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We perform a global analysis of lattice and experimental data on negative-strangeness meson-baryon
scattering using a large set of variations of the theoretical framework based on the chiral unitary approach.
For the former, the Liischer formalism is utilized taking into account all pertinent coupled-channel effects.
Through this, systematic uncertainties related to data scarcity, potential ambiguities, and possible
framework dependence are quantified for the first time. The implementation of information criteria
and other statistical tools is discussed. As a final result we provide pole positions for isoscalar resonances at
the physical and lattice points, including statistical and systematic uncertainties. Predictions for the
isovector states are also provided, showing large uncertainties.
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I. INTRODUCTION AND SUMMARY

The hadron spectrum provides a manifestation of struc-
ture formation of the strong interaction, which remains a
challenge to our understanding of the so successful
standard model of particle physics. Primarily due to
advances in experimental techniques, hundreds of new
and predominantly excited hadrons have been discovered
over the past century [1]. A partial ordering of the spectrum
can be achieved through a simple quark model organizing
mesons as quark-antiquark and baryons as three-quark
states. However, this simple picture does not reflect the
reality calling for a more comprehensive approach. For
recent related reviews, see Refs. [2-6]. A prominent
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example of this kind is the negative-strangeness, isoscalar
A(1405) baryon, which became a poster child of the
two-pole structure [7,8]. Currently, this is associated with
two states, the A(1405) and A(1380). For a dedicated
review including historical aspects, see Ref. [9] as well as
Refs. [8,10] for a broader context.

Originally, the connection between the fundamental
theory of the strong interaction, quantum chromodynamics
(QCD), and the phenomenology of the two-pole structure
of the A(1405) was established using chiral perturbation
theory (CHPT) while extending the range of applicability
through unitarization techniques. For details and connec-
tion to other approaches see Ref. [9]. Note further that the
isovector pole also seen in Ref. [7] (see also [11-14]) has
obtained much less attention, but this issue will also be
taken up here. Typically, the free parameters of this
approach are fixed using the data available from experi-
ments conducted over the last several decades. These
parameters originate partly from the so-called low-energy
constants, which encode the effects of integrated out heavy
degrees of freedom of QCD but also reflect a certain degree
of model dependence in the exact prescription of the
unitarization procedure. This model dependence, along
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TABLE I. Numerical values for extracted pole positions (combined fit to lattice and experimental input) for the
isoscalar and isovector case (in GeV). Different fits refer to variations of the UCHPT approach, as explained in
Sec. IV (where M refers to the chosen interaction kernel and S to the method of regularization). The lattice point
refers to the quark mass setup used in Refs. [20,21].

Type

Physical point

Lattice point

M3S1 (F,;)

M3S2 (F )

M3S3 (F),)

M3S1 (F,;)

M3S2 (Fy¢)
M3S3 (F),)

13420099 _ 0,028:+0013
1.432508092 — 0,025+ 390!
137310092 _ 0 02 +0011
14230902 _ 0 0200001
1.35270094 _ 0,091 0003
142040001 _ o, 0180001
135170022 _ 01120010
135670005 _ 03540022
14307009 _ j0.281+0170

13387000 — i0.2157 9907

1.359+0010 _ 010070050
146075005 — i0.013 5563
1.38910.006
1,466 400; — 10.020%001
14010003
1478004 — 10.02675061

1.33370008 — i0.144100%8

143070050 — i0.2087 500

13355001 — i0.143X5568

with ambiguities in the existing experimental input, leads to
different predictions of the chiral unitary approaches
(UCHPT) in regimes not covered by the experimental
data. Illustrative examples of such systematic uncertainties
are discussed in, e.g., Refs. [9,11].

The problem can also be tackled from a different angle
using lattice QCD methodology [15-19]. In a most recent
calculation, not too far away from the physical point (that
is, quark masses that are only slightly larger than the
physical ones) and using state-of-the-art methodology, finite-
volume spectra for the isoscalar channel of negative-strange-
ness meson-baryon interaction have been determined by
BaSc collaboration [20,21]. While unphysical quark masses
are used in this setup, CHPT underlying UCHPT allows one
to extrapolate and connect these results to the physical point.
Establishing this connection, along with the study of the model
dependence within the UCHPT approaches, constitutes the
main goals of the present work. The central observations of our
study can be summarized as follows:

(i) UCHPT approaches based on the lowest-order chiral
Lagrangian (called type M1 and M2 in what follows)
do capture the main features of the interaction but
fail to quantitatively describe the existing experi-
mental data.

(ii) UCHPT can accurately describe the lattice input.
Still, the latter input alone does not seems sufficient
for determining accurately both pole positions when
model variations are taken into account.

(iii) Within the most flexible models, the experimental
input does lead to the pole structure similar to that
found in the existing literature. When extrapolating
to the unphysical quark mass scenario (lattice point),
the pole structure determined by BaSc collaboration
is confirmed. For the most flexible models we

observe that ambiguities in the older cross section
data dominate the systematic uncertainties.

(iv) Combined fits including all experimental and lattice
inputs provide a very good description. Variations
between different models are assessed using infor-
mation criteria. Numerical results for the isoscalar
poles, as well as predicted isovector poles, are
collected in Table I.

This paper is organized as follows. Details on the lattice
QCD input are provided in Sec. II, which also includes
details of the finite-volume implementation. The exper-
imental data are reviewed in Sec. III, discussing also their
ambiguities. The chiral unitary approach is discussed in
Sec. 1V, including variation of the methodology reflecting
systematic uncertainties. Additionally, potential complica-
tions due to three-body on-shell states are evaluated in
Sec. IV D. Fits and pertinent predictions are discussed in
Secs. V and VI, respectively. Individual fit results are
moved to the Appendices for convenience.

II. LATTICE QCD INPUT

A. Overview of the available quantities

Recent advances in both theoretical frameworks and
computational techniques have enabled lattice QCD to
make increasingly precise predictions for the properties of
strongly interacting unstable particles (resonances), such as
the p, A, and more recently, the A(1405). For recent
reviews, see Refs. [5,22,23]. In lattice calculations, one
extracts information about such states by computing the
discrete energy spectrum of multihadron scattering states in
a finite Euclidean volume. This is achieved through
Markov chain Monte Carlo integration and analyzing the
exponential decay of correlation functions constructed
from suitably designed interpolating operators. In his
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seminal work, Liischer showed that the energy levels of two
interacting hadrons in a finite spatial volume are shifted
from their noninteracting values by an amount that is only
power-law suppressed in the box size [24,25]. These finite-
volume energy shifts are directly related to the infinite-
volume scattering phase shift [26,27], and hence to the
scattering amplitudes themselves. Subsequent works
extended Liischer’s formalism to arbitrary spins and multi-
ple coupled channels [28-32]. In the following subsection,
we briefly summarize the quantization condition used in the
present work.

B. Implementation of the quantization
condition

Experimental observables, such as cross sections and the
finite-volume energy spectrum obtained from lattice sim-
ulations, can both be described using effective models in
which the scattering amplitude is parametrized using a
small number of input parameters. These parameters are
constrained through a correlated y fit to both types of data:
the finite-volume lattice energy spectrum and experimental
observables.

Instead of parametrizing the unitary S-matrix directly, we
work with the real, symmetric K-matrix, which is related to
the S-matrix via

S =(1-iK)™'(1 +iK). (2.1)
Due to rotational invariance, the infinite dimensional K-
matrix is diagonal in angular momentum space,

('my'S'a |K|Imy£Sa)y = 8,58, Kb ssa(5):

(2.2)
where the states |Jm;#Sa) are labeled by the total angular
momentum J, its projection on the z-axis my, the total
orbital angular momentum #, and the spin angular momen-
tum S of the two particles, respectively, a is the channel
index, and lastly, s is the Mandelstam variable, the square
|

(J'my'S'd|\BP|Jm,¢Sa)

where (jm,j,m,|JM) are the familiar Clebsch-Gordan
coefficients and W is defined in Eq. (6) in [38]. In practice,
the infinite-dimensional matrix in the determinant (2.4) is
block-diagonalized by projecting onto the superposition of
states that transforms according to the irreducible repre-
sentation (irrep) of the little group of P.ie., by performing
a unitary basis transformation,

|A/1anSa>:ZcLJ M"|J jC8a),  (2.6)

my

— £+6'+1yyPa
- _léaa’éSS’pcma w

of the total energy in the center-of-mass frame. In this
section, we connect the parametrization of the K-matrix
used in the quantization condition [20] with the UCHPT
parametrizations (e.g., Refs. [33—-35]), which provide what
is often referred to as the Hohler’s partial-wave amplitudes
fr+(s) [36,37], described later in Sec. IV B in terms of the
T-matrix. We also briefly summarize the quantization
condition in multichannel space applied in this work,
closely following [22,38].

To connect the two parametrizations, physical quantities
are extracted from both meson-baryon scattering MB —
MB Hohler partial-wave amplitudes and K [38]. For
example, using the former, the elastic scattering phase
shifts can be computed through a K-matrix-like quantity as

1 R
- = cotd = o
lpcm(s)) ImeJr

109) = (i) =

_ k'
pCITl

= pemcotd = Kz (2.3)

Here, p., denotes the magnitude of the three-momentum in
the center-of-mass frame. In the same region, the phase
shifts can also be extracted using K, the matrix in the
quantization condition for the finite-volume energy
spectrum [38],

det(1 - KBP) =0, (2.4)
where 1’3 is the total momentum of the two-particle system,

K=22 g_2z_1 2” K, and here the first two
chm L pemcots

equalities follow from Eqs. (16) and (18) in [38] and
(2.3) is used in the last one. The so-called box matrix B
does not depend on interactions—it is a known, purely
kinematical matrix that depends on the finite volume. For

real scattering momenta, B” is Hermitian and diagonal in
the channel space,

(J'mp|l'mp, Smg)(€my, Smg|Jmy), (2.5)

'myitmg

where A is the irrep of the little group of P, 1 is the irrep
row, and n is the occurrence of the particular irrep in the
reducible representation |Jm;£Sa). In each block, a trun-
cation to ¢ < £, 18 imposed to make the determinant
condition manageable. In the present work, we consider
only the S-wave, 7, = 0. We include energy levels from
the rest frame up to total momenta of three units of lattice
momenta [20]. The interchannel interactions are encoded in
the dense K ; matrix, while the box matrix remains diagonal
in the channel space. The matrix K is a 10 x 10 matrix in
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Left: summary of energy levels used as input in this work (black dots with error bars), together with our model estimates using

different regularization schemes (S1, S2, and S3). Right: illustration of the quantization condition as a function of the center-of-mass
energy for the rest frame G, irrep. Red band highlights the area where the quantization condition is closely fulfilled, red circles indicate
the prediction of UCHPT, and orange circles with error bars show the lattice results.

the space of meson-baryon channels with strangeness
S = —1, as determined by the underlying SU(3) symmetry

S={Kp,Kn, A, 220, 72", 2727,
x nA,nZ, K2, K'=°}. (2.7)
For lattice energy spectrum analysis, we further convert
from the physical basis to the isospin basis and project onto
channels with total isospin zero,
S'=0 = {KN, zZ,nA, KE}. (2.8)
For phase convention and explicit forms of the projectors
see, e.g., Ref. [39]. In predicting the finite-volume energy
spectrum we compute the box matrix for the appropriate
total momentum and irrep (a 4 x 4 diagonal matrix), and
combine it with the corresponding 4 x 4 dense K to
evaluate the determinant in (2.4). An illustration of how the
energy spectrum constrains the scattering amplitude is
shown on the right part of Fig. 1 for the zero-momentum
case (G, irrep).

In the spectrum we consider 14 energy levels, from all
irreps dominated by #Z = 0 lying below the first relevant
three-particle threshold zzA. On the left part of Fig. 1 we
show all the input energy levels together with our best
estimates using three different regularizations S1, S2, and
S3, as discussed later in Sec. IV.

C. Details of lattice calculation

The finite-volume lattice energy spectra have been
generated using the D200 ensemble of CLS collaboration
[40], which uses 2+ 1 flavor of nonperturbatively
improved Wilson fermions and Liischer-Weisz gauge
action. The pion mass is slightly higher than the physical
one, and the kaon mass is slightly lower than the physical
one. We summarize the details of the ensemble relevant
to the present work in Table II. Correlation functions,
including two-hadron interpolating fields at the source/sink
with different combinations of momenta [z(p;)Z(p,),
K(p1)N(P,) up to three lattice units of p, + p, total
momentum], were produced in order to determine all the
energy levels in the isospin 0 sector below the lowest lying
three-particle threshold (zzA). Correlation functions were
evaluated using the stochastic Laplacian-Heaviside
(sLapH) method [41,42]. The energy levels were obtained
using the ratio method, i.e., taking the ratio of properly
diagonalized correlation matrices (generalized eigenvalue
problem principal correlators) with the single hadron
correlators, directly determining the relevant energy shift
[43]. The statistical errors are estimated via bootstrap
resampling using 800 samples.

III. EXPERIMENTAL INPUT

Below we review all experimental input included in the
present study. To have a more transparent picture of the

TABLE II. Properties of the D200 ensemble including the masses of the light meson and baryon octet at the
isospin symmetric point.

L[fm] alfm] M,[GeV]  Mg[GeV]  M,[GeV] my[GeV] mg[GeV]  mp[GeV] mgz[GeV]
4.05(4) 0.0633(7) 0.2036(8)  0.4864(5) 0.5511 0.979(11)  1.193(6) 1.132(4) 1.322(3)
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FIG. 2. Total cross sections considered in this work. Different
bands represent a Gaussian process fit, which is included to gu

systematic uncertainties discussed in Sec. IV, we restrict
ourselves only to data which are directly related to the
meson-baryon scattering amplitudes in the energy region
most relevant for the A(1380) and A(1405) states. Other
input from, e.g., photon-induced reactions [44—47], is not
included, as it typically requires further parametrization of
the reaction mechanism. For some studies of that type of
data, see Refs. [48-51].

(1) Cross sections: Most of the experimental data in the
energy region relevant for a study of the first
resonance region stem from the time not long after
the initiation of the first large experimental programs
on production of kaons in the 1950s. For this, mostly
data from bubble chamber setups at CERN, LBNL,
BNL, or Bevatron were used until the mid 1980s.
For a historical overview, see Ref. [9]. The data
have, therefore, quite large error bars and in certain
cases there are systematic discrepancies between
different datasets. Encouragingly, in the 2020s, some
progress occurred. As one of the most relevant
recent developments in the field, AMADEUS col-
laboration [52] provided two new high-precision
results based on data collected by KLOE collabo-
ration [53] on the K~ p — zX% and K~ p — 7A total
cross sections. The impact of these data has been
studied within a UCHPT model in Ref. [35]. In the
energy range of interest, i.e., kaon momentum in the
laboratory frame below P; 55 < 300 MeV, there are
252 total cross section data points [52,54-57]
(83, 47, 11, 11, 51, and 49, corresponding to

07

Py | MeV

colors distinguish between various experiments [52,54—57]. Shaded
ide the eye [59].

K p— K p, K~ p = K, K= p = n'A,
K p-7a%2, Kp—>atZ", and K p—> 72T+
transitions).1 These data can be related to the
partial-wave f,, derived form a given model.
Neglecting higher partial waves, the explicit formula
for the transition ¢,B, — ¢;zBy reads

Pﬁ(s)

Pal(s)

where p,, refers to p,, in the meson baryon channel
a. For formulas including higher partial waves, we
refer the reader to Refs. [36,58].

By plotting the cross section data with different
colors for separate experiments (along with a cor-
responding Gaussian process fit if applicable), as we
have in Fig. 2, it is readily seen that for several
channels (K~ p, K1, and 2~X%), the data are not
only widely varying at some energies, but are even
inconsistent. This is likely due to the effect of
different systematic uncertainties in each experi-
ment. By using squares of residuals to determine
a y? statistic, as is typically employed in analyses
including this work, there is a chance that fits are
drawn to the average of values, some of which are
systematically wrong.

(3.1)

Oup = 4m |forap(s)I*.

'The total cross section data in digitalized form can be
accessed under: https://github.com/maxim-mai/Experimental-
Data/tree/master/Lambdal405.
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FIG. 3. Log probability surfaces derived from the data illustrated in Fig. 2.

This issue is further illustrated in Fig. 3, where the
log probability surfaces for the data in Fig. 2 are
depicted. The procedure for generating these surfa-
ces is described in [59]. Particularly in the case of the
K~p — K°n channel, the multiple bands suggest
inconsistent data.

Note also that we consider the scattering data for

energies high enough so that the Coulomb effect in
the charged channels can be neglected.
Threshold data: At the K~ p threshold, several ratios
of the cross sections were measured some decades
ago [60,61]. Specifically, the values are
y =2.38+£0.04, R.=0.664 +0.011, and
R, = 0.189 £ 0.015, which are related to the total
cross section ratios as

y = I'g- p—ontET R. — I'g- p—charged states
- = c = >
1—‘K* pon Tt 1—‘K* p—all final states
| B
K p-n’A
R, = it (3.2)

1—‘K ~ p—neutral states

Additionally, in a more recent kaonic hydrogen
experiment at DAPHNE, SIDDHARTA collabora-
tion [62] determined to a very high precision the
energy shift and width due to strong interaction of
the K~ p system, i.e., AE =283+42eV and
I'/2 =271 £55 eV. The complex energy shift in
kaonic hydrogen is related to the K~ p scattering
length through the modified Deser formula [63] (and
similarly for kaonic deuterium [64]),

(iii)

AE-iT/2==2a pak-,(1-2ag-,au (Ina—1)),
(3.3)

where a ~ 1/137 is the fine-structure constant, and
U, is the reduced mass of the K~ p system. For the
discussion of higher-order corrections, see
Refs. [65,660]. We note that, recently, a new meas-
urement of the kaonic deuteron system has been
performed [67] as well, which, however, is not part
of this work. We wish to note that while older values
(y,R., R,) offer very little constraint on the scatter-
ing amplitude, the SIDDHARTA results, indeed,
do and should, thus, always be taken into account.
A dedicated discussion can be found in Ref. [9].

AMADEUS: One of the latest experimental data
points was taken by AMADEUS collaboration [68].
Through the analysis of K~ absorption processes on
*He, the modulus of [f§,*7% (/s = 1.4 GeV)| was
extracted to high precision as 0.334 £ 0.018 fm. This
is given in terms of Hohler’s partial waves f,. as

1 0

fﬂ'/\—>l(‘n _ ﬁ (_f&/\—*K’p +f6’0+/\_’f(0")-

0+ = (3:4)

IV. EFFECTIVE FIELD THEORY
AND UNITARIZED CHIRAL
PERTURBATION APPROACH

Lattice QCD provides a systematic way to access QCD
Green’s functions in the nonperturbative regime. In the
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intermediate steps, however, the methodology introduces
by construction several approximations to the real world
(for a pedagogical introduction, see Ref. [69]). Specifically,
the calculation is performed with quarks occupying only
intersections of typically cubic and finite-volume lattice in
Euclidean space-time (imaginary time). Additionally, a
scale needs to be set defining the obtained quantities in
physical units, since the computer algorithm does not have a
notion of units. Finally, on a more practical side, quarks are
often heavier than the physical ones for two reasons: (i) the
physical pion appears in nature to be very light, which
means very large lattice volumes are required to
fit it in, and (ii) systems with heavier-than-physical pions
have inelastic thresholds pushed to higher energies, which
effectively extends the range of applicability of the existing
two- and three-body quantization conditions [24,70,71].
For the present case, scale-setting continuum extrapola-
tion can be assumed to be addressed in the provided finite-
volume energy eigenvalues [20,21]. A procedure for the
finite-volume mapping including the related breakdown of
rotational symmetry is discussed in Sec. II B. What remains
is to establish a connection between the heavier-than-
physical pion mass results from the lattice with the
experimental ones, often referred to as chiral extrapolation.
As the name suggests, the key point here is to use chiral
symmetry to provide guidance on how hadron-hadron
interactions behave with the changing pion mass.
Specifically, we use CHPT extended to the meson-baryon
sector [72-76] to define a three-flavor meson-baryon
interaction kernel at leading and next-to-leading order.
However, since the energy regime of interest is large,
nonperturbative effects are unavoidable. For the explicit
calculation and breakdown of the convergence of the
perturbative expansion, see, e.g., Ref. [77]. Therefore,
the interaction kernel is iterated through a unitarization
approach described in the following Sec. IV B. This means
that the extrapolation of the model-independent lattice
|

QCD results to the physical point (physical quark masses)
is not accomplished through model-independent CHPT but
a unitarized, somewhat model-dependent approach. This
model dependence of the obtained results is one of the key
questions we wish to discuss in this paper.

There is a plethora of approaches aiming to extend the
range of applicability of the chiral series to the energy
region of the A(1405). An in-depth description of those,
including their differences and similarities, is provided in
the review in [9]. For alternative approaches, see also
Refs. [78-82]. To make the model dependence discussion
more transparent, we rely here on one class of models
described there, one which unites the simplicity of an
algebraic formulation (vs., e.g., more sophisticated dia-
grammatic  four-dimensional integral equations of
Refs. [33,34]) with the phenomenological flexibility, result-
ing in a wide range of applications [7,12,83-85].

A. Chiral Lagrangian and interaction kernel
The general form of the chiral meson-baryon Lagrangian
is written as an infinite series
1 2 3
Lop = Lyp+ Loy + Lo+ ... (4.1)
of infinitely many terms ordered in Lagrangians with a
fixed chiral order denoted above by the superscript. For the

specific case of meson-baryon scattering, the leading-order
(LO) Lagrangian contains three independent structures,

D

Lys = (Blir,D" = my)B) +

(By,ys{u".B})

£ By yslue. B)). (42)

2

whereas the next-to-leading-order Lagrangian [86] in its
minimal form contains 14 independent structures [87],

L) = by(BB){(x,) + bp(B{y,.B}) + bp(Bly..B))
+ by (Blu,, [u*, B]]) + by(Blu,, {u", BY)) + bs(B{u,, {u", B}}) + by(BB) (u,u")

+ i(bS <BGWHMM’ uv}v B]> + b6<B6W{[u;t

ibg

’ uu]v B}> + b7<B6’qu> <MDB>)

+ 5= ((By[w,. [, [D*, Bl]]) + (By"[D,. [, [u,. BII]))

2m0

22 (Bl (. (D%, BY]) + (Br*(D,. {u. [, BI}Y))

2m0
iblO

+2—mo(<37"{uw {u,.[D*, B]}}) + (By"[D,. {u". {u,. B}}]))

+ 5 (2<B7M[Dw B]><”/¢”y> + <BY”B><[DU’ ”ﬂ}uy + u,u[Dw uu]>)’

2m0

(4.3)
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where (...) denotes the trace in flavor space, DB := 0,B + 3 [[u", d,u], B], my is the baryon octet mass in the chiral limit,
and D and F are the axial coupling constants. The next-to-leading-order (NLO) low-energy constants (LECs) b; split into
the so-called symmetry breakers b p -, parametrizing the explicit chiral symmetry breaking through the nonvanishing
quark masses and {b;|i = 1, ..., 11}, being referred to as dynamical LECs. All external currents except the scalar one are set
to zero and

U =exp <i[;£>, u? = U, w = juttu + iudtu’,
0
v =ulyu’ +uyu, x = 2B, diag(m,, my, m), (4.4)

where F, and B denote the pion decay constant and the constant related to the quark condensate in the chiral limit,
respectively. The ground state octet mesons (Goldstone bosons of the theory) and baryons are included through

o+% K* Z+d ozt p
_ _ 0 n 0 _ - >0 A
p=V2| =z -m+% KO | B=| ¥  -Z+L o | (4.5)
- 0 2 = =0 -2

The above general Lagrangian defines all the Feynman diagrams, as shown in Ref. [77], calculating meson-baryon
scattering in three-flavor CHPT. The completeness of momentum structures plays a crucial role, for instance, when
constructing unitary gauge-invariant models for meson photoproduction [88-90], and warrants full accounting of all chiral
logarithms. This may indeed become relevant when approaching the chiral limit, as discussed and shown in Ref. [91]. It was
shown, however, in Ref. [34] that for antikaon-nucleon scattering in the physical region not too far from the two-body
thresholds, such effects are subdominant. An approach neglecting such effects was studied in Ref. [50] and later including
coupled-channel S- and P-waves in Ref. [35].

Instead of this path, we proceed here with a closely related but computationally less expensive approach. It relies on
calculating the chiral potential V and iterating it to restore two-body unitarity. We use the normalization of Refs. [12,85] and
study three types of meson-baryon potentials,

MI: Vyg(s) = VIT(s), (4.6)
M2: V(s) = Vil (s) + VBORNs 4 yBORNu(g) (4.7)
M3 Vi (s) = Vo' () 4+ V™™ + VN (s) + Vi O (s), (4.8)

where a/f collect the indices of the in/outgoing meson-baryon states S. Here, WT denotes the time-honored Weinberg-
Tomozawa term and BORNXx (x=u, s) the s- and u-channel Born terms, respectively. Specifically, for the total strangeness
S = —1, the relevant channels are listed in (2.7). All potentials except Vgg‘o(s) are obtained from the LO chiral Lagrangian
Eq. (4.2), while the latter is deduced from the relevant part of the NLO Lagrangian,

2 - - -
Lis = bo(BB)(r.) + bp(Blr..BY) + br(Blr..B])
+d\(B{u,.[u",B]}) + d>(B[u,. {u", B}])
+ ds(Bu,)(Bu*) + d,(BB)(u,u"). (4.9)
It is notable that only the potentials in M2 and M3 include all terms at the given chiral order, namely, leading and next-to-
leading, respectively. Still, in the M1 potential, the so-called Weinberg-Tomozawa term already captures the major aspects
of the dynamics of the system correctly, but is at odds with the most recent threshold data [62] even after the unitarization

procedure, see, e.g., Ref. [12], or to foreshadow the results discussed later, see M1SxP fits in Fig. 7.
Explicitly,2 the above required potentials read as

*These formulas are quite standard in the literature. However, a certain amount of typos and convention inconsistencies also became
standard. To avoid this, explicit formulas are provided here.
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NN
WT _ a’¥b ~WT _ _
V(a[)(bj)< ) SFZFJ (ai)(bj) (2\/‘; mg mb)a
NNy~ pF ADF 1
VBORNs (o) _ “Tath (oo SN e S — s(my +my) +mamy),
(an(e)(5) 12F,F,; 2= “ i) Claie) T Vs( ») b)
NN, < (mg + m.)(my, +m,)
BORNu () _ _7Va’Vb [DF]  ~[DF] _ g )\ c _
Viawp () = 12FF; Z]: Clio)n) Clioa) [\/5 e NN (Vs +mg +my, —m,)
s +m?—M? —M? - 2E,E
+<\/§—|—mc my — my, 2./\/'5./\/5 b(\/§+ma+mb—mc)>
<ma +mc)(mb +mc) S—f—m% _M% _M? _ZEuEh _zpb/'pai
X I 2 2 2 ' '
4pbjpai S+mc_Mi _Mj _ZEaEb+2pbjpai
NN, p2 .p2.
NLO _ Y (bobpbr] _ 5 Aldidadsds] [ 1 bjF ai
Viaron®) = F (Cwow) 263j (EIE/ 32 N/z)) ) : (4.10)

Here, we have explicitly written out the baryon/meson
octet indices {a,b,c}/{i,j} of the corresponding
channel. Further, s 1is the total energy squared,
Na:\/ma_l_Ea’ Ea: m§+p§i’ Ei:VMzZ+pii’
and  po = /(s — (M; +my)*) (s — (M; = m,)*)/ (2/5).
Meson and baryon masses are denoted by M and m,
respectively. The coefficient matrices CWT, CIPF], Clbobobr]
and Cl41%44s) are obtained from Eq. (4.9) but can also be
obtained from the Appendix of Ref. [85]. The first matrix
contains the LECs F, g ,, which appear explicitly in the
denominator, while the latter three matrices include additional
LECs, with the pertinent parameters put into the superscript
square brackets, for convenience. Note that the leading-order
LECs D, F arefixed, and only the b;, d; are to be determined by
the fits. Additionally, C!??0br] depends explicitly on the quark
masses, given in terms of the meson masses.

B. Unitarization procedure and connection to
observables

With the interaction kernel at hand, a nonperturbative
amplitude can be constructed. This typically involves some
sort of resummation of an infinite set of diagrams. Usually
guided by the S-matrix unitarity, typical methods are the
full four-dimensional Bethe-Salpeter, three-dimensional
reduced Lippmann-Schwinger equations, N/D, or other
dispersive tools. Using the above defined on-shell poten-
tials projected to the S-wave in Eq. (4.10), the Bethe-
Salpeter integral equation indeed reduces to an algebraic
matrix equation (with respect to the channel space S),

T(s)==V(s)+T(s)G(s)V(s) = =V(s) = V(s)G(s)V(s)

VGGV —
- _V(s)ﬁ- (4.11)

|
The infinite series on the right-hand side of the first line is
written out to show the connection to an infinite set of loop
diagrams. Clearly, this set is still incomplete compared to
all possible diagrams in CHPT to all orders. This is one of
the sources of the model dependence acquired in this step.
For further details, see the dedicated review in [9].

The meson-baryon one-loop (channel «) function is
defined as

d*l i
Gals) = / (2m)* (I = M% + ie) (P — 1)* — m} + ie)’
(4.12)

which has an imaginary part ImG,(s) = —p,/(87/s).
Therefore, the T-matrix, indeed, automatically fulfills the
partial-wave unitarity Disc T(s) = ip,/(47+/s)|T(s)|* for
energy between s = (m, + M,)? and the next higher two-
body threshold. For an introductory discussion of
the S-matrix theory for hadron spectroscopy, see the
review in [92]. This also allows one to relate the T-matrix
to the K-matrix form used in Sec. IIB. In terms of the
Hohler partial wave [36,37] f,, relevant for this study
[cf. Eq. (2.3)],

1

fo+(s) ZmT

) o) ==y 419
Here, all quantities are matrices with respect to the channel
space, ie., KpeRSS and p := Diag{p,|a€S}. The
above nomenclature allows for straightforward relations
to the observables. For example, the scattering length is
simply given by a = fo,((m + M)?) or total cross sec-
tions, as shown in Eq. (3.1).
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C. Regularization schemes

The four-dimensional meson-baryon loop integral G is
log-divergent and can be tamed in various ways using, e.g.,
a momentum cutoff or dimensional regularization. In the
latter, and most frequently utilized form [7,12,84,85,93,94],
the loop function reads (@ € S)

1 m2 M?
Go(Vs) =a, + Euy <log <7> + log (/7)

2 _M2 M2
_blog<_a> )

2
S a

arctanh % )
(ma + Mtx>2 -8

For the analysis of the experimental data, all masses are
taken to their physical values, while the regularization scale
dependence is moved into the subtraction constants a,
channel-by-channel for a fixed scale . Note that this is the
equivalent of promoting the regularization scale u to
channel-by-channel u, [34]. Since isospin breaking effects
are far smaller than the available experimental precision, no
distinction is made between subtraction constants in the
same particle type, leaving one with six free subtraction
constants {agy, dzp. Ggs. Gy, dys. Agz b Which are treated
commonly as additional free parameters of the theory. Note
that at the lattice point, isospin symmetry is exact and input
is available for I = 0 only. There, only four subtraction
constants matter corresponding to the channels in Eq. (2.8).

Besides the choice of the resummation procedure and the
choice of the interaction potential, there is yet another issue
where a choice has to be made, namely, the regularization
procedure, which is also leading to systematic uncertainties
in the UCHPT approach. In view of the recent experimental
and more importantly lattice QCD progress, the main
phenomenological drawback of this is that by losing
connection to the usual perturbative chiral expansion, the
LECs cannot be compared easily between different
approaches or to the perturbatively determined values.
More importantly, chiral extrapolations of the amplitudes
from unphysical (lattice QCD) to physical quark masses
will differ from one approach to another, which was already
observed in Ref. [95]. Specifically, in contrast to the LECs,
it is not clear how the subtraction constants depend on the
quark masses since they absorb higher-order terms.

So far, removing the model dependence from these
approaches entirely seems rather unrealistic. Thus, one
cannot escape the imperative of quantifying how these
above choices reflect themselves on observables or on
obtained predictions, such as resonance pole positions or
chiral extrapolations of the amplitudes. Therefore, in
addition to the various choices of the interaction kernel,
we employ three types of regularization schemes widely
used in the literature:

8Pa

NG

(4.14)

(S1) No assumption about the quark mass dependence of
the subtraction constants. For each available quark
mass setup and for fixed 4 = 1 GeV, we fit a new set
{a,} to the available data. Through this, no extrapo-
lation is possible, but the maximal possible freedom
of the model is achieved. Note that seven LECs are
still quark mass independent.

(S2) As proposed in Refs. [84,96], one fixes the sub-
traction constants by demanding

T(Vs=m)=V(Vs=m) e G(/s=m,a(u))=0.
(4.15)

This was recently employed in Ref. [95] and boils
down to

3 1 log m2M?2 _mg—Mglog @
32n? ut s m?

_ 8\/5 arctanh (ﬁ%) )

Technically, this scheme is advantageous by reducing
the number of free parameters, while connecting at
the same time the lattice point (unphysical quark
masses) with the physical ones.

(S3) Another scheme was proposed in Ref. [93]. Similarly
to S2, it sets a constraint on the loop function but at a
different matching point. In particular, it is imposed
that at the two-body threshold the dimensionally and
cutoff (hard cutoff A) regularized loop functions are
identical. After matching the different expressions of
the loop functions, this boils down to

L (4 2 tog (14 1/1+ "%
ag=—5|1———|(mylo —
““Te2\ "M, +m, |8 A2

M, s
1 +F>> +log(p>>.

(4.17)

\/E:mp’/":ma '
(4.16)

+ M, log (1 +

We fix again u = 1 GeV, but fit a common channel-

independent parameter A for either lattice, experi-

mental, or both points simultaneously.
In summary, the regularization scheme S1 makes no
assumptions about the quark mass dependence of the
subtraction constants but defines six free parameters
(a’s) per quark mass setup, and lacks predictive power
outside of the fitted quark mass regions. Schemes S2 (no
free parameters) and S3 (one free parameter), on the other
hand, make a certain assumption about the form of the loop
integrals resulting in a higher predictive power also at other
than fitted quark mass scenarios. We note that the S1
scheme is similar/equivalent to fitting regularization scales
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FIG. 4. Comparison of subtraction constants obtained from global fits using different regularization schemes (S1, S2, and S3) at
different quark masses. Scheme S1 only provides values at the given quark masses obtained from global fits ', (blue). S2 and S3 type

subtraction constants are per construction pion mass dependent.

[97,98] that can be matched to those used in dimensional
regularization, see, e.g., Eq. (2.13) in [99].

We will confront each scheme with the lattice and
experimental data below. The resulting subtraction con-
stants of the best fits to combined lattice and experimental
data are collected as a function of the hadron masses
extrapolated linearly (m = xmyypys + (1 — x)my,, for any
generic hadron mass m and x € |0, 1]) between the physical
and lattice points in Fig. 4. We observe that S3 and S2 have
a similar order of magnitude of the determined constants,
while most of the fitted constants (scheme S1) are, indeed,
substantially larger. Among different variations of the
scheme S1 fits (different starting points of the fits), we
observe some clustering in a few cases, but mostly the
obtained values are very uncertain. This indicates that either
S1 has too many/redundant parameters or the data are not
allowing to fix them uniquely due to possible inconsisten-
cies. For further details, see Sec. V C.

D. Synthesis and evaluation of the UCHPT framework

The considered approach is based on CHPT in such a
way that it matches CHPT amplitudes at the leading and
next-to-leading orders, when projecting to the S-wave. It
captures part of the nonperturbative dynamics of the full
CHPT to all orders but depends on the way the truncation of
higher orders is made. This results in a certain model
dependence, which is quantified in this work by varying the

following:
(i) Truncation order of the interaction kernel:
MI[F,, Fg.F,], M2[F,,Fg,F,, D, F], and

M3[Fﬂ., FK, F,,], bo, bd? bf’ dl’ dz, d3, d4] The free
parameters are given in the square brackets, and these
are the quark-mass-independent LECs. Note that the
leading-order LECs are kept fixed as D = 0.8,

F =046, and FP'¥, ={92.4,110.0,118.8} MeV

and Fi, = {932,108.2, 121.1} MeV.
(i) Regularization scheme: Sl|ay,ay,as,ay, as, ag),

S2[—], and S3[A]. The free parameters are listed
in the square brackets. Note that A is quark mass

independent while the a’s need to be fitted per quark
mass setup. At the unphysical point we have only
four [a,, as, a4, ag] because only the isoscalar chan-
nel is available.

Data: We will study if new lattice results [20,21]
(a) allow to fix the parameters of the models by
themselves, making reliable predictions for the
physical point, and (b) are consistent with exper-
imental data. Here, various combinations of lattice
QCD and/or experimental results will be used to fit
the free parameters described before.

Finally, we wish to discuss another yet mostly ignored
limitation of the this and all current UCHPT approaches
with respect to the intermediate three-body states.
Specifically, in meson-baryon systems, processes such as
7% — A are allowed. Thus, an initial meson-baryon system
can couple to the meson-meson-baryon state in the inter-
mediate step, e.g., 72 — azx/\ — 7Z, etc. Technically, this
leads to new singularity structures [9,92] violating the
simple unitarity condition spelled out before in Eq. (4.12).

There are several types of new singularities. Most
prominently, there is the right-hand cut, occurring when
the total energy is sufficient or higher than the sum of
the masses of all three particles in question, e.g.,
s > (2M, + m,)?. The positions of the branch points of
these cuts are depicted as red dashed lines in the right
panel of Fig. 5, including physical and unphysical (the one
employed by BaSc collaboration [20,21], M, = 200 MeV)
quark mass scenarios. One observes clearly that the zzA
cut indeed is far above the estimated pole positions of
A(1405) when unphysical quark masses are employed.
However, extrapolating down to the physical point, this cut
starts at lower energies and ultimately is just between the
estimated pole positions of the A(1380) and the A(1405).
Thus, one cannot avoid the conclusion that the position of
the latter state determined in the literature must carry a
systematic, yet unknown uncertainty related to the
neglected three-body states. Besides such phenomenologi-
cal implications, this will also play a crucial role in future
physical point lattice QCD simulations. The development

(iif)
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FIG. 5. Three-body-related singularities for the physical and unphysical quark mass setups. Left: singularities of the u-channel Born

diagram in Eq. (4.10) projected to I = 0 for the initial/final states, as specified in the legend for physical quark masses. Long-dashed
lines represent the potential implemented in the UCHPT amplitude mitigating the appearance of u-channel left-hand cuts. Right: relevant
short left-hand cut associated with the #-channel exchange (green, blue areas), cf. left figure. Black solid and red dashed lines denote the
position of the right-hand cut branching points with respect to two- and three-body states, respectively. The energy region with no
allowed three-body on-shell states is the remaining white area. Blue dots with error bars denote the averaged result from the global

analysis discussed in Sec. VL.

of pertinent tools, such as three-body scattering amplitudes
and three-body quantization conditions, has progressed
strongly over the last few years [100] but will need another
update in the future. Some steps in this direction were made
recently for the similar case of the zzN channel in relation
to the Roper resonance, see Ref. [101] and references
therein.

The exchange of a baryon in the u-channel also leads to
the occurrence of the left-hand cut or, more specifically, the
baryon short left-hand cut (sometimes called the short
baryon cut). For an in-depth discussion of such cuts, see
Ref. [102]. Recently, studies of this type of singularities
also became quite popular in the context of heavy meson
scattering, such as DD* or BB*. The reason is that the left-
|

1

s = 50z (MAM3 = M3 + Mim? 4 M3+ mimn? = mif 4 mi (=M} 4 m3 4 m2).

my

hand cut lies there (in particular) for the unphysical pion
mass scenarios on the lattice close to the two-body thresh-
old, see, e.g., Refs. [103—108]. Thus, not accounting for the
left-hand cut leads to problems most apparent when dealing
with the finite-volume lattice QCD spectrum, see, e.g.,
[109-111]. For § = —1, the short left-hand cut occurs
through, e.g., A or X exchange in the 7% — zX transition,
referred to as zX|A and 7X|X. Another example relevant for
the isoscalar channel is nA|A. Indeed, such transitions are
included in the UCHPT models (M2 and M3) via the chiral
potential VBORN® from Eq. (4.10). For a general transition
¢1B1 = ¢,B; including u-channel exchange of a baryon
B,, the limits of the singular region are given by

(4.18)

o\ md -+ (M3 = )2 = 2 (M3 + ) ) (M3 -+ (3 = m2)> = 2M3 (3 + ).

For I = 0 transitions, this is depicted in the left panel of
Fig. 5 by the shaded regions. There, one clearly sees that
the chiral potential (the real part is plotted), indeed, has
singularities in the shaded region. On the right, the same
critical regions are depicted as a function of the quark mass
extrapolated from the physical to the lattice point. We note
that in the 7X channel, this occurs at rather small energies,
well below the region of interest for the A(1380) and
A(1405). However, A exchange in the yA — nA transition

(4.19)

is only slightly below the A(1380) bound state at the lattice
point. Ultimately, this leads to a complex-valued K-matrix,
Eq. (4.13), invalidating a simple application of Liischer’s
quantization condition. Practically, in the current state-of-
the-art of the coupled-channel UCHPT models, this is
avoided by replacing the potential slightly above the critical
region by a constant. The modified and used one-baryon
exchange potential is depicted by the long-dashed line in
the left panel of Fig. 5. So far, the coverage and precision of
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experimental as well as lattice results is not sensible to these
effects. However, in the long run, we expect that an
extension of modern three-body formalisms like FVU
[71] or RFT [70] to such cases will be a better choice.
These have been shown recently of being capable of
dealing with strangeness channels [112-114], dealing with
left-hand cuts [110], and extracting resonance pole posi-
tions for three-body states [115-119] from experimental
and lattice QCD spectra.

V. ANALYSIS

A. Pilot study: Finite-volume spectrum from
UCHPT and experiment

Before fitting the free parameters of the models, we wish to
check if the finite-volume spectrum obtained from available
models already matches the lattice QCD spectrum [20,21].
Specifically, we consider contemporary models of next-to-
leading chiral order, including diagrammatic or potential
unitarization formalisms [12,35,50]. These models, referred
to as UCHPTY o, represent a fair spread (including M3 type
models) of assumptions made in the derivation, sampling
qualitatively possible model dependence, as discussed in
Sec. IV. We also include M1 (UCHPTwy) and M2
(UCHPTy o) type models available from Ref. [12]. All

considered models rely on the scheme S1 with subtraction
constants a, assumed to be quark mass independent. All
considered models describe at least the experimental data
compiled in Sec. III with similar quality (43, ~ 1).

The finite-volume spectrum is predicted through the
Liischer formalism [24,25] implemented as discussed in
Sec. IIB. The central values of the predicted energy
eigenvalues in relevant irreps are depicted in Fig. 6 together
with the lattice QCD results. We observe that (ignoring
correlations at the moment), for the most part, all NLO but
also WT and LO models agree with the provided spectrum.
There are, however, stark exceptions to this observation,
like the second and third levels of G, where some NLO
models predict a different finite-volume spectrum. Further
examples are the third level of the G(3) irrep or the fourth
lowest level of the G(1) irrep, which do not agree with
either of the model predictions. It is noteworthy that the
spread of the predictions for the NLO models is indeed
expected since these models provide a better description of
the experimental data for the price of larger numbers of free
parameters. Their predictions vary stronger than those of
the WT or LO models.

Overall, we cannot escape the conclusion that new
precise lattice results will provide an important constraint
on the models.

b9 KN
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—eo—i —e—i —e—+—+—&—i 4LQCD G(1)

== ) e ° o g° ¥o o  {UCHPTW,
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8 o & 8 1 UCHPTwt
—e—i —e— —e— —+—o4 LQCD G(2)
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FIG. 6. Fit-free prediction of the finite-volume spectrum relying on the contemporary WT (M1), LO (M2), and NLO type UCHPT
models [12,35,50]. Pink vertical bands show the lattice QCD results [20,21] for relevant irreps: Gy,, G;(1), G(2), and G(3).
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B. Fit details: Loss function and degrees of freedom

Stemming from quite different time periods and being
results of vastly different experimental techniques, the
quality of the experimental data summarized in Sec. III
is very different. More so if one considers combined
analysis of lattice QCD finite-volume spectra (Sec. II) as
adequate input for the UCHPT fits. Thus, a simple y?
statistic as a measure of fit quality is not sufficient and
modifications are in order.

As an example, consider one of the most modern exper-
imental data inputs, the energy shift and width of the kaonic
hydrogen, in comparison with the oldest data available, the
total cross sections for the K~ p — M B. The former consists
of only two quantities measured at 10-20% accuracy at the
K~ p threshold. The latter data include 252 data points at a
few 10’s% statistical uncertainty depending on the channel
and the kinematics, which also carries considerable system-
atic uncertainties due to bin sizes and possible inconsisten-
cies of the data. Using traditional y? definition aggregating
both sources together would, thus, simply make the modern

SIDDHARTA data entirely insignificant despite its superior
quality. Lattice finite-volume spectra consist also of only 14
points and, thus, would appear as an insignificant contribu-
tion to the total y2. In such cases of asymmetric data
distribution among different observables, a weighted y?
definition is more customary,

2 Za 2
ot = A (S gNa) = Nour) ™

A
with 42, = Z
N,

Zf“

QI\)

f )[C ]nm( (N)—JA%)
(5.1)

Here, we denote with a/A the index/number of observables,

with y2 =

and N is the parameter vector of the model. Its size N, can
be read off from Fig. 7. n/N, is the index/number of data in

[Fit [UCHPT type| Nastajexp. +1at.+m | Noar. | X3t | AIC[ BIC] N

Fig|M1S1L 0+1440 3 | 1.36| 7.4 9.3 Fiof 1

F1 | M1S2L 0+14+0 0 | 2.89| 29| 29 Fai| 20

Fis|M1S3L 0+1440 1 | 442| 64| 7.1 Figl a1

Foo | M2S1L 0+1440 3 | 1.42| 7.4] 93 Faol 14

Fp | M2S2L 0+1440 0 | 268 27| 27 Fal 27

Fos| M2S3L 0+1440 1 | 3.54| 55| 6.2 Fosh as

Fo1 | M3S1L 0+14+4 10 | 0.96] 21.0| 29.9 Fol os o

Fi5|M3S2L 0+14+4 7 | 0.90| 14.9| 21.1 Fislk o6 os

Fio|M3S3L 0+14+4 8 | 0.92]16.9] 24.0 Fio I S

Fy1|M1S1P 258 +0+0 6 | 423 162|375  Faf 2 2 22 4 22 WAL 21 s
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Fy7 |[M1S3P 258 +040 1 [30.28] 32.3| 35.8 Fat EaEl - v - Bl -
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FIG. 7. Left: summary of the fit results minimizing x5 ; while using various model types, regularization schemes, and data subsets.

The last two columns show AIC and BIC values from Eq. (5.2), where results with large y3 ; are grayed out. Right: minimized y* from
fits in the table left-hand side, separated by the data type normalized by the number of data in that observable. Here, “LQCD,” “AMAD,”
and “Thr.” refer to lattice, AMADEUS, and threshold data discussed in Secs. II and III.
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the data type a, f¢ /f“ is the model/datum result of the
corresponding observable type a, and C is the covariance
matrix of the data. Note that in most cases, except lattice
QCD, the latter is simply provided by a diagonal matrix of the
form[C,],,, = 6um(6%)%, where 6¢ is the error for each datum

fﬁ. The total number of data is denoted by Ny, = >, N,

The above y7 ; is minimized in the fit with respect to k
parameters. However, given the various choices of inter-
action kernel (M1, M2, and M3) and regularization scheme
(S1, S2, and S3), this analysis is both a parameter
estimation and model comparison problem. Comparing
models with different parameters should involve penalizing
models with more parameters.

A full model comparison would involve the estimation of
Bayes factors via Markov chain Monte Carlo which, given
the number of parameters of interest, would be too
computationally expensive with the current code. A crude
model comparison may be effected using an information
criterion that attempts to balance goodness of fit against
model complexity (see, for example, [120] for an example
in an adjacent research area). Such criteria make use of the
(log) maximum likelihood, with some adjustment for the
number of parameters and size of the dataset. We use the
Akaike information criterion (A/C) [121] and the Bayes
information criterion [122] (BIC), but we note that care
must be taken in interpreting the numbers calculated for
AIC/BIC too seriously, and we use them only as a guide
for revealing gross features.

For a given maximum log-likelihood log L., the
information criteria are defined as

AIC = =210g Ly + 2N pye

and BIC = Ny 10g Ngyy — 2108 Liyex.  (5.2)
Comparing AIC/BIC values for different models is only
valid for fits to the same data points, but if this condition is
true then the differences in AIC or BIC values between
models can be related to the relative probability of a model
being true. In our case, we use the x5, as defined in
Eq. (5.1) as —2log L., and values are displayed in Fig. 7.
There, results for fits with too large y3 , are grayed out and,
furthermore, sensible comparisons between different mod-
els can only be made for fits with an equal number of data.

C. Fit discussion

subsec:fit-discussion Following the description of the
X3¢ analysis, this section provides additional technical
details of the fitting procedures used in this work. In the fits,
subtraction constants and LECs will be constrained using
the two-hadron interacting spectrum and experimental
quantities. In addition, the parameters, related to the
explicit chiral symmetry breaking by, bp, and bp, can
be constrained using the lattice QCD estimation of single
baryon masses provided by BaSc collaboration [20].

The NLO CHPT formulas for the baryon masses read as
follows [87,123]:

mN:mO—Z(bo‘l—sz)M%—é‘-(bo—f-bD—bF>M%(, (53)

2 4
ma = nmgy — g (3b0 - 2bD)M72r - g (3b() + 4bD - bF)M%(,

(5.4)
my = m() —2(b0+2bD)M,2[—4b0M2, (55)
mE:mO—Z(bO—2bF)M,2,—4(b0—|—bD+bF)M%<, (56)

where the low-energy constants b, b, and bp have
been discussed before, and m, is the baryon octet
mass in the chiral limit. In practice we avoid fitting m,
directly with explicitly constructing the mass differences
between the lattice and the physical points. In summary, we
have 272 [258(experimental) + 14(lattice finite-volume
multihadron) + 4(lattice finite-volume single baryon)] data
points and construct a correlated )(gof, as described
in Sec. VB.

In the fits, we use Nelder-Mead minimization and check
for absolute convergence by performing the fits using
different initial conditions. We are fitting models (M1,
etc.) with increasing computational complexity using
regularization S1, S2, and S3, including lattice and/or
experimental data. In the end, the best fits are selected
using each regularization S1, S2, and S3 using all of the
available data. The pole positions are computed for each fit
individually and can be found in the Appendix.

The same model parameters are constrained through the
lattice and experimental data, although in the former case
via the complex partial-wave amplitude f, and in the
latter case via the real |f(,|>. Regularization S1 provides
maximal freedom, enabling a completely independent set
of subtraction constants at the physical and lattice points.
However, in the case of the lattice data the projection to the
isospin zero channel eliminates the dependence through
subtraction constants, da,,,a,s. In addition, during our
numerical investigation we found out that the fit to the
lattice data is insensitive to agz.

To check the robustness of our fits, we select M3S1PL
(Fy7) and test its behavior under different random initial
conditions. In this case, the minimization is performed in a
16-dimensional parameter space, and we examine whether
and how the global minimum is consistently reached. The
results are shown in Fig. 8. In the left panel, we show the
convergence of y3 ; as a function of the iteration number. In
all cases, ;(ﬁof converges to the same minimum value,
indicating consistent fit quality across different initializa-
tions. In the middle panel, we present the convergence of
the parameter by, which shows only a small spread in its
final values. The right panel displays the convergence of the
subtraction constants a,s at the physical point, where two
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FIG. 8. Convergence check of Fit 17 (M3S1PL) using nine different sets of initial parameters. Left: evolution of y3 ; as a function of
iteration number. Middle: convergence behavior of the parameter by. Right: convergence behavior of the subtraction constant a,y at the

physical point.

outlier trajectories are observed. We note that the spread of
the values for a,y is the largest among all fitting parameters.
However, as seen in the left panel from the x3 ; values, the
data are described well by all of the solutions, including the
outlier ones. For the final fit selection, we choose the one
where all subtraction constants are smaller than 0.05 in
absolute value, guided by naturalness arguments, although

all solutions lead approximately to the same two-pole
structure.

In the left panel of Fig. 9 we show the fitted spectrum for
all different available models and regularization schemes.
We would like to point out that leading chiral order models
M1 and M2 give very similar results, with the regulariza-
tion S1 providing the best y3  estimate. Note that in this
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FIG. 9. Left: model (M1, M2, and M3) predictions for the lattice spectrum using different regularizations (S1, S2, and S3). Fits were
done using only the lattice data. More detailed results including cross-correlations are provided for each fit in the Appendix. Individual
x? values can be found in Fig. 7. Right: distribution of low-energy constants for the best combined fits for three different schemes.
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case, S3 has only one parameter, whereas the S2 prediction
is parameter-free. In the right part of Fig. 9 we show the
bootstrap samples’ distribution of the LECs using the three
different regularizations, fitting all the available data.
Dynamical LECs (d;, d,, d3) do agree in S1 and S2
schemes, but show large statistical and systematic uncer-
tainties in d,. Our results for the symmetry breaking
parameters (b, by, by) are compatible with those obtained
in Ref. [124] using the corresponding CLS ensembles, and
also quite close to the values obtained in perturbative
calculations [77].

VI. RESULTS AND DISCUSSION

After having determined the best parameters of each
model with respect to the lattice and experimental
input, we turn to the main goal of the paper, extracting
transition amplitudes and their analytic structures.
In the relevant energy region, the former are holomor-
phic functions, except the meson-baryon right-hand cuts
taken care of through the unitarization procedure
(Sec. IVB) and possible poles on the unphysical

A(1405)

Riemann sheets associated with excited hadrons, see,
e.g., [5,6,92,125].

In dealing with the 10-channel problem, there are 2'°
Riemann sheets associated with the right-hand meson-
baryon cuts. There are various ways to label those. Most
frequently [11,126], one denotes a Riemann sheet (full
complex energy plane) by a sequence [+...1] referring to
sgn(Im(pey(s))) in each two-body channel. For example,
any experimental or lattice input is obtained on the real
energy axis of the physical sheet [+ - - - +]. An unphysical
sheet connected to the physical one between mass-ordered
threshold n—1 and n is denoted by [T: 4]

Riemann sheets with mixed order of + are sometimes
referred to as hidden sheets, as they are connected to the
physical real energy axis through a sequence of other
sheets, see Fig. 3 in Ref. [5].

The pole positions of the A(1405) and A(1380) have
been determined directly from lattice input using generic
(EFT independent) tools [20,21], and from experimental
results through UCHPT. While more can be said about the
latter (see Fig. 7 from Ref. [9]), we use here as a reference
the Particle data Group (PDG) and BaSc values (in MeV),

A(1380)

physical point

lattice point

All these poles are obtained on the Riemann sheet [+ +
— — — — + + ++] with respect to the two-body channels
{K=p, K, A, 2°20, zt27, 272, gA, n=°, KTE-,
KYZ%}, as in Eq. (2.7).

A. From the lattice to the physical point

First, let us consider the case of lattice QCD results being
the only input to the UCHPT approach. Indeed, we have
seen in Sec. V A that the former is indeed a nontrivial input.

The M1 models F 9, F5;, and F g in Fig. 7 provide an
approximate description of the lattice results, including
only few free fit parameters, as described in Sec. V C. The
S2 scheme provides such description quality even without
any fits. Similarly, the M2 type (F», F'35, and F,5) provides
similar or slightly better fits to the data with no additional
parameters. This shows that the exchange diagrams (Born
terms) do matter in the description of the finite-volume
spectrum. Regarding the isoscalar pole structure, at the
lattice point we observe (see the plots, Figs. 15-41, in

1417.7151 — i26.1185°
142978 — 123
143472 — 1072
142173 — i197%
1455431 — i12%%

132512 — 90" 3
133072 —i567|]
138879 — i11472¢
1381758 — 811y’
1392*8

Appendix A) that all models provide the A(1405) narrow
pole and the A(1380) broad pole. In a few but not all cases,
the latter becomes a virtual bound state, as also obtained by
the BaSc (K-matrix) analysis.3 More importantly, the S1
type of models predict a resonance A(1380) with non-
negligible width, having better )(ﬁof than the other fits.
Extrapolating to the physical point, while neglecting the
quark mass dependence of the subtraction constants in
the S1, as in Sec. VA, we observe again a clear two-pole
structure with the spread of poles due to variations of the
model types reflecting the spread of the reference values.
Regarding the isovector states, all models except M1S1 do
predict a state whose position, however, varies strongly
with the model type.

Models of the M3 type (Fy;, F'i5, and F', in Fig. 7) have
larger flexibility and do indeed provide an excellent

3 . . . .
An interesting data-driven nonparametric approach based on
Nevanlinna interpolation was proposed recently in Ref. [127].
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Isoscalar scattering amplitude next to the physical (light pink surface for Im y/s > 0 in the 3D plot) and unphysical Riemann

sheets (color coded) of the solutions (M3Sx type) fitted only to the lattice QCD results. Extrapolation to the physical point is shown in
the left column. More details of the fit and predictions thereof can be found in Appendix A.

description of the lattice input (y3 ; ~ 1), see Fig. 7. On the
most relevant sheet [+ + — — — — + + ++], we do again
observe two poles both for the lattice point and after an
extrapolation also at the physical point, see Fig. 10. However,
all pole positions vary strongly between different models. For
example, F; does agree with the reference valuesin Eq. (6.1)
on the A(1380) pole position, but not on the corresponding
A(1405) value. Similar observations hold forthe F',y and F 5
fits. Interestingly, all chiral extrapolations to the physical
point provide a similar prediction for the A(1380), which
also qualitatively agrees with the reference values in
Eq. (6.1). The position of the A(1405) pole is on the other
side, not well predicted at the physical point.

We conclude that a combination of currently available
lattice QCD finite-volume spectra combined with the
modern UCHPT approaches does indeed provide proof
for the existence of two states, A(1405) and A(1380).
However, it also seems that the pole positions are not yet
fixed when taking into account systematic uncertainties of
the UCHPT approaches. Information criteria from Sec. V B
seem to prefer the S2 and S3 types of fits due to the strong
weight on the number of parameters.

B. From the physical to the lattice point

Obviously, it is also possible to inverse the procedure of
the last section, using only experimental data as input then
predicting the pertinent lattice point results. One motivation
behind this is to test the predictive power of the UCHPT
approaches outside of the fitted quark mass domain.

The M1 and M2 types of models do not allow an adequate
description of the experimental data, as shown in Fig. 7. A
look at the separated contributions to the y* value with
respect to different observable types reveals that this is
mostly due to the threshold values including the so-important
SIDDHARTA results [62] and very recent AMADEUS data
[52,68]. The corresponding extracted isoscalar and isovector
pole positions can be found in Appendix B (see Figs. 42-66).
Clearly, since the models are at odds with the data, the results
scatter erratically and should not be overinterpreted.

The most flexible model type M3 (F3y, F3, and F;)
provides a reasonable description of all experimental data
(;(ﬁof ~ 1.5), as shown in Fig. 7. Again, S2 and S3 are
favored due to the AIC and BIC. At the physical point, we
observe again the two-pole structure of the isoscalar states
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Isoscalar scattering amplitude next to the physical (light pink surface for Im /s > 0 in the 3D plot) and unphysical Riemann

sheets (color coded) of the solutions (M3Sx type) fitted only to the experimental input. Extrapolation to the lattice point is shown in the
right column. More details of the fit and predictions thereof can be found in Appendix B.

with well-fixed A(1405) and less determined A(1380)
poles, see Fig. 11. At the lattice point, all three solutions
(F39, F13, and Fy;) provide a prediction of the pole
structure, which indeed overlaps with the BaSc determi-
nation [20] within ~2¢. Comparing this to the pertinent
observation of the previous Sec. VI A, it is reasonable to
conclude that experimental data provide more strict con-
straints on the UCHPT approaches than the recent lattice
QCD results. In the isovector case, poles are predicted in
each model type for the lattice point. Their positions vary
strongly with the chosen model type. At the physical point,
even less can be concluded with certainty. Indeed, this
confirms the results of the previous metastudy [11] of
various unitary models, leading to vastly different predic-
tions in the isovector case. Whether this can be mitigated
through combined use of the lattice and experimental input
is discussed in the next section.

C. Combined analysis at the lattice and physical point

We have previously seen (Secs. VI A and VI B) that both
lattice and experimental input can be successfully fit

through the UCHPT model, providing in some cases also
sensible predictions outside of the fitted range. Still, a more
detailed examination also shows that uncertainties are
sizable. Thus, a combined fit to lattice and experimental
input is performed in this work for the first time.

First, as shown in Sec. VIC, Weinberg-Tomozawa and
leading chiral order UCHPT model (M1 and M2) types are
effectively ruled out by not being able to describe the
(near)-threshold SIDDHARTA and AMADEUS data. For
completeness the results of the combined fit can be found in
Fig. 7. Note that only the S3 type needs to be refit to the
combined input, while S1 and S2 types decouple y>
contributions from lattice and experiment data when no
NLO parameters (b’s) are used.

The results of the M3 type models for all three
regularization schemes, S1, S2, and S3, are provided in
the last three rows (see F';7, 4, and F'},) of Fig. 7. Overall,
a good y3; is obtained with a relatively flat distribution of
the individual contributions from different observables,
see the right panel of Fig. 7. The biggest contributions
come from cross section data, which again points to the
systematic uncertainties within experimental data discussed
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sheets (color coded) of the M3Sx type approaches fitted to the lattice and experimental input. More details of the fit and predictions

thereof can be found in Appendix C.

in Sec. III. Further details of the fit are provided in
Appendix C (see Figs. 67-81).

Figure 12 shows the isoscalar pole positions on the
relevant unphysical Riemann sheets for the lattice and
physical points. All, except the lower pole [A(1380)] of the
M3S1 type at the lattice point, agree with the reference
values (magenta in the figure). Notable is, however, that
because of the unknown quark mass dependence, the
subtraction constants a in the S1 type are fitted separately
for lattice and physical points. One consequence of this is
that the fit is too volatile, depending strongly on the starting
values, as discussed in Sec. V C. Secondly, this fit is also
disfavored in comparison to S2 and S3 by both information
criteria despite smaller y2 ;.

To further examine the uncertainty associated with
the pole positions, we resample the obtained fits by
varying the input according to the provided (statistical)
uncertainties. In the lattice QCD case, this is directly
accomplished using provided bootstrap samples, whereas

in the experimental case parametric bootstrap samples are
generated by drawing synthetic datasets from uncorre-
lated, Gaussian-distributed data points, using the reported
central values as the means and the quoted uncertainties
as the standard deviations. The final result is provided in
the summary plot in Fig. 13, where systematic (model
types) and statistical errors (resampling) are included and
compared to the reference values from the literature. Note
that the latter were obtained through fits to either exper-
imental or lattice input. The physical point result agrees
nicely with the previous phenomenological fits also
reflecting the large uncertainty of the A(1380) pole
positions. The A(1405) is narrowed down to a very small
region. At the lattice point, the position of the latter state
supports the CHPT-independent determination of the
lattice collaboration (BaSc [20,21]) but tends to be
slightly larger in real and imaginary parts. In fits S2
(F16) and S3 (F,), the A(1380) is found for all bootstrap
samples on the real axis just below the zX threshold. Note
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FIG. 13. Pole positions for / = 0 using best global fit models M3S1 (fit F;), M3S2 (fit F4), and M3S3 (fit F,). Pole positions are
obtained on the [+ + — — — — + + ++] Riemann sheet for physical and unphysical (cf. M, ~ 200 MeV, etc.) quark masses. Circled

pole positions are central fits compared to resampled fits, as described in the main text. Vertical lines show positions of the two-body
thresholds (resampled for the lattice point). Gray dots show the reference values from fits to either lattice or experimental input

[12,13,20,50].

that thresholds at the lattice point are also subject to
resampling, which is very important to keep track of.
Individual thresholds are represented by the color-coded
vertical lines. We also observe a second virtual bound-
state pole (cf. /s ~ 1.33 for F4), which is required due to
analyticity. For a related discussion in the context of this
and other excited hadrons, see, e.g., Refs. [95,128-133].
Numerical values are provided in Table I. A critical
observation is, however, that there is a non-negligible
set of solutions (S1 type, Fy;) predicting a A(1380)
resonance pole away from the real axis. We have checked
explicitly that the poles are smoothly varying when
moving along a linearized trajectory between the lattice
and physical points. While disfavored by the AIC or BIC,
the existence of such solutions draws at least a shadow
of a doubt that the pole positions of the A(1380) state are
resolved through the currently available (lattice and
experimental) input. Of course the existence of both poles
is undisputed by this and seems to be now solidified by the
combination of UCHPT, lattice, and experimental inputs.

As a final observation we also provide predictions of
the pole positions for the isovector case, including

systematic and statistical uncertainties. The result is
depicted in Fig. 14, referring again to the Riemann sheet
[++————++++] connected to the physical real
axis between zX and KN thresholds. At the physical
point, we observe for all fit types a broad state with a
width of around I'=200-400 MeV and mass above
1300 MeV. Solution F; provides a second state with a
lower width, which is possibly a sign of an overfit.
Other states far above the KN threshold also exist but
their influence on the observables at real energies is
expected to be negligible. At the lattice point the poles
mostly do not move much, except for the narrow Fi;
pole. Presumably, this is simply due to the large widths
of the found states, which, therefore, have little effect
on the real energy axis, where the input either from the
experiment or lattice is provided. Numerical values are
provided in Table I. We conclude that the existence of
the isovector, negative-strangeness excited baryon state
is very likely, but because of its large width its position
is currently very hard to resolve. Turning this argument
around, this means that lattice results in this sector are
highly desired.
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FIG. 14. Pole positions for I = 1 using best global fit models M3S1 (fit F;), M3S2 (fit F'4), and M3S3 (fit Fy,). Pole positions are
obtained on the [+ + — — — — 4+ + ++] Riemann sheet for physical and unphysical (cf. M, ~ 200 MeV, etc.) quark masses. Circled
pole positions are central fits compared to resampled fits, as described in the main text. Vertical lines show the positions of the two-body

thresholds (resampled for the lattice point).
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APPENDIX A: DETAILED FIT RESULTS: FITS TO THE LATTICE INPUT

1. MISIL (Fyo)

X 30f 1.36 G(3)4 | 000 | 000 | 000 | 000 | 0.00 | -000 | -0.00 | -0.00 | -0.00 | -0.00 | 000 | 0.00 | -0.00 | 0.0
ain | 2.108217e-03 G(3)3 | 001 | 002 | 000 | 002 | 002 | -002 | 001 | -0.01 | 0.01 | -005 | 001 | -0.03 | 019 | -0.00
axa |-1.079700e-01 G(3)y | -002 | 000 | 000 | 002 | -003 | 005 | 000 | 001 | -0.01 | -002 | 003 | 0.4 | -0.03 | 0.00
axx | 2.108217e-03 G(3)y | -003 | 002 | 000 | -012 | -0.01 | 000 | 000 | -0.04 | 0.01 | -001 | 049 | -0.03 | 0.01 | 0.00
anA 2.939451e-04 G(2)3 | -003 | 001 | 000 | -0.00 | -0.01 | -002 | 000 | 001 | -001 | 008 | -0.01 | -0.02 | -0.05 | -0.00
ansy | 2.163700e-01 2
G(2)3 | 000 | -000 | 000 | -001 | -001 | -001 | -000 | -000 | 002 | -001 | 001 | -001 | 001 | -0.00 x*/dof
axz | 3.948000e-02 0.9
G(2); | -006 | 001 | 000 | -001 | -000 | -001 | -000 | 002 | -000 | 001 | -004 | 001 | -001 | -0.00 0.6
: 0.01 | -0.00 | -0.00 | -0.01 | -0.01 | -0.01 | 0.01 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | -0.01 | -0.00 0.3
FIG. 15. Subtraction constants at Gr()a o
the lattice point for M1S1L (F 19). Gi(1)s | o1 0.02 | -000 | -0.01 | -0.00 | 024 | -0.01 | -0.01 | -0.01 | -0.02 | 000 | -0.05 | -0.02 | -0.00 )
Gi(1)2 | 000 | 002 | 000 | 002 | 017 | 000 | -0.01 | -0.00 | -001 | -0.01 | -0.01 | -0.03 | 002 | 0.00
Gy(1); | 027 | 001 | 000 | 035 | 002 | 001 | -0.01 | -0.01 | -001 | 000 | -0.12 | 0.02 | 002 | 0.00
Giyys | 2000 | -000 | 000 | 000 | 000 | -0.00 | -0.00 | 000 | 0.00 | -0.00 | -0.00 | 0.00 | 000 | -0.00
Gy | 003 | 015 | -0.00 | 001 | -0.02 | 002 | -0.00 | 001 | -0.00 | 001 | 002 | 000 | -0.02 | 0.00
Gru,1 - 0.03 | -0.00 | 027 | 000 | 011 | 001 | -0.06 | 000 | -0.03 | -0.03 | -0.02 | 001 | 0.00

Gru1 Giu2

Grus Gi(1)1G1(1)2G1(1)3G1(1)a G(2)1 G(2)2 G(2)3 G(3)1 G(3)2 G(3)s G(3)a

FIG. 16. Heat map of correlated )(ﬁof,i I highlighting the relative impact of each energy level on

the total fit quality.
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sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and

Refs. [12,13,50].
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2. M1S2L (F;)

2

G(3)4 | 000 | 001 | -0.01

-0.00 0.01 -0.01 -0.01 0.02 -0.02 -0.04 -0.00 0.00 -0.07 0.03

G(3)3 | 000 | -0.06 | 0.01

-0.04 0.06 -0.22 -0.12 0.22 0.05

-0.94 | -0.01 -0.21 -0.07

FIG. 18. Total y2 for the parameter-
free MIS2L (F3).
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1
Gi(1)4 | 000 | 003 | 003 | 002 | 005 | -0.09 | 022 | 000 | -0.00 | 006 | -0.00 | -0.03 | -012 | -0.01
0
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FIG. 19. Heat map of correlated ;(ﬁof,ij, highlighting the relative impact of each energy
level on the total fit quality.
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3. MIS3L (F,g)

2
Xdof 4.42 G(3)4 | 000 | 001 | 003 | 002 | 002 | 003 | 002 | 004 | 005 | 006 | 001 | 001 | 011 | 004

A [Gev] 0.6892541 G(,})& -0.03 -0.13 0.03 -0.17 0.14 -043 | -0.18 0.62 0.19 -1.79 | -0.05 | -0.56 -0.11

G(S)z 0.07 0.02 0.01 -0.12 -0.17 -0.60 -0.08 -0.22 -0.33 -0.48 0.15 1.49 -0.56 0.01

FIG.21. Total x5 ; and the A param-

G(3 -0.04 -0.05 0.08 -0.35 0.04 -0.01 -0.01 -0.74 -0.14 0.09 1.06 0.15 -0.05 -0.01
eter for M1S3L (Fg). ()
;(2)3 0.19 0.10 -0.22 0.01 -0.14 -0.47 0.11 -0.53 -0.72 0.09 -0.48 -1.79 -0.06
7(2)o | 001 | 001 | 003 | 014 | -018 | -020 | -0.00 | 0.05 | 088 | -0.72 | -0.14 | -033 | 019 | -0.05 x2/dof

4
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FIG. 22. Heat map of correlated )(ﬁofyi ;» highlighting the relative impact of each energy
level on the total fit quality.
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4. M2SIL (Fy)

Xﬁo ¢ 1.42 G(3)4 | 000 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 000 | 000 | -0.00 | -0.00 | 0.01 | 0.00
agN 2.249408e-03 G(3)3 | 000 | 001 | -000 | 001 | 001 | -0.01 | -000 | -0.01 | 000 | -0.03 | 001 | -0.02 | 012 | 0.01
arp |-1.079700e-01 G(3)y | 002 | 000 | 000 | 001 | -002 | 002 | 000 | 001 | -0.00 | -0.01 | -002 | 006 | -0.02 | -0.00
ars | 2.249408e-03 G(3); | 003 | 002 | 000 | 012 | 001 | 000 | 000 | -0.06 | 0.01 | -0.01 - 002 | 001 | -0.00
ana |-5.364455e-03 G(2)3 ] 002 | 001 | 000 | -0.00 | -001 | -0.01 | 000 | 001 | -0.00 | 004 | -001 | 001 | 003 | 0.00
ays | 2.163700e-01 G(2)y | 000 | 000 | 000 | -0.00 | -000 | -0.00 | -0.00 | -0.00 | 0.00 | -000 | 001 | 000 | 000 | 0.00 x?2/dof
akz= | 3.948000e-02
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. Gy(1), | 000 | <000 | 000 | -0.00 | -000 | 000 | 000 | -0.00 | -0.00 | 000 | 000 | -0.00 | -0.00 | 0.00 03
FIG. 24. Subtraction constants at the 14 00
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Giun - 002 | 000 | 026 | 000 | 008 | 000 | 010 | 000 | -0.02 | -003 | 002 | 000 | -0.00
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FIG. 25. Heat map of correlated ;{ﬁoﬂi ;» highlighting the relative impact of each energy
level on the total fit quality.
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5. M2S2L (F,)
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FIG. 28. Heat map of correlated )(ﬁof,ij, highlighting the relative impact of each energy
level on the total fit quality.
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FIG. 29. Isoscalar and isovector projected absolute value of the zX — zX scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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6. M2S3L (F5s)

Xﬁ . 3.54 G(3)s | 000 | 001 | 002 | 001 | -001 | 001 | 001 | -0.02 | 003 | 003 | 001 | -001 | 005 | 002
o .

A[GeV} 0.7054119 G(3)3 | -001 | -0.08 | 002 | 010 | 0.09 | -0.25 | -0.05 | 0.38 | 012 | -0.86 | -0.03 | -035 0.05

G(3)2 0.06 0.02 0.01 -0.10 -0.16 -0.51 -0.03 -0.20 -0.30 -0.34 0.13 1.36 -0.35 -0.01

FIG. 30. Total 3 ; and the A param-
eter for M2S3L (Fg).

G(S)l -0.03 -0.04 0.07 -0.29 0.03 -0.01 -0.01 -0.63 -0.12 0.06 0.89 0.13 -0.03 0.01

G(2)3 | 012 | 007 | -016 | 000 | -0.09 | -031 | 003 | -0.37 | -0.50 006 | -0.34 | -086 | 003
G(2)2 | 001 | 001 | 003 | 012 | 016 | -0.16 | -000 | 004 | 0.78 | -050 | -0.12 | -0.30 | 012 | 003 x?/dof
3
G(2); | 060 | 012 | -0.02 | -034 | 007 | 023 | 0.00 - 004 | 037 | -0.63 | -020 | 038 | -0.02 I 2
Gi(1)y | 001 | 002 | -0.02 | 003 | 003 | -0.05 | 0.05 | 000 | -0.00 | 0.03 | -001 | -0.03 | -0.05 | 001 1
Gi(1)z | -028 | 009 | -0.08 | 0.09 | -0.02 2005 | 023 | -016 | -031 | -0.01 | -0.51 | -025 | 0.01 !

G1(1>2 0.00 -0.06 0.01 -0.05 0.53 -0.02 -0.03 0.07 -0.16 -0.09 0.03 -0.16 0.09 -0.01

Gy (1)1 -0.35 -0.01 -0.12 1.16 -0.05 0.09 0.03 -0.34 0.12 0.00 -0.29 -0.10 -0.10 0.01

Glu,s 0.04 -0.10 0.66 -0.12 0.01 -0.08 -0.02 -0.02 0.03 -0.16 0.07 0.01 0.02 0.02

Glu,z -0.03 0.34 -0.10 -0.01 -0.06 0.09 -0.02 -0.12 -0.01 0.07 -0.04 0.02 -0.08 -0.01

Glu,l 0.50 -0.03 0.04 -0.35 0.00 -0.28 -0.01 -0.60 -0.01 0.12 -0.03 0.06 -0.01 0.00

Gru1 Gru2 Grus Gi(1)1G1(1)2G1(1)3G1(1)4 G(2)1 G(2)2 G(2)3 G(3)1 G(3)2 G(3)s G(3)4

FIG. 31. Heat map of correlated )(gof'i ;» highlighting the relative impact of each energy
level on the total fit quality.
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FIG. 32. Isoscalar and isovector projected absolute value of the 72X — X scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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7. M3S1L (Fy)

X?iof 0.96 G(3), | 000 | 000 | -0.03 | 003 | -000 | -0.01 | -0.03 | -006 | -0.12 | -0.07 | -0.00 | 001 | -0.10 | 044
agN -4.088304e-03 G(3)3 | 000 | 000 | 000 | 002 | -0.00 | -0.02 | -0.02 | -0.09 | 0.04 | -0.19 | -0.00 | -0.06 | 039 | -0.10
[N -1.079700e-01 G(3)y | -001 | 000 | 000 | 002 | 000 | -0.04 | -0.01 | 004 | -0.09 | -0.07 | 0.00 | 020 | -0.06 | 0.01
ary -4.088304e-03 G(3); | 000 | 000 | 000 | 001 | -0.00 | -0.00 | -0.00 | 0.03 | -0.01 | 0.00 | 0.01 | 0.00 | -0.00 | -0.00
anA 3.560274e-03 G(2)3 | -003 | -000 | -003 | -0.00 | 000 | -0.03 | 002 | 010 | -0.21 0.00 | -007 | -0.19 | -0.07
> 2.163700¢-01 7(2)2 | 0.00 | 000 | 001 | -0.04 | 000 | -0.02 | -0.00 | -0.02 021 | -001 | 009 | 004 | -0.12 x?/dof
aK= 3.948000e-02 08
G(2); | 018 | -001 | 000 | -008 | 000 | -0.02 | -0.00 <0.02 | 010 | 0.03 | 004 | -0.09 | -0.06 0.6
bo[1/GeV] |-4.730918e-01 04
Gq(1)g | 001 | 000 | -0.01 | -0.02 | 0.00 | -0.01 | 0.06 | -0.00 | -0.00 | 0.02 | -000 | -001 | -002 | -0.03 0.2
bp[1/GeV]| 8.116358e-02 o
Gi(1)3 | 003 | -0.00 | -001 | 001 | 000 | 0.09 | -001 | 002 | -0.02 | -003 | -0.00 | -0.04 | -0.02 | -0.01 0.2
br[1/GeV]|-3.145407¢-01 v
Gi(1)2 | 000 | -0.00 | -0.00 | 000 | 000 | 0.00 | 000 | 000 | 0.00 | 000 | -0.00 | 0.00 | -0.00 | -0.00
d1[1/GeV] | 3.526983¢-01 (1)
0.09 | -0.00 | 002 | 024 | -0.00 | -0.01 | -0.02 | -0.08 | -0.04 | -0.00 | 001 | 002 | 002 | 003
da[1/GeV] |-7.041922¢-02 Gl
ds [1/GeV] -2.002697e-01 Gy | 2001 | 000 | 011 | 002 | -000 | -001 | -001 | 000 | 001 | -0.03 | 000 | 000 | 000 | -0.03
da [1/Ge\/‘] -5.572205e-01 Gy | 2000 | 000 | 000 | -000 | -0.00 | -0.00 | 000 | -001 | 0.00 | -0.00 | 000 | -0.00 | 0.0 | -0.00
Gy | 017 | -000 | 001 | -0.09 | 000 | 003 | 001 | -018 | 000 | -0.03 | 0.00 | -0.01 | 000 | 0.00

FIG. 33. The total y3 ;, subtrac-
tion constants at the lattice point,
and LECs for M3SI1L (F).

level on the total fit quality.
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FIG. 34. Heat map of correlated )(ﬁof’ij, highlighting the relative impact of each energy
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Isoscalar and isovector projected absolute value of the #X — 7% scattering amplitude on the unphysical second Riemann

sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and

Refs. [12,13,50] for the physical point.
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8. M3S2L (Fys)

2
Xdof 0.90 G(3)4 -0.00 0.00 -0.03 -0.03 0.01 -0.02 -0.03 0.01 -0.14 -0.08 -0.03 0.01 -0.09

bO[l/GeV] -5.349500e-01 G(3)3 | 001 | 000 | 000 | 002 | 000 | -002 | 002 | 001 | 004 | -047 | 001 | -0.06 | 028 | -0.09
bp[1/GeV]| 9.599595¢-02

br[1/GeV]|-3.256764¢-01

G(3)2 0.03 0.00 0.00 -0.02 -0.01 -0.05 -0.01 -0.01 -0.11 -0.08 0.05 0.25 -0.06 0.01

G(3); | -003 | 000 | 002 | 012 | 000 | -0.00 | -0.01 | -0.05 | -0.09 | 003 005 | -001 | -0.03
d1[1/GeV] |-8.386487e-01
G(2)3 | 007 | 000 | 003 | 000 | -0.01 | -0.04 | 002 | -002 | -022 003 | 008 | 017 | -0.08
da[1/GeV] | 1.518967e-01
G(2)y | <001 | -000 | 001 | 0.05 | -0.01 | -0.03 | -0.00 | 0.00 0.22 | -0.09 | -011 | 0.04 | -0.14 x?/dof
d3[1/GeV] |-4.546126e-01
G(2); | <007 | -000 | -0.00 | -0.02 | 0.00 | 001 | 000 | 003 | 000 | -002 | -005 | -0.01 | 0.01 | 0.01 I 0.50
da[1/GeV]| 7.207285¢-03 .
Gi(1)4 | -002 | -000 | -0.01 | 0.02 | -0.00 | -0.02 | 006 | 000 | -000 | 002 | -001 | -0.01 | -0.02 | -0.03 =
0.00
FIG. 36. The total }(flof and G1(1)3 | -0.08 | 000 | -0.01 0.01 -0.00 | 017 | -0.02 | 001 | -0.03 | -0.04 | -0.00 | -0.05 | -0.02 | -0.02

LECs for M3S2L (F5s).

Gl(l)g 0.00 -0.00 0.00 -0.00 0.01 -0.00 -0.00 0.00 -0.01 -0.01 0.00 -0.01 0.00 0.01

Gl(l)l -0.20 -0.00 -0.02 0.28 -0.00 0.01 0.02 -0.02 0.05 0.00 -0.12 -0.02 -0.02 -0.03

Glu,i} 0.02 -0.00 0.10 -0.02 0.00 -0.01 -0.01 -0.00 0.01 -0.03 0.02 0.00 0.00 -0.03

Glu,Q -0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00

Giua - -0.00 0.02 -0.20 0.00 -0.08 -0.02 -0.07 -0.01 0.07 -0.03 0.03 -0.01 -0.00

Grug Gruz Grus Gi(1)1G1(1)2G1(1)3G1(1)s G(2)1 G(2)2 G(2)3 G(3)1 G(3)2 G(3)3 G(3)a

FIG. 37. Heat map of correlated )(ﬁof’ij, highlighting the relative impact of each energy
level on the total fit quality.
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FIG. 38. Isoscalar and isovector projected absolute value of the zX — zX scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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9. M3S3L (Fy,)

X(210f 0.92 G(3)s| 000 | 002 | 006 | -0.00 | 003 | -0.02 | 007 | -002 | 027 | 011 | -0.02 | 003 | -0.14 | 0.70

A [GeV] 0.63786229 G(3)3 | -001 | -0.02 | 000 | -0.00 | 002 | -0.03 | 005 | -003 | 008 | -025 | -0.01 | -014 | 046 | -0.14
bo [1/GeV] -5.493596e-01 G(3)2 | 003 | 001 | 000 | -0.02 | 006 | -012 | 006 | 002 | -0.36 | 017 | 0.05 014 | 0.03
bp [1/ GeV] 8.601840e-02 G(3); | 001 | 001 | 002 | 003 | 001 | -0.00 | 001 | 005 | 008 | 002 | 021 | 005 | -0.01 | -0.02

br[1/GeV]| -3.226791e-01

G(2)3 | 005 | 002 | -0.05 | 000 | 003 | -0.05 | 0.04 | 003 | -0.42 002 | 017 | -0.25 | -0.11
di[1/GeV] | 2.079492e+-00
1[ / ¢ ] ot G(2)5 | 001 | 001 | 002 | 003 | 011 | 006 | -0.00 | -0.01 042 | -0.08 | -0.36 | 008 | -0.27 x?/dof
d2[1/GeV] | -6.344862e-02 I 15
d3[ 1 / GeV] 3.5382236-01 G(2); | 006 | 001 | 000 | 0.00 | 000 | -0.01 | -0.00 | 006 | -0.01 | 003 | 005 | 002 | -0.03 | -0.02 10
G 0. 0. 0. I -0, -0, . 0. 0. I -0, -0, -0, -0, 0.5
d4[1/GeV] -2.2625946400 1(1)g | -0.02 | 002 | -0.03 | 001 | -0.04 | 003 | 025 | -0.00 | 000 | 0.04 | 001 | -0.06 | -0.05 | -0.07 v

Gy (1)3 -0.06 0.01 -0.01 0.00 -0.00 0.21 -0.03 -0.01 -0.06 -0.05 -0.00 -0.12 -0.03 -0.02

FIG. 39. The total xﬁof’ A Gi(1)2| 000 | -0.02 | 000 | -000 | 012 | -0.00 | -0.04 | -0.00 | -0.11 | -0.03 | 001 | -0.06 | 0.02 | 003
parameter, and LECs for
M3S3L (F ).

Gl(l)l -0.05 | -0.00 | -0.01 0.04 -0.00 0.00 0.01 0.01 0.03 0.00 -0.03 | -0.02 | -0.01 -0.01

Glu,s 0.02 -0.03 0.21 -0.01 0.00 -0.01 -0.03 0.00 0.02 -0.05 0.02 0.00 0.00 -0.06

Glu,z -0.01 0.09 -0.03 -0.00 -0.02 0.01 -0.02 0.01 -0.01 0.02 -0.01 0.01 -0.02 0.02

Glu,l 0.27 -0.01 0.02 -0.05 0.00 -0.06 -0.02 0.06 -0.01 0.05 -0.01 0.03 -0.01 -0.00

Gru1 Gruz Grus Gi(1)1G1(1)2G1(1)3G1(1)s G(2)1 G(2)2 G(2)3 G(3)1 G(3)2 G(3)3 G(3)s

FIG. 40. Heat map of correlated ;(fiofyij, highlighting the relative impact of each energy
level on the total fit quality.
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FIG. 41. Isoscalar and isovector projected absolute value of the zX — zX scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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APPENDIX B: DETAILED FIT RESULTS: FITS TO THE EXPERIMENTAL DATA
1. MISIP (Fy)

2
Xdof 4.23 G(3)4 | 000 0.01 | -0.01 | -0.00 | 0.02 | -001 | -0.02 | 001 | -0.04 | -0.03 | -0.00 | 0.01 | -0.07 | 0.05
ARN -2.348949¢-03 G(3)3 | 000 | -006 | 001 | -001 | 007 | -0.02 | -0.08 | 012 | 008 | 048 | -0.00 | -0.25 -0.07
AN |-2.348949e-

KN 348949e-03 G(3)2 | -001 | 001 | 000 | -001 | -0.11 | -024 | -0.05 | -0.06 | -0.19 | -0.18 | 0.00 025 | 0.01

arp | 3.881548e-01
ars | 8.779599e-04

G(3)1 0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 | -0.00

G(2)3 | -002 | 004 | 004 | 000 | -005 | -0.11 | 004 | -0.08 | -0.25 0.00 | -0.18 | -048 | -0.03
ars | 8.779599¢-04
G(2)p | 000 | -001 | 001 | 001 | -0.01 | -0.07 | -0.00 | 001 | 048 | -0.25 | -0.00 | -0.19 | 0.08 | -0.04 x?/dof
ars | 8.779599e-04
G(2 0.07 | -0.04 | -000 | -0.01 | 002 | 005 | 000 | 037 | 001 | -0.08 | -0.00 | -0.06 | 0.2 | 001 I
ana | 1.527930e-03 @h 10
05
001 | 003 | -002 | 001 | -006 | -0.06 | 017 | 0.00 | -0.00 | 0.04 | -0.00 | -0.05 | -0.08 | -0.02
ansy |-7.466124e-01 G o
axz |-8.510607e-03 Gi(1)s | 005 | 005 | -0.02 | 001 | -0.01 -0.06 | 0.05 | -0.07 | -011 | -0.00 | -0.24 | -0.12 | -0.01
ar= |-8.510607e-03 Gi(1)2 | 000 | -0.05 | 000 | -0.00 | 041 | -0.01 | -0.06 | 002 | -0.11 | 005 | 0.00 | 0.1 | 0.07 | 002

Gi(1); | 001 | -000 | -001 | 001 | -000 | 001 | 001 | -001 | 001 | 000 | -0.00 | -0.01 | -0.01 | -0.00

FIG. 42. The total x5, as de-
fined in Eq. (5.1), and subtraction
COHStantS fOI‘ Mls 1P (F21) Gl'u,Q 0.01 0.29 -0.04 -0.00 -0.05 0.05 -0.03 -0.04 -0.01 0.04 -0.00 0.01 -0.06 0.01

G]u,l 0.05 0.01 -0.01 0.01 -0.00 0.05 0.01 0.07 0.00 -0.02 0.00 -0.01 0.00 0.00

Giys | -001 -0.04 0.12 -0.01 0.00 -0.02 -0.02 -0.00 0.01 -0.04 0.00 0.00 0.01 -0.01

Grut Gruz Grus Gi(1)1G1(1)2G1(1)3G1(1)a G(2)1 G(2)2 G(2); G(3)1 G(3)2 G(3)s G(3)a

FIG. 43. Heat map of correlated y?; /14, highlighting the relative impact of each energy
level on the total fit quality.
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FIG. 44. Isoscalar and isovector projected absolute value of the zX — zX scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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2. M1S2P (Fy)

- 25.57

FIG. 45. The total )(ﬁof, as defined in Eq. (5.1), for the parameter-free fit M1S2P (Fog).
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FIG. 46.

Refs. [12,13,50] for the physical point.
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Isoscalar and isovector projected absolute value of the 72X — #X scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
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3. M1S3P (Fy,)

Xaof 30.28266 G(3)4 | 000 | 005 | 007 | 009 | 007 | 007 | -007 | 015 | 026 | -0.18 | 006 | 0.04 | -0.31 | 019
A[GeV] 0.8111258 G(3)3 | 009 | 036 | 004 | -049 | 038 | 073 | -041 | 149 | 064 | -337 | 0.4 | -163 -0.31
2 7(3)2 | 036 | 008 | 002 | -052 | 072 | -159 | -0.26 | 082 | -173 | -1.40 | 067 163 | 0.04
FIG. 47. The total y3, as de-
fined in Eq. (5.1), and A param- G(3); | 020 | 020 | 022 | 154 | 016 | 004 [ -005 | 277 | 073 | 027 | 488 | 067 | -0.14 | -0.06
eter for M1S3P (Fy7). G(2)s | 065 | 028 | 038 | 002 | 036 | 081 | 024 | 128 | 244 027 | 40 | 337 | 018
G(2)y | -006 | -005 | 010 | 072 | -0.87 | -0.61 | -0.00 | 020 | 535 | -244 | -0.73 | -1.73 | 0.64 | -0.26 x?2/dof
G(2); | 330 | -050 | 004 | 143 | 025 | 061 | 001 020 | -128 | 277 | -082 | 149 | 0.5 I 8
Gi(1)g{ 015 | 015 | 012 | 026 | 028 | 031 [ 079 | 001 | 000 | 024 | 005 | 026 | -0.41 | -0.07 4
0

Gl(l)g -1.17 0.27 -0.15 0.29 -0.05 5.56 -0.31 0.61 -0.61 -0.81 -0.04 -1.59 -0.73 -0.07

G (1)2 0.01 -0.28 0.02 -0.23 2.25 -0.05 -0.28 0.25 -0.87 -0.36 0.16 -0.72 0.38 0.07

G1(1)1 -2.37 | -0.07 -0.34 5.93 -0.23 0.29 0.26 -1.43 0.72 0.02 -1.54 -0.52 -0.49 | -0.09

Glu,3 0.16 -0.27 1.10 -0.34 0.02 -0.15 -0.12 -0.04 0.10 -0.38 0.22 0.02 0.04 -0.07

Ghyo | -0.19 1.56 -0.27 -0.07 -0.28 0.27 -0.15 -0.50 -0.05 0.28 -0.20 0.08 -0.36 0.05

Ghua 4.40 -0.19 0.16 -2.37 0.01 -1.17 -0.15 -3.30 -0.06 0.65 -0.20 0.36 -0.09 -0.00

Grut Grez Grus Gi(1)1G1(1)2G1(1)3G1(1)1 G(2)1 G(2); G(2)5 G(3)1 GB3)2 G(3)s GB3)a

FIG. 48. Heat map of correlated y?, /14, highlighting the relative impact of each energy
level on the total fit quality.
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FIG. 49. Isoscalar and isovector projected absolute value of the zX — zX scattering amplitude on the unphysical second Riemann

sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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4. M2S1P (F,,)

2
Xdof 8.86 G(3)4 -0.00 0.04 -0.07 -0.07 0.07 -0.07 -0.05 0.13 -0.25 -0.16 -0.05 0.04 -0.27 0.21

AR N _1'6707076_03 G(3)3 -0.05 -0.27 0.04 -0.31 0.28 -0.56 -0.22 0.98 0.47 -2.33 -0.09 -1.21 -0.27
arn | 2.465099e-02

arx |-3.528238¢-03
ana |-5.376287e-03

G<3)Z 0.24 0.07 0.01 -0.37 -0.60 -1.38 -0.16 -0.61 -1.44 -1.09 0.47 -1.21 0.04

G(3)| -0.12 -0.14 0.17 -0.93 0.11 -0.03 -0.03 -1.75 -0.51 0.18 2.93 0.47 -0.09 -0.05

G(2)3 | 040 | 022 | 033 | 001 | 028 | 065 | 013 | -0.88 | -1.88 018 | -L09 | -233 | -0.16
ans [-1.070200e-02
G(2)y | -0.04 | -004 | 009 | 050 | 072 | -052 | -0.00 | 015 188 | -0.51 | -144 | 047 | 025 x?/dof
axe |-1.305735e-02
G(2), | 195 | -037 | 004 | 090 | 019 | 046 | 001 015 | 088 | -175 | -0.61 | 098 | 0.3 5.0
FIG. 50. The total )(ﬁ ¢ as de- Gi(1)y | 007 | 009 | 008 | 013 | -017 | -019 | 033 | 001 | -0.00 | 013 | -003 | 0.16 | -0.22 | -0.05 25
. . o
. . 0.0
fined in Eq. (5.1), and subtraction Gy(1)s{ -08 | 023 | 014 | 021 | -004 019 | 046 | 052 | -0.65 | 003 | -1.38 | -056 | -0.07

constants for M2S1P (F»,).

Gy (1)2 0.01 -0.24 0.02 -0.17 1.90 -0.04 -0.17 0.19 -0.72 -0.28 0.11 -0.60 0.28 0.07

G (1)1 -1.34 -0.05 -0.27 3.54 -0.17 0.21 0.13 -0.90 0.50 0.01 -0.93 -0.37 -0.31 -0.07

Gius 0.12 -0.25 1.14 -0.27 0.02 -0.14 -0.08 -0.04 0.09 -0.33 0.17 0.01 0.04 -0.07

Gy | -012 1.31 -0.25 -0.05 -0.24 0.23 -0.09 -0.37 -0.04 0.22 -0.14 0.07 -0.27 0.04

Girua 2.33 -0.12 0.12 -1.34 0.01 -0.81 -0.07 -1.95 -0.04 0.40 -0.12 0.24 -0.05 -0.00

Grug Gruz Grus Gi(1)1G1(1)2G1(1)3G1(1)4 G(2)1 G(2)2 G(2)3 GB3)1 G(3)2 G(3)s G(3)a

FIG. 51. Heat map of correlated y?; ;/14, highlighting the relative impact of each energy
level on the total fit quality.
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FIG. 52. [Isoscalar and isovector projected absolute value of the zX — zX scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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5. M2S2P (Fy)

- 48.15

FIG. 53. The total ;(ﬁof, as defined in Eq. (5.1), for the parameter-free fit, M2S2P (Fy).

1= 0 (physical point) 1= 0 (lattice point)
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FIG. 54. [Isoscalar and isovector projected absolute value of the zX — zX scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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6. M2S3P (Fy)

Xczlof 18.69 G(3)4 | 003 | 013 | 000 | -045 | 017 | 007 | 054 | 045 | -L14 | 003 | 030 | 012 | 017 -
A[GeV]|1.087866 G(3)3 | 001 | 001 | 000 | -003 | 001 | 001 | -0.03 | 005 | 003 | 001 | -0.01 | -0.05 | 005 | -0.17
FIG. 55. The total /Yﬁofv as de- G(3)y | 017 | 001 | <000 | -0.06 | 010 | 0.0 | -013 | 015 | -0.45 | -0.02 | 020 | 124 | -0.05 | 0.12
fined in Eq. (5.1), and the A G(3); | 015 | 005 | 000 | 077 | 004 | 000 | 004 | 080 | -0.30 | 000 | 237 | 020 | -0.01 | -0.30
parameter for M2S3P (F). G(2)3 | 002 | 000 | 000 | 000 | 000 | 000 | 001 | 001 | -0.04 | 001 | 000 | -0.02 | 001 | -0.03
G(2)y | 004 | 001 | 000 | 031 | 017 | 005 | 000 | 005 | 1.92 | -0.04 | -030 | -045 | 003 | -L14 X2/ Cigfo
G(2)) | 146 | 008 | 000 | -042 | 004 | 004 | 001 | 181 | 005 | 001 | 080 | -0.05 | 005 | 045 I 75
Gy(1)g | 018 | -006 | 000 | 021 | -010 | 005 | 096 | 001 | -0.00 | 001 | 004 | -0.13 | -0.03 | -0.54 Zg
Gi(1)3 1 018 | <001 | 000 | 003 | 000 | 012 | 005 | 004 | 005 | 000 | 000 | 010 | 001 | 007 0.0

Gy (1)2 0.00 -0.04 -0.00 -0.06 0.25 0.00 -0.10 0.04 -0.17 -0.00 0.04 -0.10 0.01 0.17

Gy (1)1 -1.81 -0.02 0.00 3.03 -0.06 -0.03 0.21 -0.42 0.31 0.00 -0.77 -0.16 -0.03 -0.45

Glu,s -0.00 0.00 0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00

Glu,2 -0.08 0.23 0.00 -0.02 -0.04 -0.01 -0.06 -0.08 -0.01 0.00 -0.05 0.01 -0.01 0.13

Glu,l 4.99 -0.08 -0.00 -1.81 0.00 0.18 -0.18 -1.46 -0.04 0.02 -0.15 0.17 -0.01 -0.03

Grug Gruz Gius Gi(1)1G1(1)2G1(1)3G1(1)s G(2)1 G(2)2 G(2)3 G(3)1 G(3)2 G(3)3 G(3)4

FIG. 56. Heat map of correlated ;(ﬁof‘i ;» highlighting the relative impact of each energy level
on the total fit quality.
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FIG. 57. Isoscalar and isovector projected absolute value of the X — 7X scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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7. M3S1P (F3,)

Xaof 151 G(3)1 0.00 -0.01 0.01 0.02 -0.01 0.01 0.00 -0.03 0.03 0.02 0.01 -0.00 0.04 0.01
agy | 8.684939e-05 )y | o | o
axn | 6.602418¢-02
ans |-3.0192986-03
apa | 6.760390e-03
aps  |-6.407026e-03

0.01 -0.24 0.14 -0.27 -0.08 0.72 0.20 =110 -0.06 -0.53 2.82 0.04

G(3)2 0.18 0.03 0.01 -0.26 -0.27 -0.59 -0.05 -0.40 -0.55 -0.47 0.31 2.23 -0.53 -0.00

G(3)1 -0.14 -0.11 0.10 -1.06 0.08 -0.02 -0.01 -1.89 -0.32 0.13 3.11 0.31 -0.06 0.01

G(2)3 | 033 | 011 | 013 | 001 | 014 | 030 | 005 | 063 | 078 [ 291 | 013 | 047 | 110 | 002

0.03 | -0. .04 ! -0. 0. 0. ! J 078 | 032 | 055 | o ! 2 /dof
axs 3.979341¢-03 G(2)s | 003 | 002 | 003 | 034 | 031 | 022 | -000 | 009 | 162 | -078 | 032 | 055 | 020 | 0.03 X /705
bo[1/GeV] |-6.277105e-01 G(2); | 246 | -020 | 002 | -105 | 014 | 033 | 000 - 009 | -0.63 | -189 | 040 | 072 | 003 I 50
bD[l/GeV] -3.489336e-01 Gy(1)g | -0.05 | -004 | -002 | 008 | -0.06 | -007 | 010 | 0.00 | -0.00 | 005 | -0.01 | -0.05 | -0.08 | 0.0 25
0.0
br[1/GeV]|-2.942295e-01 Gi(1)s | 066 | 012 | 006 | 016 | -0.02 | 231 | -007 | 033 | -022 | 030 | 002 | 059 | 027 | 001
d1[1/GeV] |-1.759572e-01 Gi(1)y | 001 | 012 | 001 | -013 | 096 | -0.02 | -0.06 | 014 | -031 | -0.14 | 008 | 027 | 014 | 001
d2[1/GeV] |-1.042583e-01 Gi(1)y | 177 | 004 | -07 - -0.13 | 0.6 | 008 | -105 | 034 | 001 | -106 | -0.26 | -0.24 | 0.02
ds[1/GeV] [-4.012072e-01
Ghus| 008 | 011 | 038 | 017 | 001 | -006 | -0.02 | -0.02 | 003 | -013 | 010 | 001 | 001 | 001

d4[1/GeV] [-1.576405e-01
Glu,2 -0.11 0.72 -0.11 -0.04 -0.12 0.12 -0.04 -0.29 -0.02 0.11 -0.11 0.03 -0.14 -0.01
FIG 58 The total /Yﬁof? as G]u‘] 3.34 -0.11 0.08 -1.77 0.01 -0.66 -0.05 -2.46 -0.03 0.33 -0.14 0.18 -0.05 0.00
defined in Eq. (5.1), subtrac- Grun Gz Gius Gi(1)1G1(1):2G1(1)3G1(1)1 G(2)1 G(2)2 G(2)s G3)1 G(3)2 G(3)3 G(3)a
tion constants, and LECs for
M3SIP (F3g). FIG. 59. Heat map of correlated )(30“ ;» highlighting the relative impact of each energy level

on the total fit quality.

I =0 (physical point) 1 = 0 (lattice point)

Im V5/GeV-0.15 Im \/E/G?.V»o

15

>
g <
4 o g
[++— ++++ + ++] B [+ + =+ + + + + ++]
s =
£ £
2 >
3 3
K <
,,,,,, = i
1.30 1.35 1.40
VEiGev : 130 135 1.40
R e
Re v5/GeV i Re Vs5/GeV Re V5/GeV
I =1 (physical point) I =1 (lattice point)
Im Vs/GeV 015 Im \/E/GeV_o 5

z

2 g

] =

E £

0.

> >

< =

E g

= =

E <

—————— g

1.30 1.35 1.40 145 ' o
1.30 135 1.40 145 1.50 Re V3/GeV ¥ v K o 1.30 1.35 1.40
Re Vs5/GeV Re Vs/GeV Re V5/GeV

FIG. 60. Isoscalar and isovector projected absolute value of the X — 7X scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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8. M3S2P (Fy3)

2
Xdof 0.90 G(3), | -003 | 004 | 014 | 050 | 001 | 007 | 027 | 054 | -060 | 0.2 | -020 | 0.2 | 020 | 440
bo[1/GeV] |-5.349500e-01 G(3)s| 002 | 001 | 000 | 008 | 000 | 002 | 0.05 | 015 | -0.05 | -0.06 | 0.02 | 0.4 | 016 | 020
bp [1/GeV] 9-599595e-02 G(3)2 | 040 | -0.01 | 000 | -040 | -0.02 | 0.24 | -0.14 | -040 | -0.60 | 012 | 044 | 274 | 014 | 012
br[1/GeV]|-3.256764e-01
G(3); | -036 | 003 | 010 | -191 | 001 | 001 | 0.04 | 217 | -041 | -0.04 | 522 | 044 | 002 | 020
d1[1/GeV] |-8.386487e-01
G(2)5 | -015 | 001 | 002 | 000 | 000 | 003 | 0.03 | 013 | 018 | 016 | -0.04 | 0.2 | -0.06 | 012
d2[1/GeV] | 1.518967e-01
G(2)5| 005 | 000 | 002 | 046 | -002 | 008 | 000 | 008 | 158 | 018 | -041 | -060 | -005 | -0.69 2 /dof
ds[1/GeV] |-4.546126¢-01 @)z x/
da[1/GeV] | 7.207285e-03 G(2); | 426 | 006 | -001 | -120 | 001 | 011 | 001 | 599 | 008 | 0.3 | -217 | -0.40 | -0.15 | 054 I 10
Gi(1)y | 022 | 002 | 004 | 026 | 001 | 006 | 056 | 001 | -000 | -0.03 | -0.04 | -0.14 | 005 | -027 ’
2 0
FIG. 61. The total yg.., as de- Gi(1)s| 047 | 001 | 002 | 008 | 000 | 030 | 0.06 | -0.11 | 008 | -003 | 001 | 024 | -002 | 007
fined in Eq. (5.1), and LECs for
. 0.00 | 000 | 000 | 001 | 000 | 000 | -001 | 001 | -0.02 | 000 | o001 | -002 | -0.00 | 001
Fit 13 (M3S2P). Gil):
Gy(1), | 485 | 001 | -0.8 - 2001 | 008 | 026 | -1.20 | 046 | -0.00 | -L91 | -040 | 008 | -0.50
Gius | 012 | 002 | 021 | 018 | 000 | 002 | -004 | -0.00 | 002 | 002 | 010 | 000 | -0.00 | -0.14
Grus | 005 | 004 | 002 | 000 | 000 | 001 | 002 | 006 | 000 | 001 | 003 | -001 | 001 | -0.04
Grua - 0.05 | 012 | -485 | 000 | 047 | -022 | -426 | -0.05 | -015 | 036 | 040 | 0.02 | -0.03
Grug Gruz Gruz Gi(1)1G1(1)2G1(1)3G1(1)s G(2)1 G(2)2 G(2)3 G(3)1 G(3)2 G(3)3 G(3)4
FIG. 62. Heat map of correlated ){gof, ;j» highlighting the relative impact of each energy level
on the total fit quality.
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FIG. 63. Isoscalar and isovector projected absolute value of the zX — zX scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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9. M3S3P (Fy;)

2
Xdof 1.46 G(3)y| 001 | 008 | 012 | 023 | -008 | 001 | -009 | 039 | 008 | 001 | 014 | -001 | 000 | 219

A [Gev] 0 N 6802 625 G (3) 3 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 0.00 0.00
bo[1/GeV] |-5.440114e-01
bp[1/GeV]|-8.008565¢-01

0.00 -0.00 -0.00 0.00 0.00

G(d)z 0.02 0.00 -0.00 -0.03 -0.02 -0.00 0.01 -0.05 -0.01 0.00 0.03 0.04 -0.00 -0.01

G(S)l -0.11 -0.07 -0.08 -0.84 0.04 -0.00 0.01 -1.51 -0.04 -0.00 2.36 0.03 -0.00 0.14

br[1/GeV]|-4.127402¢-01
di[1/GeV] |-4.572182e-01 G(2)3 | 001 | -0.00 | -0.00 | -0.00 | 0.00 | 000 | 000 | 002 | 000 [ 000 | -0.00 | 0.00 | 000 | -0.01
1 -4 -

G(2)5 | 000 | 000 | -0.00 | 0.05 | -0.03 | -0.00 | 000 | 001 | 004 | 000 | -0.04 | -0.01 | 0.00 | 008 x?/dof
da[1/GeV] |-2.716873¢-01 (2)2 !
d3[1/GeV] |-6.182698¢-01 G(2); | 207 | 019 | 002 | -088 | 007 | 001 | -0.00 . 0.01 | 002 | -151 | 005 | 000 | -0.39 l 1
d4[1/GeV} -9.100890e-01 Gy(1)4| 005 | 003 | 002 | -008 | 004 | 000 | 011 | -0.00 | 000 | 000 | 001 | 001 | 000 | -0.09 2

0

Gy (1)3 -0.03 0.00 0.00 0.01 -0.00 0.01 0.00 0.01 -0.00 0.00 -0.00 -0.00 -0.00 0.01

FIG. 64. The total x5, as de-
fined in Eq. (5.1), A parameter,
and LECS for M3S3P (Fll)' G1(1>1 -1.49 -0.03 0.14 3.64 -0.07 0.01 -0.08 -0.88 0.05 -0.00 -0.84 -0.03 -0.00 0.23

Giys | -007 0.07 0.32 0.14 -0.00 0.00 -0.02 0.02 -0.00 -0.00 -0.08 -0.00 -0.00 -0.12

G, (1)2 0.00 -0.05 -0.00 -0.07 0.29 -0.00 0.04 0.07 -0.03 0.00 0.04 -0.02 0.00 -0.08

Giyo | 007 0.36 0.07 -0.03 -0.05 0.00 0.03 -0.19 -0.00 -0.00 -0.07 0.00 -0.00 -0.08

Grua 2.83 -0.07 -0.07 -1.49 0.00 -0.03 0.05 -2.07 -0.00 -0.01 -0.11 0.02 -0.00 0.01

Gru1 Gruz Grus Gi(1)1G1(1)2G1(1)3G1(1)s G(2)1 G(2)2 G(2)3 G(3)1 G(3)2 G(3)3 G(3)4

FIG. 65. Heat map of correlated ;(ﬁof‘i ;» highlighting the relative impact of each energy level
on the total fit quality.
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FIG. 66. Isoscalar and isovector projected absolute value of the #X — 7% scattering amplitude on the unphysical second Riemann

sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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APPENDIX C: DETAILED FIT RESULTS: COMBINED FITS TO THE EXPERIMENTAL
DATA AND LATTICE INPUT

1. MIS3PL (F,,)

Xaor | 27.56447
A[GeV]|0.8106917

G(d)4 -0.00 0.05 -0.07 -0.09 0.07 -0.07 -0.07 0.15 -0.26 -0.18 -0.06 0.04 -0.31 0.19

G(3)3 | 0.09 | -0.36 | 004 | -049 | 038 | -0.73 | -041 | 148 | 0.64 | -337 | -0.14 | -1.62 -0.31
2 G(3 036 | 008 | 002 | -052 | -071 | -1.59 | -0.26 | -0.82 | -1.72 | -1.39 | 0.66 162 | 0.04
FIG. 67. The total y3, as de- #(3)2 5
fined in Eq. (5.1), and the A G@3)1 | 020 | 020 | 022 | <54 | 016 | -001 | 005 | 276 | -072 | 027 | 486 | 066 | -0.14 | -0.06
parameter for M1S3PL (F»y).
G(2)3 | 065 | 028 | 038 | 002 | -0.36 | -0.81 | 024 | -127 | -2.43 027 | -1.39 | -337 | -018
G(2) | 006 | 005 | 010 | 071 | -0.86 | -0.60 | -0.00 | 020 | 533 | -243 | -0.72 | -1.72 | 064 | -0.26 X2 /dof
G(2), | 328 | -050 | -004 | -143 | 025 | 0.60 | 001 020 | -1.27 | 276 | 082 | 148 | 0.15 I 8
4
Gi(1)4 | 015 | -015 | 012 | 026 | -0.28 | -031 | 079 | 001 | -0.00 | 024 | -0.05 | -026 | -0.41 | -0.07
0

Gl(l);j =1Ll 0.27 -0.15 0.29 -0.05 5.55 -0.31 0.60 -0.60 -0.81 -0.04 -1.59 -0.73 -0.07

G1(1)2 0.01 -0.28 0.02 -0.23 2.24 -0.05 -0.28 0.25 -0.86 -0.36 0.16 -0.71 0.38 0.07

G (1)] -2.36 -0.07 -0.34 -0.23 0.29 0.26 -1.43 0.71 0.02 -1.54 -0.52 -0.49 -0.09

Glu@& 0.16 -0.27 1.10 -0.34 0.02 -0.15 -0.12 -0.04 0.10 -0.38 0.22 0.02 0.04 -0.07

Glu,z -0.18 1.56 -0.27 -0.07 -0.28 0.27 -0.15 -0.50 -0.05 0.28 -0.20 0.08 -0.36 0.05

Glu.l 4.37 -0.18 0.16 -2.36 0.01 -1.17 -0.15 -3.28 -0.06 0.65 -0.20 0.36 -0.09 -0.00

Gru1 Gruz Grus Gi(1)1G1(1)2G1(1)3G1(1)s G(2)1 G(2)2 G(2)3 G(3)1 G(3)2 G(3)3 G(3)4

FIG. 68. Heat map of correlated ;(ﬁof.i ;» highlighting the relative impact of each energy level
on the total fit quality.
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FIG. 69. Isoscalar and isovector projected absolute value of the zX — #X scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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2. M2S3PL (F»3)

2
Xdof 17.81 G(3)4 -0.03 0.13 0.00 -0.45 0.17 0.07 -0.54 0.45 -1.14 -0.03 -0.30 0.12 -0.17 -
A[GGV] 1.088185 G(3)3 -0.01 -0.01 -0.00 -0.03 0.01 0.01 -0.03 0.05 0.03 -0.01 -0.01 -0.05 0.05 -0.17

G(3)2 0.17 0.01 -0.00 -0.16 -0.10 0.10 -0.12 -0.15 -0.44 -0.02 0.20 1.23 -0.05 0.12

FIG. 70. The total x5, as de-

fined in Eq. (5.1), and the A G(3)1 | 015 | 005 | 000 | 077 | 004 | 000 | 004 | 080 | 030 | 000 | 236 | 020 | -0.01 | -0.30
parameter for M2S3PL (F 23)~ G(2)3 | 002 | 000 | 000 | 000 | -000 | 000 | 001 | -001 | -0.04 | 001 | 000 | -0.02 | -0.01 | -0.03
G(2)y | 004 | -001 | 000 | 031 | -017 | 005 | 000 | 005 | 191 | -0.04 | -030 | -0.44 | 0.03 | -114 x? /(}8f0
G(2); | 145 | 008 | 000 | 042 | 003 | 004 | 001 | 180 | 005 | -0.01 | 080 | -0.15 | 0.05 | 045 I 7.5
Gi(1)4 | -018 | -006 | 000 | 021 | -010 | 005 | 096 | 001 | -0.00 | 001 | -004 | -012 | -0.03 | -054 22
0.0

Gy (1)3 0.18 -0.01 -0.00 -0.03 0.00 0.12 0.05 -0.04 0.05 0.00 0.00 0.10 0.01 0.07

Gy (1)2 0.00 -0.04 -0.00 -0.06 0.25 0.00 -0.10 0.03 -0.17 -0.00 0.04 -0.10 0.01 0.17

Gy (1)1 -1.80 -0.02 0.00 3.01 -0.06 -0.03 0.21 -0.42 0.31 0.00 -0.77 -0.16 -0.03 -0.45

Gy | -0.00 0.00 0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00

Gyo | 008 0.23 0.00 -0.02 -0.04 -0.01 -0.06 -0.08 -0.01 0.00 -0.05 0.01 -0.01 0.13

Glun 4.97 -0.08 -0.00 -1.80 0.00 0.18 -0.18 -1.45 -0.04 0.02 -0.15 0.17 -0.01 -0.03

Gru1 Gru2 Grus G1(1)1G1(1)2G1(1)3G1(1)s G(2)1 G(2)2 G(2)3 G(3)1 G(3)2 G(3)3 G(3)4

FIG. 71. Heat map of correlated ;(ﬁof‘i ;» highlighting the relative impact of each energy level
on the total fit quality.
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FIG. 72. [Isoscalar and isovector projected absolute value of the zX — #zX scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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3. M3S1PL (F;,)

X2ot 1.441434
Lattice Experimental
aRN -1.564779e-03 |-1.546676e-03
QA -1.079700e-01 | 8.517151e-02
ars +3.721385e-03 |-2.728888e-03
anA +1.376050e-02 | 9.982057e-03
ans +2.163700e-01{-5.741158e-03
QK= +3.948000e-02 | 8.712392¢-02
bo[1/GeV] -6.569390e-01
bp[1/GeV] 6.740337e-02
br[1/GeV] -3.257189e-01
d1[1/GeV] -2.520795e-01
d2[1/GeV] 3.095445e-02
ds[1/GeV] -8.990016e-02
d4[1/GeV] -5.497259¢-02

FIG.73. The total y2;, as defined in Eq. (5.1), subtraction constants for both the lattice and the physical points, and LECs for M3S1PL
(F17).

G(3)4 | 000 | 000 | 007 | 007 | 001 | -003 | -0.08 | 006 | -018 | 011 | 006 | 002 | -0.11 | 088

G(3)3 | -001 | 000 | 000 | -0.03 | 000 | -003 | -003 | 004 | 003 | 015 | 001 | -005 | 022 | -0.11

G(3)2 | 005 | 000 | 000 | -0.04 | -001 | -0.08 | -0.03 | 003 | 011 | 008 | 006 | 029 | -0.05 | 0.02

G(3); | 006 | 000 | 005 | -027 | 000 | -0.00 | -0.01 | 023 | 010 | 004 0.06 | -0.01 | -0.06

G(2)3 | 011 | 000 | -005 | 000 | 001 | 006 | 004 | -0.07 | 022 | 072 | 004 | -008 | -0.15 | -0.11

G(2)5 | 001 | 000 | 002 | 008 | -001 | -0.05 | 000 | 001 | 053 | 022 | 010 | 0.1 | 003 | -0.18 x?/dof
15

G(2); | 035 | 000 | 000 | 010 | 000 | 003 | 000 | 033 | 001 | 007 | 023 | 003 | 0.04 | 0.06 10

Gi(1)4 | 005 | 000 | -003 | 005 | 001 | 004 | 021 | 000 | -0.00 | 004 | -001 | -003 | -0.03 | -0.08 0.5
0.0

Gi(1)3 | 017 | 000 | 002 | 003 | -000 | 034 | -0.04 | 003 | 005 | 006 | 0.00 | -0.08 | -0.03 | -0.03 05

Gi(1)y | 000 | <000 | 000 | -0.00 [ 001 | -000 | -0.00 | 000 | -001 | 001 | 000 | 001 | 0.00 | 0.01

Gi(1); | 054 | 000 | -007 | 085 | 000 | 003 | 005 | -010 | 008 | 000 | -027 | -004 | -0.03 | -0.07

Gy | 005 | -000 | 028 | 007 | 000 | -002 | -0.03 | -0.00 | 002 | -005 | 0.05 | 0.00 | 000 | -0.07

Gius | 000 | 000 | -000 | -000 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 000 | -0.00 | 0.00

Giu - 000 | 005 | -054 | 000 | -0.17 | -0.05 | 035 | -0.01 | 0.1 | -0.06 | 005 | -001 | -0.00

Grun Grup Gruz Gi(1)1G1(1)2G1(1)3G1(1)1 G(2)1 G(2)2 G(2)3 G(3)1 G(3)2 G(3)3 G(3)4

FIG. 74. Heat map of correlated ;(ﬁof.ij, highlighting the relative impact of each energy level on the total fit quality.
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Isoscalar and isovector projected absolute value of the 72 — 7% scattering amplitude on the unphysical second Riemann

sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and

Refs. [12,13,50] for the physical point.
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4. M3S2PL (F,4)

2
Xdof 2.1189 G(3)4 -0.00 -0.01 0.01 0.01 -0.02 0.02 0.00 -0.03 0.03 0.04 0.00 -0.01 0.08 0.19

bo[1/GeV] |-3.414328e-01 G(3)3 | 000 | 003 | 000 | -001 | 003 | 006 | -000 | 009 | 002 | 022 | -0.00 | -0.08 0.08
1/GeV]| 6.368574e-02

1/GeV]|-3.021744e-01

G(3)2 -0.00 0.00 0.00 -0.01 -0.04 -0.10 -0.00 -0.03 -0.03 -0.07 0.00 0.24 -0.08 -0.01

G(S)l 0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.01 -0.00 0.00 0.00 0.00 -0.00 0.00

(
(
d1[1/GeV] |-2.593481e-01
d [1/GeV} 4 4330546 02 G(2)3 -0.00 0.02 -0.02 0.00 -0.02 -0.07 0.00 -0.07 -0.06 0.00 -0.07 -0.22 0.04
2 . -
2
d3[1/GeV] | 3.431286e-02 G(2)2 | 000 | -000 | 000 | 001 | -0.02 | -0.02 | 000 | 0.00 | 006 | -0.06 | -0.00 | -0.03 | 002 | 0.03 X /%%f
d4 [1 /Gev} _3 . 7046326-0 1 G(?) 1 0.01 -0.03 -0.00 -0.03 0.02 0.04 0.00 - 0.00 -0.07 -0.01 -0.03 0.09 -0.03 I 0.4
Gl (1)4 0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 02
0.0
FIG' 76' The tOtal /Ygl()f’ as de- Gl (1)3 0.00 0.03 -0.01 0.01 -0.00 -0.00 0.04 -0.02 -0.07 -0.00 -0.10 -0.06 0.02 02
fined in Eq. (5.1), and LECs for '
M3SZPL (ql;'l(6) ) Gl (1 )2 -0.00 -0.02 0.00 -0.01 0.17 -0.00 -0.00 0.02 -0.02 -0.02 0.00 -0.04 0.03 -0.02

Gl(l)l 0.00 -0.00 -0.01 0.07 -0.01 0.01 0.00 -0.03 0.01 0.00 -0.00 -0.01 -0.01 0.01

Gy | -0.00 -0.02 0.06 -0.01 0.00 -0.01 -0.00 -0.00 0.00 -0.02 0.00 0.00 0.00 0.01

Glu,Q 0.00 0.13 -0.02 -0.00 -0.02 0.03 -0.00 -0.03 -0.00 0.02 -0.00 0.00 -0.03 -0.01

Gy 1 0.00 0.00 -0.00 0.00 -0.00 0.00 0.00 0.01 0.00 -0.00 0.00 -0.00 0.00 -0.00

Gru1 Gruz Grus Gi(1)1G1(1)2G1(1)3G1(1)s G(2)1 G(2)2 G(2)3 G(3)1 G(3)2 G(3)3 G(3)4

FIG. 77. Heat map of correlated ;((Zjofyi ;» highlighting the relative impact of each energy level
on the total fit quality.
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FIG. 78. [Isoscalar and isovector projected absolute value of the zX — zX scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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5. M3S3PL (F,,)

X(2iof 2'236 G(3)4 -0.01 0.02 -0.09 -0.08 0.03 -0.06 -0.20 0.04 -0.32 -0.21 -0.06 0.03 -0.25 -
A[GeV] | 0.4218104
bo[1/GeV] |-8.768647¢-01
bp[1/GeV]| 5.246210e-02
br[1/GeV]|-3.406325¢-01

G(3>3 -0.01 -0.01 0.00 -0.03 0.01 -0.05 -0.09 0.03 0.06 -0.30 -0.01 -0.10 0.54 -0.25

G(3>2 0.05 0.00 0.00 -0.04 -0.02 -0.12 -0.06 -0.02 -0.17 -0.13 0.06 0.44 -0.10 0.03

G(3)1 -0.03 -0.01 0.03 -0.14 0.01 -0.00 -0.02 -0.07 -0.09 0.03 0.51 0.06 -0.01 -0.06

d1[1/GeV] [1.201660e+00 G(2)s| 012 | 001 | 000 | 000 | 002 | 00 | 008 | oot | s 0% | o |0 | o
da[1/GeV] | -1.753693¢-01 G(2)y | 001 | 000 | 002 | 008 | 004 | -0.07 | 000 | 001 | 077 | -0.34 | 009 | -017 | 006 | -0.32 X2 /dof
ds[1/GeV] |-4.544383e-01 G(2)1 | 014 | 001 | 000 | 003 | 000 | 001 | 000 | 007 | oot | 004 | 007 | 002 | 003 | oon Iiz
da[1/GeV] | 1.4767386-01 Gi(1): | 007 | 002 | 005 | 007 | 003 | <008 | 067 | om0 | 000 | 005 | 002 | 006 | 009 | -0 05
0.0

Gh (1)3 -0.17 0.01 -0.02 0.02 -0.00 0.46 -0.08 0.01 -0.07 -0.09 -0.00 -0.12 -0.05 -0.06

FIG. 79. The total x5, as de-
fined in Eq. (5.1), A parameter,
and LECS for M3S3PL (FIZ)' G1(1>1 -0.33 -0.00 -0.04 0.46 -0.01 0.02 0.07 -0.03 0.08 0.00 -0.14 -0.04 -0.03 -0.08

Gius 0.03 -0.02 0.20 -0.04 0.00 -0.02 -0.05 -0.00 0.02 -0.06 0.03 0.00 0.00 -0.09

Gi(1)g | 000 | -001 | 000 | -001 | 004 | -000 | 0.03 | 000 | -0.04 | -002 | 001 | -002 | 001 | 003

Gliyo | -0.01 0.03 -0.02 -0.00 -0.01 0.01 -0.02 -0.01 -0.00 0.01 -0.01 0.00 -0.01 0.02

Glu,l . -0.01 0.03 -0.33 0.00 -0.17 -0.07 -0.14 -0.01 0.12 -0.03 0.05 -0.01 -0.01
Grun Gruz Grus Gi(1)1G1(1)2G1(1)3G1(1)s G(2)1 G(2)2 G(2)3 G(3)1 G(3)2 G(3)3 G(3)a

FIG. 80. Heat map of correlated )(gof,i ;» highlighting the relative impact of each energy level
on the total fit quality.
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FIG. 81. Isoscalar and isovector projected absolute value of the zX — zX scattering amplitude on the unphysical second Riemann
sheets. Nomenclature as in the main text. Magenta crosses represent literature values from Refs. [20,21] for the lattice point and
Refs. [12,13,50] for the physical point.
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