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ARTICLE INFO ABSTRACT
Keywords: Restrictions in the soil water availability can strongly impact crop productivity. The increasing frequency and
Fluorescence emission efficiency severity of drought events, as a result of global warming, has made the assessment of drought stress effects on
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vegetation of utmost importance for meeting humanity's agricultural production needs. Recent advances in
remote sensing of solar-induced chlorophyll fluorescence (SIF) provide a basis for new approaches to directly
assess crop water status, since SIF is closely related to photosynthesis and, thus, to early plant physiological
processes triggered by limitations in the water supply. This study provides new insights into the effect of varying
levels of plant available water (PAW) in the soil on SIF emissions. We used several SIF datasets acquired with the
high-performance airborne imaging spectrometer HyPlant during five subsequent vegetation periods (2018,
2019, 2020, 2021 and 2022), each having a different precipitation regime. We normalized the SIF maps for the
underlying effects of canopy structure, calculated SIF emission efficiency (eSIF) and selected various crop fields
including sugar beet, wheat and potato. Maps of eSIF were compared with spatial PAW patterns, which were
derived from a forward soil infiltration model. Our results show positive correlation between eSIF and PAW in
rainfed sugar beet fields at early growing stage, which remained consistent when accounting for variations in the
leaf area index (LAI). This suggests that eSIF variations in sugar beet reflect the spatial reduction of photosyn-
thesis caused by reduced PAW. In irrigated potato fields, conversely, no eSIF-PAW correlations were found. This
indicates the absence of leaf-level water stress in these well-irrigated fields. In rainfed winter wheat fields that
were already in a late developmental stage, the variations in the SIF signal were dominated by locally different
ripening, i.e., chlorophyll degradation, and therefore not representative of changing PAW. With this study, we
could demonstrate that normalized airborne SIF measurements are related to the functional water stress response
in different crops. This study supports future investigations on the development of SIF-based tools for the
improvement of water management in agriculture.

1. Introduction Nevertheless, widely used passive-optical remote sensing approaches
based on canopy reflectance and derived vegetation indices tend to

Sensitive and harmonized information in the actual physiological represent interwoven biochemical and canopy structural responses, and
status of crops is essential for the timely detection of water stress, a which are often only sensitive to medium-to long-term water limitation
context where remote sensing emerges as a particularly suited tool. (Damm et al., 2018). Alternatively, thermal remote sensing approaches
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to estimate canopy temperature can vary due to external factors not
related to limitations in water supply, including wind speed, air tem-
perature, and humidity (Gerhards et al., 2019).

Solar-induced chlorophyll fluorescence (SIF) is a low intensity red to
far-red light emitted from the photosynthetic apparatus between 600
and 800 nm. The signal is characterized by two emission peaks over-
lapping two strong atmospheric absorption bands, one in the red and
another one in the far-red spectral region, which allows to retrieve SIF at
687 nm (SIFpeg) and 760 nm (SIFgarreqd), respectively. All the calcula-
tions in this study were computed using information from the SIFg4r.red,
hereafter referred to as SIF (Mohammed et al., 2019; Meroni et al.,
2009). Remarkably, the particular sensitivity of SIF to subtle physio-
logical responses to water limitations (Zeng et al., 2022; Mohammadi
et al., 2022; Jonard et al., 2020), prior to changes in leaf temperature,
leaf orientation (Damm et al., 2018), or pigment degradation (Xu et al.,
2018), suggests SIF as an interesting candidate for the early detection of
water limitation. Indeed, because of the close relation between SIF and
photosynthetic activity (Guanter et al., 2014), SIF has been reported as a
suitable complement to reflectance- and thermal-based remote sensing
data for the early detection of plant responses to water limitation.

An operational SIF-based water stress assessment has not been
established yet, and requires further investigation via combined exper-
tise from various fields, including remote sensing, plant physiology, and
soil science. The first fundamental questions to be answered are those
related to the spatio-temporal variations of SIF emission in the course of
gradually limiting water supply under conventional agricultural field
conditions. In this regard, Shen et al. (2021) found SIF information to be
more sensitive than the normalized difference vegetation index (NDVI)
to changes in surface soil moisture observed at satellite scale (>1 km
pixel’l). Yet other studies at satellite scale, e.g., Sun et al. (2015)
demonstrated that satellite-observed SIF effectively captured the con-
trasting drought onset mechanisms in two extreme droughts in North
America (in 2011 in Texas and in 2012 in the Great Plains), revealing
that SIF can closely track the response of photosynthesis to both pro-
longed and rapid soil moisture depletion. This evidence was further
explored by Mohammadi et al. (2022), who found that a slower than
average increase or faster than average decrease, respectively, in the
seasonal variation of SIF can be interpreted as an early warning of flash
drought events. Furthermore, water stress was found to induce a
reduction of vegetation functionality, either via a stronger decrease in
the SIF efficiency and gross primary productivity during the afternoon
(compared with values recorded in the morning; Zhang et al., 2023), or
via a closure of stomata and a reduction of light use efficiency (Wantong
et al., 2023). A similar approach based on multi-temporal SIF informa-
tion using the noon-to-morning ratio to characterize water stress
severity was recently proposed by Liu et al. (2023).

At the airborne scale (~1 m pixel size), von Hebel et al. (2018) re-
ported for the first time a significant spatial relation between subsoil
apparent electrical conductivity (which can be related to soil physical
properties) and canopy SIF of an agricultural field. At a similar scale,
Quiros et al. (2020) found a significant spatial match between varying
SIF and qualitative soil units, while the commonly used normalized
difference vegetation index (NDVI) data appeared homogeneous; a
similar pattern was reported by Yoshida et al. (2015), who showed at
satellite a higher sensitivity of SIF compared to NDVI in detecting
drought-induced reductions in photosynthetic efficiency during the
2010 Russian drought. Subsequently, Damm et al. (2022) assessed the
temporal domain and could observe a short-term rise and a subsequent
decline of SIF (described as a ‘double SIF response’) to gradually
evolving water limitation in high-resolution airborne data. Wang N.
et al. (2022), in turn, demonstrated the potential use of UAV-based SIF
for water stress assessments at the field level. They observed a signifi-
cant response of SIF-based indicators during recovery from water stress,
whereas only weak responses were detected when drought stress coin-
cided with heat stress. Despite these insights, further studies are
necessary to complement existing knowledge on the response of SIF to
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varying water supply levels in crop canopies.

It is important to note that remote sensing instruments measure only
a small part of the total SIF signal that leaves emit in the canopy that is
not being reabsorbed by other leaves or scattered out of the instrument's
line of sight (Guanter et al., 2014). This escape fraction (fes) is highly
correlated with the structural properties of the canopy rather than leaf
physiology (Yang and van der Tol, 2018). Consequently, for a correct
physiological interpretation of canopy SIF information, the total SIF
signal measured by a remote sensing sensor must undergo a downscaling
process to obtain its emission efficiency at the leaf-level (Kramer et al.,
2025), hereafter referred to as eSIF. Two methods initially emerged to
support this downscaling and are (i) based on the fluorescence correc-
tion vegetation index (FCVI; Yang et al., 2020), or (ii) on the near
infrared reflectance (NIR) of vegetation index (NIRv; Zeng et al., 2019).
Both indices are proxies of fes. that can be derived from remote sensing
derived top-of-canopy (TOC) reflectance, and allow normalizing SIF to
reduce the canopy structural impact on measured SIF. More recently,
Regaieg et al. (2025) introduced a Discrete Anisotropic Radiative
Transfer (DART)-based approach that models 3D canopy radiative
transfer to separate structural from physiological effects that claims to
retrieve photosystem-level fluorescence efficiency. Damm et al., (2022)
clearly showed that a throughout normalization of SIF for structural and
illumination effects is needed to unravel the SIF inherent sensitivity for
evolving water limitation. However, they used a reference area for
normalization, which limits the applicability of this approach for larger
scale assessments. eSIF-based approaches could overcome this limita-
tion but the sensitivity of such normalized eSIF for evolving water lim-
itation was not investigated yet.

Consequently, we aim to investigate how agricultural environments
and conditions couple or decouple the spatial correlation of normalized
eSIF and plant available water (PAW) in the soil. We retrieved SIF from
airborne based spectroscopy and applied a modified NIRv method (Zeng
et al., 2021) to scale canopy SIF to leaf-level SIF (eSIF). We used spatial
PAW estimates derived from high resolution (1 m pixel_l) soil data
based on hydrogeophysical measurements (i.e., electromagnetic induc-
tion; Brogi et al., 2019). The agreement between both datasets was
analyzed for five consecutive growing seasons (2018, 2019, 2020, 2021
and 2022) collected over three crop types under different water supply
conditions (i.e. irrigated potato, rainfed sugar beet and rainfed winter
wheat).

Our investigation was performed in the framework of preparatory
studies for the forthcoming FLuorescence EXplorer (FLEX) satellite
mission of the European Space Agency (ESA; Drusch et al., 2017), which
is planned to be launched in the second half of 2026.

2. Materials and methods
2.1. Study area

The study site was located near the village of Selhausen, western
Germany (50.865228° N, 6.450074° E), an agricultural area intensively
investigated during the past ten years, and characterized by the culti-
vation of multiple summer and winter crops (Simmer et al., 2015). We
analyzed 15 fields (47.55 ha) covering irrigated potato, rainfed sugar
beet and rainfed winter wheat to investigate the influence of contrasting
crop and environmental settings (i.e. species, phenology, water supply)
on the relationship between eSIF and soil water content. Data were ac-
quired in five years between 2018 and 2022. All investigated fields with
their specific surroundings are shown in Fig. 1., while the green dashed
line shows the division between an upper and a lower geomorphological
terrace shaping the local landscape. The upper terrace has predomi-
nantly shallow soils with a fine loess layer (generally up to 30-90 cm
depth and locally deeper) covering coarse and compacted sediments.
The lower terrace is composed of soil units with a thicker loess layer over
a generally less coarse material (Patzold et al., 2008).
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Fig. 1. Location of the studied fields (blue dashed lines) in Selhausen, Germany, in 2018 (June 27th; a), 2019 (June 26th; b), 2020 (June 23rd; c), 2021 (June 13th;
d) and 2022 (June 14th; e), with their respective areas (f). Background image: enhanced vegetation index (EVI) computed from high-performance airborne imaging
spectrometer (HyPlant) data acquired on June 27, 2018. The green line indicates the border between two landscape shaping terraces. Coordinates system: WGS84,

UTM 32N.

2.2. Remote sensing data acquisition

Airborne SIF data was acquired over five consecutive growing sea-
sons, i.e., 2018 (June 27th; Figs. 1a), 2019 (June 26th; Figs. 1b), 2020
(June 23rd; Figs. 1¢), 2021 (June 13th; Figs. 1d) and 2022 (June 14th;
Fig. le) in the late morning (~10:30-11:30 h) under cloud-free condi-
tions at 600 m above ground level. During the data acquisition, six flight
lines (~360 m width x ~12 km length) were collected using the high-
performance airborne imaging spectrometer HyPlant (Siegmann et al.,
2019; Rascher et al., 2015). HyPlant is a hyperspectral instrument
composed of the DUAL and the FLUO module. The first module measures
radiance from 400 to 2500 nm and it is primarily used to compute TOC
reflectance and narrow band vegetation indices. The FLUO module was
built to enable SIF retrievals, and therefore measures radiance in high
spectral resolution at the O2-A (760 nm) and O»-B oxygen absorption
bands (687 nm) with a full width half maximum (FWHM) of 0.3 nm.

Nano-satellite reflectance imagery from PlanetScope, composed of
four spectral bands (i.e., blue (455-515 nm), green (500-590 nm), red

Table 1

(590-670 nm), and near-infrared (780-860 nm)), and atmospherically
corrected to the bottom of the atmosphere (Planet Surface Reflectance
version 2.0 product), were used to compute enhanced vegetation index
(EVI) seasonal curves at high spatial resolution (3 m pixel !). 24 images
(from the sensor Dove Classic — PS2, product Ortho Scene — Analytic 4B
SR - Level 3B) were obtained between 2018 and 2022 under cloud-free
conditions (Table 1).

2.3. Remote sensing data processing

2.3.1. SIF retrieval

SIF at a spatial resolution of 1 m was computed for all years (Fig. 3a)
using the most recent version of the Spectral Fitting Method (SFM). The
SFM method allows the retrieval of SIF and reflectance in adjacent
wavelengths over a specific spectral range at both sides of the oxygen
absorption bands at 685 and 760 nm (Cogliati et al., 2015). In contrast to
other SIF retrieval methods, the SFM algorithm incorporates radiative
transfer theory to correct for atmospheric interferences caused by

Nano-satellite images obtained from PlanetScope (Planet, 2017), used to estimate the seasonal enhanced vegetation index (EVI) as an approximate reference of crops

phenology. DOY stands for “day of the year”. The date is represented in “month.day” format.

Image no. 2018 2019 2020 2021 2022

Date DOY Date DOY Date DOY Date DOY Date DOY
1 03.25 84 03.21 80 03.24 84 03.29 88 03.22 81
2 04.18 108 04.20 110 04.15 106 04.27 117 04.23 113
3 05.04 124 05.24 144 05.18 139 05.21 141 05.22 142
4 05.26 146 06.09 160 05.28 149 06.16 167 06.12 163
5 06.27 178 06.23 174 06.20 172 - - 06.28 179
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various factors, including water vapor, aerosols, and surface air pres-
sure. More details about the SFM-based SIF retrieval can be found in
Siegmann et al. (2021).

2.3.2. eSIF calculation

We used NIRvH, a modified version of NIRv, which can be calculated
from reflectance data. The determination of NIRvH is based on the
theory that fo. and the NIR reflectance of vegetation share similar
radiative transfer properties (Badgley et al., 2017) and, unlike the
FCVI-based approach, accounts for soil background reflectance inter-
ference. We specifically used NIRVH2 (Zeng et al., 2021), which is a
further development of the original NIRv version and implements a
simplified soil background reflectance correction scheme that assumes a
linear behavior of soil reflectance in the red-edge spectral range.

We calculated the NIRvH2 from HyPlant DUAL TOC reflectance data
according to Zeng et al. (2021) as:

NIRVH2 = Rgoo — Re7s — k* (Anir — Ared) (€9)

where, R is TOC reflectance and subscripts represent the spectral win-
dows (in nm), Axr and Areq are set to 800 and 678 nm, respectively. k is
the slope of the soil reflectance in the red-edge and was calculated by
performing a linear regression on multiple TOC reflectance spectra
across the leaf spectral-invariant region (i.e., 778-800 nm) (Fig. 3b).
NIRvH2 was subsequently used as a factor in equation (2) to derive the
leaf-level SIF emission efficiency (eSIF; Fig. 3c), which accounts for the
scattering and reabsorption effects on the SIF signal, and therefore
provides information about changes in leaf physiology.
n*SIF

eI = P AR*NIRVE2 2

iPAR (mW m~2) represents the incoming photosynthetically active
radiation obtained from the TERENO climatic station (TERENO, 2022).
Since SIF is retrieved from a single angle, it is multiplied by = to
approximate the hemispheric SIF emission.

2.3.3. Phenology estimation

Since the SIF emissions are related to crop phenology (Wang X. et al.,
2022), we differentiated the investigated crop fields according to their
apparent phenological stage. For this, we considered the day of year
(DOY) 80-180 to compute the seasonal EVI curves from nano-satellite
data, and used EVI as proxy for greenness and biomass. The EVI was
selected instead of the more commonly used normalized difference
vegetation index (NDVI), since it has been proven to be less affected by
saturation in areas with high biomass (Huete et al., 2002). The EVI was
computed according to Gao et al. (2000) as:

R780—860 - R59O—670

EVI=25* z 3
R780-860 + 6*Rs90-670 — 7.5*Ry4s5-515 + 1

Phenology classes were defined based on the time elapsed (At) be-
tween the HyPlant data acquisition and the start of the season (i.e., for
irrigated potato, rainfed sugar beet fields) and peak of the season (i.e.,
for rainfed winter wheat fields). The start of the season is defined as the
time point when the EVI shows a strong increase, whereas the peak of
the season is defined as the time point when the EVI starts decreasing.
Fields with a start or peak of the season differing by less than five days
were considered to be in the same phenology class.

For irrigated potato and rainfed sugar beet, fields with a shorter At
(<20 days) between the season start and the HyPlant campaign were
classified as 'Early phenology', while fields with longer At (>20 days)
were considered as 'advanced phenology'. In the specific case of irrigated
potato, the advanced phenology fields differed by more than one day in
At, and therefore were further classified as “Advanced_1”,
“Advanced_2”, and “Advanced_3”. For rainfed winter wheat, fields with
longer At between the season peak and the HyPlant campaign were
considered as 'Early phenology', while fields shorter At were considered
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as “advanced phenology”.

2.3.4. Leaf area index calculation

The leaf area index (LAI) is considered a sensitive indicator of canopy
structural impacts on retrieved SIF (e.g., via scattering and reabsorp-
tion). We therefore compared the relationship between SIF and eSIF
considering the underlying LAI to assess the actual effect of the down-
scaling method on retrieved SIF emissions. Therefore, we derived LAI for
each pixel from HyPlant DUAL TOC reflectance data using a hybrid
approach that combines the capabilities of radiative transfer modeling
with machine learning regression techniques (Verrelst et al., 2019). We
particularly combined the radiative transfer model PROSAIL
(Jacquemoud et al., 2009) with the machine learning technique support
vector regression (Smola and Scholkopf, 2004).

2.4. Soil data acquisition

Soil information used in this study have a pixel size of 1 m (i.e., the
same as the airborne SIF data) and was derived from geophysics (elec-
tromagnetic induction)-based mapping presented by Brogi et al. (2019;
Fig. 3d). Brogi et al. (2019) published a ~90 ha soil map of the Sel-
hausen area, which includes the investigated fields and differentiates
between 18 soil units that are quantitatively described up to a maximum
depth of 2 m. The electromagnetic induction methodology measures
apparent electrical conductivity (ECa) at multiple depths of investiga-
tion and follows the principle that specific physical properties of a soil
will determine its capacity to conduct electricity. Therefore, soil units
sharing similar ECa signatures over depth are assumed to share com-
parable soil characteristics and belong to the same soil class. The ge-
ometry of the 18 soil units was determined by analyzing ECa maps using
supervised machine learning algorithms, while their specific soil prop-
erties were identified with a strategic field sampling directed at 100
representative points. For more information about the methodology,
descriptions soil unit's properties, and descriptions soil unit's properties,
the reader is referred to Brogi et al. (2019), while Brogi et al. (2020,
2021) have assessed the performance of this map against satellite-based
information and in supporting agroecosystem models.

2.5. Soil data processing

2.5.1. Calculation of precipitation regimes

The full PAW capacity (PAW¢,p) of each soil class has to be corrected
according to the specific precipitation regime of each investigated
growing season. Therefore, we characterized the precipitation regime of
each year via the daily rainfall accumulated during the last 30 days
before the HyPlant campaign using rainfall data recorded from the
terrestrial environmental observations (TERENO; TERENO, 2022) as:

30
Precipitation regime = Z Daily rainfall; (€]
i=1

The respective accumulated precipitation sums are shown in Fig. 2,
indicating 2018 and 2022 as years with higher rainfall (>451 m~2) and
the other years as lower rainfall years with the driest year in 2020. In the
years 2019, 2020 and 2021, the accumulated rainfalls were 35.85,
18.00, and 40.40 1 m~2, respectively. This information is later used in
the study to calibrate the PAW,;, of a soil unit and estimate the actual
PAW (hereafter just referred to as PAW) for each year (cf. section 2.6).

2.5.2. Generation of plant available water maps

The Mualem-van Genuchten model (van Genuchten, 1980, Fig. 3e)
was used to convert the textural information provided by the
geophysics-based soil map into numerical values of PAW,,, (Fig. 3f) as:

6, — 6,

Oy (h :9r+7nm
®) (1 + |ah]")

(5)
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Fig. 2. Cumulative (summed) precipitation during the 30 days prior to high-
performance airborne imaging spectrometer (HyPlant) overflights in 2018
(June 27), 2019 (June 26), 2020 (June 23), 2021 (June 13) and 2022 (June 14).
Precipitation data were derived from TERENO 2022.

O, Or, and 0; (cm® cm ™) are the volumetric, residual, and saturated
water content of the soil, respectively. h (kPa) represents the pressure
head and « represents the inverse of the air entry pressure (cm ™). The
dimensionless n value relates to the distribution of soil pore sizes, and m
is a shape parameter related to n by 1-1/n. The soil hydraulic parame-
ters in eq. (5) were estimated from textural information in the soil map
by using pedotransfer functions (PTF). The PTF of Rawls and Brakensiek
(1985) with additional corrections for gravel content (Brakensiek and

INPUTS

PROCESS
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Rawls, 1994) were used as these had previously proven to be effective
for this study area (Brogi et al., 2020). The PAW,, was calculated as the
difference between the 6, obtained at h = —100 cm (field capacity) and
h = —15000 cm (wilting point). This calculation was performed on each
soil unit of the geophysics-based soil map.

The PAW_,p was calculated to a maximum of 2 m soil profile for each
crop. Yet, in soil units Ala—d, Blb, Dla-d, and D2, the PAW,, was
calculated up to the depth of a compacted coarse layer that is found in
those soil units, since it can be assumed that roots cannot penetrate
deeply into such compacted coarse material (Daddow and Warrington,
1983).

The PAW,,, map, still based on the hydraulic characteristics of each
soil unit, was converted to an estimate of the actual PAW (here just
referred as PAW) using the accumulated precipitation during the last 30
days prior to the HyPlant data acquisitions (Fig. 2). With this informa-
tion, we calculated a correction factor (CF), estimating the percentage of
the PAW,y;, filled by the accumulated precipitation. CF's for 2018-2021
were estimated using the rainfall accumulation of 2022 as the reference
of the one filling the 100 % of the PAW,,, (Fig. 3g). This was done, since
2022 was the year with the highest precipitation recorded the month
before airborne SIF data collection. Afterwards, we multiplied the
PAW_,p map by each year CF to obtain specific year PAW maps (Fig. 3h;
an extended version of the materials and methods summary figure,
Fig. 3, is presented in Appendix 1).

In the study region, most of the fields are not irrigated and thus
PAW¢,), is mainly determined by natural precipitation. However, potato

OUTPUTS

HyPlant hyperspectral - '2’013 """ 201 g‘ i
9|  VISNIR (1 m plxel ) RegonsResres - KO - ) | v ©SIF 120187 41201
< = NIRVH2
‘£ — 1 2020 2021 2022
Z| e amm A /| A A il (C)
7 I
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Ol a5 *SIF Analysis: PAW-eSIF
E 201820192020 S B spatial correlation per
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(1 m pixel™) accumulated precipitation
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e v Y PAW map (Im?)
Use of the Mualem- van Quantitative
Genuchten model  (€) > PAWc map (I m) (f (f) > (h)

VIS = visible reflectance

NIR = near infrared

SIF = solar-induced chlorophyll fluorescence

iPAR = incoming photosynthetically active radiation
eSIF = SIF downscaled to the leave level

R<-->= reflectance in the specific nm range

PAW cap= plant available water capacity

PAW = actual plant available water in the root zone
NIRvH2 = Near infrared reflectance of vegetation
(from Hyperspectral information) index

Fig. 3. Summary of materials and methods separated according to inputs, processes, outputs, and analyses implemented with the airborne (a—c) and soil (d-h)
datasets. The statistical analysis was done by overlapping the outputs from the remote sensing and soil data processing. All abbreviations are provided at the bottom

of the figure. An extended version of this figure is presented in Appendix 1.
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fields are irrigated with mobile systems, and therefore, according to
standard irrigation practices in the region, 30 1 m~2 were added to the
PAW estimation of those fields. This amount accounts for the water
irrigated during the week before the HyPlant data acquisition.

In order to validate our PAW estimates, we analyzed the agreement
between PAW¢,, estimates and time domain reflectometry (TDR)-based
soil moisture data (Mengen et al., 2021) measured on June 26, 2019 (the
same day of the HyPlant campaign that year). Results are shown on
Appendix 2, where 2130 TDR-based volumetric soil water content data
from Mengen et al. (2021) are compared against the corresponding
PAW,,, estimates. A significant (p < 0.05) relationship was found be-
tween the PAW¢,;, levels and the average TDR-based actual soil mois-
ture. However, it must be noted that this comparison was done only over
a region with shallow soils (upper terrace; PAWc,p = 101.42-156.50 1
m~2). Since the soil moisture data measured in the field by Mengen et al.
(2021) was representative only for the topsoil (5 cm depth), we
considered that the comparisons with deeper soils were not appropriate.

2.6. Data analysis

We aimed to assess the agreement between spatial eSIF dynamics (as
dependent variable) and the spatial variation in PAW (as independent
variable) considering different environmental and crop settings. In
preparation of this analysis, machinery paths were removed from the
individual field imagery, since they are not related to the spatial soil
water content patterns of interest. Further, polygons (or soil units)
smaller than 25 m? were removed from the PAW maps.

We investigated the agreement between SIF and eSIF maps from the
five study years with the respective field-level PAW maps via overlays.
We also calculated the descriptive statistical measures including mean
and standard deviation for SIF, eSIF and PAW for each soil unit, and
described their agreement via the slope's confidence interval (at 95 %
probability), and the Pearson correlation coefficients (r) together with
its confidence at 95 % (p < 0.05).

A similar analysis was done to compare the SIF and eSIF relations
considering LAI dynamics, aiming to understand the effect of the
downscaling method. Besides the r and p values, the slope and the mean
absolute deviation from the slope-based fit were computed for each SIF-
and eSIF-LAI relation. Since SIF and eSIF units present different mag-
nitudes (i.e., SIF ranges between 0 and 4, eSIF between 0-1x10™%), the
slopes and the deviations of the SIF- and eSIF-LAI relations were con-
verted to relative values, assuming 3.5 and 1 x 10~* as 100 %, respec-
tively, yielding relative slope (RS, %) and relative mean deviation (RMD,
%) information.

The results of the SIF and eSIF vs. PAW and LAI regressions were
differentiated by crop and phenology class. Finally, only pixels with LAI
>1 were considered for the study to exclude pixels with low fractional
cover and thus with a higher influence from the soil background.

3. Results

The spatial distribution of PAW, SIF, and eSIF are shown for irrigated
potato, and rainfed sugar beet and winter wheat over the five growing
seasons (Fig. 4). Absolute SIF and eSIF values show large differences
between corresponding maps. The highest measured SIF and eSIF values
are SIF >2.75 mW m ™2 nm ™' sr™! and eSIF > 7 x 107> nm™! and were
found in irrigated potato fields, while the lowest SIF <0.5mW m~2nm™!
st and eSIF < 2 x 10> nm™! were found in rainfed winter wheat. In
general, normalized SIF (eSIF) shows more pronounced spatial patterns
compared to SIF. As an example, the paleo river bed patterns in the
winter wheat field of 2020 became visible in the eSIF map, while SIF
shows a rather homogenous distribution. Such enhancements in the eSIF
maps are notable in fields with low to medium SIF emissions, while
fields with higher SIF emissions (e.g., potato and sugar beet field 1 in
2018 and potato in 2020) appear similar. Opposite cases can be
observed in the irrigated potato fields of 2018 and 2022, where the
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difference between blue and yellow areas in the eSIF map are less pro-
nounced than those observed in the SIF map.

Despite the above described visual spatial patterns in SIF and eSIF,
and the even more contrasting heterogeneity observed in PAW infor-
mation within and among growing seasons, clear visual spatial corre-
lations are not always obvious between SIF and PAW nor between eSIF
and PAW. Thus, a statistical analysis was done to determine the strength
of the spatial relation between SIF and eSIF with PAW. Since the ana-
lyses focused on data from several years and over different time points
within the year (DOY difference of 10 days), we grouped the fields ac-
cording to their apparent phenological stage.

For irrigated potato (Fig. 5a-d), the 2019 field was at a later
phenological stage (At of 17 days). For the other years, potato was in a
more advanced phenology stage (i.e., “advanced-1” in 2022 with At =
23 days, “advanced-2” in 2020 with At = 26 days, and “advanced-3” in
2018 with At = 32). All rainfed sugar beet fields (Fig. 5e-h) were
considered to be in one unique “early” phenological class, since At was 1
day. Rainfed winter wheat in 2018 (Fig. 5i-0) was found to be in an
‘early’ phenological stage (i.e., long At of 54 days, while At's of 48 and
47 days observed in the 2020 and 2021 indicate winter wheat fields to
be in an ‘advanced’ phenological stage.

In Table 2 the At between the start and maximum EVI (peak) of the
season and the respective HyPlant data collection dates are summarized.

Using the derived phenology classifications, the spatial agreement of
SIF and eSIF with PAW for the three different crops was derived by
relating the spatial averages of SIF and eSIF per soil unit with a specific
PAW level. In irrigated potato fields, regardless of the spatial hetero-
geneity in PAW, no significant SIF-PAW and eSIF-PAW correlations were
found at any of the phenological stages (advanced-1, 2 and 3) (Fig. 6a
and d). In rainfed sugar beet fields, both SIF (Fig. 6b) and eSIF (Fig. 6e)
significantly (p < 0.05) increased with increasing PAW. In rainfed
winter wheat fields, no significant correlations were observed at
advanced-phenological stages, yet, in the early phenology field, a posi-
tive significant relation between SIF and PAW disappeared with the
downscaled, eSIF, information (Fig. 6¢ and f).

We also analyze the effect of normalizing canopy SIF to leaf-level SIF
in relation to LAI (Fig. 7, Table 3). All SIF- and eSIF-LAI correlations are
significant at p < 0.05 (except PO_Advanced_1), and an overall decrease
of r and relative slopes can be observed for most eSIF-LAI relationships
compared to SIF-LAI relationships (Table 3). This decrease is expected
since the normalization intended to reduce the structural impact of LAI
on SIF. Also, in all cases the relative residuals in the eSIF-LAI relations
showed a notable increase compared to the residuals observed in the
SIF-LAI cases. In Fig. 8, a more detailed analysis for rainfed sugar beet
fields considering low (LAI 1-3) and high (LAI >3) canopy densities was
done, as this case showed the strongest SIF-PAW and eSIF-PAW corre-
lations. In both cases, a significant relation between eSIF and PAW was
observed, however, in the low-density canopies (LAI <3) this relation is
independent from variations in LAIL

4. Discussion
4.1. Relationship between SIF, eSIF and PAW

We demonstrated that airborne acquired SIF measured at the far-red
peak showed a crop species dependent relation to PAW. These de-
pendencies were, however, influenced by LAI and the seasonality of the
different crops. Plants have developed multiple strategies to structurally
and functionally acclimate to PAW limitations, which are dynamically
adjusted to the severity of soil water limitation according to the
ecological plasticity of the species. Such strategies, occur at different
temporal scales, have a direct impact on the top-of-canopy SIF emission,
and include (i) the sensing of water potential by the roots (Dietrich,
2018), (ii) the hormonal (Ramachandran et al., 2020) and hydraulic
signaling from the root to the shoot (Christmann et al., 2007), (iii)
induced stomata closure (Abdalla et al., 2022), adjustment of root and
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Fig. 4. Plant available water (PAW) maps computed based on the geophysics-based soil map (Brogi et al., 2019) for the fields analyzed in 2018, 2019, 2020, 2021
and 2022 (left column). The solar-induced chlorophyll fluorescence (SIF) and SIF emission at leaf level (eSIF) maps retrieved from the data collected by the
high-performance airborne imaging spectrometer HyPlant in 2018 (June 27), 2019 (June 26), 2020 (June 23), 2021 (June 13) and 2022 (June 14) are presented in
the center and right column, respectively. Background image: enhanced vegetation index (EVI) derived from HyPlant DUAL top-of-canopy reflectance data recorded
on June 27, 2018. Coordinates system: WGS84, UTM 32N.
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Fig. 5. Seasonal enhanced vegetation index (EVI) from nano-satellite information for each irrigated potato (PO; a-d), and rainfed sugar beet (SB; e-h) and winter
wheat (WW; i-o) fields. Each data point represents the average and standard deviation of the EVI in the whole field. Green and yellow lines show the EVI increasing
start and the EVI maximum as a reference of the start and peak of the growing season. The red line represents the date of the HyPlant airborne data collection. In text
boxes, the elapsed time (At) between the start (for irrigated potato and rainfed sugar beet fields) and the peak (for rainfed winter wheat fields) of the growing season
and the HyPlant data collection date are reported. DOY stands for “day of the year”.

shoot growth (Zhou et al., 2018), and (iv) alterations in leaf morphology
and physiology (Petrik et al., 2023). See Appendix 3 for a graphical
overview. These physiological responses to variations in soil water
availability in turn influence photosynthetic efficiency and canopy
function (Liu et al., 2018), thereby modulating the emission of SIF (Shan
et al., 2021). This is reflected in the different levels of SIF and eSIF
observed across species (Figs. 4 and 7) where, consistent with Hou et al.
(2023), the lower levels of SIF and eSIF occur in later growth stage crops
like winter wheat, while the higher values are characteristic of early
vegetative stages like potato and sugar beet. Complementing this
observation, our PAW-LAI analysis (Fig. 8) in sugar beet shows that
denser canopies (LAI >3) exhibit a more pronounced eSIF sensitivity to
PAW variation.

Our results indicate that sugar-beet fields, known to present a strong
stomatal closure response to soil limitations (Schickling et al., 2016),
exhibited the strongest correlation between eSIF and PAW. This result
can also be associated to the early phenological (actively growing; Hou

@

et al., 2023) stage of this crop, when plants are more sensitive to even
slight variations in water supply due to the combination of a high de-
mand for water (FAO, 2012), and a shallow root system. In turn, in
irrigated potato fields, the high SIF values characteristic of well-watered
fields (Shan et al., 2021) lack of correlation with PAW indicating that the
water needs of this crop were fully supplied by the farmers irrigation.
According to Wu et al., 2024), in this condition, the SIF signal is ex-
pected to be mainly governed by factors other than soil moisture, such as
PAR. As a result, SIF was solely dependent on the development of the
crop as indicated by LAI and the corresponding greenness indices NDVI
and EVL Our wheat fields were mapped at the latest developmental
stage where pigment breakdown, senescence and corn filling are the first
order factors determining canopy reflectance. The reduction in total
canopy chlorophyll characteristic of this phase was also primarily
influencing top-of-canopy SIF, and therefore, no second order correla-
tion between SIF and PAW was visible in wheat. Indeed, the non-existing
SIF-PAW and the negative eSIF-PAW relations observed in winter wheat
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Table 2

Phenology classification for each studied field, according to the elapsed time
(At) between the start (for irrigated potato and rainfed sugar beet fields) and the
peak (for rainfed winter wheat fields) of the growing season and the HyPlant
data collection date. The start and peak of the growing season was identified
based on the seasonal enhanced vegetation index (EVI) as shown in Fig. 5.

Crop Field At (days) Phenology class
Irrigated potato 2018 32 Advanced_3
2019 17 Early
2020 26 Advanced_2
2022 23 Advanced_1
Rainfed sugar beet 20181 32 Early
20182 32 Early
20191 33 Early
20192 33 Early
Rainfed winter wheat 20181 54 Early
20182 54 Early
2020 48 Advanced
20211 47 Advanced
20212 47 Advanced
2021_3 47 Advanced
2021 4 47 Advanced

fields at advanced phenology, can be explained by the locally different
ripening times. During this stage, chlorophyll breakdown (triggered to
sustain the grain filling stage) already started producing spatial patterns
that are independent from the short-term PAW heterogeneity.
Leaf-level reactions to water limitations, such as stomatal closure
and reduction of the RuBisCo metabolic efficiency are strongly regu-
lated. These adaptions occur within minutes, hours, and days to provide
a well-balanced metabolism even in times with temporarily limited
water supply. Such short-term reactions can be detected with SIF, as
long as structural canopy effects can be compensated via reference areas
(Damm et al, 2022) or as demonstrated here through the eSIF
normalization. Thus, the significant positive eSIF-PAW correlation
observed in sugar beet fields suggests the presence of a short-term
physiological reaction of the sugar beet plants to momentarily limiting
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soil water availability. Considering the established conceptual model of
van der Tol et al. (2014), it is safe to assume that sugar beet is operating
in the middle domain, where SIF emission is determined by a regulated
balance between photosynthetic electron use and non-photochemical
energy dissipation (NPQ). As hypothesized, we found a significant
positive eSIF-PAW relationship in the rainfed sugar-beet fields, consis-
tent with De Canniere et al. (2022), who reported lower SIF emission
yields in experimental plots where associated with reduced soil water
content. In contrast, Wang et al. (2023) reported a weaker but existent
response of eSIF to water stress. The authors attributed this to reduced
SIF emissions resulting from increased NPQ, triggered to prevent leaf
overheating when stomata close to avoid water loss. A similar regulatory
mechanism may also explain the lower eSIF values measured in our
study in soil units with reduced PAW.

Although our measurements were collected at one single time point,
the knowledge provided on other studies that have analyzed the SIF
dynamics across the day can help us to understand in more detail the
eSIF-PAW correlation found in sugar beet fields. Since airborne data
were collected at a time when SIF in sugar beet tends to increase
(~10:30 h; Siegmann et al. (2021); Schickling et al. (2016)) alongside
with photochemical activity (Pinto et al., 2016), the positive eSIF-PAW
relationships might indicate greater photosynthetic rate (van der Tol
etal., 2016) in soil units with higher PAW. This is supported by results of
Schickling et al. (2016), who reported that SIF of sugar beet, but not of
winter wheat, closely follows variations in the photosynthetic efficiency
in the diurnal course. A similar positive SIF-PAW relation observed in
the early phenology winter wheat field (Fig. 6¢, dark red symbols) lost
its significance after normalization to eSIF (Fig. 6f, dark red symbols),
indicating that the initial SIF-PAW relationship was influenced by
structural canopy effects that were corrected through the downscaling
process. However, no relation was found in the late phenology winter
wheat (Fig. 6f, orange symbols), suggesting that the dynamic leaf-level
regulation may have affected the SIF signal at this advanced develop-
mental stage, thus potentially leading to underestimations of the
SIF-PAW relationship. This interpretation is consistent with Ruehr et al.

IRRIGATED POTATO RAINFED SUGAR BEET RAINFED WINTER WHEAT
—_ r=0.94, p=1.23e-05 r=0.96, p=1.22e-04 i gg:iii'!nced_w
T *___+__-+- == @ PO_Advanced 2
7] * ® PO_Advanced 3
T H‘| S
g 20 + WW:Adv;/nced
b LI W SRS | L/,/ H
£ 1 { P
% 1.0 $-—4--+F-1 r4 }
= |r080,p=0.11 r-0.02 p=0.97
= 0.89, p=0.05 r=-0.06, p=0.93 —
o (a) (b) woa—H"T ()
15 IRRIGATED POTATO RAINFED SUGAR BEET RAINFED WINTER WHEAT
“x107 r=0.96, p=1.91e-06 r=0.70, p=0.05
09
go.s H_hd-—+"‘*'f'4 _W*
w Sy T L -
2 ety ¢ “M—H"
031 ,2.0.49, p=0.40 r=0.19, p=0.75 l} +_+_4+
r=0.20, p=0.74 r=-0.17, p=0.79 -l
N (A (e) U
o 100 200 300 0 100 200 300 0 100 200 300
PAW (Im ) PAW (Im ) PAW (Im )

Fig. 6. Solar-induced chlorophyll fluorescence (SIF) and its emission efficiency at leaf-level (eSIF) plotted vs. the plant available water (PAW) for the irrigated potato
(PO; a, d), and rainfed sugar beet (SB; b, e) and winter wheat (WW; c, f) fields. The color coding aims to differentiate data points belonging to different crops and
phenological stages. Each data point represents the average and the standard deviation (bars) of all soil units under the same PAW level. Dashed lines represent linear
regressions, and the corresponding Pearson correlation coefficients () and significance levels (p) are shown within each panel.
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Fig. 7. Solar-induced chlorophyll fluorescence (SIF) and its emission efficiency at leaf-level (eSIF) plotted vs. the leaf area index (LAI) for the irrigated potato (a, d),
rainfed sugar beet (b, e) and winter wheat (c, f) fields. The color coding differentiates data points belonging to different crops and phenological stages. Each data
point represents the average and the standard deviation (bars) of all soil units under the same plant available water (PAW) level.

Table 3

Pearson coefficient (r) and its significance (p), alongside the relative slopes and residuals for linear regressions of Solar-induced chlorophyll fluorescence (SIF) and its
emission efficiency at leaf-level (eSIF) with the leaf area index (LAI). RS and RMD stand for relative slope and relative mean deviation, respectively.

Crop SIF eSIF
r P RS (%) RMD (%) r P RS (%) RMD (%)

PO_Early 0.56 <0.01 3.75 22.18 0.74 <0.01 4.31 29.80
PO_Advanced_1 0.16 0.55 4.22 37.05 -0.11 0.69 -3.15 53.39
PO_Advanced_2 0.46 <0.01 4.77 48.05 —0.28 0.02 -3.21 81.25
PO_Advanced_3 0.77 <0.01 11.11 26.33 0.64 <0.01 6.65 37.46
SB_Early 0.93 <0.01 6.58 12.01 0.81 <0.01 4.59 24.79
WW_Early 0.76 <0.01 2.09 1.46 0.41 <0.01 2.08 14.70
WW_Advanced 0.81 <0.01 5.26 4.37 0.20 <0.01 2.04 29.92
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Fig. 8. Relation between the solar-induced chlorophyll fluorescence emission efficiency at leaf-level (eSIF) and the leaf area index (LAI) with the plant available
water (PAW) in rainfed sugar beet fields at low (LAI 1-3; a) and high (LAI >3; b) canopy densities. Empirical statistics are summarized in the grey boxes.

(2024), who commented on how factors like progressing senescence

10

reduce the coupling between SIF and photosynthetic activity, thereby
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weakening the physiological link that underlines SIF responses to soil
water availability.

Additional factors possibly affecting our findings of the SIF-PAW and
eSIF-PAW relations include soil properties such as carbon content,
nutrient status (especially N-content), and soil compaction. These soil
properties can affect crop growth and, thus, determine spatial hetero-
geneity of SIF emissions. Irrespective of the influence of these soil
properties, the soil profile depth is likely the most important factor in the
study region, due to its heterogeneous geology and associated pedology
(Rudolph et al., 2015). In general, the lowest PAW found in the inves-
tigated area is related to a shallow soil depth, and these areas also show
lower SIF. It is important to note that a shorter soil profile will also
impact other soil properties alongside PAW, with nutrient availability
being the most relevant one. However, nutrient (especially N) shortage
in the study area is unlikely to be the main reason, as farmers in the
region typically apply high amounts of mineral fertilizers. Additionally,
the soil organic carbon content was found to be relatively homogeneous
across the study area (Reichenau et al., 2020).

4.2. Methodological constraints

The limitations of the empirical normalization of SIF to eSIF must be
recognized, as it does not fully eliminate canopy-related factors. Even
though the overall decrease of the correlation coefficient and the rela-
tive slopes in the eSIF-LAI correlations (compared with the SIF vs. LAI
cases) indicate the functioning of the downscaling approach, we suspect
that the NIRvVH2 approach does not fully eliminate canopy related ef-
fects, but it largely reduces them. Additional information on the effect of
the used downscaling method can be drawn from the residuals of the
eSIF-PAW linear regressions (Table 3), in the sense that higher residuals
values can indicate a stronger effect of the downscaling method.
Remarkably, in rainfed sugar beet fields, the residuals in the eSIF-LAI
relationship are twice as large as those in the SIF-LAI relationship.
These findings, complemented with the reduced effect of LAI in the eSIF
vs. PAW relationship observed in low density (LAI <3) canopies, in-
dicates that these areas are more sensitive to limited (rainfed) water
supply, and therefore more responsive to even slight PAW variations.
Consequently, we consider that the eSIF variations under such envi-
ronmental conditions describe the spatial variability of the photosyn-
thetic activity in response to varying levels of water supply.

We investigated the eSIF-PAW relationship using single eSIF snap-
shots during evolving soil water fluctuations. Since the relationship
between SIF and soil water content is highly dynamic through wet-dry
transitions (Wu et al., 2024), a limitation of our study, is the lack of
SIF and PAW information at higher temporal resolution to assess how
their relationship vary during other times of the day and the growing
season. Consequently, the strength of the eSIF-PAW correlation
observed in the sugar been fields could potentially reflect a momentary
linkage captured under specific environmental and phenological con-
ditions. This motivates further research on a diurnal scale across the
entire season to analyze, e.g., the relationship between SIF and PAW
during the so-called midday depression, and during the afternoon re-
covery of photosynthesis at specific phenological stages.

Another limitation is, in the absence of more accurate soil water
content information, the use of PAW information which relies on soil
characteristics delineated by a geophysics-based soil map and by using a
specific PTF. This strategy was made necessary by the extent of the
investigated area, the required resolution, the estimation of PAW up to 2
m depth, and the inclusion of multiple years. It should also be noted that
this soil map is currently the most accurate available representation for
the Selhausen's soils and that the use of the Rawls and Brakensiek PTF in
this area has been further validated in several studies (Brogi et al., 2020,
Brogi et al., 2021; Jakobi, 2020; Guo et al., 2025). Nonetheless, using
soil maps and PTFs can introduce uncertainties (Weihermiiller et al.,
2021), and further investigations should aim to use high-resolution soil
moisture measurements, when possible, if the investigated patterns are
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highly dynamic. Within this context, recent advancements in remote
sensing technology for soil moisture estimation, although limited to the
topsoil, can be supportive. For instance, airborne radar technology like
the scanning L-band active passive (SLAP) sensor operated by NASA
(Kim, 2015), or the satellite-based soil moisture passive and active
(SMAP) and SMOS (Ma et al., 2019) data sources of NASA and ESA,
respectively, have great potential for comprehensive analysis alongside
SIF information.

4.3. Towards more comprehensive remote sensing-based assessments of
crop responses to evolving water limitation

Since soil water limitation provokes numerous different responses in
plants acting at different temporal scales, its effect on the spectral
properties of vegetation is different and might not only be related to the
emission of SIF (Gerhards et al., 2019). Therefore, the complementary
use of SIF- with thermal- and reflectance-based information is important
to detect the cascade of physiological and structural changes undergone
by plants under water stress conditions (Damm et al., 2018). Consid-
ering this, integrative multi-sensor approaches must be developed and
employed for effective plant water stress monitoring (Berger et al., 2022;
Panigada et al., 2014). It is worth mentioning that such complemen-
tarity among data sources should account for the severity of water
limitation or even drought stress being analyzed, as well as the cascade
of plant adaptation processes at different temporal scales. In this
context, our findings demonstrate that SIF data enables the identifica-
tion of functional plant adaptations to varying water availability.

Despite providing novel insights into the SIF-PAW relationship from
unique datasets, further work is needed to develop more comprehensive
SIF-based assessments of crop responses to varying PAW. Such efforts
are essential to draw broadly applicable conclusions and to strengthen
confidence in using eSIF as an indicator of plant-level water limitation.
Analyses should encompass a wider range of environments, develop-
mental stages, and species (Hu et al., 2025), complemented by com-
plemented by in situ physiological observations of plant water status, e.
g. those related to transpiration dynamics (Ahmed et al., 2023).

5. Conclusions

The relationship between eSIF and PAW varies across crop types and
environmental gradients in terms of the interplay between environ-
mental factors, seasonal growth patterns, and physiological processes.
The downscaling approaches applied in this study can clearly help to
enhance the contribution of leaf-level SIF on the measured canopy SIF
signal and suppress the superimposing SIF dynamics caused by canopy
structure. E.g., stress related regulation of young sugar-beet in response
to water limitation can be clearly extracted from the eSIF signal, sup-
porting the use of SIF as sensitive signal of vegetation stress. By iden-
tifying and understanding these spatial correlations, we can provide
novel insights into the impact of varying levels of soil water content on
the spatial distribution of eSIF. This new information is nowadays of
utmost importance to advance our knowledge towards the development
of SIF-based tools for early water stress detection, and thus for moni-
toring agricultural water management. Such advancements are crucial
to address the growing food needs of humanity in the near future, when
frequency and severity of drought events are expected to increase.
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Appendix 1. Extended version of Fig. 3 containing more details about the materials and methods used. This figure separates information
according to inputs, processes, outputs, and analyses implemented with the airborne (a—c) and soil (d-h) datasets. The statistical
analysis was done by overlapping the outputs from the remote sensing and soil data processing. All abbreviations are provided at the
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Appendix 2. Comparison between the plant available water capacity (PAW,,p) estimated with the methods used in the present
manuscript (a), and 2130 soil moisture (SM) data points collected with a time-domain reflectometry (TDR)-based device at 5 cm depth
(b). SM data were collected the same day of the high-performance airborne imaging spectrometer (HyPlant) campaign in 2019 (June
26th reported by Mengen et al. (2021)). The PAW,;, correlated with SM at r = 0.99 (p < 0.01; c¢). Background image: enhanced vegetation
index (EVI) computed from HyPlant data June 27, 2018
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Appendix 3. Plant physiology- (al) and soil-related (a2) factors that can confound the solar-induced chlorophyll fluorescence (SIF)
plant-available water (PAW) relation due to their influence on the spatio-temporal expression of a stress detected in the SIF signal (b).
Thick black lines indicate a link between the confounding factors and SIF. RGB image in panel (a2): True-color RGB composite derived
from airborne HyPlant data acquired on June 27, 2018
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The datasets generated and analyzed in this study are publicly
available through the following link: https://doi.
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