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A B S T R A C T

Restrictions in the soil water availability can strongly impact crop productivity. The increasing frequency and 
severity of drought events, as a result of global warming, has made the assessment of drought stress effects on 
vegetation of utmost importance for meeting humanity's agricultural production needs. Recent advances in 
remote sensing of solar-induced chlorophyll fluorescence (SIF) provide a basis for new approaches to directly 
assess crop water status, since SIF is closely related to photosynthesis and, thus, to early plant physiological 
processes triggered by limitations in the water supply. This study provides new insights into the effect of varying 
levels of plant available water (PAW) in the soil on SIF emissions. We used several SIF datasets acquired with the 
high-performance airborne imaging spectrometer HyPlant during five subsequent vegetation periods (2018, 
2019, 2020, 2021 and 2022), each having a different precipitation regime. We normalized the SIF maps for the 
underlying effects of canopy structure, calculated SIF emission efficiency (eSIF) and selected various crop fields 
including sugar beet, wheat and potato. Maps of eSIF were compared with spatial PAW patterns, which were 
derived from a forward soil infiltration model. Our results show positive correlation between eSIF and PAW in 
rainfed sugar beet fields at early growing stage, which remained consistent when accounting for variations in the 
leaf area index (LAI). This suggests that eSIF variations in sugar beet reflect the spatial reduction of photosyn
thesis caused by reduced PAW. In irrigated potato fields, conversely, no eSIF-PAW correlations were found. This 
indicates the absence of leaf-level water stress in these well-irrigated fields. In rainfed winter wheat fields that 
were already in a late developmental stage, the variations in the SIF signal were dominated by locally different 
ripening, i.e., chlorophyll degradation, and therefore not representative of changing PAW. With this study, we 
could demonstrate that normalized airborne SIF measurements are related to the functional water stress response 
in different crops. This study supports future investigations on the development of SIF-based tools for the 
improvement of water management in agriculture.

1. Introduction

Sensitive and harmonized information in the actual physiological 
status of crops is essential for the timely detection of water stress, a 
context where remote sensing emerges as a particularly suited tool. 

Nevertheless, widely used passive-optical remote sensing approaches 
based on canopy reflectance and derived vegetation indices tend to 
represent interwoven biochemical and canopy structural responses, and 
which are often only sensitive to medium-to long-term water limitation 
(Damm et al., 2018). Alternatively, thermal remote sensing approaches 
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to estimate canopy temperature can vary due to external factors not 
related to limitations in water supply, including wind speed, air tem
perature, and humidity (Gerhards et al., 2019).

Solar-induced chlorophyll fluorescence (SIF) is a low intensity red to 
far-red light emitted from the photosynthetic apparatus between 600 
and 800 nm. The signal is characterized by two emission peaks over
lapping two strong atmospheric absorption bands, one in the red and 
another one in the far-red spectral region, which allows to retrieve SIF at 
687 nm (SIFRed) and 760 nm (SIFFar-red), respectively. All the calcula
tions in this study were computed using information from the SIFFar-red, 
hereafter referred to as SIF (Mohammed et al., 2019; Meroni et al., 
2009). Remarkably, the particular sensitivity of SIF to subtle physio
logical responses to water limitations (Zeng et al., 2022; Mohammadi 
et al., 2022; Jonard et al., 2020), prior to changes in leaf temperature, 
leaf orientation (Damm et al., 2018), or pigment degradation (Xu et al., 
2018), suggests SIF as an interesting candidate for the early detection of 
water limitation. Indeed, because of the close relation between SIF and 
photosynthetic activity (Guanter et al., 2014), SIF has been reported as a 
suitable complement to reflectance- and thermal-based remote sensing 
data for the early detection of plant responses to water limitation.

An operational SIF-based water stress assessment has not been 
established yet, and requires further investigation via combined exper
tise from various fields, including remote sensing, plant physiology, and 
soil science. The first fundamental questions to be answered are those 
related to the spatio-temporal variations of SIF emission in the course of 
gradually limiting water supply under conventional agricultural field 
conditions. In this regard, Shen et al. (2021) found SIF information to be 
more sensitive than the normalized difference vegetation index (NDVI) 
to changes in surface soil moisture observed at satellite scale (>1 km 
pixel− 1). Yet other studies at satellite scale, e.g., Sun et al. (2015)
demonstrated that satellite-observed SIF effectively captured the con
trasting drought onset mechanisms in two extreme droughts in North 
America (in 2011 in Texas and in 2012 in the Great Plains), revealing 
that SIF can closely track the response of photosynthesis to both pro
longed and rapid soil moisture depletion. This evidence was further 
explored by Mohammadi et al. (2022), who found that a slower than 
average increase or faster than average decrease, respectively, in the 
seasonal variation of SIF can be interpreted as an early warning of flash 
drought events. Furthermore, water stress was found to induce a 
reduction of vegetation functionality, either via a stronger decrease in 
the SIF efficiency and gross primary productivity during the afternoon 
(compared with values recorded in the morning; Zhang et al., 2023), or 
via a closure of stomata and a reduction of light use efficiency (Wantong 
et al., 2023). A similar approach based on multi-temporal SIF informa
tion using the noon-to-morning ratio to characterize water stress 
severity was recently proposed by Liu et al. (2023).

At the airborne scale (~1 m pixel size), von Hebel et al. (2018) re
ported for the first time a significant spatial relation between subsoil 
apparent electrical conductivity (which can be related to soil physical 
properties) and canopy SIF of an agricultural field. At a similar scale, 
Quiros et al. (2020) found a significant spatial match between varying 
SIF and qualitative soil units, while the commonly used normalized 
difference vegetation index (NDVI) data appeared homogeneous; a 
similar pattern was reported by Yoshida et al. (2015), who showed at 
satellite a higher sensitivity of SIF compared to NDVI in detecting 
drought-induced reductions in photosynthetic efficiency during the 
2010 Russian drought. Subsequently, Damm et al. (2022) assessed the 
temporal domain and could observe a short-term rise and a subsequent 
decline of SIF (described as a ‘double SIF response’) to gradually 
evolving water limitation in high-resolution airborne data. Wang N. 
et al. (2022), in turn, demonstrated the potential use of UAV-based SIF 
for water stress assessments at the field level. They observed a signifi
cant response of SIF-based indicators during recovery from water stress, 
whereas only weak responses were detected when drought stress coin
cided with heat stress. Despite these insights, further studies are 
necessary to complement existing knowledge on the response of SIF to 

varying water supply levels in crop canopies.
It is important to note that remote sensing instruments measure only 

a small part of the total SIF signal that leaves emit in the canopy that is 
not being reabsorbed by other leaves or scattered out of the instrument's 
line of sight (Guanter et al., 2014). This escape fraction (fesc) is highly 
correlated with the structural properties of the canopy rather than leaf 
physiology (Yang and van der Tol, 2018). Consequently, for a correct 
physiological interpretation of canopy SIF information, the total SIF 
signal measured by a remote sensing sensor must undergo a downscaling 
process to obtain its emission efficiency at the leaf-level (Krämer et al., 
2025), hereafter referred to as eSIF. Two methods initially emerged to 
support this downscaling and are (i) based on the fluorescence correc
tion vegetation index (FCVI; Yang et al., 2020), or (ii) on the near 
infrared reflectance (NIR) of vegetation index (NIRv; Zeng et al., 2019). 
Both indices are proxies of fesc that can be derived from remote sensing 
derived top-of-canopy (TOC) reflectance, and allow normalizing SIF to 
reduce the canopy structural impact on measured SIF. More recently, 
Regaieg et al. (2025) introduced a Discrete Anisotropic Radiative 
Transfer (DART)-based approach that models 3D canopy radiative 
transfer to separate structural from physiological effects that claims to 
retrieve photosystem-level fluorescence efficiency. Damm et al., (2022)
clearly showed that a throughout normalization of SIF for structural and 
illumination effects is needed to unravel the SIF inherent sensitivity for 
evolving water limitation. However, they used a reference area for 
normalization, which limits the applicability of this approach for larger 
scale assessments. eSIF-based approaches could overcome this limita
tion but the sensitivity of such normalized eSIF for evolving water lim
itation was not investigated yet.

Consequently, we aim to investigate how agricultural environments 
and conditions couple or decouple the spatial correlation of normalized 
eSIF and plant available water (PAW) in the soil. We retrieved SIF from 
airborne based spectroscopy and applied a modified NIRv method (Zeng 
et al., 2021) to scale canopy SIF to leaf-level SIF (eSIF). We used spatial 
PAW estimates derived from high resolution (1 m pixel− 1) soil data 
based on hydrogeophysical measurements (i.e., electromagnetic induc
tion; Brogi et al., 2019). The agreement between both datasets was 
analyzed for five consecutive growing seasons (2018, 2019, 2020, 2021 
and 2022) collected over three crop types under different water supply 
conditions (i.e. irrigated potato, rainfed sugar beet and rainfed winter 
wheat).

Our investigation was performed in the framework of preparatory 
studies for the forthcoming FLuorescence EXplorer (FLEX) satellite 
mission of the European Space Agency (ESA; Drusch et al., 2017), which 
is planned to be launched in the second half of 2026.

2. Materials and methods

2.1. Study area

The study site was located near the village of Selhausen, western 
Germany (50.865228◦ N, 6.450074◦ E), an agricultural area intensively 
investigated during the past ten years, and characterized by the culti
vation of multiple summer and winter crops (Simmer et al., 2015). We 
analyzed 15 fields (47.55 ha) covering irrigated potato, rainfed sugar 
beet and rainfed winter wheat to investigate the influence of contrasting 
crop and environmental settings (i.e. species, phenology, water supply) 
on the relationship between eSIF and soil water content. Data were ac
quired in five years between 2018 and 2022. All investigated fields with 
their specific surroundings are shown in Fig. 1., while the green dashed 
line shows the division between an upper and a lower geomorphological 
terrace shaping the local landscape. The upper terrace has predomi
nantly shallow soils with a fine loess layer (generally up to 30–90 cm 
depth and locally deeper) covering coarse and compacted sediments. 
The lower terrace is composed of soil units with a thicker loess layer over 
a generally less coarse material (Patzold et al., 2008).
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2.2. Remote sensing data acquisition

Airborne SIF data was acquired over five consecutive growing sea
sons, i.e., 2018 (June 27th; Figs. 1a), 2019 (June 26th; Figs. 1b), 2020 
(June 23rd; Figs. 1c), 2021 (June 13th; Figs. 1d) and 2022 (June 14th; 
Fig. 1e) in the late morning (~10:30–11:30 h) under cloud-free condi
tions at 600 m above ground level. During the data acquisition, six flight 
lines (~360 m width x ~12 km length) were collected using the high- 
performance airborne imaging spectrometer HyPlant (Siegmann et al., 
2019; Rascher et al., 2015). HyPlant is a hyperspectral instrument 
composed of the DUAL and the FLUO module. The first module measures 
radiance from 400 to 2500 nm and it is primarily used to compute TOC 
reflectance and narrow band vegetation indices. The FLUO module was 
built to enable SIF retrievals, and therefore measures radiance in high 
spectral resolution at the O2-A (760 nm) and O2-B oxygen absorption 
bands (687 nm) with a full width half maximum (FWHM) of 0.3 nm.

Nano-satellite reflectance imagery from PlanetScope, composed of 
four spectral bands (i.e., blue (455–515 nm), green (500–590 nm), red 

(590–670 nm), and near-infrared (780–860 nm)), and atmospherically 
corrected to the bottom of the atmosphere (Planet Surface Reflectance 
version 2.0 product), were used to compute enhanced vegetation index 
(EVI) seasonal curves at high spatial resolution (3 m pixel− 1). 24 images 
(from the sensor Dove Classic – PS2, product Ortho Scene – Analytic 4B 
SR - Level 3B) were obtained between 2018 and 2022 under cloud-free 
conditions (Table 1).

2.3. Remote sensing data processing

2.3.1. SIF retrieval
SIF at a spatial resolution of 1 m was computed for all years (Fig. 3a) 

using the most recent version of the Spectral Fitting Method (SFM). The 
SFM method allows the retrieval of SIF and reflectance in adjacent 
wavelengths over a specific spectral range at both sides of the oxygen 
absorption bands at 685 and 760 nm (Cogliati et al., 2015). In contrast to 
other SIF retrieval methods, the SFM algorithm incorporates radiative 
transfer theory to correct for atmospheric interferences caused by 

Fig. 1. Location of the studied fields (blue dashed lines) in Selhausen, Germany, in 2018 (June 27th; a), 2019 (June 26th; b), 2020 (June 23rd; c), 2021 (June 13th; 
d) and 2022 (June 14th; e), with their respective areas (f). Background image: enhanced vegetation index (EVI) computed from high-performance airborne imaging 
spectrometer (HyPlant) data acquired on June 27, 2018. The green line indicates the border between two landscape shaping terraces. Coordinates system: WGS84, 
UTM 32N.

Table 1 
Nano-satellite images obtained from PlanetScope (Planet, 2017), used to estimate the seasonal enhanced vegetation index (EVI) as an approximate reference of crops 
phenology. DOY stands for “day of the year”. The date is represented in “month.day” format.

Image no. 2018 2019 2020 2021 2022

Date DOY Date DOY Date DOY Date DOY Date DOY

1 03.25 84 03.21 80 03.24 84 03.29 88 03.22 81
2 04.18 108 04.20 110 04.15 106 04.27 117 04.23 113
3 05.04 124 05.24 144 05.18 139 05.21 141 05.22 142
4 05.26 146 06.09 160 05.28 149 06.16 167 06.12 163
5 06.27 178 06.23 174 06.20 172 – – 06.28 179
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various factors, including water vapor, aerosols, and surface air pres
sure. More details about the SFM-based SIF retrieval can be found in 
Siegmann et al. (2021).

2.3.2. eSIF calculation
We used NIRvH, a modified version of NIRv, which can be calculated 

from reflectance data. The determination of NIRvH is based on the 
theory that fesc and the NIR reflectance of vegetation share similar 
radiative transfer properties (Badgley et al., 2017) and, unlike the 
FCVI-based approach, accounts for soil background reflectance inter
ference. We specifically used NIRvH2 (Zeng et al., 2021), which is a 
further development of the original NIRv version and implements a 
simplified soil background reflectance correction scheme that assumes a 
linear behavior of soil reflectance in the red-edge spectral range.

We calculated the NIRvH2 from HyPlant DUAL TOC reflectance data 
according to Zeng et al. (2021) as: 

NIRvH2=R800 − R678 − k*(λNIR − λRed) (1) 

where, R is TOC reflectance and subscripts represent the spectral win
dows (in nm), λNIR and λRed are set to 800 and 678 nm, respectively. k is 
the slope of the soil reflectance in the red-edge and was calculated by 
performing a linear regression on multiple TOC reflectance spectra 
across the leaf spectral-invariant region (i.e., 778–800 nm) (Fig. 3b). 
NIRvH2 was subsequently used as a factor in equation (2) to derive the 
leaf-level SIF emission efficiency (eSIF; Fig. 3c), which accounts for the 
scattering and reabsorption effects on the SIF signal, and therefore 
provides information about changes in leaf physiology. 

eSIF=
π*SIF

iPAR*NIRvH2
(2) 

iPAR (mW m− 2) represents the incoming photosynthetically active 
radiation obtained from the TERENO climatic station (TERENO, 2022). 
Since SIF is retrieved from a single angle, it is multiplied by π to 
approximate the hemispheric SIF emission.

2.3.3. Phenology estimation
Since the SIF emissions are related to crop phenology (Wang X. et al., 

2022), we differentiated the investigated crop fields according to their 
apparent phenological stage. For this, we considered the day of year 
(DOY) 80–180 to compute the seasonal EVI curves from nano-satellite 
data, and used EVI as proxy for greenness and biomass. The EVI was 
selected instead of the more commonly used normalized difference 
vegetation index (NDVI), since it has been proven to be less affected by 
saturation in areas with high biomass (Huete et al., 2002). The EVI was 
computed according to Gao et al. (2000) as: 

EVI=2.5*
R780− 860 − R590− 670

R780− 860 + 6*R590− 670 − 7.5*R455− 515 + 1
(3) 

Phenology classes were defined based on the time elapsed (Δt) be
tween the HyPlant data acquisition and the start of the season (i.e., for 
irrigated potato, rainfed sugar beet fields) and peak of the season (i.e., 
for rainfed winter wheat fields). The start of the season is defined as the 
time point when the EVI shows a strong increase, whereas the peak of 
the season is defined as the time point when the EVI starts decreasing. 
Fields with a start or peak of the season differing by less than five days 
were considered to be in the same phenology class.

For irrigated potato and rainfed sugar beet, fields with a shorter Δt 
(<20 days) between the season start and the HyPlant campaign were 
classified as 'Early phenology', while fields with longer Δt (≥20 days) 
were considered as 'advanced phenology'. In the specific case of irrigated 
potato, the advanced phenology fields differed by more than one day in 
Δt, and therefore were further classified as “Advanced_1”, 
“Advanced_2”, and “Advanced_3”. For rainfed winter wheat, fields with 
longer Δt between the season peak and the HyPlant campaign were 
considered as 'Early phenology', while fields shorter Δt were considered 

as “advanced phenology”.

2.3.4. Leaf area index calculation
The leaf area index (LAI) is considered a sensitive indicator of canopy 

structural impacts on retrieved SIF (e.g., via scattering and reabsorp
tion). We therefore compared the relationship between SIF and eSIF 
considering the underlying LAI to assess the actual effect of the down
scaling method on retrieved SIF emissions. Therefore, we derived LAI for 
each pixel from HyPlant DUAL TOC reflectance data using a hybrid 
approach that combines the capabilities of radiative transfer modeling 
with machine learning regression techniques (Verrelst et al., 2019). We 
particularly combined the radiative transfer model PROSAIL 
(Jacquemoud et al., 2009) with the machine learning technique support 
vector regression (Smola and Schölkopf, 2004).

2.4. Soil data acquisition

Soil information used in this study have a pixel size of 1 m (i.e., the 
same as the airborne SIF data) and was derived from geophysics (elec
tromagnetic induction)-based mapping presented by Brogi et al. (2019; 
Fig. 3d). Brogi et al. (2019) published a ~90 ha soil map of the Sel
hausen area, which includes the investigated fields and differentiates 
between 18 soil units that are quantitatively described up to a maximum 
depth of 2 m. The electromagnetic induction methodology measures 
apparent electrical conductivity (ECa) at multiple depths of investiga
tion and follows the principle that specific physical properties of a soil 
will determine its capacity to conduct electricity. Therefore, soil units 
sharing similar ECa signatures over depth are assumed to share com
parable soil characteristics and belong to the same soil class. The ge
ometry of the 18 soil units was determined by analyzing ECa maps using 
supervised machine learning algorithms, while their specific soil prop
erties were identified with a strategic field sampling directed at 100 
representative points. For more information about the methodology, 
descriptions soil unit's properties, and descriptions soil unit's properties, 
the reader is referred to Brogi et al. (2019), while Brogi et al. (2020, 
2021) have assessed the performance of this map against satellite-based 
information and in supporting agroecosystem models.

2.5. Soil data processing

2.5.1. Calculation of precipitation regimes
The full PAW capacity (PAWcap) of each soil class has to be corrected 

according to the specific precipitation regime of each investigated 
growing season. Therefore, we characterized the precipitation regime of 
each year via the daily rainfall accumulated during the last 30 days 
before the HyPlant campaign using rainfall data recorded from the 
terrestrial environmental observations (TERENO; TERENO, 2022) as: 

Precipitation regime=
∑30

i=1
Daily rainfalli (4) 

The respective accumulated precipitation sums are shown in Fig. 2, 
indicating 2018 and 2022 as years with higher rainfall (>45 l m− 2) and 
the other years as lower rainfall years with the driest year in 2020. In the 
years 2019, 2020 and 2021, the accumulated rainfalls were 35.85, 
18.00, and 40.40 l m− 2, respectively. This information is later used in 
the study to calibrate the PAWcap of a soil unit and estimate the actual 
PAW (hereafter just referred to as PAW) for each year (cf. section 2.6).

2.5.2. Generation of plant available water maps
The Mualem–van Genuchten model (van Genuchten, 1980, Fig. 3e) 

was used to convert the textural information provided by the 
geophysics-based soil map into numerical values of PAWcap (Fig. 3f) as: 

θw(h)= θr +
θs − θr

(1 + |αh|n)m (5) 
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θw, θr, and θs (cm3 cm− 3) are the volumetric, residual, and saturated 
water content of the soil, respectively. h (kPa) represents the pressure 
head and α represents the inverse of the air entry pressure (cm− 1). The 
dimensionless n value relates to the distribution of soil pore sizes, and m 
is a shape parameter related to n by 1–1/n. The soil hydraulic parame
ters in eq. (5) were estimated from textural information in the soil map 
by using pedotransfer functions (PTF). The PTF of Rawls and Brakensiek 
(1985) with additional corrections for gravel content (Brakensiek and 

Rawls, 1994) were used as these had previously proven to be effective 
for this study area (Brogi et al., 2020). The PAWcap was calculated as the 
difference between the θw obtained at h = − 100 cm (field capacity) and 
h = − 15000 cm (wilting point). This calculation was performed on each 
soil unit of the geophysics-based soil map.

The PAWcap was calculated to a maximum of 2 m soil profile for each 
crop. Yet, in soil units A1a–d, B1b, D1a–d, and D2, the PAWcap was 
calculated up to the depth of a compacted coarse layer that is found in 
those soil units, since it can be assumed that roots cannot penetrate 
deeply into such compacted coarse material (Daddow and Warrington, 
1983).

The PAWcap map, still based on the hydraulic characteristics of each 
soil unit, was converted to an estimate of the actual PAW (here just 
referred as PAW) using the accumulated precipitation during the last 30 
days prior to the HyPlant data acquisitions (Fig. 2). With this informa
tion, we calculated a correction factor (CF), estimating the percentage of 
the PAWcap filled by the accumulated precipitation. CF's for 2018–2021 
were estimated using the rainfall accumulation of 2022 as the reference 
of the one filling the 100 % of the PAWcap (Fig. 3g). This was done, since 
2022 was the year with the highest precipitation recorded the month 
before airborne SIF data collection. Afterwards, we multiplied the 
PAWcap map by each year CF to obtain specific year PAW maps (Fig. 3h; 
an extended version of the materials and methods summary figure, 
Fig. 3, is presented in Appendix 1).

In the study region, most of the fields are not irrigated and thus 
PAWcap is mainly determined by natural precipitation. However, potato 

Fig. 2. Cumulative (summed) precipitation during the 30 days prior to high- 
performance airborne imaging spectrometer (HyPlant) overflights in 2018 
(June 27), 2019 (June 26), 2020 (June 23), 2021 (June 13) and 2022 (June 14). 
Precipitation data were derived from TERENO 2022.

Fig. 3. Summary of materials and methods separated according to inputs, processes, outputs, and analyses implemented with the airborne (a–c) and soil (d–h) 
datasets. The statistical analysis was done by overlapping the outputs from the remote sensing and soil data processing. All abbreviations are provided at the bottom 
of the figure. An extended version of this figure is presented in Appendix 1.
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fields are irrigated with mobile systems, and therefore, according to 
standard irrigation practices in the region, 30 l m− 2 were added to the 
PAW estimation of those fields. This amount accounts for the water 
irrigated during the week before the HyPlant data acquisition.

In order to validate our PAW estimates, we analyzed the agreement 
between PAWcap estimates and time domain reflectometry (TDR)-based 
soil moisture data (Mengen et al., 2021) measured on June 26, 2019 (the 
same day of the HyPlant campaign that year). Results are shown on 
Appendix 2, where 2130 TDR-based volumetric soil water content data 
from Mengen et al. (2021) are compared against the corresponding 
PAWcap estimates. A significant (p < 0.05) relationship was found be
tween the PAWcap levels and the average TDR-based actual soil mois
ture. However, it must be noted that this comparison was done only over 
a region with shallow soils (upper terrace; PAWcap = 101.42–156.50 l 
m− 2). Since the soil moisture data measured in the field by Mengen et al. 
(2021) was representative only for the topsoil (5 cm depth), we 
considered that the comparisons with deeper soils were not appropriate.

2.6. Data analysis

We aimed to assess the agreement between spatial eSIF dynamics (as 
dependent variable) and the spatial variation in PAW (as independent 
variable) considering different environmental and crop settings. In 
preparation of this analysis, machinery paths were removed from the 
individual field imagery, since they are not related to the spatial soil 
water content patterns of interest. Further, polygons (or soil units) 
smaller than 25 m2 were removed from the PAW maps.

We investigated the agreement between SIF and eSIF maps from the 
five study years with the respective field-level PAW maps via overlays. 
We also calculated the descriptive statistical measures including mean 
and standard deviation for SIF, eSIF and PAW for each soil unit, and 
described their agreement via the slope's confidence interval (at 95 % 
probability), and the Pearson correlation coefficients (r) together with 
its confidence at 95 % (p < 0.05).

A similar analysis was done to compare the SIF and eSIF relations 
considering LAI dynamics, aiming to understand the effect of the 
downscaling method. Besides the r and p values, the slope and the mean 
absolute deviation from the slope-based fit were computed for each SIF- 
and eSIF-LAI relation. Since SIF and eSIF units present different mag
nitudes (i.e., SIF ranges between 0 and 4, eSIF between 0-1x10− 4), the 
slopes and the deviations of the SIF- and eSIF-LAI relations were con
verted to relative values, assuming 3.5 and 1 × 10− 4 as 100 %, respec
tively, yielding relative slope (RS, %) and relative mean deviation (RMD, 
%) information.

The results of the SIF and eSIF vs. PAW and LAI regressions were 
differentiated by crop and phenology class. Finally, only pixels with LAI 
>1 were considered for the study to exclude pixels with low fractional 
cover and thus with a higher influence from the soil background.

3. Results

The spatial distribution of PAW, SIF, and eSIF are shown for irrigated 
potato, and rainfed sugar beet and winter wheat over the five growing 
seasons (Fig. 4). Absolute SIF and eSIF values show large differences 
between corresponding maps. The highest measured SIF and eSIF values 
are SIF >2.75 mW m− 2 nm− 1 sr− 1 and eSIF > 7 × 10− 5 nm− 1 and were 
found in irrigated potato fields, while the lowest SIF <0.5 mW m− 2 nm− 1 

sr− 1 and eSIF < 2 × 10− 5 nm− 1 were found in rainfed winter wheat. In 
general, normalized SIF (eSIF) shows more pronounced spatial patterns 
compared to SIF. As an example, the paleo river bed patterns in the 
winter wheat field of 2020 became visible in the eSIF map, while SIF 
shows a rather homogenous distribution. Such enhancements in the eSIF 
maps are notable in fields with low to medium SIF emissions, while 
fields with higher SIF emissions (e.g., potato and sugar beet field 1 in 
2018 and potato in 2020) appear similar. Opposite cases can be 
observed in the irrigated potato fields of 2018 and 2022, where the 

difference between blue and yellow areas in the eSIF map are less pro
nounced than those observed in the SIF map.

Despite the above described visual spatial patterns in SIF and eSIF, 
and the even more contrasting heterogeneity observed in PAW infor
mation within and among growing seasons, clear visual spatial corre
lations are not always obvious between SIF and PAW nor between eSIF 
and PAW. Thus, a statistical analysis was done to determine the strength 
of the spatial relation between SIF and eSIF with PAW. Since the ana
lyses focused on data from several years and over different time points 
within the year (DOY difference of 10 days), we grouped the fields ac
cording to their apparent phenological stage.

For irrigated potato (Fig. 5a–d), the 2019 field was at a later 
phenological stage (Δt of 17 days). For the other years, potato was in a 
more advanced phenology stage (i.e., “advanced-1” in 2022 with Δt =
23 days, “advanced-2” in 2020 with Δt = 26 days, and “advanced-3” in 
2018 with Δt = 32). All rainfed sugar beet fields (Fig. 5e–h) were 
considered to be in one unique “early” phenological class, since Δt was 1 
day. Rainfed winter wheat in 2018 (Fig. 5i–o) was found to be in an 
‘early’ phenological stage (i.e., long Δt of 54 days, while Δt's of 48 and 
47 days observed in the 2020 and 2021 indicate winter wheat fields to 
be in an ‘advanced’ phenological stage.

In Table 2 the Δt between the start and maximum EVI (peak) of the 
season and the respective HyPlant data collection dates are summarized.

Using the derived phenology classifications, the spatial agreement of 
SIF and eSIF with PAW for the three different crops was derived by 
relating the spatial averages of SIF and eSIF per soil unit with a specific 
PAW level. In irrigated potato fields, regardless of the spatial hetero
geneity in PAW, no significant SIF-PAW and eSIF-PAW correlations were 
found at any of the phenological stages (advanced-1, 2 and 3) (Fig. 6a 
and d). In rainfed sugar beet fields, both SIF (Fig. 6b) and eSIF (Fig. 6e) 
significantly (p < 0.05) increased with increasing PAW. In rainfed 
winter wheat fields, no significant correlations were observed at 
advanced-phenological stages, yet, in the early phenology field, a posi
tive significant relation between SIF and PAW disappeared with the 
downscaled, eSIF, information (Fig. 6c and f).

We also analyze the effect of normalizing canopy SIF to leaf-level SIF 
in relation to LAI (Fig. 7, Table 3). All SIF- and eSIF-LAI correlations are 
significant at p < 0.05 (except PO_Advanced_1), and an overall decrease 
of r and relative slopes can be observed for most eSIF-LAI relationships 
compared to SIF-LAI relationships (Table 3). This decrease is expected 
since the normalization intended to reduce the structural impact of LAI 
on SIF. Also, in all cases the relative residuals in the eSIF-LAI relations 
showed a notable increase compared to the residuals observed in the 
SIF-LAI cases. In Fig. 8, a more detailed analysis for rainfed sugar beet 
fields considering low (LAI 1–3) and high (LAI >3) canopy densities was 
done, as this case showed the strongest SIF-PAW and eSIF-PAW corre
lations. In both cases, a significant relation between eSIF and PAW was 
observed, however, in the low-density canopies (LAI <3) this relation is 
independent from variations in LAI.

4. Discussion

4.1. Relationship between SIF, eSIF and PAW

We demonstrated that airborne acquired SIF measured at the far-red 
peak showed a crop species dependent relation to PAW. These de
pendencies were, however, influenced by LAI and the seasonality of the 
different crops. Plants have developed multiple strategies to structurally 
and functionally acclimate to PAW limitations, which are dynamically 
adjusted to the severity of soil water limitation according to the 
ecological plasticity of the species. Such strategies, occur at different 
temporal scales, have a direct impact on the top-of-canopy SIF emission, 
and include (i) the sensing of water potential by the roots (Dietrich, 
2018), (ii) the hormonal (Ramachandran et al., 2020) and hydraulic 
signaling from the root to the shoot (Christmann et al., 2007), (iii) 
induced stomata closure (Abdalla et al., 2022), adjustment of root and 
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Fig. 4. Plant available water (PAW) maps computed based on the geophysics-based soil map (Brogi et al., 2019) for the fields analyzed in 2018, 2019, 2020, 2021 
and 2022 (left column). The solar-induced chlorophyll fluorescence (SIF) and SIF emission at leaf level (eSIF) maps retrieved from the data collected by the 
high-performance airborne imaging spectrometer HyPlant in 2018 (June 27), 2019 (June 26), 2020 (June 23), 2021 (June 13) and 2022 (June 14) are presented in 
the center and right column, respectively. Background image: enhanced vegetation index (EVI) derived from HyPlant DUAL top-of-canopy reflectance data recorded 
on June 27, 2018. Coordinates system: WGS84, UTM 32N.
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shoot growth (Zhou et al., 2018), and (iv) alterations in leaf morphology 
and physiology (Petrík et al., 2023). See Appendix 3 for a graphical 
overview. These physiological responses to variations in soil water 
availability in turn influence photosynthetic efficiency and canopy 
function (Liu et al., 2018), thereby modulating the emission of SIF (Shan 
et al., 2021). This is reflected in the different levels of SIF and eSIF 
observed across species (Figs. 4 and 7) where, consistent with Hou et al. 
(2023), the lower levels of SIF and eSIF occur in later growth stage crops 
like winter wheat, while the higher values are characteristic of early 
vegetative stages like potato and sugar beet. Complementing this 
observation, our PAW-LAI analysis (Fig. 8) in sugar beet shows that 
denser canopies (LAI >3) exhibit a more pronounced eSIF sensitivity to 
PAW variation.

Our results indicate that sugar-beet fields, known to present a strong 
stomatal closure response to soil limitations (Schickling et al., 2016), 
exhibited the strongest correlation between eSIF and PAW. This result 
can also be associated to the early phenological (actively growing; Hou 

et al., 2023) stage of this crop, when plants are more sensitive to even 
slight variations in water supply due to the combination of a high de
mand for water (FAO, 2012), and a shallow root system. In turn, in 
irrigated potato fields, the high SIF values characteristic of well-watered 
fields (Shan et al., 2021) lack of correlation with PAW indicating that the 
water needs of this crop were fully supplied by the farmers irrigation. 
According to Wu et al., 2024), in this condition, the SIF signal is ex
pected to be mainly governed by factors other than soil moisture, such as 
PAR. As a result, SIF was solely dependent on the development of the 
crop as indicated by LAI and the corresponding greenness indices NDVI 
and EVI. Our wheat fields were mapped at the latest developmental 
stage where pigment breakdown, senescence and corn filling are the first 
order factors determining canopy reflectance. The reduction in total 
canopy chlorophyll characteristic of this phase was also primarily 
influencing top-of-canopy SIF, and therefore, no second order correla
tion between SIF and PAW was visible in wheat. Indeed, the non-existing 
SIF-PAW and the negative eSIF-PAW relations observed in winter wheat 

Fig. 5. Seasonal enhanced vegetation index (EVI) from nano-satellite information for each irrigated potato (PO; a-d), and rainfed sugar beet (SB; e-h) and winter 
wheat (WW; i-o) fields. Each data point represents the average and standard deviation of the EVI in the whole field. Green and yellow lines show the EVI increasing 
start and the EVI maximum as a reference of the start and peak of the growing season. The red line represents the date of the HyPlant airborne data collection. In text 
boxes, the elapsed time (Δt) between the start (for irrigated potato and rainfed sugar beet fields) and the peak (for rainfed winter wheat fields) of the growing season 
and the HyPlant data collection date are reported. DOY stands for “day of the year”.
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fields at advanced phenology, can be explained by the locally different 
ripening times. During this stage, chlorophyll breakdown (triggered to 
sustain the grain filling stage) already started producing spatial patterns 
that are independent from the short-term PAW heterogeneity.

Leaf-level reactions to water limitations, such as stomatal closure 
and reduction of the RuBisCo metabolic efficiency are strongly regu
lated. These adaptions occur within minutes, hours, and days to provide 
a well-balanced metabolism even in times with temporarily limited 
water supply. Such short-term reactions can be detected with SIF, as 
long as structural canopy effects can be compensated via reference areas 
(Damm et al., 2022) or as demonstrated here through the eSIF 
normalization. Thus, the significant positive eSIF-PAW correlation 
observed in sugar beet fields suggests the presence of a short-term 
physiological reaction of the sugar beet plants to momentarily limiting 

soil water availability. Considering the established conceptual model of 
van der Tol et al. (2014), it is safe to assume that sugar beet is operating 
in the middle domain, where SIF emission is determined by a regulated 
balance between photosynthetic electron use and non-photochemical 
energy dissipation (NPQ). As hypothesized, we found a significant 
positive eSIF–PAW relationship in the rainfed sugar-beet fields, consis
tent with De Cannière et al. (2022), who reported lower SIF emission 
yields in experimental plots where associated with reduced soil water 
content. In contrast, Wang et al. (2023) reported a weaker but existent 
response of eSIF to water stress. The authors attributed this to reduced 
SIF emissions resulting from increased NPQ, triggered to prevent leaf 
overheating when stomata close to avoid water loss. A similar regulatory 
mechanism may also explain the lower eSIF values measured in our 
study in soil units with reduced PAW.

Although our measurements were collected at one single time point, 
the knowledge provided on other studies that have analyzed the SIF 
dynamics across the day can help us to understand in more detail the 
eSIF-PAW correlation found in sugar beet fields. Since airborne data 
were collected at a time when SIF in sugar beet tends to increase 
(~10:30 h; Siegmann et al. (2021); Schickling et al. (2016)) alongside 
with photochemical activity (Pinto et al., 2016), the positive eSIF–PAW 
relationships might indicate greater photosynthetic rate (van der Tol 
et al., 2016) in soil units with higher PAW. This is supported by results of 
Schickling et al. (2016), who reported that SIF of sugar beet, but not of 
winter wheat, closely follows variations in the photosynthetic efficiency 
in the diurnal course. A similar positive SIF-PAW relation observed in 
the early phenology winter wheat field (Fig. 6c, dark red symbols) lost 
its significance after normalization to eSIF (Fig. 6f, dark red symbols), 
indicating that the initial SIF-PAW relationship was influenced by 
structural canopy effects that were corrected through the downscaling 
process. However, no relation was found in the late phenology winter 
wheat (Fig. 6f, orange symbols), suggesting that the dynamic leaf-level 
regulation may have affected the SIF signal at this advanced develop
mental stage, thus potentially leading to underestimations of the 
SIF-PAW relationship. This interpretation is consistent with Ruehr et al. 

Table 2 
Phenology classification for each studied field, according to the elapsed time 
(Δt) between the start (for irrigated potato and rainfed sugar beet fields) and the 
peak (for rainfed winter wheat fields) of the growing season and the HyPlant 
data collection date. The start and peak of the growing season was identified 
based on the seasonal enhanced vegetation index (EVI) as shown in Fig. 5.

Crop Field Δt (days) Phenology class

Irrigated potato 2018 32 Advanced_3
2019 17 Early
2020 26 Advanced_2
2022 23 Advanced_1

Rainfed sugar beet 2018_1 32 Early
2018_2 32 Early
2019_1 33 Early
2019_2 33 Early

Rainfed winter wheat 2018_1 54 Early
2018_2 54 Early
2020 48 Advanced
2021_1 47 Advanced
2021_2 47 Advanced
2021_3 47 Advanced
2021_4 47 Advanced

Fig. 6. Solar-induced chlorophyll fluorescence (SIF) and its emission efficiency at leaf-level (eSIF) plotted vs. the plant available water (PAW) for the irrigated potato 
(PO; a, d), and rainfed sugar beet (SB; b, e) and winter wheat (WW; c, f) fields. The color coding aims to differentiate data points belonging to different crops and 
phenological stages. Each data point represents the average and the standard deviation (bars) of all soil units under the same PAW level. Dashed lines represent linear 
regressions, and the corresponding Pearson correlation coefficients (r) and significance levels (p) are shown within each panel.
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(2024), who commented on how factors like progressing senescence reduce the coupling between SIF and photosynthetic activity, thereby 

Fig. 7. Solar-induced chlorophyll fluorescence (SIF) and its emission efficiency at leaf-level (eSIF) plotted vs. the leaf area index (LAI) for the irrigated potato (a, d), 
rainfed sugar beet (b, e) and winter wheat (c, f) fields. The color coding differentiates data points belonging to different crops and phenological stages. Each data 
point represents the average and the standard deviation (bars) of all soil units under the same plant available water (PAW) level.

Table 3 
Pearson coefficient (r) and its significance (p), alongside the relative slopes and residuals for linear regressions of Solar-induced chlorophyll fluorescence (SIF) and its 
emission efficiency at leaf-level (eSIF) with the leaf area index (LAI). RS and RMD stand for relative slope and relative mean deviation, respectively.

Crop SIF eSIF

r p RS (%) RMD (%) r p RS (%) RMD (%)

PO_Early 0.56 <0.01 3.75 22.18 0.74 <0.01 4.31 29.80
PO_Advanced_1 0.16 0.55 4.22 37.05 − 0.11 0.69 − 3.15 53.39
PO_Advanced_2 0.46 <0.01 4.77 48.05 − 0.28 0.02 − 3.21 81.25
PO_Advanced_3 0.77 <0.01 11.11 26.33 0.64 <0.01 6.65 37.46
SB_Early 0.93 <0.01 6.58 12.01 0.81 <0.01 4.59 24.79
WW_Early 0.76 <0.01 2.09 1.46 0.41 <0.01 2.08 14.70
WW_Advanced 0.81 <0.01 5.26 4.37 0.20 <0.01 2.04 29.92

Fig. 8. Relation between the solar-induced chlorophyll fluorescence emission efficiency at leaf-level (eSIF) and the leaf area index (LAI) with the plant available 
water (PAW) in rainfed sugar beet fields at low (LAI 1–3; a) and high (LAI >3; b) canopy densities. Empirical statistics are summarized in the grey boxes.
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weakening the physiological link that underlines SIF responses to soil 
water availability.

Additional factors possibly affecting our findings of the SIF–PAW and 
eSIF-PAW relations include soil properties such as carbon content, 
nutrient status (especially N-content), and soil compaction. These soil 
properties can affect crop growth and, thus, determine spatial hetero
geneity of SIF emissions. Irrespective of the influence of these soil 
properties, the soil profile depth is likely the most important factor in the 
study region, due to its heterogeneous geology and associated pedology 
(Rudolph et al., 2015). In general, the lowest PAW found in the inves
tigated area is related to a shallow soil depth, and these areas also show 
lower SIF. It is important to note that a shorter soil profile will also 
impact other soil properties alongside PAW, with nutrient availability 
being the most relevant one. However, nutrient (especially N) shortage 
in the study area is unlikely to be the main reason, as farmers in the 
region typically apply high amounts of mineral fertilizers. Additionally, 
the soil organic carbon content was found to be relatively homogeneous 
across the study area (Reichenau et al., 2020).

4.2. Methodological constraints

The limitations of the empirical normalization of SIF to eSIF must be 
recognized, as it does not fully eliminate canopy-related factors. Even 
though the overall decrease of the correlation coefficient and the rela
tive slopes in the eSIF-LAI correlations (compared with the SIF vs. LAI 
cases) indicate the functioning of the downscaling approach, we suspect 
that the NIRvH2 approach does not fully eliminate canopy related ef
fects, but it largely reduces them. Additional information on the effect of 
the used downscaling method can be drawn from the residuals of the 
eSIF-PAW linear regressions (Table 3), in the sense that higher residuals 
values can indicate a stronger effect of the downscaling method. 
Remarkably, in rainfed sugar beet fields, the residuals in the eSIF-LAI 
relationship are twice as large as those in the SIF-LAI relationship. 
These findings, complemented with the reduced effect of LAI in the eSIF 
vs. PAW relationship observed in low density (LAI <3) canopies, in
dicates that these areas are more sensitive to limited (rainfed) water 
supply, and therefore more responsive to even slight PAW variations. 
Consequently, we consider that the eSIF variations under such envi
ronmental conditions describe the spatial variability of the photosyn
thetic activity in response to varying levels of water supply.

We investigated the eSIF-PAW relationship using single eSIF snap
shots during evolving soil water fluctuations. Since the relationship 
between SIF and soil water content is highly dynamic through wet-dry 
transitions (Wu et al., 2024), a limitation of our study, is the lack of 
SIF and PAW information at higher temporal resolution to assess how 
their relationship vary during other times of the day and the growing 
season. Consequently, the strength of the eSIF-PAW correlation 
observed in the sugar been fields could potentially reflect a momentary 
linkage captured under specific environmental and phenological con
ditions. This motivates further research on a diurnal scale across the 
entire season to analyze, e.g., the relationship between SIF and PAW 
during the so-called midday depression, and during the afternoon re
covery of photosynthesis at specific phenological stages.

Another limitation is, in the absence of more accurate soil water 
content information, the use of PAW information which relies on soil 
characteristics delineated by a geophysics-based soil map and by using a 
specific PTF. This strategy was made necessary by the extent of the 
investigated area, the required resolution, the estimation of PAW up to 2 
m depth, and the inclusion of multiple years. It should also be noted that 
this soil map is currently the most accurate available representation for 
the Selhausen's soils and that the use of the Rawls and Brakensiek PTF in 
this area has been further validated in several studies (Brogi et al., 2020, 
Brogi et al., 2021; Jakobi, 2020; Guo et al., 2025). Nonetheless, using 
soil maps and PTFs can introduce uncertainties (Weihermüller et al., 
2021), and further investigations should aim to use high-resolution soil 
moisture measurements, when possible, if the investigated patterns are 

highly dynamic. Within this context, recent advancements in remote 
sensing technology for soil moisture estimation, although limited to the 
topsoil, can be supportive. For instance, airborne radar technology like 
the scanning L-band active passive (SLAP) sensor operated by NASA 
(Kim, 2015), or the satellite-based soil moisture passive and active 
(SMAP) and SMOS (Ma et al., 2019) data sources of NASA and ESA, 
respectively, have great potential for comprehensive analysis alongside 
SIF information.

4.3. Towards more comprehensive remote sensing-based assessments of 
crop responses to evolving water limitation

Since soil water limitation provokes numerous different responses in 
plants acting at different temporal scales, its effect on the spectral 
properties of vegetation is different and might not only be related to the 
emission of SIF (Gerhards et al., 2019). Therefore, the complementary 
use of SIF- with thermal- and reflectance-based information is important 
to detect the cascade of physiological and structural changes undergone 
by plants under water stress conditions (Damm et al., 2018). Consid
ering this, integrative multi-sensor approaches must be developed and 
employed for effective plant water stress monitoring (Berger et al., 2022; 
Panigada et al., 2014). It is worth mentioning that such complemen
tarity among data sources should account for the severity of water 
limitation or even drought stress being analyzed, as well as the cascade 
of plant adaptation processes at different temporal scales. In this 
context, our findings demonstrate that SIF data enables the identifica
tion of functional plant adaptations to varying water availability.

Despite providing novel insights into the SIF-PAW relationship from 
unique datasets, further work is needed to develop more comprehensive 
SIF-based assessments of crop responses to varying PAW. Such efforts 
are essential to draw broadly applicable conclusions and to strengthen 
confidence in using eSIF as an indicator of plant-level water limitation. 
Analyses should encompass a wider range of environments, develop
mental stages, and species (Hu et al., 2025), complemented by com
plemented by in situ physiological observations of plant water status, e. 
g. those related to transpiration dynamics (Ahmed et al., 2023).

5. Conclusions

The relationship between eSIF and PAW varies across crop types and 
environmental gradients in terms of the interplay between environ
mental factors, seasonal growth patterns, and physiological processes. 
The downscaling approaches applied in this study can clearly help to 
enhance the contribution of leaf-level SIF on the measured canopy SIF 
signal and suppress the superimposing SIF dynamics caused by canopy 
structure. E.g., stress related regulation of young sugar-beet in response 
to water limitation can be clearly extracted from the eSIF signal, sup
porting the use of SIF as sensitive signal of vegetation stress. By iden
tifying and understanding these spatial correlations, we can provide 
novel insights into the impact of varying levels of soil water content on 
the spatial distribution of eSIF. This new information is nowadays of 
utmost importance to advance our knowledge towards the development 
of SIF-based tools for early water stress detection, and thus for moni
toring agricultural water management. Such advancements are crucial 
to address the growing food needs of humanity in the near future, when 
frequency and severity of drought events are expected to increase.
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Appendix 1. Extended version of Fig. 3 containing more details about the materials and methods used. This figure separates information 
according to inputs, processes, outputs, and analyses implemented with the airborne (a–c) and soil (d–h) datasets. The statistical 
analysis was done by overlapping the outputs from the remote sensing and soil data processing. All abbreviations are provided at the 
bottom of the figure
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Appendix 2. Comparison between the plant available water capacity (PAWcap) estimated with the methods used in the present 
manuscript (a), and 2130 soil moisture (SM) data points collected with a time-domain reflectometry (TDR)-based device at 5 cm depth 
(b). SM data were collected the same day of the high-performance airborne imaging spectrometer (HyPlant) campaign in 2019 (June 
26th reported by Mengen et al. (2021)). The PAWcap correlated with SM at r ¼ 0.99 (p < 0.01; c). Background image: enhanced vegetation 
index (EVI) computed from HyPlant data June 27, 2018

Appendix 3. Plant physiology- (a1) and soil-related (a2) factors that can confound the solar-induced chlorophyll fluorescence (SIF) 
plant-available water (PAW) relation due to their influence on the spatio-temporal expression of a stress detected in the SIF signal (b). 
Thick black lines indicate a link between the confounding factors and SIF. RGB image in panel (a2): True-color RGB composite derived 
from airborne HyPlant data acquired on June 27, 2018

Data availability

The datasets generated and analyzed in this study are publicly 
available through the following link: https://doi. 

org/10.26165/JUELICH-DATA/WD5YUJ.

J. Quiros-Vargas et al.                                                                                                                                                                                                                         Science of Remote Sensing 13 (2026) 100367 

14 

https://doi.org/10.26165/JUELICH-DATA/WD5YUJ
https://doi.org/10.26165/JUELICH-DATA/WD5YUJ


References

Abdalla, M., et al., 2022. Stomatal closure during water deficit is controlled by below- 
ground hydraulics. Ann. Bot. 129 (2), 161–170. https://doi.org/10.1093/aob/ 
mcab141.

Ahmed, M., et al., 2023. Empirical insights on the use of sun-induced chlorophyll 
fluorescence to estimate short-term changes in crop transpiration under controlled 
water limitation. ISPRS J. Photogrammetry Remote Sens. 203, 71–85. https://doi. 
org/10.1016/j.isprsjprs.2023.07.016.

Badgley, G., Field, C.B., Berry, J.A., 2017. Canopy near-infrared reflectance 
andterrestrial photosynthesis. Sci. Adv. 3, e160224. https://www.science.org/doi/ 
epdf/10.1126/sciadv.1602244?src=getftr.

Brakensiek, D., Rawls, W., 1994. Soil containing rock fragments: effects on infiltration. 
Catena 23, 99–110. https://doi.org/10.1016/0341-8162(94)90056-6.

Berger, K., et al., 2022. Multi-sensor synergies for crop stress detection and monitoring in 
the optical domain: a review. Remote Sens. Environ. 280, 113198. https://doi.org/ 
10.1016/j.rse.2022.113198.

Brogi, C., et al., 2019. Large-scale soil mapping using multi-configuration EMI and 
supervised image classification. Geoderma 335, 133–148. https://doi.org/10.1016/ 
j.geoderma.2018.08.001.

Brogi, C., et al., 2020. Simulation of spatial variability in crop leaf area index and yield 
using agroecosystem modeling and geophysics-based quantitative soil information. 
Vadose Zone J. 19, e20009. https://doi.org/10.1002/vzj2.20009.

Brogi, C., et al., 2021. Added value of geophysics-based soil mapping in agro-ecosystem 
simulations. SOIL 7, 125–143. https://doi.org/10.5194/soil-7-125-2021.

Christmann, A., et al., 2007. A hydraulic signal in root-to-shoot signalling of water 
shortage. TPJ 52 (1), 167–174. https://doi.org/10.1111/j.1365-313x.2007.03234.x.

Cogliati, S., et al., 2015. Retrieval of sun-induced fluorescence using advanced spectral 
fitting methods. Remote Sens. Environ. 169, 344–357. https://doi.org/10.1016/j. 
rse.2015.08.022.

Daddow, R.L., Warrington, G., 1983. Growth-Limiting Soil Bulk Densities as Influenced 
by Soil Texture. United States. 

Damm, A., et al., 2018. Remote sensing of plant-water relations: an overview and future 
perspectives. J. Plant Physiol. 277, 3–19. https://doi.org/10.1016/j. 
jplph.2018.04.012.

Damm, A., et al., 2022. Response times of remote sensing measured sun-induced 
chlorophyll fluorescence, surface temperature and vegetation indices to evolving soil 
water limitation in a crop canopy. Remote Sens. Environ. 273, 112957. https://doi. 
org/10.1016/j.rse.2022.112957.

De Cannière, S., et al., 2022. Remote sensing of instantaneous water stress water stress at 
canopy level using sun-induced chlorophyll fluorescence and canopy reflectance. 
Remote Sens. 14, 2642. https://doi.org/10.3390/rs14112642.

Dietrich, D., 2018. Hydrotropism: how roots search for water. J. Exp. Bot. 69 (11), 
2759–2771. https://doi.org/10.1093/jxb/ery034.

Drusch, M., et al., 2017. The FLuorescence EXplorer Mission Concept—ESA’s Earth 
Explorer 8. IEEE Trans. Geosci. Rem. Sens. 55 (3), 1273–1284. https://doi.org/ 
10.1109/TGRS.2016.2621820.

Food and Agricultural Organization of the United Nations (FAO), 2012. Crop yield 
response to water. https://www.fao.org/3/i2800e/i2800e.pdf. (Accessed 4 February 
2022).

Gao, X., et al., 2000. Optical–biophysical relationships of vegetation spectra without 
background contamination. Remote Sens. Environ. 74, 609–620. https://doi.org/ 
10.1016/S0034-4257(00)00150-4.

Gerhards, M., et al., 2019. Challenges and future perspectives of Multi-/Hyperspectral 
thermal infrared remote sensing for crop water-stress detection: a review. Remote 
Sens. 11 (10), 1240. https://doi.org/10.3390/rs11101240.

Guanter, L., et al., 2014. Global and time-resolved monitoring of crop photosynthesis 
with chlorophyll fluorescence. Proc. Natl. Acad. Sci. U.S.A 111 (14), E1327–E1333. 
https://doi.org/10.1073/pnas.1320008111.

Guo, X., et al., 2025. Enhancing carbon flux estimation in a crop growth model by 
integrating UAS-derived leaf area index. Agric. For. Meteorol. 374. https://doi.org/ 
10.1016/j.agrformet.2025.110776.

Hu, C., et al., 2025. Specific responses to environmental factors cause discrepancy in the 
link between solar-induced chlorophyll fluorescence and transpiration in three 
plantations. Remote Sens. 17 (9), 1625. https://doi.org/10.3390/rs17091625.

Hou, J., et al., 2023. Identifying crop growth stages from solar-induced chlorophyll 
fluorescence data in maize and winter wheat from ground and satellite 
measurements. Remote Sens. 15 (24), 5689. https://doi.org/10.3390/rs15245689.

Huete, A., et al., 2002. Overview of the radiometric and biophysical performance of the 
MODIS vegetation indices. Remote Sens. Environ. 83, 195–213.

Jacquemoud, S., et al., 2009. PROSPECT+ SAIL models: a review of use for vegetation 
characterization. Remote Sens. Environ. 113, S56–S66. https://doi.org/10.1016/j. 
rse.2008.01.026.

Jakobi, J., 2020. Error estimation for soil moisture measurements with cosmic ray 
neutron sensing and implications for rover surveys. Frontiers in Water 2, 10. https:// 
doi.org/10.3389/frwa.2020.00010.

Jonard, F., et al., 2020. Value of sun-induced chlorophyll fluorescence for quantifying 
hydrological states and fluxes: current status and challenges. Agric. For. Meteorol. 
291, 108088. https://doi.org/10.1016/j.agrformet.2020.108088.

Kim, E., 2015. Scanning L-Band Active Passive (SLAP) – recent results from an airborne 
simulator for SMAP. In: Proceedings of the IEEE International Geoscience and 
Remote Sensing Symposium. IGARSS, Milan, Italy. 
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