001050504 001__ 1050504
001050504 005__ 20260113204524.0
001050504 037__ $$aFZJ-2026-00272
001050504 041__ $$aEnglish
001050504 1001_ $$0P:(DE-Juel1)198716$$aIm, Eunmi$$b0$$eCorresponding author$$ufzj
001050504 1112_ $$a76th Annual meeting of the International Society of Electrochemistry$$cMainz$$d2025-09-07 - 2025-09-12$$wGermany
001050504 245__ $$aUnveiling Iron-Slurry/Air Batteries: A Hybrid Approach Integrating Iron-Air and Flow Battery Systems
001050504 260__ $$c2025
001050504 3367_ $$033$$2EndNote$$aConference Paper
001050504 3367_ $$2BibTeX$$aINPROCEEDINGS
001050504 3367_ $$2DRIVER$$aconferenceObject
001050504 3367_ $$2ORCID$$aCONFERENCE_POSTER
001050504 3367_ $$2DataCite$$aOutput Types/Conference Poster
001050504 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1768310535_20210$$xOther
001050504 500__ $$aBMBF 13XP0536B- Gekapselte Eisenmaterialien für Eisen-Slurry/Luft-Akkumulatoren zur stationären Energiespeicherung mit hoher Kapazität (02.2023-06.2026)
001050504 520__ $$aThe increasing demand for renewable energy sources, such as wind and solar, is driving the need for efficient and sustainable energy storage systems. Among the promising alternatives to conventional batteries, iron-air batteries have gained significant attention due to their high energy densities (2,500 WhL-1), intrinsic safety, environmental friendliness, and reliance on abundant materials. However, a key challenge with traditional iron-air batteries is the solid iron electrode, where surface passivation caused by oxidation products limits charge transport and leads to extended formation cycles. Therefore, the development of iron electrodes with a high loading of active material to enhance storage capacity, while ensuring efficient charge transport at practical current densities, is essential to fully unlock the potential of iron-air batteries.This study focuses on the investigation of iron-slurry/air battery designed to combine the advantages of conventional iron-air batteries with the design flexibility of flow batteries, enabling independent control of energy capacity and power output. Iron-coated carbon powder was initially synthesized as an active material, where conductive carbon particles facilitate electron transport. Key parameters such as iron content (to maximize capacity) and slurry viscosity (to ensure efficient flow and pumping) were optimized. The synthesized slurry was then characterized using X-ray diffraction (XRD) for phase identification, while morphological and elemental analyses were conducted using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and inductively coupled plasma-optical emission spectroscopy (ICP-OES). Electrochemical behavior was evaluated through open circuit potential (OCP), cyclic voltammetry (CV), and chronopotentiometry (CP) measurements. Based on these physical and electrochemical characterizations, the optimized slurry formulation was selected and mixed with an alkaline electrolyte (KOH solution) to fabricate the iron slurry electrodes. A proof-of-concept iron-slurry/air battery was demonstrated for the first time, offering clear evidence of the system’s practical viability. This demonstration provides critical insight into the potential of slurry-based battery systems and suggests a viable pathway towards enhanced sustainability and efficiency in renewable energy storage applications.
001050504 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001050504 7001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b1$$ufzj
001050504 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2$$ufzj
001050504 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3$$ufzj
001050504 909CO $$ooai:juser.fz-juelich.de:1050504$$pVDB
001050504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198716$$aForschungszentrum Jülich$$b0$$kFZJ
001050504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b1$$kFZJ
001050504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
001050504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
001050504 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
001050504 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001050504 920__ $$lyes
001050504 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001050504 980__ $$aposter
001050504 980__ $$aVDB
001050504 980__ $$aI:(DE-Juel1)IET-1-20110218
001050504 980__ $$aUNRESTRICTED