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Highlights

What are the main findings?

¢ Constrained Least Squares (CLS) spectral unmixing provides robust and physically
plausible estimates of pigment-specific absorbance from hyperspectral data.

¢ Airborne (HyPlant) and ground-based (FloX) observations show strong agreement in
retrieved fAPARcy; , and fluorescence quantum efficiency (FQE).

What are the implication of the main findings?

* The proposed framework enables consistent estimation of photosynthetic efficiency
across sensing scales using combined reflectance and SIF information.

* Results establish a reliable baseline for monitoring photosynthetic performance in
healthy crops and support future stress detection studies.

Abstract

Accurate quantification of photosynthetically active radiation absorbed by chlorophyll
(fAPAR(y ) and the corresponding fluorescence quantum efficiency (FQE) is critical for un-
derstanding vegetation productivity. In this study, we investigate the retrieval of pigment-
specific effective absorbance and Sun-Induced Chlorophyll Fluorescence (SIF) using both
airborne hyperspectral imagery (HyPlant) and ground-based field spectroscopy (FloX) over
a well-irrigated alfalfa field in northeastern Spain. Spectral unmixing techniques, including
Constrained Least Squares (CLS), Potential Function (POT), and Bilinear (BIL) models, were
applied to disentangle pigment and background contributions. The CLS approach was
identified as the most robust, balancing reconstruction accuracy with physical plausibility.
We derived fAPAR(y , from the abundance-weighted pigment absorbance and combined
it with spectrally-integrated SIF to calculate FQE. Comparisons between airborne and
ground-based measurements revealed strong agreement, highlighting the potential of this
combined methodology. The study demonstrates the applicability of advanced spectral
unmixing frameworks for both airborne and proximal sensing data, providing a reliable
baseline for photosynthetic efficiency in a healthy crop and establishing a foundation for
future stress detection studies.

Keywords: Sun-Induced Chlorophyll Fluorescence (SIF); spectral unmixing; HyPlant;
hyperspectral; spectral abundance; CAL/VAL
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1. Introduction

Photosynthesis is a critical process in the Earth’s ecosystem, sustaining global biomass
and biofuel production. Consequently, it has become a central focus of research in the Earth
and life sciences [1,2]. Since the 1970s, remote sensing techniques have been employed
to study plant photosynthesis in vivo, enabling deeper insights into plant behaviour
within a dynamic global context. These studies often rely on light use efficiency models,
first introduced by Monteith [3]. A key input for such models has traditionally been the
estimation of vegetation greenness, which serves as a proxy for chlorophyll (Chl) content
and potential photosynthetic capacity.

However, the growing impact of climate change is significantly altering the photo-
synthetic performance of global vegetation, threatening food production, and disrupting
the balance between carbon sinks and sources [4]. This has intensified the need for global
strategies aimed at early stress detection and continuous monitoring of photosynthesis.
Such approaches are increasingly prioritised within current and emerging remote sensing
frameworks [5-7].

Recent and upcoming hyperspectral and imaging spectroscopy missions, such as
EnMAP [8] (Environmental Mapping and Analysis Program), PRISMA [9] (Hyperspectral
Precursor of the Application Mission), and FLEX [6] (Fluorescence Explorer), offer unprece-
dented opportunities to enhance existing global vegetation products and to develop new
ones. In particular, the European Space Agency’s FLEX mission will deploy the Fluores-
cence Imaging System (FLORIS), an advanced imaging spectrometer specifically designed
to explore methods for retrieving actual, or “true”, photosynthesis.

The FLEX-FLORIS sensor has been designed to meet the dual objectives of detecting
solar-induced chlorophyll fluorescence (SIF) and providing complementary products nec-
essary for its interpretation [10]. This mission distinguishes itself from others focused on
atmospheric or trace gas studies, which typically employ fluorescence as a linear proxy of
vegetation carbon uptake, primarily driven by absorbed photosynthetically active radiation
(PAR) [11]. Airborne imaging spectrometers targeting fluorescence, such as HyPlant [12,13],
FIREFLY [14], NASA’s Chlorophyll Fluorescence Imaging Spectrometer [15] (CFIS), and the
Chlorophyll-Fluorescence Imager (Headwall Hyperspec, Bolton, MA, USA), are currently
deployed on aircraft. These systems are often combined with hyperspectral sensors capable
of meeting the requirements for assessing actual photosynthesis.

The HyPlant sensor is an advanced airborne hyperspectral imaging system designed
for high-resolution remote sensing applications, particularly vegetation monitoring [16]. It
employs a push-broom scanning technique for continuous spectral data acquisition and
consists of two primary modules: the Fluorescence Imaging Spectrometer (FLUO) and
the Reflectance Imaging Spectrometer (DUAL) [13]. The FLUO is specifically designed
to capture spectral data in the 670-780 nm range, encompassing the two key chlorophyll
fluorescence peaks at 687 nm (F687) and 760 nm (F760). Its fine spectral resolution of
0.25 nm enables accurate retrieval of SIF using methods such as the Fraunhofer Line Depth
(FLD) [12]. The DUAL, on the other hand, covers a broader spectral range (400-2500 nm),
providing critical reflectance information across the visible, near-infrared, and shortwave
infrared regions.

The vegetation reflectance signal in the visible and near-infrared ranges (400-800 nm)
has traditionally been exploited for retrieving the main photosynthetic pigments, such as
chlorophylls and carotenoids. However, the full spectral range offers opportunities to more
precisely disentangle pigment composition using spectral unmixing techniques.

Spectral unmixing has seen significant advances in recent years, driven by both
methodological innovations and the increasing availability of high-dimensional hyper-
spectral data. Traditional unmixing approaches based on linear mixing models estimate
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abundances but often fail with spectral variability and nonlinear interactions. Recent
literature has focused on integrating spatial and spectral information, sparsity constraints,
and machine learning to improve abundance estimation and robustness against noise and
spectral variability. For instance, robust spatially regularized sparse unmixing frameworks
with spectral library pruning have been proposed to mitigate spectral mismatch and noise
effects in real hyperspectral datasets [17]. Deep learning methods, particularly autoencoder-
based and transformer-style networks, have rapidly emerged, offering improved subpixel
decomposition by jointly learning spectral representations and abundances with spatial
context [18,19]. Comprehensive reviews highlight the transition from classical linear and
nonlinear models to advanced machine learning and deep learning-based algorithms,
underscoring ongoing challenges such as spectral variability, limited ground truth, and
computational complexity [19,20]. These developments contextualise the need for unmix-
ing strategies tailored to fluorescence and pigment absorption analysis in vegetation remote
sensing, motivating our exploration of constrained and nonlinear unmixing formulations
in airborne and proximal sensing data.

In addition to spectral unmixing, hyperspectral imagery has been successfully applied
to a wide range of advanced remote sensing tasks leveraging machine learning and deep
learning techniques. Modern transformer-based architectures, for example, have demon-
strated state-of-the-art performance in hyperspectral image classification by integrating
efficient dynamic token selection mechanisms to reduce computational redundancy while
maintaining high accuracy, addressing the challenges of long-range spectral-spatial depen-
dency modeling and computational cost [21]. Hybrid models that combine convolutional
and transformer feature extractors have further enhanced classification performance by
simultaneously capturing local texture and global context information [22]. Beyond classifi-
cation, transformer-based frameworks have also been developed for hyperspectral target
and point object detection, enabling precise identification of materials and small objects
based on spectral signatures [23]. These applications demonstrate the versatility of hyper-
spectral data analysis across classification and detection domains, underscoring the broader
impact of advanced modeling techniques in remote sensing beyond spectral unmixing.

Previous work [24] highlights the importance of refined remote sensing products
by analysing, in greater detail, the photosynthetically absorbed photosynthetically ac-
tive radiation (APAR) by fitting the absorption coefficients of individual pigments. That
study introduced a non-negative least squares (NNLS) spectral unmixing algorithm to
retrieve spectrally resolved effective absorbance factors for key pigments—Chlorophyll a,
Chlorophyll b, B-Carotene, and xanthophylls—from reflectance data (500-780 nm). Among
these, the effective absorbance factor of the primary photosynthetic pigment, Chlorophyll a,
deserves particular attention.

To investigate energy partitioning and gain deeper insights into early stress detection
in vegetation, the SIF can be normalised by the light absorbed by Chlorophyll 4, yielding
the fluorescence quantum efficiency (FQE) [24]. However, applying spectral fitting to
the top-of the canopy reflectance signal requires that background signals—notably soil
contributions—are taken into account [25].

A variety of models have been employed to address the spectral unmixing problem.
For instance, Altmann et al. [26] proposed an unsupervised algorithm for nonlinear unmix-
ing of hyperspectral images using a Gaussian process model to estimate abundance vectors
across image pixels, and compared its performance with state-of-the-art techniques on
synthetic data. Similarly, Halimi et al. [27] introduced a nonlinear bilinear model capable
of capturing interactions among endmembers.

In this study, we extend the investigation of pigment effective absorbance spectral
unmixing to airborne and proximal sensing data (HyPlant and FloX), considering both
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linear and nonlinear approaches and accounting for the soil contribution as a background
signal. To mitigate overfitting, we tested different physical constraints within the modeling
framework, which includes the constrained least squares (CLS), potential function (POT),
and bilinear (BIL) formulations described in the following sections. The pigment absorbance
fitting models were applied to both airborne reflectance imagery and field spectroscopy
data collected over a well-irrigated alfalfa crop throughout its growth cycle. The objective
was to compare the retrieved effective absorbance of Chlorophyll 2 with the corresponding
fluorescence quantum efficiency (FQE). We hypothesise that the effective absorbance of
Chlorophyll a increases with crop development, as does the SIF, while the FQE remains
relatively stable.

To clearly position this work within the existing literature, the main motivation of
this study is to advance the interpretation of solar-induced chlorophyll fluorescence by
linking it to physically meaningful pigment-level absorption processes, rather than relying
solely on greenness-based or radiance-driven proxies of photosynthesis. While previous
studies have demonstrated the potential of SIF as an indicator of photosynthetic activity, its
interpretation remains challenged by variations in absorbed radiation, canopy structure,
and background contributions. The key contribution of this manuscript is the extension
and validation of pigment effective absorbance spectral unmixing approaches—previously
demonstrated under controlled conditions—to airborne and proximal sensing observations,
explicitly accounting for soil background effects and testing both linear and nonlinear mix-
ing formulations. By jointly analysing HyPlant and FloX measurements over a crop growth
cycle, this study provides a novel assessment of the relationship between Chlorophyll a
effective absorbance and FQE at high spatial resolution. This framework enables a more
physiologically grounded interpretation of SIF and contributes toward the development
of next-generation remote sensing products aimed at monitoring actual photosynthetic
performance and early stress detection in vegetation.

The paper is structured as follows. Section 2 details the materials and methods
employed in the study, including a description of the field and airborne campaigns, the
existing processing chains used, and the statistical models applied for the (f)APAR spectral
unmixing strategy. Section 3 presents the results obtained using the proposed methodology,
accompanied by their interpretation. In Section 4, a comprehensive discussion is provided,
contextualizing the findings within the current state of the art. Finally, Section 5 summarizes
the key conclusions of the study and outlines potential directions for future research in the
discussed areas.

2. Materials & Methods
2.1. Experimental Site

The study site is located in northeastern Spain, within the Lleida region of the Ebro
Basin, near the foothills of the Pyrenees (Figure 1). This area is geographically bounded by
the Pyrenees to the north and the Iberian System to the south. The research focuses on a site
west of Lleida, in the locality of La Cendrosa, where alfalfa (Medicago sativa L.) is the pre-
dominant crop. Figure 1 provides an overview of the study area, including a regional map
and successive zooms highlighting the alfalfa field of interest. The region’s characteristic
Mediterranean climate, marked by hot, dry summers and mild, wet winters, offers optimal
conditions for analysing vegetation dynamics and understanding crop—environment inter-
actions. Field characterization for this study was conducted during an airborne campaign
using the HyPlant sensor [12], complemented by ground-based measurements acquired
with the FloX instrument [28].
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Figure 1. La Cendrosa field site in northeastern Spain with an alfalfa field. A HyPlant image is shown
with 111 purple pixels (top-right), surrounding the FloX instrument. The bottom-down-left panel
shows the FloX device in the field, while the bottom-right panel provides a close-up view of the FloX
area, revealing individual pixels. The red dot marks the exact location of the FloX measurements,
and the purple squares represent the 111 selected pixels used in the analysis.

2.2. Airborne Campaign and Preprocessed Products
2.2.1. Sensor and Campaign Overview

The HyPlant airborne imaging spectrometer was developed through a collaboration
between Forschungszentrum Jiilich (Germany) and the Finnish company SPECIM. Serving
as the core reference instrument and technology demonstrator for the FLEX satellite mission,
HyPlant is the first airborne sensor specifically designed to retrieve SIF [12].

HyPlant is a high-performance system composed of two integrated modules. The
DUAL module contains two push-broom imaging spectrometers covering a wide spectral
range (380-2500 nm). The FLUO module is dedicated to SIF measurements, acquiring
data at high spectral resolution (0.25 nm) within the 670-780 nm range. Both modules are
linked to an Oxford 3052 GPS/INS system. This synchronizes imaging data with precise
aircraft position and orientation information, enabling accurate image rectification and
georeferencing [13].

The flight campaign was conducted between 15 and 28 July 2021, covering over
100 flight lines. Data were acquired at 1150 m above ground level, between 13:00 and 17:00
local time. The datasets have a spatial resolution of 1.7 m x 1.7 m, a flight speed of 60 fts~!,
and 20% overlap between adjacent lines to facilitate mosaic generation.

2.2.2. Spatial Sampling

For this study, we focused on a region of interest near the fixed sampling point for
field spectroscopy. A total of 111 HyPlant pixels were selected for each flight day within
a fixed radius from the centre of the FloX setup (Figure 1). Pixel selection was guided by:
(1) proximity to the area captured by the sensor, (2) the dimensions of the FloX setup and its
solar panels, ensuring only vegetation pixels comparable to point-fiber measurements were
included, and (3) an appropriate radius reflecting the spectral representativity of the crop
field. The spectral consistency among these pixels justifies the use of their mean spectrum
for comparison with FloX measurements. As shown in Figure 2, both panel (a) reflectance
and panel (b) absorbance demonstrate that the average spectrum is representative of the
individual pixels.
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Figure 2. (a) Spectral reflectance of 111 pixels extracted from the HyPlant image acquired on 15 July
2021. Red line is the averaged reflectance. (b) Corresponding absorbance spectra plotted on a
logarithmic scale. Red line is the averaged absorbance. The high spectral consistency among these
pixels supports using their mean spectrum for comparison with FLoX measurements.

2.2.3. TOC Reflectance and At-Surface Irradiance

Images from seven flight days (15, 16, 17, 20, 21, 22, and 27 July 2021) were processed.
Raw HyPlant DUAL data were processed into top-of-canopy (TOC) reflectance using a
multi-stage automated processing chain. First, raw DUAL image strips were radiomet-
rically corrected at-sensor radiance using CaliGeoPRO software. During the same step,
geometric lookup tables (GLTs) and MapLoc files were generated to support subsequent
georeferencing. Atmospheric correction was then applied using the ATCOR algorithm
(Atmospheric and Topographic CORrection) to transform at-sensor radiance into TOC radi-
ance and reflectance. Following atmospheric correction, spectra were spectrally smoothed
and distortions corrected. Finally, the products were georeferenced using the precalculated
GLTs to generate flight lines and produce the final TOC reflectance.

While TOC radiance and reflectance derived from HyPlant DUAL data are standard
products, the HyPlant FLUO module only provides at-sensor radiance without atmo-
spheric correction. To retrieve at-surface irradiance, we used 1ibRadtran [29,30] via the
Atmospheric Look-up Table Generator software tool [31] (ALG, v1.2). ALG automates the
generation of look-up tables (LUTs) for atmospheric radiative transfer models based on
ranges of atmospheric and geometric variables, such as aerosol optical thickness, water
vapor, solar and viewing angles, and atmospheric profiles. LUT nodes are generated using
systematic or Latin Hypercube sampling.

For each node, the RTM computes atmospheric transfer functions, including path
radiance, direct and diffuse irradiance at the surface, direct and diffuse transmittances
to the sensor, and spherical albedo. These functions decouple atmospheric effects from
the surface signal. Multidimensional interpolation of the LUTs enables application of
atmospheric correction to measured data. In this study, all available atmospheric and
geometric information (longitude, latitude, height, solar zenith angle, viewing zenith angle,
solar and viewing azimuth angles, relative azimuth angle, roll, and pitch) was used for each
flight day. Auxiliary data such as ozone concentration and aerosols were taken from the
Copernicus Atmosphere Monitoring Service, which provides global reanalysis and near-
real-time atmospheric data as part of the European Union’s Copernicus Programme [32].
Based on these inputs, ALG returns the corresponding irradiance spectrum, which was
then used for further analyses.
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2.2.4. SIF at the O, Absorption Bands

The HyPlant airborne imaging spectrometer serves as the reference instrument and
prime demonstrator for the FLEX satellite mission. HyPlant was the first airborne sensor
optically optimized to image SIF by exploiting the two oxygen absorption features located
at 687 nm (O;-B) and 760 nm (O,-A) in the electromagnetic spectrum. Since initial testing
in 2012, research has confirmed the possibility of retrieving SIF in both the O,-A and O,-B
bands [12].

The SIF products used in this study were obtained through the HyPlant processing
chain, following the methodology described in the LIAISE campaign report [33]. The pro-
cessing includes the radiometric calibration, atmospheric correction, geometric correction,
and spectral extraction steps necessary to produce top-of-canopy SIF estimates. From these
products, we derived spectrally-resolved fluorescence signals by emulating the retrieval
of the fluorescence emission spectrum, as detailed in [34], through the ARTMO toolbox
(https://artmotoolbox.com/, last accessed on 4 December 2025.).

For clarity and consistency, the SIF products are hereafter referred to using the follow-
ing abbreviations: SIFp, 4 and SIFp, _p for the fluorescence retrieved in the corresponding
oxygen absorption bands, and SIF for the spectrally-resolved fluorescence signal. These
abbreviations are used consistently in all figures, tables, and the workflow diagram to
facilitate interpretation of the results.

2.3. Field Spectroscopy

To assess the quality of the HyPlant-derived SIF and spectral fitting products (e.g.,
SIFot, APAR-Chlg, and FQE), field measurements of incoming and reflected radiance were
conducted using a point spectroradiometer, specifically a FloX system, installed at x m
above the canopy. The FloX was positioned at a fixed location within the alfalfa field
(0.93105°E, 41.69297°N) and operated continuously during the airborne campaigns on 15,
16,17, 20, 21, 22, and 27 July 2021.

The FloX setup was optimized for continuous field monitoring under ambient sunlight,
enabling high-temporal-resolution measurements of incoming and reflected radiance,
which are critical for validating airborne observations. A consistent sampling strategy was
employed, capturing data primarily during cloud-free periods to maximize the signal-to-
noise ratio. For validation, FloX data acquired simultaneously with the HyPlant overpasses
were selected for further processing. Table 1 summarizes the daily flight times for HyPlant
and the corresponding closest measurements from the FloX sensor.

Table 1. Times of the HyPlant aircraft flights and the closest times in the FloX sensor data tables.

Day Sensor Start Time Final Time
15 HyPlant, FloX 03:29:00 PM 04:22:00 PM
16 HyPlant, FloX 03:01:00 PM 03:52:00 PM
17 HyPlant, FloX 01:27:00 PM 02:19:00 PM
20 HyPlant, FloX 03:00:00 PM 03:51:00 PM
21 HyPlant, FloX 03:10:00 PM 04:02:00 PM
22 HyPlant, FloX 01:32:00 PM 02:26:00 PM
27 HyPlant 01:12:00 PM 02:02:00 PM

Spectrally resolved SIF retrievals were carried out using the SpecFit algorithm [35],
which exploits the high spectral resolution of the instrument. This method provides robust
estimates of top-of-canopy (TOC) reflectance and spectrally resolved fluorescence across the
680-780 nm range, enabling precise quantification of chlorophyll fluorescence dynamics.
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HyPlant flight data were acquired at intervals of approximately one hour per flight.
In this study, the 111-pixel subsets from each HyPlant image were compared with the
temporally continuous FloX measurements. To ensure comparability, the same time
window was selected for both sensors, aligning the static FloX measurements with the
airborne snapshots.

2.4. Spectral Endmembers

A critical component of the proposed methodology is the definition and selection of
spectral endmembers, particularly those representing pigment and background reflectance
features. In this context, direct field measurements provide a reliable reference for the soil
reflectance, which serves as the primary background component. Incorporating measured
soil spectra enhances the robustness of the spectral unmixing procedure (see Section 2.5)
and enables the evaluation of potential variations in model performance across different
background conditions.

2.4.1. Soil Endmembers

To accurately characterise the soil background, 25 non-vegetated top-of-canopy (TOC)
reflectance pixels were extracted from the HyPlant reflectance mosaic acquired on 15 July
2021. Figure 3 shows these 25 soil reflectance spectra (black lines), together with their
mean spectrum (red line). Panel (a) presents the TOC reflectance (R) spectra, while panel
(b) displays the corresponding apparent soil absorbance values, expressed as log(1/R).
This logarithmic representation enhances contrast and facilitates a clearer identification of
spectral features and absorption patterns.

The averaged soil spectrum was subsequently incorporated as a background endmem-
ber in the spectral unmixing models. All selected spectra correspond to bare soil pixels
manually identified in the HyPlant scene, primarily located along field borders and near
built-up areas. This selection provides a representative set of soil spectra suitable for use as
reference background components in the unmixing analysis.

Reflectance (R)
Absorbance (Log(1/R))

L L L L L L L L L ] I I I I _ I I
600 800 1000 1200 1400 1600 1800 2000 2200 600 800 1000 1200 1400 1600 1800 2000 2200
Wavelength Wavelength

() (b)

Figure 3. (a) Spectral representation of 25 non-vegetated pixels extracted from the HyPlant reflectance
image captured on 15 July 2021. These reflectance (R) spectra were selected from the HyPlant scene
and include samples of bare soil. (b) Soil absorbance calculated as log(1/R).

2.4.2. Background and Pigment Bases

To apply the spectral unmixing approach to both the HyPlant and FLoX datasets,
two distinct spectral bases were defined: a background basis and a pigment basis. The
background basis combines synthetically generated spectra with the averaged soil re-
flectance spectrum derived from field measurements, ensuring realistic representation of
non-vegetated background contributions.
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The pigment basis comprises the principal photosynthetic and accessory pigments
typically found in vegetation: Chlorophyll a (Chl.a), Chlorophyll b (Chl.b), f-Carotene
(Car.b), Xanthophylls (Xan.a), and Anthocyanins (Anc). The corresponding absorption
coefficients used as pigment endmembers are described in [24].

Figure 4 illustrates the two sets of endmembers employed in the spectral unmixing
analysis. Panel (a) shows the background basis, including one endmember derived from the
average of 25 non-vegetated pixels (see Section 2.4.1), complemented by four synthetically
generated spectra that emulate the spectral behaviour of background surfaces. Panel (b)
presents the pigment basis, displaying the characteristic absorbance spectra of Chl.a, Chl.b,
Car.b, Xan.a, and Anc.

25 ——BG-Real | ] 12 [ ——Chla ||

——BG1 ———Chlb

BG2 Car.b

ol ——BG3 || 10
——BG4

Xan.a |
Anc

0.8

0.6

04

0.5 00 ——0
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(@) (b)

Figure 4. Endmembers used in the spectral fitting with the background (BG) signals including the
measured average soil absorbance obtained from the field (BG-Real) in panel (a), and the photosyn-
thetic (Chl.a, Chl.b, Car.b, Xan.a) and non-photosynthetic (Anc) pigment absorbance coefficients in
panel (b).

By jointly applying these two bases, the unmixing model effectively disentangles the
spectral contributions of vegetation pigments and background signals, providing a more
accurate interpretation of canopy optical properties and underlying biophysical processes.

The output parameters of the unmixing approach consist of the abundance weights
assigned to each endmember and the corresponding effective absorbance values for the
different spectral components. These parameters quantify the relative contributions of
pigments and background reflectance within the observed spectra, providing valuable
insights into canopy optical properties and supporting the refinement and validation of the
spectral unmixing methodology.

2.5. Spectral NNLS Unmixing Framework for ()APAR Components

In this study, both linear and non-linear spectral unmixing approaches were employed
to retrieve the effective absorption coefficients of the selected components. The mathe-
matical formulation of the unmixing framework and the definition of the endmember
components are adapted from [24]. In essence, the effective absorption of each pigment or
background component is expressed as the product of an abundance weight (w) obtained
from the fitting process and the corresponding fixed endmember spectrum (400-780 nm)
(Figure 4).

Several fitting strategies were implemented to evaluate model performance and phys-
ical consistency. To mitigate overfitting, physical constraints were introduced through a
constrained least squares (CLS) formulation. In addition, two non-linear extensions were
examined: a potential function (POT) model and a bilinear (BIL) model. This combination
of approaches enables the identification of the most accurate and physically meaningful
method for unmixing spectral signatures. Detailed descriptions of each model are provided
in the following sections.
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2.5.1. Constrained Least Squares (CLS) Model

Estimating spectral abundances can be formulated as a Constrained Least Squares
(CLS) optimization problem [36]. While conventional Least Squares (LS) regression pro-
vides an optimal mathematical fit, it may yield abundance weights with negative val-
ues—lacking physical meaning in spectral decomposition—or fail to impose realistic con-
straints that prevent overfitting. The CLS formulation addresses these limitations by
incorporating physically meaningful constraints that enforce non-negativity and improve
the stability and interpretability of the solution.

Mathematically, the CLS problem can be expressed as a linear least-squares optimiza-
tion with bound or linear constraints, ensuring that all estimated abundances remain within
physically plausible ranges.

- .1 5 . B-a<p,
acrs = arg min §||B o —p|5 subject to . (1)

In this formulation, the matrix B contains the endmember spectra as its columns, and
the vector « represents the abundance weights (w) assigned to each endmember within the
mixed pixel. In the CLS unmixing framework, the background matrix B includes both the
real background spectrum (BG-Real) and synthetic background spectra, in addition to the
pigment endmembers, to capture the full variability of the background signal. The CLS
problem, as defined above, is a specific case of the more general constrained least squares
formulation introduced by Lawson and Hanson [36], which can also incorporate equality
constraints—though these are not required for the present study.

In our application, B corresponds to the combined pigment and background bases,
while & denotes the estimated abundance weights for each component. The first con-
straint prevents overfitting by ensuring that the reconstructed spectrum (B - acrg) does
not exceed the observed pixel spectrum p, maintaining physical realism. The second con-
straint enforces non-negativity, ensuring that all abundance weights remain physically
meaningful (« > 0).

In addition to the CLS approach, we also consider non-linear unmixing models, as
described in the following sections.

2.5.2. Potential Model

The first nonlinear approach introduces a potential function based on the abundance
weights obtained from the CLS solution. This model aims to capture potential nonlinearities
between the fitted spectra and the observed signal. It is implemented in two steps: first,
solving the optimization problem defined in Equation (2), and second, retrieving the scalar
potential value s € R that minimizes the reconstruction error. The optimization problem is
formulated as:

> )

1
argmin > || (B - acs)” — p|

where s acts as a global potential exponent that modulates the contribution of the linearly
mixed components. This formulation allows the model to flexibly adjust the nonlinearity
degree between the reconstructed and observed spectra, potentially improving the fit for
complex canopy or background interactions.

2.5.3. Bilinear Model

The second nonlinear model considered in this study is the Bilinear (BIL) model,
widely used in previous hyperspectral unmixing studies [27,37]. The BIL model extends
the linear mixing framework by incorporating second-order interaction terms between
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different endmembers, accounting for multiple scattering or mutual photon interactions
within a mixed pixel.
The observed pixel spectrum p is modeled as:

d—1 d
p = Ba + Z 2 ,Bi,j m; © mj, 3)
i=1 j=it1

where the first term (Bx) represents the linear contribution of each endmember, and the
second term captures nonlinear interactions between endmembers m; and m;. The operator
© denotes the Hadamard (element-wise) product, and f; ; quantifies the strength of the in-
teraction between endmembers i and j. Additive noise is typically assumed to be Gaussian

with zero mean and fixed variance.
To efficiently represent the interaction terms, we define a mapping function ¢ as:

. d @1

Pp: Rf—-R77, @)

7

as pla) = [ay,a0,...,a4,0100,...,0104,0003, . .., 44_184)"
which encodes both the original abundance weights and all pairwise interaction terms
present in Equation (3). This mapping allows the bilinear model to be reformulated in a
vectorized form, facilitating its numerical implementation and optimization.

2.6. Airborne Versus Ground-Based Retrieval of APARcy; , and FQE

After evaluating and comparing the different spectral fitting strategies described in
Section 2.5, a consistent retrieval approach was applied to both the airborne HyPlant
data and the ground-based FloX measurements for all campaign days, as illustrated in the
workflow diagram (Figure 5). This harmonized framework allows for a direct comparison of
the absorbed photosynthetically active radiation associated with chlorophyll a (APARcy; 4)
and the fluorescence quantum efficiency (FQE) derived from each platform.

Airborne [Hyplant] Groundborne [FloX]

_ [Toc RerLECTANCE (500780 nmi / / TOC IRRADIANCE (400780 nim |
H TOC RADIANCE [400-780 nm]
Pigment endmembers

At-surface IRRADIANCE [400-780 nm] /TOC REFLECTANCE [500-780 nm] /

NNLS unmixing
(CLS, POT, BIL)

Pigment abundancy
Factors (e.g. w Chla)

Pigment abundancy
Factors (e.g. w Chla)

APAR i . . APAR decoupling .
HYPLANT product y
l SIF emulation . APAR‘T‘“’ APAR Chla Specfit
ALG product
[ —— _I | RCT | | Fioxproduct | .. Spectrally-resolved SIF

Figure 5. Workflow for the HyPlant and FLoX datasets. Input products obtained from existing
processing chains are shown in grey boxes with coloured borders, while white boxes represent the
products generated in this study following the pigment fitting approach. The variable w Chla denotes
the abundance weight assigned to chlorophyll a by the spectral unmixing model, from which the
absorbed photosynthetically active radiation (APAR) and fluorescence quantum efficiency (FQE)
are derived.

APARcy , was computed for both datasets based on the fAPARcy; , obtained from
the spectral unmixing model, combined with the incoming irradiance within the pho-
tosynthetically active region (450-800 nm). Mathematically, this can be expressed as
APAR Chla(A) = wcp ,Chla(A) - PAR(A), where PAR(A) stands for the surface irradi-
ance for each A € [450,800] nm.
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800
Total APARGy 5 — / APAR Chl a(A) dA, 5)
450

where Ejn (A) represents the spectral downwelling irradiance at the canopy top. This formu-
lation ensures that the absorbed fraction of photosynthetically active radiation is directly
linked to the chlorophyll abundance retrieved from the spectral unmixing framework. The
450-800 nm range was chosen to encompass the primary absorption bands of chlorophyll
a, including the blue (450-500 nm) and red (650-700 nm) peaks, as well as the far-red
region relevant for fluorescence. While the classical PAR range is 400-700 nm, this extended
range allows for more accurate estimation of APARcy; , and its combination with SIF for
FQE calculation.

The fluorescence quantum efficiency (FQE) was derived as the ratio between the
total spectrally integrated sun-induced fluorescence emission (SIFit) and the spectrally
integrated absorbed energy by chlorophyll 4, and is given by

A
“2SIF(A) dA

FQE = ————
Q Total APARChl a !

(6)
where A1 and A; correspond to the spectral range of the retrieved fluorescence emission (e.g.,
650-800 nm). This ratio provides a quantitative measure of the efficiency of fluorescence
emission relative to the absorbed energy by chlorophyll a.

The spectrally integrated fluorescence emission used in the FQE calculation was
obtained using methods tailored to each dataset. For the HyPlant airborne data, the SIF
products were derived through the HyPlant fluorescence processing chain, employing a
spectral emulation technique that reconstructs high-resolution SIF spectra from the O,-A
and O;-B bands. For the ground-based FloX measurements, SIF retrieval was performed
using the SpecFit method, which fits the observed radiance in the oxygen absorption
bands to estimate spectrally resolved fluorescence under field conditions. By applying
these complementary approaches, we ensured a robust comparison between airborne and
ground-based observations, allowing for consistent retrievals of APARcy; , and FQE across
different spatial and temporal scales. Based on this dataset, we hypothesize that crop
growth is associated with an increase in the effective absorbance of chlorophyll a and
in sun-induced fluorescence, while the fluorescence quantum efficiency (FQE) exhibits
minimal variation.

3. Results
3.1. Spectral Pigment and Background Unmixing

We begin by evaluating the performance of the three spectral unmixing models de-
scribed in Section 2.5: Constrained Least Squares (CLS), the Potential function model (POT),
and the Bilinear model (BIL). Each model presents distinct advantages and limitations,
which will be discussed in detail. Based on this comparative analysis, a final model will be
selected for subsequent analyses.

Following the model selection, we present the core findings of this study, focusing on
the comparison between the spectral unmixing results obtained from airborne HyPlant
imagery and those derived from ground-based FloX measurements. This comparison
provides a critical assessment of the consistency and reliability of the retrieved pigment
abundances and associated functional parameters across platforms.

Figure 6 presents the average spectral fitting results for 111 HyPlant pixels across all
seven campaign days. Rows correspond to the three unmixing models (CLS, POT, and BIL).
Each panel shows the measured spectra, the spectra reconstructed by the models, and the
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weighted contributions of the spectral basis, providing a clear visualization of the influence
of each endmember on the fitted results.

The RMSE values shown in Figure 7 exhibit distinct peaks for each model. The CLS
model displays higher RMSE values around 500 nm, 600 nm, 650 nm, and 700 nm. The
POT model exhibits a pronounced peak near 700 nm, with lower values outside this range
but also several smaller peaks. The BIL model shows a prominent peak at 700 nm, followed
by a secondary peak at 650 nm.

day 15 day 16

CLS

POT

BIL

Figure 6. Spectral fitting results for the mean of 111 HyPlant pixels across the seven campaign
days. Rows correspond to the three unmixing models (CLS, POT, and BIL), while columns represent
individual days of the study.

day 15 day 16 day 17 day 20 day 21 day 22
AAAé >

Figure 7. RMSE of spectral fitting for a subset of 111 HyPlant pixels. Rows correspond to the

day 27

CLS

Lo

BIL

three unmixing models (CLS, POT, and BIL), and columns correspond to each campaign day. Red
line represents the average.

These peaks indicate the wavelengths where the models have greater difficulty accu-
rately fitting the observed spectra, likely due to increased variability or noise in the data.
The recurring peaks around 700 nm, in particular, highlight a shared challenge among all
models, potentially associated with spectral features of chlorophyll and other pigments.
Understanding these regions of higher error is crucial for assessing the effectiveness of each
fitting method in capturing the spectral characteristics of the observed phenomena. The
RMSE peak at 700-720 nm likely reflects chlorophyll’s spectral features, the rigid shapes of
the absorption coefficients, and possible fluorescence re-absorption; however, its impact on
the overall FQE calculation is limited due to integration over a broader spectral range.

Overall, the Potential Function (POT) model achieves the lowest RMSE between the
reconstructed spectra and the HyPlant input data, as illustrated in Figure 7. However, this
method is prone to overfitting, often producing solutions that are physically implausible or
inconsistent. In contrast, the Constrained Least Squares (CLS) and Bilinear (BIL) models
yield slightly higher reconstruction errors but effectively constrain the solutions, preventing
overfitting and demonstrating more robust modeling behavior. Considering the balance
between reconstruction accuracy, physical plausibility, and model simplicity, the CLS
method is recommended for the subsequent analyses. The POT and BIL formulations allow
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greater flexibility in fitting the data, which can lead to overfitting of noise or minor spectral
variability, resulting in abundance estimates that are physically implausible.

3.2. fAPAR Chlorophyll a Based on CLS Spectral Fitting

The CLS-based pigment absorbance fitting models were applied to both airborne
reflectance imagery and field spectroscopy data as outlined in Figure 5, with the aim to
compare the obtained effective absorbance by Chlorophyll a on the one hand, and the
fluorescence quantum yield (FQE) on the other hand. The abundance weights wcy, , and
rsulting fAPARcy , retrieved from HyPlant and FloX data exhibited consistent temporal
trends throughout the campaign (Figure 8). Specifically, the HyPlant-derived fAPARcy) 5
showed increasing values from first to last days, closely matching the values obtained
from the FloX measurements, which served as a temporal-resolution ground reference
(Figure 8). The comparison indicates strong agreement between airborne and ground-
based retrievals, with minor deviations attributable to differences in spatial resolution and
canopy heterogeneity.
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Figure 8. Results of the CLS-based pigment unmixing approach for HyPlant (up) and FloX
(down) datasets: fAPARcy;, (left) and abundance weights wcy, (right) obtained along the ex-
periment. HyPlant results show the mean fitting result for 111 pixels. Note that the obtained
fAPARCy) , is shown for the fitted range 500-780 nm, while it is obtained for the full PAR range.

3.3. APAR Chl, Spectrally-Resolved SIF and FQE

The spectrally-integrated SIF, obtained using the emulation technique on fluorescence
retrieved in the O;-A and O,-B bands for HyPlant, and using the SpecFit method for FloX,
followed a similar increasing pattern to fAPARcy 5.

Figure 9 presents an overview of APAR(y, , and spectrally resolved SIF derived from
HyPlant and FloX measurements over the alfalfa field. The spatial patterns reveal substan-
tial variability in both parameters, primarily driven by differences in canopy structure and
pigment distribution. Regions with higher chlorophyll absorption generally coincide with
increased SIF emission, emphasizing the strong coupling between absorbed photosyntheti-
cally active radiation and fluorescence output. Furthermore, the FQE, defined as the ratio
of integrated SIF to integrated APARcy, 5, remained relatively stable across all observation
dates. This stability supports the hypothesis that the efficiency of fluorescence emission
does not exhibit significant variation during the monitored growth period.

Figure 10 presents the SIF, calculated according to the expression provided in the
numerator of Equation (6). The first three acquisition days (15th, 16th, and 17th) display
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slightly noisier spatial patterns compared with the remaining days of the study. In contrast,
the days following to the 17th exhibit more homogeneous spatial structures, suggesting a
more uniform photosynthetic performance of the investigated alfalfa variety.

Figure 11 shows the spatial distribution of FQE for each pixel across the seven HyPlant
acquisition days. For consistency, the FQE color scale ranges from 0 to 0.05 in all panels.
Urban areas and roads were masked prior to analysis to avoid non-vegetated contributions.
On the first day (15th), FQE values are generally lower and more spatially homogeneous.
In contrast, the 16th and 17th exhibit the highest FQE levels, although the patterns appear
noisier and less spatially coherent. During the remaining days, intermediate FQE values
dominate, displaying more structured and stable spatial patterns with no pronounced day-
to-day changes. This progression reflects both short-term variability and the overall stability
of the canopy physiological status during the study period. Moreover, the FQE remained
almost constant because the alfalfa crop was observed during a period in which plants were
not experiencing strong physiological stress. Alfalfa is a resilient, well-adapted crop, and the
field conditions during our observations did not induce substantial variations in chlorophyll
content or other physiological traits that would be expected to affect fluorescence efficiency.
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Figure 9. Sun induced fluorescence (first column), spectrally-resolved APAR Chl a (400-780 nm)
averaged values from the 111 HYPLANT pixels and for the FloX instrument (second column), and
FQE calculated from the spectrally integrated results of the previous entries (third column).
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Figure 10. SIFo; values for each pixel in the seven HyPlant maps. The date for each map is shown as
the title of its corresponding plot (day/month/year).

Figure 12 illustrates the FQE values for each pixel across the seven HyPlant maps
used in this study. The SIF values were emulated following the methodology proposed
in [34]. It is important to recall that HyPlant acquires SIF only in the Oy-A and O,-B bands;
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therefore, to generate the full set of plots shown here, it is necessary to emulate SIF values
as done in previous related work [38]. Overall, the spatial structure within each map
(Figure 11) is consistent and well defined, revealing homogeneous patterns that suggest
spatially coherent photosynthetic performance of the investigated alfalfa variety. Only the
maps from the 16th and 17th July days exhibit noticeable noisy values. Furthermore, FQE
does not appear to vary substantially across the acquisition dates. This observation is also
supported by Figure 12, which presents the pixel-level boxplots for each day included in
the study.

005

ooss

¥ o

oors

! o0
055

Figure 11. FQE values for each pixel in the seven HyPlant maps. The date for each map is shown as
the title of its corresponding plot (day/month/year).
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Figure 12. FQE boxplot values for each pixel in the seven HyPlant maps. This plot was computed
from the maps reported at Figure 11.

4. Discussion

By applying pigment-based spectral unmixing and subsequent fluorescence modeling,
we were able to retrieve the effective absorbance fraction of chlorophyll 2 (fAPAR Chl a)
that followed the trend of crop growth of the alphalpha field. In agreement with previous
studies [38—40], the magnitude of Sun-Induced Fluorescence radiance was found to be
primarily driven by the pattern of photosynthetically active radiation (Figure 9).

After normalization of the fluorescence emission by the respective effective absorbance
of chlorophyll a (APAR Chl a), a more stable trend of FQE along the flight days was
obtained. The spectral fitting approach using the Constrained Least Squares (CLS) model
provided stable and physically interpretable estimates of pigment abundances, which were
consistent across the HyPlant imagery and the ground-based FloX measurements. This
methodological consistency allowed for direct comparison between scales, demonstrating
that the retrieved APAR Chl a values increased with canopy development, while the
FQE remained relatively stable—indicating a balanced photosynthetic efficiency under
well-irrigated conditions.
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The comparison between HyPlant and FloX datasets further confirmed the robustness
of the proposed approach: both platforms captured similar trends, with consistent increases
in effective chlorophyll absorption during crop growth and stable FQE dynamics through-
out the observation period. These results reinforce the potential of combining spectral
unmixing with high-resolution SIF measurements to disentangle structural and functional
drivers of canopy fluorescence, even without resorting to full radiative transfer simulations.
Other approaches to normalize the emission of SIF have been proposed, but focused on
the O2A-band fluorescence F760 so far only. For example, Bendig et al. [41] evaluated two
normalization strategies to correct diurnal TOC SIF observations in summer barley for
structural and environmental confounding effects. Using both airborne and drone-based
spectrometers, the study compared the fluorescence correction vegetation index (FCVI)
with three variants of the near-infrared reflectance of vegetation (NIRv). Radiative transfer
simulations with DART confirmed that NIRvH1 outperformed the other methods, closely
reproducing modeled chlorophyll F760 emission efficiency (R? = 0.99). Using a spectral
fitting method over an index to obtain efficiency contains however the possibility to resolve
the entire photosynthetic range for structural effects related to both f{COVER and vertical
canopy structure scattering effects. While the first structural effect (spatial fCOVER) is
addressed by the incorporation of a soil endmember, the second structural effect (multiple
scattering within the canopy) was addressed by the attempt to account for non-linear
behaviour of the pigment endmember fitting functions (a potential function and a bilinear
model). While all fitting methods (CLS, POT, BIL) could account well for the soil absorbance
effects, the nonlinear extensions of the CLS method did not improve substantially the fitting
result (Figure 7). The fitting error observed slightly reduced for the potential fitting, but
however kept around 0.2 absolute error for the red-edge region (690-710 nm). Similar
absolute error fitting shapes were observed after applying the CLS method for leaf level
data [24], pointing to a need for improving pigment endmember behaviour.

Data from the HyPlant flights acquired at approximately 680 m above ground level
exhibited a notable degree of variability, in line with previous findings by [41,42]. Through-
out the measurement period, the top-of-canopy fluorescence at 760 nm (F760) followed
the expected pattern. However, the observed decline in F760 was relatively small. This
attenuated decrease can be attributed to the advanced developmental stage of the alfalfa
canopy during the observation campaign, as mature and structurally dense canopies typi-
cally exhibit a more stable fluorescence response under high-light conditions [43]. Similar
patterns have been reported by [42], who found a more pronounced afternoon decrease in
F760 for crops at earlier phenological stages, suggesting that canopy maturity and structure
strongly modulate the diurnal variability of SIF signals.

5. Conclusions & Future Work

This study demonstrates the feasibility and effectiveness of combining airborne hy-
perspectral imagery (HyPlant) with ground-based field spectroscopy (FloX) to retrieve
pigment-specific effective absorbance, Sun-Induced Chlorophyll Fluorescence (SIF), and flu-
orescence quantum efficiency (FQE) in an alfalfa crop. Using spectral unmixing approaches,
including Constrained Least Squares (CLS), Potential Function (POT), and Bilinear (BIL)
models, we were able to disentangle pigment and background contributions in the top-
of-canopy reflectance, while attempting to account for the non-linear absorption effects in
the canopy.
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The CLS model proved to be the most robust, providing a good reconstruction of
the observed spectra while avoiding overfitting, whereas POT and BIL offered insights
into nonlinear interactions but sometimes produced physically implausible solutions. The
derived fAPARcy , and spectrally-integrated SIF were successfully combined to calculate
FQE, showing strong consistency between airborne and ground-based measurements.

These results highlight the potential of advanced spectral unmixing frameworks for
accurately quantifying pigment absorption and fluorescence at both local and field scales.
The methodology presented here can support high-resolution monitoring of photosynthetic
performance and early detection of vegetation stress, providing a reliable pathway for
precision agriculture and ecosystem research.

Future research should aim to extend the spectral unmixing framework to a broader
range of ecosystems and canopy architectures, including heterogeneous and forested envi-
ronments, to assess the scalability and robustness of the proposed approach. Also, further
finetuning of the endmember absorption shapes is proposed. Incorporating temporal
dynamics through time-series analysis would also provide valuable insights into the evolu-
tion of photosynthetic efficiency and pigment composition under varying environmental
conditions. Furthermore, the integration of machine learning or hybrid physical-statistical
models could enhance the retrieval accuracy of pigment absorption and fluorescence pa-
rameters from hyperspectral data. The upcoming FLEX mission and concurrent imaging
spectroscopy platforms will offer unique opportunities to validate and refine the presented
methods at regional and global scales, ultimately contributing to improved monitoring of
vegetation health and early stress detection in both natural and agricultural systems.
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