9474(96)00321-1
https://doi.org/10.1016/S0375-9474(01)01312-4
https://doi.org/10.1140/epja/i2005-10079-1
https://doi.org/10.1140/epja/i2005-10079-1
https://doi.org/10.5169/seals-116214
https://doi.org/10.5169/seals-116214
https://doi.org/10.1140/epja/i2005-10063-9
https://doi.org/10.1140/epja/i2005-10063-9
https://doi.org/10.1140/epja/i2007-10492-4
https://doi.org/10.1140/epja/i2007-10492-4
https://doi.org/10.1016/j.physletb.2011.09.090
https://doi.org/10.1103/PhysRevD.86.094033
https://doi.org/10.1103/PhysRevD.86.094033
https://doi.org/10.1016/j.physletb.2018.01.006
https://doi.org/10.1016/j.physletb.2018.01.006
https://arXiv.org/abs/2502.02654
https://doi.org/10.1016/j.ppnp.2019.103728
https://doi.org/10.3390/sym13081434
https://doi.org/10.1016/j.physletb.2023.138264
https://doi.org/10.1016/j.physletb.2023.138264
https://doi.org/10.1103/PhysRevC.78.025203
https://doi.org/10.1103/PhysRevC.78.025203
https://doi.org/10.1016/j.nuclphysa.2012.01.028
https://doi.org/10.1016/j.nuclphysa.2012.01.028
https://doi.org/10.1016/j.nuclphysa.2021.122378
https://doi.org/10.1016/j.nuclphysa.2021.122378
https://doi.org/10.1103/PhysRevD.106.074017
https://doi.org/10.1103/PhysRevD.106.074017
https://doi.org/10.1140/epjs/s11734-021-00146-5
https://doi.org/10.1140/epjs/s11734-021-00146-5
https://doi.org/10.1007/JHEP04(2023)100
https://doi.org/10.1016/j.nuclphysa.2009.08.010
https://doi.org/10.1103/tdjf-4l5v
https://doi.org/10.1103/tdjf-4l5v
https://doi.org/10.22323/1.466.0112
https://doi.org/10.22323/1.466.0112
https://arXiv.org/abs/2411.08646
https://doi.org/10.1103/PhysRevD.100.014503
https://doi.org/10.1103/PhysRevD.106.034507
https://doi.org/10.1103/PhysRevD.109.094509
https://doi.org/10.1103/PhysRevLett.131.131903
https://doi.org/10.1103/PhysRevLett.131.131903
https://doi.org/10.1103/PhysRevD.109.L071506
https://doi.org/10.1103/PhysRevD.109.L071506


[110] Sebastian M. Dawid, Fernando Romero-López, and
Stephen R. Sharpe, Comparison of integral equations used
to study Tþ

cc, J. High Energy Phys. 09 (2025) 058.
[111] S. Prelovsek, E. Ortiz-Pacheco, S. Collins, L. Leskovec,

M. Padmanath, and I. Vujmilovic, Doubly heavy tetra-
quarks from lattice QCD: Incorporating diquark-antidi-
quark operators and the left-hand cut, Phys. Rev. D 112,
014507 (2025).

[112] Andrei Alexandru, Ruairí Brett, Chris Culver, Michael
Döring, Dehua Guo, Frank X. Lee, and Maxim Mai,
Finite-volume energy spectrum of the K−K−K− system,
Phys. Rev. D 102, 114523 (2020).

[113] SebastianM.Dawid,ZacharyT.Draper,AndrewD.Hanlon,
Ben Hörz, Colin Morningstar, Fernando Romero-López,
Stephen R. Sharpe, and Sarah Skinner, Two- and three-
meson scattering amplitudes with physical quark masses
from lattice QCD, Phys. Rev. D 112, 014505 (2025).

[114] Sebastian M. Dawid, Zachary T. Draper, Andrew D.
Hanlon, Ben Hörz, Colin Morningstar, Fernando
Romero-López, Stephen R. Sharpe, and Sarah Skinner,
QCD predictions for physical multimeson scattering am-
plitudes, Phys. Rev. Lett. 135, 021903 (2025).

[115] Haobo Yan, MaximMai, Marco Garofalo, Ulf-G. Meißner,
Chuan Liu, Liuming Liu, and Carsten Urbach, ω meson
from lattice QCD, Phys. Rev. Lett. 133, 211906 (2024).

[116] Marco Garofalo, Maxim Mai, Fernando Romero-López,
Akaki Rusetsky, and Carsten Urbach, Three-body resonan-
ces in the φ4 theory, J. High Energy Phys. 02 (2023) 252.

[117] Daniel Sadasivan, Andrei Alexandru, Hakan Akdag,
Felipe Amorim, Ruairí Brett, Chris Culver, Michael
Döring, Frank X. Lee, and Maxim Mai, Pole position of
the a1ð1260Þ resonance in a three-body unitary framework,
Phys. Rev. D 105, 054020 (2022).

[118] Maxim Mai, Andrei Alexandru, Ruairí Brett, Chris Culver,
Michael Döring, Frank X. Lee, and Daniel Sadasivan
(GWQCD Collaboration), Three-body dynamics of the
a1ð1260Þ resonance from lattice QCD, Phys. Rev. Lett.
127, 222001 (2021).

[119] D. Sadasivan, M. Mai, H. Akdag, and M. Döring, Dalitz
plots and lineshape of a1ð1260Þ from a relativistic three-
body unitary approach, Phys. Rev. D 101, 094018 (2020);
103, 019901(E) (2021).

[120] Andrew R. Liddle, Information criteria for astrophysical
model selection, Mon. Not. R. Astron. Soc. 377, L74
(2007).

[121] H. Akaike, A new look at the statistical model identifica-
tion, IEEE Trans. Autom. Control 19, 716 (1974).

[122] Gideon Schwarz, Estimating the dimension of a model,
Ann. Stat. 6, 461 (1978).

[123] V. Bernard, Norbert Kaiser, and Ulf-G. Meissner, Chiral
dynamics in nucleons and nuclei, Int. J. Mod. Phys. E 04,
193 (1995).

[124] Matthias F. M. Lutz, Yonggoo Heo, and Renwick J.
Hudspith, QCD in the chiral SU(3) limit from baryon
masses on lattice QCD ensembles, Phys. Rev. D 110,
094046 (2024).

[125] Scott Willenbrock, Mass and width of an unstable particle,
Eur. Phys. J. Plus 139, 523 (2024).

[126] A. Cieply, E. Friedman, A. Gal, D. Gazda, and J. Mares,
K− nuclear potentials from in-medium chirally motivated
models, Phys. Rev. C 84, 045206 (2011).

[127] Miguel Salg, Fernando Romero-López, and William I. Jay,
Bayesian analysis and analytic continuation of scattering
amplitudes from lattice QCD, arXiv:2506.16161.

[128] Maxim Mai, Chris Culver, Andrei Alexandru, Michael
Döring, and Frank X. Lee, Cross-channel study of pion
scattering from lattice QCD, Phys. Rev. D 100, 114514
(2019).

[129] Dehua Guo, Andrei Alexandru, Raquel Molina, Maxim
Mai, and Michael Döring, Extraction of isoscalar ππ
phase-shifts from lattice QCD, Phys. Rev. D 98, 014507
(2018).

[130] R. Molina and M. Döring, Pole structure of the Λð1405Þ in
a recent QCD simulation, Phys. Rev. D 94, 056010 (2016);
94, 079901(A) (2016).

[131] Michael Döring, Bin Hu, and Maxim Mai, Chiral extrapo-
lation of the sigma resonance, Phys. Lett. B 782, 785
(2018).

[132] Peter C. Bruns and Ales Cieply, Chirally motivated πΣ −
K̄N model in a finite volume, Eur. Phys. J. A 61, 44 (2025).

[133] Zejian Zhuang, Raquel Molina, Jun-Xu Lu, and Li-Sheng
Geng, Pole trajectories of the Λð1405Þ help establish its
dynamical nature, Sci. Bull. 70, 1953 (2025).

[134] https://github.com/maxim-mai/
Supplemental_Material_arXiv2507.14283.

FERENC PITTLER et al. PHYS. REV. D 112, 074037 (2025)

074037-50

https://doi.org/10.1007/JHEP09(2025)058
https://doi.org/10.1103/PhysRevD.98.014507
https://doi.org/10.1103/PhysRevD.98.014507
https://doi.org/10.1103/PhysRevD.102.114523
https://doi.org/10.1103/bx16-lp3r
https://doi.org/10.1103/6nql-yrhw
https://doi.org/10.1103/PhysRevLett.133.211906
https://doi.org/10.1007/JHEP02(2023)252
https://doi.org/10.1103/PhysRevD.105.054020
https://doi.org/10.1103/PhysRevLett.127.222001
https://doi.org/10.1103/PhysRevLett.127.222001
https://doi.org/10.1103/PhysRevD.101.094018
https://doi.org/10.1103/PhysRevD.103.019901
https://doi.org/10.1111/j.1745-3933.2007.00306.x
https://doi.org/10.1111/j.1745-3933.2007.00306.x
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1142/S0218301395000092
https://doi.org/10.1142/S0218301395000092
https://doi.org/10.1103/PhysRevD.110.094046
https://doi.org/10.1103/PhysRevD.110.094046
https://doi.org/10.1140/epjp/s13360-024-05301-0
https://doi.org/10.1103/PhysRevC.84.045206
https://arXiv.org/abs/2506.16161
https://doi.org/10.1103/PhysRevD.100.114514
https://doi.org/10.1103/PhysRevD.100.114514
https://doi.org/10.1103/PhysRevD.98.014507
https://doi.org/10.1103/PhysRevD.98.014507
https://doi.org/10.1103/PhysRevD.94.056010
https://doi.org/10.1103/PhysRevD.94.079901
https://doi.org/10.1016/j.physletb.2018.05.042
https://doi.org/10.1016/j.physletb.2018.05.042
https://doi.org/10.1140/epja/s10050-025-01519-3
https://doi.org/10.1016/j.scib.2025.04.029
https://github.com/maxim-mai/Supplemental_Material_arXiv2507.14283
https://github.com/maxim-mai/Supplemental_Material_arXiv2507.14283
https://github.com/maxim-mai/Supplemental_Material_arXiv2507.14283
https://github.com/maxim-mai/Supplemental_Material_arXiv2507.14283

	Universal parameters of the &Lambda;(1380), the &Lambda;(1405), and their isospin partners from a combined analysis of lattice QCD and experimental results
	I. INTRODUCTION AND SUMMARY
	II. LATTICE QCD INPUT
	A. Overview of the available quantities
	B. Implementation of the quantization condition
	C. Details of lattice calculation

	III. EXPERIMENTAL INPUT
	IV. EFFECTIVE FIELD THEORY AND UNITARIZED CHIRAL PERTURBATION APPROACH
	A. Chiral Lagrangian and interaction kernel
	B. Unitarization procedure and connection to observables
	C. Regularization schemes
	D. Synthesis and evaluation of the UCHPT framework

	V. ANALYSIS
	A. Pilot study: Finite-volume spectrum from UCHPT and experiment
	B. Fit details: Loss function and degrees of freedom
	C. Fit discussion

	VI. RESULTS AND DISCUSSION
	A. From the lattice to the physical point
	B. From the physical to the lattice point
	C. Combined analysis at the lattice and physical point

	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	APPENDIX A: DETAILED FIT RESULTS: FITS TO THE LATTICE INPUT
	1. M1S1L (F19)
	2. M1S2L (F31)
	3. M1S3L (F18)
	4. M2S1L (F20)
	5. M2S2L (F32)
	6. M2S3L (F25)
	7. M3S1L (F01)
	8. M3S2L (F15)
	9. M3S3L (F10)

	APPENDIX B: DETAILED FIT RESULTS: FITS TO THE EXPERIMENTAL DATA
	1. M1S1P (F21)
	2. M1S2P (F28)
	3. M1S3P (F27)
	4. M2S1P (F22)
	5. M2S2P (F29)
	6. M2S3P (F26)
	7. M3S1P (F30)
	8. M3S2P (F13)
	9. M3S3P (F11)

	APPENDIX C: DETAILED FIT RESULTS: COMBINED FITS TO THE EXPERIMENTAL DATA AND LATTICE INPUT
	1. M1S3PL (F24)
	2. M2S3PL (F23)
	3. M3S1PL (F17)
	4. M3S2PL (F16)
	5. M3S3PL (F12)

	References


