001     1050505
005     20260113204524.0
024 7 _ |a 10.3390/rs18010146
|2 doi
024 7 _ |a 10.34734/FZJ-2026-00273
|2 datacite_doi
037 _ _ |a FZJ-2026-00273
082 _ _ |a 620
100 1 _ |a Pascual-Venteo, Ana B.
|0 0000-0001-9303-4557
|b 0
|e Corresponding author
245 _ _ |a Spectral Unmixing of Airborne and Ground-Based Imaging Spectroscopy for Pigment-Specific FAPAR and Sun-Induced Fluorescence Interpretation
260 _ _ |a Basel
|c 2026
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768317625_19369
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Accurate quantification of photosynthetically active radiation absorbed by chlorophyll (𝑓𝐴𝑃𝐴𝑅𝐶ℎ𝑙𝑎) and the corresponding fluorescence quantum efficiency (FQE) is critical for understanding vegetation productivity. In this study, we investigate the retrieval of pigment-specific effective absorbance and Sun-Induced Chlorophyll Fluorescence (SIF) using both airborne hyperspectral imagery (HyPlant) and ground-based field spectroscopy (FloX) over a well-irrigated alfalfa field in northeastern Spain. Spectral unmixing techniques, including Constrained Least Squares (CLS), Potential Function (POT), and Bilinear (BIL) models, were applied to disentangle pigment and background contributions. The CLS approach was identified as the most robust, balancing reconstruction accuracy with physical plausibility. We derived 𝑓𝐴𝑃𝐴𝑅𝐶ℎ𝑙𝑎from the abundance-weighted pigment absorbance and combined it with spectrally-integrated SIF to calculate FQE. Comparisons between airborne and ground-based measurements revealed strong agreement, highlighting the potential of this combined methodology. The study demonstrates the applicability of advanced spectral unmixing frameworks for both airborne and proximal sensing data, providing a reliable baseline for photosynthetic efficiency in a healthy crop and establishing a foundation for future stress detection studies.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pérez-Suay, Adrián
|0 0000-0002-8258-4454
|b 1
700 1 _ |a Morata, Miguel
|0 0000-0002-0537-6803
|b 2
700 1 _ |a Moncholí, Adrián
|0 0000-0002-8832-2594
|b 3
700 1 _ |a Cendrero-Mateo, Maria Pilar
|0 0000-0001-5887-7890
|b 4
700 1 _ |a Servera, Jorge Vicent
|0 0000-0001-9291-064X
|b 5
700 1 _ |a Siegmann, Bastian
|0 P:(DE-Juel1)172711
|b 6
700 1 _ |a Van Wittenberghe, Shari
|0 0000-0002-5699-0352
|b 7
773 _ _ |a 10.3390/rs18010146
|g Vol. 18, no. 1, p. 146 -
|0 PERI:(DE-600)2513863-7
|n 1
|p 146 -
|t Remote sensing
|v 18
|y 2026
|x 2072-4292
856 4 _ |u https://juser.fz-juelich.de/record/1050505/files/Pascual_Venteo_2026.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1050505
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172711
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2026
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS-BASEL : 2022
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b REMOTE SENS-BASEL : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:28:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:28:48Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21