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The charged exotic mesons Z,(10610) and Z}(10650) observed by the Belle collaboration in 2011
are very close to the B*B and B*B* thresholds, respectively. This suggests their interpretation as
shallow hadronic molecules of B and B* mesons. Using the masses of the Z,(10610) and Z;(10650)
as input, we rule out the possibility for universal bound states of three B and B* mesons arising
from the Efimov effect based on their spin-isospin structure. As a consequence, we can predict the
phase shifts for the scattering of B and B* mesons off the exotic mesons Z;(10610) and Z;(10650) to
leading order in a non-relativistic effective field theory with contact interactions based on two-body

information alone.

I. INTRODUCTION

In 2011, the Belle collaboration reported the discovery
of two positively charged mesons in the bottomonium
sector, Z;(10610) and Z;(10650) [1]. Their existence was
subsequently confirmed by two independent Belle mea-
surements [2, 3]. The masses and widths of these states,
as listed in the Review of Particle Physics (RPP), are [4]!

Mz = (10607.2 £2.0) MeV, Tz = (18.4+2.4)MeV,

My = (10652.2 + 1.5) MeV, Tz = (11.5 +2.2) MeV .
(1)

From their production and decay channels [1-3, 5], these
mesons must be exotic. Their quark content can not
be simply ¢ as for ordinary mesons but must be bbud.
Soon after their discovery it was proposed that their
constituents cluster into two bottom mesons which are
bound due to hadronic forces [6]. In particular, both Z;,
states were interpreted as hadronic molecules with flavor
wave functions

1 _ _
Zy = —(B*B + B*B),
b ﬂ( )
7} = B*B* . (2)

For further analyses in this framework and alternative
scenarios such as tetraquarks see, e.g., Refs. [7-15] and
Refs. [10, 14, 16-20], respectively.

The molecular interpretation of the Z,(10610) and
Z;(10650) is supported by the fact that their masses are

! Note that in the RPP [4], the Z,(10610) and Z}(10650) are de-
noted as T}, (10610) and T}, (10650) T, respectively.

close to the respective open bottom thresholds defined
by the flavor wave functions in Eq. (2). Note that the
masses quoted in Eq. (1) are slightly above the corre-
sponding thresholds. A more sophisticated analysis of
the invariant mass distributions in an effective field the-
ory with bottom meson loops, however, showed that the
Zy and Zj poles are below threshold [11]. This finding is
consistent with a recent analysis of the resonance signals
based on a formalism consistent with unitarity and ana-
lyticity [21-26]. However, the question of whether the Z;
and Z[ mesons are virtual states, bound states or reso-
nances has not been answered definitely. The interplay of
Zy and Zj, exchanges with bottom meson loops in T de-
cays was further scrutinized in Refs. [27, 28]. For a more
detailed discussion of these issues, see the review [29].

Braaten and collaborators argued in Ref. [30] that
the closeness to a bottom meson threshold is necessary
but not sufficient for the interpretation as a hadronic
molecule. They used the Born-Oppenheimer approxima-
tion to analyze the substructure of Z, and Z; and con-
cluded that for both states the molecule interpretation
is viable [30]. A recent Born-Oppenheimer study based
on the Lattice potential suggests the presence of a near-
threshold structure in the Z mass range [31]. Similarly, a
near-threshold signal in the Z’ mass range is pointed out
in Ref. [32]. Arguably, one of the most detailed investiga-
tions of the Zj, states as hadronic molecules was done in
Refs. [11, 12] based on an effective field theory with heavy
meson loops that was originally formulated for the charm
quark sector [33]. In this framework, a variety of testable
predictions to confirm or rule out the molecular nature
of these states were given. Some of these predictions will
be checked at future high-luminosity experiments.

An analysis of the angular distributions showed that



the quantum numbers JP = 17 are favored for the two
7y, states [1]. In addition, their quark content fixes the
isospin to be one. Thus, the quantum numbers of both
Zy and Zj are I9(JPC) = 17(177) [4] and the assump-
tion that they are S-wave hadronic molecules of two bot-
tom mesons is tenable. We use an effective field the-
ory with contact interactions to describe the Z;’s. Since
their binding momentum = /2uB (with binding en-
ergy B and reduced mass of the constituents p) is much
smaller than the pion mass m, (or at least of that or-
der in case of the Z3), the constituent bottom mesons
which have masses around 5 GeV can be treated as non-
relativistic point-like particles which only interact via
short-range contact interactions. Thus, one can apply
a non-relativistic effective field theory without explicit
pions to this system. Similar descriptions of two parti-
cle S-wave molecules in the charm sector can be found
in Refs. [34, 35] concerning the charm meson molecule
X (3872) and in Ref. [36] for the Z.(3900) whose inter-
pretation as a molecule is still controversial [30].

This so-called pionless EFT contains only contact in-
teractions and was originally developed for nucleons
which also display shallow bound states such as the
deuteron or the triton [37-40]. The expansion param-
eter is QQ/m,, where the scale @ is determined by the
typical momentum scales of the considered process. De-
pending on the spin-isospin channel, three-body forces
may enter already at leading order in this theory. In
the spin-doublet channel of neutron-deuteron scattering,
for example, a Wigner-SU(4)-symmetric three-body force
is required at leading order for proper renormalization
[41-43] and the triton emerges naturally as an Efimov
state [44], while three-body forces are strongly suppressed
in the spin-quartet channel due to the Pauli principle
[45, 46].

The Efimov effect describes the emergence of shallow
three-particle bound states (called trimers) in a system
with resonant interactions characterized by a large scat-
tering length a. It can occur if at least two of the three
particle pairs have resonant interactions. In particular,
the Efimov effect occurs in systems of a shallow two-
particle bound or virtual state of binding momentum
~ ~ 1/a and a third particle which has resonant interac-
tions with at least one of the constituents of the dimer.
For a — oo, there are infinitely many trimer states with
binding energies Bén) which are spaced equidistantly [44]:
Bénﬂ)/Bén) = const. The crucial point is that this con-
stant is universal in the sense that it is independent of the
details of the short-range physics in the system. However,
its exact value depends on the masses and spin-isospin
quantum numbers of the particles as well as the number
of resonantly interacting pairs. In a system with finite
scattering length, the geometrical spectrum is cut off in
the infared and there will only be a finite number of states
but the dependence of the states on the scattering length
a is also universal.

Whether or not the Efimov effect plays are role in
a three-particle system depends on the particular spin-

isospin channel. The emergence of the Efimov effect in
pionless EFT is closely connected to the requirement of
three-body forces for renormalization at leading order.?
The power counting for three-body forces, in turn, can
be obtained from an analysis of the ultraviolet behavior
of the corresponding integral equations [42, 43, 48]. The
pionless theory contains only contact interactions and is
universal. Thus, it can be applied to all processes with
purely short-range interactions such as low-energy scat-
tering of D and D* mesons off the X (3872) [34] or loss
processes of ultracold atoms close to a Feshbach reso-
nance [49]. An overview of the Efimov effect in nuclear
and particle physics can be found in Ref. [50].

In this work, we assume that the Z; and Z; are bound
states and predict {Zy, Z]} — {B, B*} scattering in the
different spin-isospin channels to leading order in @ in
pionless EFT. These predictions could, in principle, be
tested in the decays of heavier particles into three B/B*
mesons via final state interactions. If the Z, and Z
are virtual states, this process does not exist and one
needs to look at the more complicated three-body scat-
tering of B/B* mesons. Moreover, we analyze the differ-
ent channels with regard to the existence of three-body
bound states. We note that bound states of three B/B*
and three B/B* mesons were previously investigated in
Refs. [51-53] using quark models and effective field the-
ory methods. Here, we focus on three-body bound states
arising in the {Z;, Z;} — { B, B*} scattering channels as
a consequence of the Efimov effect [44].

The paper is organized as follows: In Sec. II, we
write down an extension of pionless EFT for the
{Zy, Z[} — {B, B*}-system. The intergral equations for
the molecule-meson scattering amplitudes are derived in
Sec. IIT and the relation of the amplitudes to observables
is discussed in Sec. IV. Our results and concluding re-
marks are presented in Secs. V and VI, respectively.

II. FORMALISM

To write down an effective Lagrangian density for
the {Zy, Z}} — {B, B*}-system, we start by introducing
isospin I = 1/2 doublets consisting of the bottom mesons

B and B*:
Bt _ B
5= () 5= ().
. B*+ . B*O
B* = <B*O> ) B* = (B*—> 3 (3)

where the upper components have I3 = +1/2 and the
lower ones have I3 = —1/2. Taking into account that

2 The case of a covariant formulation was recently investigated in
Ref. [47], which arrives at some different conclusions concerning
the role of three-body forces.



both Z, and Z; are isospin 1 states, we write down two
isospin-triplets:

7 z
Z=|2Zy| and Z'=|2,] . (4)
Zs Z}

As usual, the physical states, whose electric charges are
indicated by the corresponding superscript, are identified
as

1
i (Zl + ZZQ) EZ+ Wlth 13:+1,
V2
Z3=2" with I3=0,
1
—— (Z1 — ZZQ) =7~ with 13 =-1 s (5)

V2

and analogously for the Z'.

Using a similar analysis for spin, we can write down
a non-relativistic effective Lagrangian £ up to leading
order (LO). It contains all B and B* mesons as degrees
of freedom. Additionally, there are two auxiliary dimer
fields Z and Z’ representing the Z, and Z;, respectively.
Since we are interested in ZB scattering,® in general,
we have to include three-body forces as well. As will
be discussed below, however, their explicit form is not
required to leading order. Taking into account the spin
and isospin structure and the the particle content of the
Zy and Zj (cf. Eq. (2)) one finds:

o V2 _
B, + B! (0 B,
)2+ B (10 )
V2 _ \V& _
BT (o, B: + B (o B!
i <7’ t+2MB*) 1e + e (Z t+2MB*> [res
ZIDZia + Z\N 7]y

9 [ZJA (B;a 6ij(T2aTA)ap Bp

2

2Mp

L= B} (i(’)t—l—

+

_|_

+ Ba (sij(TQTA)aﬁ B;b) + hC:|

-9 [Zgax B}, (Ui);k(m2Ta)ap Bis + h.c.} +...,
(6)

where the ellipsis denotes higher-oder terms, lowercase
Latin letters (i,7,k... € {1,2,3}) are spin-1 indices,
Greek lowercase letters («, 8,7... € {1,2}) are isospin-
1/2 indices, and uppercase Latin letters (A, B,C... €
{1,2,3}) denote isospin 1 for the dimer fields. The ma-
trices 74 are Pauli matrices acting in isospin space and
the matrices U; are the generators of the rotation group
acting on the spin-1 representation. Furthermore, we in-
troduce two coupling constants g and ¢’ for the interac-
tion between the dimer fields and their constituents. The

3 Note that ZB is used as a placeholder for all {Z,, Z;} — {B, B*}
scattering processes.

coefficients of the kinetic terms of Z and Z’, A and A’,
are also constants. At leading order in Q, A" and ¢
are not independent and only kept for convenience. Fur-
thermore, both auxiliary fields are not dynamic. How-
ever, their bare propagators are dressed by bottom meson
loops, so that the full propagators

i

) B0

(7)

Sz (po, P) = (S0

VAQ
can be expressed in terms of the bare ones S%’ » and
the self-energies ¥ and ¥’ which are functions of the four
momentum p = (pg,p). They are ultraviolet divergent
and need to be regulated using a momentum cutoff A.
Using the reduced masses of Z;, and Zj,

_ Mp + Mp-
T MgMg-

Mp-
8
2 ? ( )

and ' =

and their kinetic molecule masses My = Mp + Mp« and
My = 2Mp+, one can calculate their self-energies. The
self-energy X of the Z, is given by

292 p? , 2
E(p(hm: gf;‘ru [—\/—QM <p0_27”.Z) —1€ + ;A
(9)

where A is a cutoff used to regulate the loop integral
for the self-energy and 1/A suppressed terms have been
neglected. The self-energy ¥’ of the Z; is obtained from
Eq. (9) if all parameters are replaced by their “primed”
counterparts. Inserting the self-energies into Eq. (7) one
can match the scattering amplitudes

k2
. o . 2.
—iT" = (—zg(')) iS;m <2M(,),O> ,

(10)

with their first order effective range expansions (ERE)

(T</>)(” __.m 1
ERE 2u) s + ik’

al

(11)

to obtain the B meson scattering lengths a and o’ in the
flavor channels of the Z;, and Z] (cf. Eq. (2)), respectively.
We find

A0
2 (g")*

where the binding momenta are defined as

1
1) = 5 = sen(BY)/2u0|BO)|.

Here, the quantity B = my + mo — M2 represents the
binding energy, which is positive for a bound state and
negative for a virtual state. Note, that these definitions
are chosen in a way that one takes care of both, bound
and virtual states (i.e. a virtual state corresponds to a

2
al) = + ZA, (12)
™

(13)



negative scattering length). Now one can write the full
propagators of both molecules in terms of their binding
momentum:

. . 1
ZSZ(pO7]7) = 77]292” )
52 .
_»y—|—\/—2u (po - 2]’;—12) — i€
. . 1
iS7/(P0, D) = —is—5 )
29" / / P2 .
- + _2/’[' Po — 2M — 1€

(14)

The wave function renormalization constants, W and W/,
for both molecules are given by the residue of the bound
state pole of the respective propagators in Eq. (14):

) — L(/) (15)

2 (g(o)? (um)? '

Higher-order corrections can, in principle, be taken into
account by including additional operators in the La-
grangian (6) [37-40]. The first correction comes from
the effective range term which is not known for the Z,
and Zj.

III. MOLECULE-MESON SCATTERING
AMPLITUDES

We are interested in the universal properties of the
systems of three B/B* mesons. This includes scattering
processes, such as the scattering of B and B* particles
off the Z;, and Z;, as well as bound states of three B/B*
mesons. The corresponding information can be extracted
from the integral equations for Z B scattering where pos-
sible bound states appears as simple poles in the scat-
tering amplitude below threshold. If such bound states
exist, they must be bound due to the Efimov effect [44].

At LO, it is sufficient work with integral equations for
the Z B scattering amplitudes that contain only two-body
interactions. In channels without shallow trimer states,
three-body interactions are strongly suppressed [45, 46].
Observables become independent of the cutoff A used to
regulate the loop integrals for large momenta. If three-
body bound states are present and the Efimov effect oc-
curs, however, the integral equations with two-body in-
teraction only will display a strong cutoff dependence and
a three-body interaction is required for renormalization
already at leading order [41, 42]. The running of the
three-body interaction is governed by a limit cycle and
thus vanishes at special, log-periodically spaced values of
the cutoff. In particular, at leading order it is always pos-
sible to tune these three-body terms to zero by working
at an appropriate value of the cutoff A [54]. The value
of A can then be directly related to the three-body pa-
rameter A, which specifies the three-body force [41, 42].
This particular behaviour can also be found using ma-
chine learning, see [55].

The presence of bound states can therefore be investi-
gated by investigating the cutoff dependence of the scat-
tering amplitudes in different channels of ZB scatter-
ing. If no cutoff dependence is found, shallow three-body
bound states due to the Efimov effect are not present.
The Z B scattering amplitudes can then be predicted to
leading order from two-body information alone.

We go on to derive the intergral equations for Z B scat-
tering. Besides their quark content the isospin doublets
B and B have the same spin and isospin degrees of free-
dom. The small difference in the masses of their con-
stituents is neglected. If electromagnetic effects are not
taken into account, they behave identically when they are
scattered off a Z state. The same argument holds for the
doublets B* and B*. Hence, it is sufficient to analyze the
four remaining scattering processes Z,B, Z,B*, Z; B and
ZyB*. Since both Z;, and Z] belong to an isospin-triplet
and all relevant bottom mesons have I = 1/2, the isospin
structure of all four scattering amplitudes is exactly the
same and each corresponding process has an isospin-3,/2
and an isospin-1/2 channel. In contrast, the spin struc-
ture is different because B and B contain pseudoscalar
particles while the components of B* and B* have spin 1.
Hence, the S-wave scattering of a B off a Z;, or a Z] only
occurs in a spin-triplet channel whereas the scattering
of a B* has a spin-singlet, spin-triplet and spin-quintet
channel.

The scattering amplitudes 7" can be decomposed in a
series of partial waves as

T(E.k,p) = (2L +1)T(1)(E.k,p) Pr(cost), (16)
L=0

where Py is a Legendre polynomial, 6 is the angle be-
tween k and p, k = \E|, and p = [p]. As we focus on
trimer states generated by the Efimov effect which have
L = 0 and meson-molecule scattering processes at low
energies, we project onto S-waves and ignore all contri-
butions from higher angular momenta.

It is most convenient to work in the center-of-mass sys-
tem of the molecule and the meson. The coupled integral
equations describing molecule-meson scattering contain
only diagrams of the type shown in Fig. 1. Thus, we can
use the assingment of momenta given in that figure for
all ZB channels. The total energy FE is given by

]{32 k2 ,72
E = + — 12 17
2(m1 +m2)  2m3 212 (7

where v;; is the binding momentum of the bound state of
two mesons ¢ and j, which has a reduced mass of p;; =
(mimy)/(mi +m;).

A. Z,B scattering

We start with the simplest scattering process where
two of the three bottom mesons are pseudoscalars. The
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FIG. 1. Topologies which appear in the coupled integral equations describing molecule-meson scattering. Energies and momenta
assigned to the lines are given as (energy, momentum). E is the center of mass energy, v;; denotes the binding momentum of
the bound state of two mesons 7 and j, and p;; is their reduced mass. The associated momenta can be used in all Z B scattering

processes.
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FIG. 2. Feynman rules that follow the Lagrangian density in
Eq. (6).

integral equation for the corresponding scattering ampli-
tude T is shown in Fig. 3. Before proceeding further, let
us present the independent tree-level amplitudes for the
ZB™) systems. Using the vertex factors, see Fig. 2,
which follow from the Lagrangian density Eq. (6), we
have

—i9%6i;(TATB) pa

(E+5)2
M

Sy iA B
iMSS T (B R ) = -
+ e

2Mp
_7;925]’77161'71 (TATB),Ba

IMG R (B kR, p) =

k2 2 (k+p)?
E— 2Mp+ 2]\23* ~ 2Mp
—1igg (U )zm(TATB)ﬁa

(E+p)?
Mg~

—i99"(Ui)m; (TATB) ga

E+p)2 , .
(21\—51?* te

(U U; )nm (TATB),Ha

IM A (B kL p) =

b
+ i€

M (B, F,p) =

)
+ i€

.y imAa—jnBg L) —
ZMZ/B*_,Z/B* (E’ k7ﬁ) - _ (E+ﬁ)2
2Mp+
(18)

2 2
E—zE_ 2
QMg+

The integral equation for the ZB scattering is then
given by

b (B, k. ) =

*/é&

Aa—jB

M 35 (B k. p)
Cp—jB o

ZMZBP:%BB(an»ﬁ)

q? i
—qo — 3, T €

+ i€

m 50 (B, k, Q)

><22
g”7+\/2u(E+qo

b

2\ _
) e

(19)

where /27 iAo is the scattering amplitude including the full
spin-isospin structure. Integrating over the gy component
and multiplying with the wave function renormalization,
we obtain

@ 51 i
/i (B k,p) = — 222 P (TATBz)B R
5 )
WE - — i — aMg. 1€
Sy Ti(E )
2u ) (2m)3 2 2 )
—y 4 4] —2u (E — oy — —2?\@) — i€
% (TCTB)ﬁp 551 (20)
z > @7
B~ oy — oy — L e
with 77, BB =Wtly, Bﬂ Evaluating the projection of T} faﬂ

onto a general partlal wave,

1t .
5/ dcost Pp(cos0) T(E, k,p) = Ti)(E, k,p), (21)
~1

for L = 0, we obtain the integral equation for the S-wave
ZyB scattering amplitude

j T
T(O)fo(E, k,p) = — 22 (TATB)Ba 0ij
M- M k2 2
X[ BQO( ——p)—ze)]
2u 2p
I (TCTB),@p 86j | Tio) ian (B k)

B A

2 .
_fy+\/ 24 (E— Mg 21‘{4Z> — i€

[ MB*QO( MB*(E—f—ﬁ)—ie)]

qp
A
M +/ dq My
0

JjBp
C(O A




FIG. 3. Integral equation of the amplitude T of Z, B scattering with incoming spin index ¢ and isospin indices A, a. The
respective indices of the outgoing particles are j, B, and 3. Pseudoscalar mesons are depicted as dashed lines and spin-1 bottom

mesons as solid lines, respectively.

where A is the ultraviolet cutoff discussed above. The
last equality defines the amplitudes Mo, M; and the co-
efficients Cojiii and Coje]gi? for the latter we use boxed
notations to make the corresponding definitions more
transparent (similar notations will be used later). The
logarithmic function @y originates from the one-meson
exchange contributions, whose S-wave projection leads
to integrals of the type

@®)=3 [ + w20 n(25). e

1. 1=3/2,S =1 scattering channel

We can now choose a specific Z, B scattering channel.
While there is just one spin channel (S = 1), the isospin
I can either be equal to 3/2 or equal to 1/2 since we
are coupling isospin-1 to isospin-1/2. We start with the
former. Following Ref. [56], we project out the desired
channel by evaluating:

1
TI’S = - OT L j
© = (28 +1)(2I +1) > aX.jB " (0)

A, AN

where 4, j, m, and 7 represent general spin indices in
the given operators, while @, 3, 77, and A denote general
isospin indices. Note that for elastic scattering, the initial
and final states must be identical, requiring 7 = A and
m = n. The projectors for the Z, B scattering are given
by

057 (10— 1) =4,

1=1/2 1 1 -1
05714(1 (1 ®5 2) = ﬁ(m)aﬁ ;

I= 1 3 1
055 ke (1 ©5 = 2> = 3l(Tima)ap + 0450a5] . (25)

Applying the above projections to the S-wave Z, B in-
tegral equation of Eq. (22), one gets

+
1=35=1 1 I=3/2 ,~AS=1 jBpB
To =15 (OE/\,B[?OHJ T)ia
mDn,
nEX

< (ohuos)

11
=139 [Z 5jn§ij5im‘| [Z ((TBTE)Aﬁ + 5BE5>\5>

Dn,
EX

X (TATB)Ba <(TDTA)a7] + 5DA5(XT]>‘| MO

1 /A I1=3/2 5=1T iBj [Ze}
+ﬁ | dqg My E <OE)\7B[30n,j COJECpT(O)iAZ
mDn,
nkEX

< (ohuos)

1

11 A
f*X3X72M0+2/ dg M1 —
0 12

~ 129

:

1=3/2 ,nS=1 iC I1=3/2 ~S=1

X E : (OEA,chn,j > T(O)ng (ODn,AaOm,i>
mDn),
nEX

A 3 —
=2 Mo+ 2/ dg M T =251 (26)
0

(0) ’

where summation over repeated indices is implied and the
identity [(TBTE)AQ + 5BE5>\ﬁ] (TcTB)gp = 2[(TcTE)>\p +
0cEd )\p] is used in the second-to-last step. Consequently,
the S-wave Z,B scattering amplitude for I = 3/2 and
S =1 satisfies the integral equation

=3 5=1 ™y
Tipy?" (B, k,p)= —2X 22
Mp-~ Mp~ k? 2
o B o
kp kp 2u  2p
o T B k)




2. I=1/2,5=1 scattering channel

Similarly, one can project onto the second isospin chan-
nel I =1/2 (cf. Ref. [56]):

1=ts=1 11
Tio)* ~ 63 lz 5jn5ij5im] Z(TBTATBTA)AWMO

7,
1 /A -1 «Cp
+ 5 ; dqg My Z %(TBTCTB)AP 6jn6j€T(0) iAo

A
I=1/2 ~nS=1
X <On,Ao¢ Om,i >

11><3><( 6) Mo+ (—1) Ad./\/l1
63 0 ; g Mg

¥
I 1/2 hS= -1 iCp I1=1/2 ~S=1
X Z ( A,Cp O ) (0) iAx <On,Aa Om,z)
mn,n\
1.8=1

A
- —Mo—/ dq My Ty >, (28)
0

with the identity Tp7c7s = —7¢. Consequently, the S-
wave Z, B scattering amplitude in the I =1/2and S =1
channel is given by

™y
T(o) (E k,p) = 22
MB* MB* k2 p2
_ E—— 2 y_
X[ kaO( kp( 2u 2u) "
QT(O) (E,k,q)

1 A
— d
t |

B. Zy,B”" scattering

Next, we consider Z, B* scattering. The pseudoscalar
doublet B is then replaced by the vector doublet B*.
Hence, there are three spin channels: S = 0,1, and 2.
The isospin structure is the same as in Z, B scattering
discussed in the previous section. From Fig. 4, we find
the coupled integral equations for the Z,B* scattering
amplitude T7:
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where the S-wave projection and wave function renor-
malization factors have already been applied. The pro-
jections onto isospin 3/2 and isospin 1/2 are the same
as in the previous section. Then the isospin part of the
projection operators given by Eq. (25) does still work
for Z,B* scattering. Since there are three different spin
channels which can be combined with both isospin states,
one finds six scattering channels in total. The projectors

for the scalar, vector and tensor amplitudes are given
by [56]

-1
V3
-1
E(Uﬁ)mn )

1
5[6€m6kn + 6€n5km -

077 (1®1—0) =—=6; ,

2
géékémn] )
(32)

where [(U;);x]" = (UNk; = (Ui)x; and (Ui)jx = —ieijp.
Using the same strategy as presented in the Z,B case,
one can obtain the projection coefficients for the S-wave
ZyB* coupled integral equations by applying the above
operators to Eq. (30) and (31). The results are collected
in Tab. 1. Note that for the inelastic transition 15, the
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FIG. 4. Coupled integral equations for the amplitude T} of Z, B* scattering with incoming spin indices 7, k and isospin indices

A, a, and the corresponding outgoing indices j, ¢ and B, (.

projection is defined as

i
I=1/2,5=1 1=1/2 iB
(T2)(o) / - Z <O)\ B/é O > (T2)(o)]ik§a

gm,
RA
1=1/2
x (on o8 lk) . (33)
As expected, there is no Ty contribution to the S = 0

TABLE 1. Coefficients of the partial-wave projected integral
equation for S-wave Z,B* scattering. One finds that C§ =
cf = ¢t and CY=C%, as expected.

Channel o fer cicy Cc3C3
I=1/2,5=0 (=1)x1 (=1)x0 (=1)x0
I=3/2,S=0 2x1 2x0 2x0
I=1/2,5=1(=1) x (=1) (=1) x V2 (=1) x V2
I=3/2,S=1 2x(=1) 2xv2 2x2
I=1/2,S=2 (-1)x1 (=1)x0 (=1)x0
I=3/2,5§5=2 2x1 2x0 2x0

and S = 2 channel because the scattered particles in
this channel can only couple to a total spin of S = 1,
ie., 07792 = ¢5=%2 — 0. The final integral equations
for all six scattering channels are then expressed in the
following general form with the spin-isospin factors listed
in Tab. 1,

(T )()(Ek‘p)

+ / dq CLCS M (p, )(T1)155 (E.k,q)
0

Cécég MlO(kap)

A
+ [ da CICE Mty a) (125 (B ko).
0
(Tz)( )(E k,p) = C3C5 Mao(k,p)

" / dq C1C5 Mo (p, @) (T3 (B k). (34)
0

The five scalar amplitudes Mg, M1y, Mis, Msy and
Moy are defined by Eq. (30) and (31).

C. ZiB scattering

The scattering process Z;B — Z;B has the same
isospin structure as described in the previous sections.
This yields the isospin factors C{ in the two amplitudes
shown in Fig. 5. Although the only spin channel is
S =1 and thus the projection operator is the same as in
Sec. IIT A, the vertices appearing in the amplitudes are
different. This leads to different spin factors in these am-
plitudes. Firstly, the S-wave Z|B scattering amplitudes
satisfy the integral equation,
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FIG. 5. Coupled integral equations for the amplitude 73 of Z,B scattering with incoming spin index i and isospin indices A,

«, and the corresponding outgoing indices and j and B, .
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Similarly, by applying the spin-isospin projection onto
these equations, we obtain

(Tl)(o) (E k p

(TQ)(O) (E> k’p)

/ dg CLC5 M (p,0) (1) 153 (B, k. ),

= 0404 Mao(k,p)
A

+ [ dg GO} Mar (0.0 (1) (5 (B, )
0

A
+ [ daCiC M )@ (B R G1)
0

with four scalar amplitudes Mys, Msg, Msy and Moo
whose expressions are given by Eq. (35) and (36). Note
that C4 = CI = Cf = C{. The spin coefficients are given
by Tab. 2.

TABLE 2. Coefficients of the partial-wave projected integral
equation for S-wave Z} B scattering.

Channel cio8 cicy cicy
I=1/2,8S=1(-1)xv2 (1) x V2 (=1) x (-1)
I=3/2,8=1 2x+v2 2x+v2 2x(-1)

D. Zi{B* scattering

The last scattering process includes two vector parti-
cles. Thus, there are six channels in total (three spin
states S = 0, 1,2 combined with the isospin 1/2 and 3/2
states). The integral equation for this process is shown in
Fig. 6. After wave function renormalization and S-wave
projection we find

/

0 T
T(O) fkff(Ev kap) = - 5,[1/2 (TATB)BOL (UZU])ek ‘
MB* MB* k2 p2 .
B Ly
[ @o ( kp ( 24/ QM’) e

2 Mp+ Mp+ 2 2 .
L Qo (e - 4 — )]
Am Jo ’ ’ q? ;

=y 2 (B~ QMB* T o, ) %

(te™B) gy (UnUj)en | T,

1
Xi

(0) 'thgoz (E k q)

A
Colili Mo+ [ da M Coto [T i (B k)
(38)

The spin projection operators are known from Sec. IITB
and given in Eq. (32). When applied to the amplitude of
the above equation one ends up with the following spin-
isospin factors, see Tab. 3. Then the projected integral

TABLE 3. Coefficients of the partial-wave projected integral
equation for S-wave Z; B* scattering.

(Z,S) (3,0 (3.1 (3,2
CiCE (-1) x (=2) (1) x1 (=1) x 1
(,S) (3,0 (31 (5.2
cics 2x(-2) 2x1  2x1

equation for the S-wave Z; B* scattering reads

S(B,k,p) = CLCF Mo(k,p)

(0)
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A
+ [ CiCi M T Bk (39
0

with two scalar amplitudes M, and M; defined by
Eq. (38).

IV. RELATION TO OBSERVABLES

After discretization, the integral equations from
Sec. III reduce to inhomogeneous matrix equations of
the form T = R + MT, where all quantities implic-
itly depend on the energy E. For an integral equation
describing Z B scattering in a single channel there are
three relevant regions of the center of mass energy FE.
Denoting the binding energy of the relevant molecule Z,
or Zj as B(Z), we have:

(i) —B(Z) < E < 0: here, the elastic scattering of
a bottom meson off a molecule is the only pro-
cess that is allowed. In terms of the center-of-
mass momentum k this energy region translates to
0 < k < kpreak, where kpreqr is the breakup mo-
mentum of the molecule.

(i) —o0 < E < —B(Z): for energies below the
molecule-meson scattering threshold, trimer states
can appear.

(iii) 0 < E < oo: for positive energies the molecule can
break apart and three-particle singularities have to
be taken into account. This regime is beyond the
scope of our work.

In a system of two coupled integral equations where
both Z, and Z; are involved, the scenario above must
be generalized. One has to replace in the second case
—00 < E < —B(Z) by —00 < E < —max(B,B’) be-
cause a stable trimer state must lie below both dimer
thresholds. In the first case one has to take care of
the relation between the two binding energies B and B’.
Purely elastic two-body scattering Z, B*, for example,
only takes place for B > B’. Namely, in the energy region
—B < E < —B’. In the other case, i.e. for B < B’ both
molecule states can be formed out of the three bottom
mesons and inelastic reactions become possible. Such re-
actions will not be considered here. In Z; B scattering,
the situation is reversed.

In the following, we consider a system of two coupled
integral equations of the type derived in Sec. III. The
simpler case with just one such equation can straightfor-
wardly be deduced from this.

A. Elastic ZB scattering

In the energy region (i), where elastic ZB scattering is
dominant, the corresponding amplitudes T} (p) and T»(p)
can be found by solving the inhomogeneous matrix equa-
tion T = R + MT for a given momentum £k, i.e. at
a given center of mass energy E ~ k2. DBesides the
amplitudes themselves there are two additional observ-
ables of interest in the Z B scattering process: the meson-
molecule scattering length as and the phase shift 6y, (k)
where L is the relative angular momentum between Z
and B. Since we focus on S-wave scattering, we define
the S-wave phase shift as §(k) = o (k).

For the determination of these two quantities, we use
the relation

21 1
Tikp=k)=——— 40
1( » D ) /lgkCOt(S—ik’ ( )
with the effective range expansion
1
kcotd = —— + O(k?). (41)
as
Thus, the scattering length as is given by
as = —£2 T1(0,0) , (42)

2

and the scattering phase shift can be determined by in-
verting Eq. (40).

B. Trimer states

For negative energies below the two particle threshold,
there are no poles in the kernels of the integral equa-
tions. A three-particle bound state with binding energy
Bs shows up as a simple pole in the two amplitudes T}
and Ty which are combined in T. One can parametrize
the amplitudes in the vicinity of the pole as

B(k) B1(p)

+ regular terms,



B(k) Ba(p)

TQ(kap) = E+B3

for E - —B3.
(43)

+ regular terms,

Inserting this into the coupled integral equations for
Ty (k,p) and T5(k,p) and matching the coefficients of the
pole in (E+ Bs), we obtain a homogeneous integral equa-
tion for B(p) which has nontrivial solutions only for a
discrete (and possibly empty) set of negative bound state
energies. After discretization, this turns into a homoge-
neous matrix equation of the form B = M(E)B.

V. RESULTS

The question of whether the Z, and Z; mesons are
virtual states, bound states or resonances has not been
answered definitely (see, e.g., Ref. [24] for an analysis
of recent experimental data on the production and de-
cay channels of the Z and Z’ in an effective field theory
framework that incorporates constraints from unitarity
and analyticity). Here we assume that the Z and Z’
are bound states and solve the (coupled) integral equa-
tions derived in the previous section. Since their binding
energies, required as input for these calculations, are un-
certain, we follow the strategy of Ref. [57] and assume
the ranges:

B=50+25MeV,
B'=1.040.5MeV. (44)

Using Eq. (13), this leads to the binding momenta
v = 162.87355 MeV
7' =73.071%1 MeV . (45)

for the Z, and Z; molecules, respectively. One observes
that the central value for the Z;(10610) is larger than the
pion mass, so the applicability of an EFT without explicit
pions is not obviuous. However, due to the large uncer-
tainties of 7, a binding momentum of the Z;, below M,
is not excluded. As a consequence, one can use pionless
EFT as a model to obtain first insights on the properties
of the Z B systems. The sensitivity to the input values is
illustrated by showing results for the central values and
the upper and lower bounds in Eq. (44). As discussed in
detail in Ref. [29], there is some uncertainty about the
precise location of these poles, so our analysis should be
updated when precise data becomes available.

A. Bound states of three B/B* mesons

We searched for solutions of the homogeneous inte-
gral equations (cf. Subsec. IV B) corresponding to bound
states of three B/B* mesons in all spin and isospin chan-
nels of the Z,B and Z;B(I = 1/2,3/2,S = 1), as
well as Z,B* and Z}B* (I = 1/2,3/2, S = 0,1,2) sys-
tems discussed in Sec. III, repectively. No such solutions
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40/

20¢
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(L,5) = (1/2,1)
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k/M,

FIG. 7. S-wave phase shift § as function of the momentum k
for the I = 3/2 (solid line) and I = 1/2 channels (dashed line)
of elastic Z, B scattering. The bands are obtained by varying
the input binding energies in the ranges given in Eq. (44).
Note that the pionless EFT expansion breaks down for mo-
menta of order M, as indicated by the shaded area.

were found. As a consequence, there is no Efimov effect
with three B/B* mesons. Heuristically, this can be un-
derstood from the effective number of interacting pairs,
which is smaller than two in all channels. Moreover, the
amplitudes are independent of the cutoff A for sufficiently
large A and three-body forces do not enter at leading or-
der.

Next we focus on Z B scattering in the different chan-
nels. Due to the suppression of three-body forces, this is
completely predicted by the Z;, and Z; binding energies
to leading order and the cutoff A in the integral equa-
tions in Sec. III can be removed. Note that we will not
show numerical results for Z] B scattering, since a purely
elastic scattering process without coupling to the Z, B*
system is not possible (cf. the discussion in Sec. IV).

B. Discussion of Z,B scattering

The elastic scattering Z, B is completely described by
the formulae in Sec. IV A characterized by two observ-
ables: the Z,B scattering length a3 and S-wave phase
shift 6(k). The scattering length in the I = 3/2, S =1
channel is given by

al=3 7 = 14,0726 fin | (46)
and the corresponding phase shift in this channel is shown
as a function of k£ in Fig. 7. The bands are obtained by
varying the input binding energies in the ranges given in
Eq. (44). Note that the pionless EFT expansion breaks
down for momenta of order M, and our results in the
shaded region of Fig. 7 should only be taken as an indi-
cation of the general trend. The positive phase shift cor-
responds indicates an attractive interaction between the
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FIG. 8. S-wave phase shift § as function of the momentum k
for all six channels in elastic Z, B* scattering. The bands are
obtained by varying the input binding energies in the ranges
given in Eq. (44). Note, that the S = 0 and S = 2 spin
channels yield the same result. Moreover, the pionless EFT
expansion breaks down for momenta of order M, as indicated
by the shaded area.

two scattered particles. However, as discussed above the
interaction is not strong enough to induce a three-body
bound state. For a increasing attraction of the meson-
molecule interaction, the scattering length a3 tends to
minus infinity and jumps to plus infinity when a bound

state appears (see, e.g., Ref. [49]). The scattering length
3

aézi’s:l is large but negative such that only a little more

attraction would be needed to form a universal trimer
state.

From the negative phase shift in Fig. 7 for the I =
1/2, S =1 channel, we conclude that the Z B interaction
in this channel is weakly repulsive. The corresponding
scattering length is

—1 —
ar 757 = 0.6103 fm . (47)

C. Discussion of Z,B* scattering

In the same way as for Z;, B scattering, one can analyze
the scattering observables in the Z, B* system. We calcu-
late the molecule-meson scattering length and the phase
shift in all six isospin-spin channels. Due the purely S-
wave interaction at leading order, the projection onto
some of the isospin and spin states leads to identical pref-
actors. Therefore only four independent amplitudes re-
main. The corresponding phase shifts are shown in Fig. 8.
Note that the pionless EFT expansion breaks down for
momenta of order M, indicated by the shaded region.
The I = 3/2,S = 0,2 and I = 1/2,S = 1 phase shifts
indicate an attractive interaction between the Z; and
B*. However, the attraction again is not strong enough
to produce trimer states. The corresponding scattering
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FIG. 9. S-wave phase shift § as function of the momentum k&
for all six channels in elastic Z, B* scattering. The bands are
obtained by varying the input binding energies in the ranges
given in Eq. (44). Note, that for each isospin state the S =1
and S = 2 spin channels yield the same result and furthermore
that the I = 1/2, S = 0 result is equivalent to that of I = 3/2,
S=1,2.

lengths are:

al=3 0 o 148+28 (48)
al=2502 = 0.6+03 gy (49)
al=5 = 08704t (50)
i = = 99408y (51)

in agreement with the absence of trimer states.

D. Discussion of Z,B* scattering

Finally, we turn to Z; B* scattering. In Fig. 9, we show
the Z] B* scattering phase shifts up to the Zj breakup
momentum, k = 0.5M, where the scattering is purely
elastic. The meson-molecule scattering lengths in the
different spin-isospin channels are given by

=3 §—= -1 g_
ab 2T = 70 2 39546 fm, (52)
—1 —
e (53)
—3 qg—
ay 2% = 32tldfm, (54)

respectively. One observes that the absolute value of the
scattering length in the I = 3/2, S =1,2 and I = 1/2,
S = 0 channels is an order of magnitude larger than
in all other processes and channels. The large negative
value of the scattering length reflects the steep rise of
the phase shift below k ~ 0.1M,. It indicates that the
I=3/2,S=1,2and I =1/2, S = 0 channels in the
Z; B* system are very close to the emergence of trimer
states due to the Efimov effect but that the attraction is
not quite enough.



VI. CONCLUSIONS

In this work, we have investigated the bound states
and scattering processes of B and B* mesons off the
Z(10610) and the Z{(10650). Using an pionless EFT
with short-range contact interactions, we have derived
the integral equations for the corresponding scattering
amplitudes to leading order in the EFT expansion. Fur-
thermore, we investigated the ultraviolet behavior of the
scattering amplitudes and ruled out the possibility of
bound states of three bottom mesons due to the Efimov
effect in all considered channels. As a consequence, there
are no three-body forces at leading order, and we were
able to predict the phase shifts and scattering lengths
for the elastic scattering of Z, B, Z,B*, and Z; B*. Our
analysis showed the the Z; B* channel, in particular, is
close to supporting an Efimov state and has a very large
scattering length. Our predictions could, in principle,
be tested via the final state interactions in the decays of
heavier particles into three B/B* mesons (cf. the discus-
sion in Ref. [34]) or in lattice simulations. Because of the
universality of large scattering length physics, they ap-
ply to any system with short-range interactions and the
same spin-isospin structure.

In the future, it would be interesting to calculate the
effective range corrections to our results. While this is
straightforward in principle, at present there is no ex-
perimental information on the effective ranges available
such that only order of magnitude estimates are feasible.
Since the Z,(10610) is at the border of applicability of
pionless EFT, an extension to include explicit pions ana-
log to XEFT for the X (3872) in the charm sector [58, 59]
should be considered. With respect to future lattice cal-
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culations, it would then also be interesting to investigate
the light quark mass dependence and finite volume ef-
fects in a framework with explicit pions [60-62]. A re-
lated process is the short-distance production of three
B/B* mesons. This process is also observable when the
Zy and /or Z] mesons are virtual states and will be consid-
ered in a forthcoming publication. For an investigation
in the D meson sector, see Ref. [63].

Universal three-body states bound by the Efimov effect
have been found in various areas of physics, ranging from
nuclear physics to ultracold atoms [50, 64—66]. While the
search for hadronic molecules bound by the Efimov effect
has not been successful so far, it remains an intriguing
possibility to form shallow three-body hadronic molecules
with universal properties.
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