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ABSTRACT

Accurate characterization of the role of the dry tropics in the global carbon cycle requires precise estimation of
woody biomass changes due to ecological and anthropogenic change, including deforestation, forest degradation,
regrowth, mortality and enhanced tree growth due to climate change. L-band Synthetic Aperture Radar (SAR)
backscatter observations offer a reliable option to consistently map these processes as they are (i) available
globally since 2007 (JAXA ALOS-1, ALOS-2 and ALOS-4), and (ii) sensitive to woody structure, such as above-
ground biomass density (AGBD) up to ~100 t ha~!. However, we lack multi-site empirical understanding of the
scattering processes that determine the relationship between L-band SAR and woody vegetation structure in the
dry tropics, and how this is mediated by soil properties.

This study used observations from ground plots in Africa (n = 171), Australia (n = 6), and South America (n =
44) to understand the impact of vegetation structure and soil properties on spatially and temporally coincident
fully-polarimetric L-band SAR data. Fully-polarimetric L-band SAR single-look complex data were converted to
scattering mechanisms/parameters using van Zyl, Cloude-Pottier, and Freeman-Durden polarimetric de-
compositions to elucidate the physical mechanisms involved. Multivariate SAR-vegetation-soil relationships were
analysed using a theory-informed structural equation modelling approach. The strongest positive effects on
volume scattering come from stem density (stems ha'l) and mean stem biomass of trees, and soil water and sand
content (standardized regression coefficients of 0.3, 0.1, 0.2 and 0.1, respectively). The only significant effect on
surface scattering is from stem density (0.1). Significant effects on double bounce scattering are from stem
density (0.3) and soil sand content (—0.2). Since AGBD is the product of stem density and mean stem biomass,
this modelling framework points to a stronger effect from the number of trees rather than their size/biomass.
Therefore, AGBD maps relying solely on radar intensity may not reflect significant changes when AGBD is
increasing due to the growth of existing stems. Additionally, such maps might overestimate changes in AGBD
when driven by the recruitment of new stems or loss of existing stems. Full-polarimetric observations allow the
decomposition of the radar signal into volume scattering, surface scattering, and double bounce, enabling the
inversion of structural equation models to retrieve both stem density and mean stem biomass. This provides a
more comprehensive description of forest structure compared to retrieving only AGBD. As this approach depends
on full-polarimetric data, its effectiveness is closely tied to the availability of such observations. Our findings
underscore the value of recent and upcoming missions such as ALOS-4 PALSAR-3, BIOMASS and ROSE-L, and
highlight the need to prioritise the acquisition of quad-pol SAR data to support future large-scale retrieval of
vegetation structure attributes.

1. Introduction

potential for carbon sequestration in these lands (Piao et al., 2018).
Accurate characterization of the role of the dry tropics in the global

The dry tropics encompass complex and heterogeneous vegetation
structures, from open savannas to closed canopy woodlands and dry
forests and extend across ~15 million km?> (Pennington et al., 2018).
These vegetation types are extremely important land systems in terms of
carbon cycling (Piao et al., 2020), biodiversity (DRYFLOR et al., 2016)
and are key to the livelihoods of hundreds of millions of people (Djoudi
et al., 2015). Models suggest that the global dry tropics are the largest,
most climate-sensitive, and fastest increasing component of the land
carbon sink (Ahlstrom et al., 2015). However, there is high uncertainty
about the carbon fluxes from land processes in these regions (Arneth
et al., 2017), and a more accurate understanding of the structure of
vegetation and its dynamics in the dry tropics is essential. For example,
much improved estimates of aboveground biomass density (AGBD) dy-
namics from land-use and land cover change in the dry tropics are vital
to better constrain the geographic distribution of the land carbon sink
and its recent trends, and to support action to protect and explore the

carbon cycle requires precise and unbiased estimation of AGBD and its
dynamics due to natural and anthropogenic causes, e.g., deforestation,
forest degradation, mortality, regrowth and tree growth. L-band Syn-
thetic Aperture Radar (SAR) observations are currently being used to
consistently map these dynamics (McNicol et al., 2023; McNicol et al.,
2018). Furthermore, L-band SAR observations are well suited to map-
ping forest structure in the dry tropics, where AGBD rarely exceeds 100 t
ha! (Gou et al., 2022; Rodriguez-Veiga et al., 2020; Ryan et al., 2012;
Ryan et al., 2011; Urbazaev et al., 2015; Wessels et al., 2023). However,
a lack of representative ground observations and limited understanding
of the interaction between radar observations and vegetation and soil
characteristics in these lower biomass systems have generally resulted in
biased and imprecise AGBD estimates (Araza et al., 2022). It is therefore
critical to have an accurate understanding of how vegetation structure
and soil characteristics affect the signal measured by L-band SAR
Sensors.
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Although local studies based on airborne sensors have been funda-
mental in investigating the relationships between biomass, frequency
and polarisation (Le Toan et al., 1992) and the particular value of L-band
compared to P-band in lower biomass forests (Lucas et al., 2006;
Schlund and Davidson, 2018; Tanase et al., 2014), the emphasis changed
to large scale applications with the advent of spaceborne L-band data.
Dual- and fully-polarimetric L-band observations have been available
globally since 2007 from the Japanese Aerospace Exploration Agency
(JAXA) Advanced Land Observing Satellite (ALOS) Phased Array L-band
SAR (PALSAR) sensors (ALOS-1 PALSAR-1: 2006-2011, ALOS-2 PAL-
SAR-2: 2014-present, ALOS-4 PALSAR-3: launched in 2024, and also
from the SAOCOM mission since 2018 (Palomeque et al., 2024). Fully
polarimetric SAR systems transmit and receive the electric field in
horizontal and vertical polarisations, with the resulting scattering ma-
trix containing the complete information about the characteristics of the
scatterers (i.e., the observed objects on the ground) (Lee and Pottier,
2009). For distributed scatterers, such as woody vegetation, the infor-
mation is contained in the covariance or coherency matrices, which
describe the average backscatter properties of a region or window of
interest. These matrices can be decomposed into three scattering
mechanism that are thought to be dominant over land surfaces: surface
scattering, volume scattering and double bounce. Their relative impor-
tance depends on i) the structure of the scatterers (e.g., the shape, size,
and orientation of tree branches), ii) soil roughness and texture, and iii)
dielectric properties of the scatterers (essentially, their water content)
(Cloude and Pottier, 1996).

Methods to extract information about the scattering mechanisms
from fully-polarimetric SAR data over land surfaces can be divided into
two types: those relying on the eigenvalue/eigenvector decomposition
of the covariance or coherency matrices (Cloude, 1985; Cloude and
Pottier, 1997; van Zyl, 1993) or model-based approximations to the
scattering problem (Freeman and Durden, 1998; Yamaguchi et al.,
2005). Eigenvalue/eigenvector decomposition focuses on the statistical
properties and dimensionality reduction of SAR data, while model-based
decompositions aim to characterise the scattering mechanisms and
polarisation properties of the targets. In this study, we assess the infor-
mation content provided by both methods and how they relate to
vegetation structure and soil properties.

The magnitude and relative importance of each scattering mecha-
nism is also affected by characteristics of the sensor, such as frequency
and incidence angle (Le Toan et al., 1992). Most studies using fully
polarimetric spaceborne L-band SAR data to retrieve vegetation struc-
ture were carried out at local level and in boreal (Antropov et al., 2017;
Chowdhury et al., 2014) or moist forests (Bharadwaj et al., 2015; Cassol
et al., 2019; Wiederkehr et al., 2020). In vegetation, the shape, size and
orientation of the main scatterers (which may be the leaves, twigs,
branches or trunks, depending on the wavelength) can affect the return
at each polarisation (Tanase et al., 2013). In the dry tropics, soil and
vegetation characteristics exhibit distinct ecological and physical
properties compared to temperate and moist forest systems. Firstly, soil
moisture content tends to be lower due to seasonal precipitation and
higher evapotranspiration rates, leading to drier soils. This results in a
higher proportion of bare ground and lower woody vegetation density,
impacting the scattering mechanisms observed by SAR sensors. Addi-
tionally, vegetation in the dry tropics often comprises sparse, shorter
woody vegetation with smaller leaf sizes and lower AGBD than the
denser, taller vegetation found in temperate and moist forests. These
differences in vegetation structure affect the scattering behaviour of
radar signals, with sparse canopies exhibiting stronger surface scattering
and reduced volume scattering compared to denser canopies. Further-
more, the prevalence of woody vegetation with complex (e.g. multi
stemmed, non-vertical and “umbrella” shaped) branch architectures in
the dry tropics introduces additional complexities in radar signal
interactions.

Several studies have highlighted the impact of AGBD and soil prop-
erties on the signal measured by L-band SAR sensors (Gou et al., 2022;
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Lucas et al., 2010; Wessels et al., 2023; Williams et al., 2022; Yu and
Saatchi, 2016). Surface roughness and soil moisture are the main factors
affecting scattering from the soil, both directly and via the double
bounce mechanism. Surface scatter decreases as incidence angle in-
creases but increases with increasing dielectric constant (Richards,
2009). Also important is surface slope, which affects surface and double
bounce scattering. The dielectric constant of the scatterers within the
vegetation, which is strongly correlated with moisture content, has large
effects on the strength of scattering and attenuation by the canopy and
hence on the strength of the return from surface scattering.

Much less attention has been given to understanding the contribution
of woody vegetation structure to backscatter. Most studies are based
almost entirely on scattering models (e.g. (Brolly and Woodhouse,
2012)) or relying on scattering models together with limited ground
observations (Mermoz et al., 2015; Smith-Jonforsen et al., 2007). Using
microwave modelling and P-band data from boreal forests, Smith-Jon-
forsen et al. (2007) found very large dispersion in the relationship be-
tween HV backscattering coefficient and AGBD, essentially depending
on stand structure (i.e., few large vs many small trees). However, a much
tighter relationship was found between HV backscatter and an indicator
of stem biomass they termed the biomass-consolidation index. They
concluded that information on stem density is needed to resolve ambi-
guities in estimation of AGBD from P-band SAR observations. Brolly and
Woodhouse (2012) and Imhoff (1995) generalized this finding to other
wavelengths. Brolly and Woodhouse (2012) used a simple one-layer
microwave scattering model configured as a set of vertical cylinders
parametrized by number (i.e., stem density) and average diameter to
study their influence on VV-polarized SAR observations at P-band and
VHF frequencies. They found a strong relationship between backscatter
and AGBD only when stem density and average diameter were highly
correlated with AGBD. However, these quantities can have different
relationships with AGBD, depending on the type of vegetation: in some
cases, AGBD is positively correlated with stem density and average
diameter, whereas in others it is positively correlated with average
diameter but negatively correlated with stem density. Brolly and
Woodhouse (2012) and Woodhouse et al. (2012) concluded that back-
scatter does not respond to AGBD as such, but to structural properties
that may be correlated with AGBD in different ways. However, this re-
mains to be tested empirically at L-band.

There is therefore a need for an empirical understanding of how
vegetation structure, particularly in the context of the dry tropics, in-
fluences the signal measured by L-band SAR sensors. This study there-
fore provides a large-scale analysis of the relationship between L-band
microwave scattering mechanisms and woody vegetation structure and
soil characteristics using L-band fully-polarimetric SAR data together
with an extensive and representative set of ground observations ac-
quired over the dry tropics. It aims to answer the following questions:

1) What are the dominant scattering mechanisms driving the L-band
SAR signal in dry tropical savannas and woodlands?

2) What is the relative importance of vegetation structure and soil
characteristics in controlling the L-band SAR signal from woody
vegetation in the dry tropics?

2. Data and methods
2.1. Ground observations

Tree census data from permanent plots belonging to several net-
works were obtained over 12 locations across Africa, Australia and
South America, with varying vegetation structures (Fig. 1, Supplemen-
tary Information Table S1, Supplementary Information Fig. S2).

The Socio-Ecological Observatory for Studying African Woodlands
(SEOSAW: https://seosaw.github.io/) is a network of researchers mak-
ing ground observations to study the ecological and human dimensions
of African woodlands (The SEOSAW Partnership, 2021). This study uses
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Fig. 1. Location of ground plots used as reference data (red dots). The 12 selected locations span the coverage of tropical dry forests and savannas (shown in cyan;
Godlee et al. in prep). Angola/Bicuar, Congo/Lefini-Lesio Louna, DR Congo/Haut-Katanga, Mozambique/Gorongosa, Tanzania/Kilwa, Zimbabwe, Australia/
Northern Territory, Brazil/Caatinga, Bolivia/Chiquitano, Bolivia/Huanchaca, Brazil/Nova Xavantina, Brazil/Roncador. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

data from 171 permanent 1-ha plots in Bicuar National Park (Angola),
Léfini Faunal Reserve and Lesio Louna Gorilla Sanctuary (Republic of
the Congo), Haut-Katanga (Democratic Republic of the Congo), Gor-
ongosa National Park (Mozambique), Kilwa district (Tanzania), and
multiple districts of Zimbabwe.

In Australia, we used data from 6 1-ha plots in the Northern Territory
(NTT) near Darwin, set up by Charles Darwin University and the
Terrestrial Ecosystem Research Network (TERN). This dataset was ob-
tained through Australia's TERN-Landscapes and Joint Remote Sensing
Research Program (https://field.jrsrp.com).

Plot data in the dry tropics of South America were obtained through
ForestPlots.net, a global partnership aimed at monitoring the world's
tropical forests (ForestPlots.net et al., 2021; Lopez-Gonzalez et al.,
2011). This study uses 29 permanent 1-ha plots collected in Chiquitano
dry forests (Bolivia), Huanchaca (Bolivia), Nova Xavantina (Brazil),
Serra do Roncador (Brazil), together with data from 15 0.5-ha plots in
the Brazilian Caatinga (Moonlight et al., 2021).

The use of relatively large plots with 1 ha (except the 0.5 ha Caatinga
plots) helps to minimise errors associated with geolocation and dilution
bias, caused by heterogeneity at sub-hectare scales (Rejou-Mechain
et al., 2014). Descriptors of woody vegetation structure at plot level
were generated from stem-level measurements of diameter at breast
height (DBH), height and wood density (inferred from species). AGBD
(aboveground biomass density of all living stems per ha, in t ha™1) was
estimated by summing the biomass of each stem estimated from diam-
eter measurements using the allometric equations of Chave et al. (2014);
stem density (N, number of stems per ha) and mean stem biomass ® =
AGBD/N, in t stem™!) were also estimated for all plots in this study.
Table S1 (Supplementary Information) contains detailed information
about the plots used, including the year the plots were measured. Only
measurements of stems with DBH greater than 10 cm were used in the
analysis to allow consistency between studies.

To relate the ground measurements to the SAR data, the vegetation
descriptors obtained from a plot during a particular year were taken to
represent the period covering two years on either side of that census (e.
g., a census in 2005 represents the period from 2003 to 2007). When a
plot had multiple censuses, annual estimates of the descriptors of
vegetation structure between censuses were generated by linear
interpolation.

2.2. L-band synthetic aperture radar (SAR) data

All available fully-polarimetric L-band SAR scenes acquired by
ALOS-1 PALSAR-1 (2006-2011) and ALOS-2 PALSAR-2 (2014-present)

over the plot locations were downloaded and processed, yielding 59
acquisition dates in total, 18 for Africa, 9 for Australia and 32 for Latin
America (Supplementary Information - Table S2 lists the scenes used).
The polarimetric SAR data were downloaded in single-look complex
(SLC) format, from which the local covariance and coherency matrices
were calculated using a 5 x 5 window. The only difference between
these two matrices is that the first is the covariance matrix arising from
the measured complex signal, (Six, V/2Shy, Syv), while the second is the

covariance matrix arising from the Pauli basis, (S""JESW, V2Shy, Shh\;isw).

Both carry all the information about the polarimetric properties of a
homogeneous distributed scatterer. From these matrices the polari-
metric decompositions of van Zyl (1993), Cloude and Pottier (1997) and
Freeman and Durden (1998) were calculated, and the decomposed data
were converted to terrain-corrected data. To obtain 25 m ground-
resolution, terrain-corrected polarimetric features, we used 6 looks
with ALOS-1 (1 in range and 6 in azimuth) and 36 looks with ALOS-2 (4
in range and 9 in azimuth). The overall processing chain is illustrated in
Fig. 2 and was implemented using SNAP (ESA's Sentinel Application
Platform v9.0.0). More detailed information about the steps in Fig. 2 is
available in standard SAR textbooks (Lee and Pottier, 2009; Richards,
2009).

2.3. Decompositions of full-polarimetric L-band SAR observations

The covariance and coherency matrices are used to gain information
on the physical interactions occurring when distributed scatterers, such
as vegetated regions, are imaged by the SAR system (Lee and Pottier,
2009). However, interpretation of these matrices is not straightforward
due to the complexity of the scattering process and the variability of the
scatterers within each pixel. Polarimetric decomposition techniques,
building on a concept first introduced by Cloude (1985), have emerged
as a basic tool aiding such interpretation. We use three decomposition
methods, those of van Zyl (1993), Cloude and Pottier (1997) and
Freeman and Durden (1998). This is because they make different as-
sumptions and/or provide useful complementary information.

van Zyl (1993) used an eigen-decomposition of the covariance ma-
trix to help interpret the scattering from natural terrain, especially
vegetated areas. This decomposition considers scatterers with reflection
symmetry (i.e., their statistical properties would be unchanged if they
were reflected relative to the observation geometry; this is typical of
most natural scenes, though topography can cause this condition to be
violated). The eigenvectors of the covariance matrix are identified with
three types of scattering mechanism: cross-polarized scattering and
scattering involving either an odd or an even number of reflections,
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L-band SAR data ALOS-1 PALSAR-1

ALOS-2 PALSAR-2
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radiometric + Deskewing for
calibration ALOS-1 PALSAR-1

i

covariance (C3) or
coherency (T3)
matrix

i

polarimetric
decomposition

i

multilooking

i
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resolution)
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van Zyl (1995) Cloude and Pottier (1997) | |Freeman and'Durden (1998)

van Zyl (1993)
Cloude and Pottier (1997)
Freeman and Durden (1998)

* odd scattering * entropy * surface scattering
* even scattering * anisotropy * double bounce
* cross-pol scattering « alpha * volume scattering

Fig. 2. Simplified processing chain for ALOS-1 PALSAR-1 and ALOS-2 PALSAR-
2 fully-polarimetric data from single-look complex (SLC) format to terrain-
corrected scattering mechanisms and parameters.

whose relative power is given by the eigenvalues. Later studies inter-
preted the cross-polarized return as volume scattering, with an odd
number of reflections coming from surface scatter and an even number
from double bounce scattering, not least because scattering models
showed that these would be the dominant contributions to the observed
backscatter. However, this does not follow from the van Zyl (1993)
analysis, since it neglects the fact that scattering involving an even and
odd number of reflections can also arise from the random volume
making up the canopy and should be included in volume scattering.

Freeman and Durden (1998) addressed this issue with a model-based
approach which explicitly calculates the covariance matrices arising
from: (i) a collection of randomly oriented cylinders (corresponding to
the volume scattering from the vegetation canopy); (ii) a set of vertical
cylinders standing on flat ground (representing double bounce scat-
tering); (iii) direct scatter from the ground, considered as a rough sur-
face. The observed covariance matrix is assumed to be the sum of the
individual covariance matrices corresponding to these three mecha-
nisms. A crucial point is that this method calculates the relative powers in
the three mechanisms, allowing the measured total power to be parti-
tioned accordingly. However, while the volume scattering is unambig-
uously recovered, separating the double bounce from surface scatter
requires the use of the phase of the HH-VV element of the covariance
matrix. This can be understood roughly as the average phase difference
between the HH and VV signals and borrows from the discussion in van
Zyl (1993).

Cloude and Pottier (1997) developed a different physical basis on
which to interpret the data by using the coherency matrix to calculate
the entropy and alpha angle associated with an extended scatterer and
associating these quantities with combinations of scattering mecha-
nisms. The entropy-alpha plane identifies where the data lie relative to
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specific zones characteristic of classes with different scattering
behaviour.

The characteristics of each approach are briefly described in the
Supplementary Information (Appendix 1), while detailed information
can be found in the original publications (Cloude and Pottier, 1997;
Freeman and Durden, 1998; van Zyl, 1993) or in reference books (Lee
and Pottier, 2009; van Zyl and Kim, 2011).

2.4. Soil characteristics

L-band SAR data can be affected by edaphoclimatic factors (Lucas
et al., 2010; Mattia et al., 1997). Estimates of soil moisture were ob-
tained from the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5-Land product, a reanalysis dataset providing a consis-
tent view of the evolution of land variables since 1950 at ~10 km spatial
resolution (Munoz-Sabater et al., 2021). This dataset was downloaded
from Earth Engine Data Catalog (https://developers.google.com/earth
-engine/datasets/catalog/ECMWF_ERA5 LAND HOURLY). The volume
of water in the 0-7 cm soil layer at the date of the observations was used
as a proxy for soil moisture. Soil texture was obtained from ISRIC —
World Soil Information's SoilGrids, a global gridded soil dataset at 250 m
grid spacing (Poggio et al., 2021); sand content in the 0-5 cm soil layer
was downloaded from Google Earth Engine as a community contributed
dataset.

2.5. Modelling the determinants of L-band SAR backscatter in the dry
tropics

To understand how vegetation and soil properties interact to deter-
mine the radar signal, we used structural equation models (SEM). SEM is
an inference method aiming at testing a concept by specifying a con-
ceptual model (i.e., Eq. (1) below) representing its predictions derived
from suitable observational data (Pearl, 2012). To address the theoret-
ical expectation that the radar signal is not directly related to AGBD
(Brolly and Woodhouse, 2012), we model separately the effect of stem
density and mean stem biomass (whose product is AGBD). The set of
relationships between these factors and scattering mechanisms can be
formalized by the following set of equations:

{sur,vol, dbl} = f,(N, b, soil_wat, soil_sand) 1)

where sur, vol, and dbl refers to the three scattering mechanisms from
(Freeman and Durden, 1998): surface scattering, volume scattering, and
double bounce, respectively, N is stem density (stems ha™!), b is the
mean stem biomass (t stem™ 1), soil wat is the soil volumetric water
content (m* m’3), soil_sand is the soil sand content (g kg’l), and f; is a
linear function relating dependent variables and covariates. Vegetation
water content is not explicitly included in the structural equation model
because comparable in situ or remotely sensed vegetation water content
products are not available at the spatial and temporal scales of our multi-
continental dataset. Instead, we use soil volumetric water content as a
proxy for dielectric variability, since variations in soil moisture gener-
ally exert the strongest control on L-band backscatter under dry-tropical
and savanna conditions (Jackson and Schmugge, 1991; Ulaby et al.,
1986). While vegetation water content can modulate canopy dielectric
properties and thus volume scattering, its effect is secondary when soil
water content is low. Furthermore, although precipitation can tran-
siently wet foliage, in dry-tropical trees the vegetation water content
remains relatively stable because the trees have to remain turgid even in
dry spells/seasons (Vinya et al., 2019).

Fig. 3 shows the SEM representation of Eq. (1). Stem density and
mean stem biomass were logy transformed to improve the linearity of
the relationships and to allow easy comparison of their effects (i.e., the
size of the resultant effect on scattering mechanisms estimated by the
model is the effect of doubling these variables). The other variables were
standardized to z-scores to allow comparison of data across variables or



J.M.B. Carreiras et al.

{scat_mec}

soil_wat soil_sand

Fig. 3. Structural equation modelling (SEM) representation of Eq. (1): scat_mec
indicate scattering mechanisms; AGBD - aboveground biomass density, N - stem
density; b - mean stem biomass; soil_.wat — volumetric soil water content;
soil_sand - soil sand content. N and b are encompassed by a dashed rectangle to
indicate that their product yields aboveground biomass density (AGBD).
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datasets with different observational scales. The number of observations
at each site ranged from 8 in Zimbabwe (ZFC) to 150 in Congo (CBN).
We defined a weighted variable to address this unbalanced design such
that each location had equal weight. A robust weighted least squares
(WLS) estimator was used to accommodate weighted observations and
account for violations of model assumptions, such as non-normality,
non-linearity and non-constant variances (Kline, 2016). Model fitting
was performed with the R (R Core Team, 2023) lavaan package (v
0.6-15) (Rosseel, 2012).

To visualise the relationships between the scattering mechanisms
and the ground observations of vegetation structure we use generalized
additive models (GAMs; Hastie and Tibshirani (1986)). We fit:
{scat_mec} = py+ s1(vegStr)+ sz(vegStr,location)+ ¢, with vegStr
referring to vegetation structure (AGBD, stem density or mean stem
biomass). An adaptive smooth (s;) was selected as the smoothing basis
to allow the smoothness of the function to vary across the range of vegStr
values, thereby accommodating varying degrees of complexity in
different regions of the data; s, is the factor-smooth interaction between
vegStr and location; ¢ is the error term. A 95 % confidence interval of the
first derivative of the smooth function s;(vegStr) for each scattering
mechanism is used to help detect saturation. When the first derivative of
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Fig. 4. a) Relationship between scattering mechanisms derived from the van Zyl polarimetric decomposition (van Zyl, 1993) applied to PALSAR-1 and PALSAR-2
fully-polarimetric observations and aboveground biomass density (AGBD); scattering mechanisms are represented as backscatter intensity (dB scale): odd - odd
number of bounces, even - even number of bounces, cross — scattering in the cross-pol channel; the solid lines represent generalized additive model fits. b) Relationship
between the first derivative of the smooth function s; (AGBD) and AGBD. Shaded areas represent 95 % confidence intervals.
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a GAM fit includes zero, it indicates that from that vegStr value onwards,
the response variable (scattering mechanism) is insensitive to vegStr
(AGBD, stem density or mean stem biomass).

3. Results
3.1. Relationship between scattering mechanisms and vegetation structure

Fig. 4a shows the distribution of the intensity of the scattering
mechanisms from van Zyl (1993) as a function of AGBD. The dominant
mechanism is scattering by an odd number of bounces, which is likely to
represent direct scattering from the ground together with scattering
from branches in the canopy. There is a significant positive trend with
AGBD up to 52 t ha_l, 58 tha ' and 52 t ha™! for odd, cross, and even
scattering, respectively (Fig. 4b), after which there is no sensitivity.
Cross-pol scattering and scattering by an even number of bounces are
very similar to each other and their relation to AGBD closely follows that
of scattering by an odd number of bounces, though with magnitude ~5
dB lower.

The Cloude and Pottier (1997) polarimetric decomposition (Fig. 5)
shows that scattering is dominated by medium entropy vegetation
scattering, with some medium entropy surface scattering at low and
intermediate AGBD values. As expected, vegetation scattering tends to
dominate as AGBD increases. Only two observations exhibit low entropy
surface scattering (entropy <0.5 and a < 42.5°), which is characteristic
of very smooth ground surfaces (plots ABG_17 and ABG_19, AGBD = 0.1
and 0.3 t ha !, respectively), and only a single observation exhibits
medium entropy multiple scattering (entropy = 0.5-0.9 and a > 50°),
characteristic of double bounce scattering (plot TKW_8, AGBD = 23.1 t
ha 1.

Fig. 6a displays the relationships between the intensity of the scat-
tering mechanisms obtained from the Freeman and Durden (1998)
polarimetric decomposition and AGBD. Volume scattering is always the
dominant mechanism, followed by double bounce, with surface scat-
tering apparently not showing any relation with AGBD. The significance
of the relationship between volume scattering and AGBD is only main-
tained up to 58 t ha™! (Fig. 6b). There is no significant relationship
between the intensity from surface scattering and AGBD (Fig. 6b),
whereas for double bounce a positive trend is maintained for AGBD up to
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22 t ha™!. The results from the Freeman-Durden decomposition agree
with those from the entropy/anisotropy/a polarimetric decomposition
(Fig. 5) in that the observed backscatter comes primarily from a mixture
of volume and surface scattering, with volume scattering clearly being
the dominant mechanism.

AGBD is the product of stem density and mean stem biomass, but
these two variables are likely to influence the SAR signal in different
ways (Brolly and Woodhouse, 2012; Smith-Jonforsen et al., 2007).
Fig. 7a and b show the relationship between them and the intensity of
each scattering mechanism from the Freeman-Durden polarimetric
decomposition. Volume scattering increases with stem density up to 652
stems ha~! (Fig. 7c), after which sensitivity to stem density is lost. The
intensity from double bounce increases with stem density up to ~260
stems ha~!, with surface scattering showing no sensitivity to stem
density. Sensitivity of scattering mechanisms to mean stem biomass is
much harder to interpret because most observations are aggregated
around a similar mean stem biomass value (Fig. 7b). There is a large
cluster of plots with mean stem biomass around 0.1 t stem’l, i.e., cor-
responding to stems with ~10 cm DBH. The only significant and positive
trend is between the intensity from volume scattering and mean stem
biomass. In contrast to the 10 dB range in the trend between the in-
tensity from volume scattering and stem density, it has only a 5 dB range
and considerably more dispersion. There is moderate evidence that
surface scattering declines at high stem density, and a non-significant
decline in double bounce above 300 stems ha™'.

Fig. S3a-b (Supplementary Information) show scatterplots of the
relationship between the intensity of scattering mechanisms from
Freeman and Durden (1998) and soil characteristics: soil water content
and soil sand content. The only clear behaviour regarding soil properties
is that volume scattering increases as soil moisture increases; somewhat
surprisingly, surface scattering does not increase as soil moisture
increases.

3.2. Structural equation modelling

The path diagram from the structural equation model (SEM) result-
ing from Eq. (1) is shown in Fig. 8 for the Freeman and Durden (1998)
polarimetric decomposition. The model has a p-value <0.001, suggest-
ing that our dataset supports the fitted SEM. Volume scattering is the

© AGBD <8t/ha
8 <AGBD <49 t/ha
® AGBD >49t/ha

Fig. 5. Distribution of reference plots on the entropy (H) - a (°) plane obtained from the Cloude and Pottier (1997) polarimetric decomposition (see Fig. 5). The
colour of each point is a function of aboveground biomass density (AGBD) terciles: red: AGBD < 8 t ha™?, yellow: 8 < AGBD < 49 t ha~ !, blue: AGBD > 49 t ha .. The
black dashed lines represent the nine different scattering zones according to Cloude and Pottier (1997): 1 - high entropy multiple scattering, 2 - high entropy
vegetation scattering, 3 - (non-feasible) high entropy surface scattering, 4 - medium entropy multiple scattering, 5 - medium entropy vegetation scattering, 6 -
medium entropy surface scattering, 7 - low entropy multiple scattering events, 8 - low entropy dipole scattering, 9 - low entropy surface scattering. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. a) Relationship between scattering mechanisms derived from the Freeman-Durden polarimetric decomposition (Freeman and Durden, 1998) applied to
PALSAR-1 and PALSAR-2 fully-polarimetric observations and aboveground biomass density (AGBD); scattering mechanisms are represented as backscatter intensity
(dB scale): sur — surface scattering, vol — volume scatteting, dbl — double bounce scattering; the solid lines represent generalized additive model fits. b) Relationship
between the first derivative of the smooth function s; (AGBD) and AGBD. Shaded areas represent 95 % confidence intervals.

mechanism most sensitive to vegetation structure, especially to stem
density, as it increases by 0.32 standard deviations (SDs) for each
doubling of stem density. The effect of mean stem biomass on volume
scattering is much smaller (0.14 SD for each doubling of mean stem
biomass). The strongest effect from soil variables on volume scattering
comes from soil water content (0.23 SD increase in volume scattering for

each SD increase of soil moisture). Double bounce scattering is strongly
affected by stem density (0.25 SD increase of double bounce for each
doubling of stem density). Soil sand content has a moderate negative
effect on double bounce (—0.18 SD). The only significant effect on sur-
face scattering comes from stem density, a positive effect of 0.08 SD.



J.M.B. Carreiras et al.

a)

scattering

= dbl

< sur
vol

mtensﬁy (dB)
=)

-20-

600 800

400
stem density (stems ha™)

vol dbl

first derivative
o
o
o
]
1
1
]
1
1
1
1

-0.05-
0 200 400 600 800 O 200 400 600 800 O
stem density (stems ha")

200 400 600 800

Remote Sensing of Environment 334 (2026) 115213

0-

o scattering
Z _40-
3_10 = dbl
2 - sur
Q
£ vol

-20-

0.0 0.2 0.4 0.6
mean stem biomass (t stem")

sur vol

20.00-

dbl

15.00

o
o
o

3]
[=
o

first derivative

-5.00-
00 02 04 06 00 02 04 06 00 02 04 06
mean stem biomass (t stem”)

Fig. 7. Relationship between scattering mechanisms derived from the Freeman-Durden polarimetric decomposition (Freeman and Durden, 1998) applied to PALSAR-
1 and PALSAR-2 fully-polarimetric observations and a) stem density (N), b) mean stem biomass (b); scattering mechanisms are represented as backscatter intensity
(dB scale): sur — surface scattering, vol — volume scattering, dbl — double bounce scattering; the solid lines represent generalized additive model fits. c) relationship

between the first derivative of the smooth function s; (N) and N; d) relationship between the first derivative of the smooth function s (b) and b. Shaded areas represent

95 % confidence intervals.

4. Discussion
4.1. Dominant scattering mechanisms in the dry tropics

Across our dataset, most plots were characterized by medium en-
tropy vegetation scattering, although for sites with lower stem densities
/ AGBD the balance shifted towards medium entropy surface scattering.
Such behaviour is likely to be typical of the dry tropics since our dataset
includes most wooded types in this region. Medium entropy implies that
more than one scattering mechanism is important, suggesting that
investigation of vegetation properties will usually have to contend with
a soil component in the L-band SAR signal.

Comparison with the findings in van Zyl (1989) and van Zyl (1993)
suggests that the scattering at our study locations is intermediate be-
tween that of short shrub-like vegetation and dense forest (though the
van Zyl studies dealt with coniferous forest). For the shrubby area dis-
cussed in van Zyl (1993) the power due to an odd number of reflections
was 2.0 and 2.2 times higher than from an even number of reflections
and cross-pol scattering, respectively, and 2.7 and 3.7 times higher for
the forested area, while our study gives values of 2.4 and 2.8 after
averaging across all observations. This is likely to be a consequence of
stem properties: density, size and shape. In particular, van Zyl (1993)
concluded that most of the scattering in the shrubby area came from
vegetation with randomly oriented branches that were thin compared to
the radar wavelength, while in the forested area it was dominated by
scattering from the randomly oriented cylinders composing the
branches.

The structural inferences from van Zyl (1993) are more specifically

embedded in the Freeman and Durden (1998) decomposition, which
assumes that:

(i) volume (vegetation canopy), surface and double bounce scat-
tering are the three main scattering mechanisms, and these add
incoherently (more complete radiative transfer models would
show the same);

(ii) branches are randomly oriented and thin compared to the SAR
wavelength;

(iii) double bounce comes from a vertically oriented trunk on a flat
ground, so would be much weaker in vegetation with a multi-
stem structure or on sloping ground.

Particularly important is that the second assumption is likely to be
true in the wooded vegetation we are studying, given the 24 cm L-band
wavelength and the moderate AGBD levels (median = 23.1 t ha_l,
standard deviation = 53.8 t ha™1). It is similar to van Zyl's inference
about scattering from a shrubby area (van Zyl, 1993), and specifically
allows the contributions to volume scattering of the HH, HV and VV
returns to be calculated.

At our sites, volume scattering is clearly identified as the dominant
mechanism over the wooded vegetation types, though it is mixed with a
weaker return from surface scattering and, in most cases, a much weaker
return from double bounce (Fig. 6). Somewhat surprising is that volume
scattering is present even at very low levels of AGBD. This is unlikely to
be a soil roughness effect since most soil surfaces in this region would be
perceived as smooth by the 24 cm wavelength of the L-band sensor.
However, it could be an effect of surface slopes, in particular aspect
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-0. 181

0.106

Fig. 8. Path diagram of the fitted structural equation model with log, stem
density (N) and log, mean stem biomass () as vegetation covariates. The nu-
merical values indicate size effects, i.e. by how many standard deviations (SDs)
the backscatter intensity changes by due to a change of 1 SD in the soil variables
or a doubling of the vegetation variables (N and b) (blue: positive effect; orange:
negative effect; the line width is proportional to the size of the effect). Non-
significant estimates are indicated by grey dashed lines. Freeman and Durden
(1998) scattering mechanisms: sur - surface scattering, vol - volume scattering,
dbl: double bounce. Soil variables: soil water — volumetric soil water content,
soil sand - soil sand content. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

angle. It could also be the signal from the small trees and shrubs that are
not included in our AGBD estimate, i.e. are less than 10 cm DBH. More
detailed knowledge of the vegetation and soil structure at these low
AGBD sites would be needed to establish whether this is really a signal
from the vegetation canopy. The low importance of double bounce is
probably because of weaker scatter from dry soils, the presence of tree
types that often lack a single vertical stem (Conti et al., 2019), and in
some cases the effect of surface slopes (the double bounce mechanism
weakens sharply as the angle between the stem and ground surface
deviates from 90°).
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Volume scattering tends to dominate in the figures above because the
plots are wooded, but Fig. 9 from the Mozambique site (Gorongosa
National Park, MGR) illustrates that this is not just a feature of the plots
but is a distinctive characteristic of the landscape and is not simply an
artefact of the Freeman-Durden decomposition. Wooded pixels, shown
as green in the Landsat 5 Thematic Mapper (TM) image (Fig. 9b)
correspond to pixels dominated by volume scattering in ALOS (Fig. 9a)
while bare soil pixels (bright red/pink in TM) relate to pixels dominated
by surface scattering for ALOS. Regions characterized by mixed tree
species and low canopy cover (reddish in TM) tend to exhibit a mixture
of volume and surface scattering (yellow in ALOS). Double bounce is the
dominant mechanism in only 0.07 % of the pixels in this scene.

The relationship between AGBD and the Freeman and Durden (1998)
decomposition is consistent with what would be expected on physical
grounds. According to the fitted GAM, volume scattering is sensitive to
AGBD up to ~60 t ha™? (Fig. 6a and b), whereas double bounce has a
significantly lower AGBD saturation level (22 t ha™1). Surface scattering
has no significant relationship with AGBD (Fig. 6b). This can be inter-
preted as: a) the intensity from volume scattering and double bounce
mechanisms increases with AGBD up to ~25 t ha™!, as lower stem
density values allows the signal to penetrate down to the soil surface and
return to the sensor through double bounce; b) as AGBD increases, the
signal is more and more attenuated as it traverses the canopy, causing
surface scattering and double bounce to be reduced. Furthermore, there
is also a significant positive correlation between AGBD and soil moisture
(R = 0.399, Supplementary Information Fig. S4), an indication of wetter
soil conditions supporting higher AGBD. There is no evidence of a strong
impact of soil moisture on scattering mechanisms (Supplementary In-
formation Fig. S3a), supporting the work of, e.g., Gou et al. (2022). Also,
vegetation moisture changes tend to be small in dryland forests and have
little effect on L-band backscatter, unlike effects observed in other bi-
omes (Monteith and Ulander, 2018).

Further insight into the relationship between AGBD and the fully-
polarimetric SAR return is provided by considering the individual
channels (Fig. 10; compare with Fig. 6). Volume scattering and HV
backscatter display similar relationships with AGBD, differing only in
terms of their magnitude. This is a consequence of the Freeman and
Durden (1998) decomposition including contributions from the cross-
and co-polarized channels in volume scattering. Eq. (17) (Supplemen-
tary Information Appendix 1) indicates that the total volume scattering
should be 4 times (about 6 dB) greater than the cross-pol scattering,
which is roughly consistent with what is observed.

Fig. 9. Colour composite image (RGB) displaying a) scattering mechanisms obtained from the Freeman and Durden (1998) decomposition; red: surface scattering,
green: volume scattering, blue: double bounce. b) surface reflectance obtained from Landsat 5 Thematic Mapper (TM); red: shortwave infrared band, green: near
infrared band, blue: green band. a) and b) were acquired over the Mozambique location (Gorongosa National Park, MGR): ALOS PALSAR scene ALPSRP201996810
from 8 November 2009 and Landsat 5 TM scene LT05_L2SP_167073_20091129_20200825_02_T1 from 29 November 2009, respectively. The eight black spots depict
the 1-ha plots in this scene. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. a) Relationship between individual polarizations from PALSAR-1 and PALSAR-2 fully-polarimetric observations and aboveground biomass density (AGBD);
polarizations are represented as backscatter intensity (dB scale); the solid lines represent generalized additive model fits, using an adaptive smooth as smoothing
basis. b) Relationship between the first derivative of the smooth function s; (AGBD) and AGBD. Shaded areas represent 95 % confidence intervals.

4.2. Determinants of scattering mechanisms: vegetation structure vs
environmental conditions

The SEM path diagram (Fig. 8) shows the significant effects indicated
by the data within the model structure imposed by Eq. (1). The values on
the diagram should be interpreted as conditional sensitivities, i.e., where
an arrow connects box x to box y, the size effect is an estimate of dy/

11

dx (with the units of x and y either scaled or log, transformed) when
other variables are held at their mean. Stem density is seen to be the
main vegetation driver of volume and double bounce scattering; this is
not unexpected as both rely on scattering involving the canopy. Mean
stem biomass affects volume scattering but not double bounce or surface
scattering, and its effect is weaker than stem density. The relative
insensitivity of volume scattering to mean stem biomass may reflect that
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volume scattering would be expected to arise from randomly oriented
branches, so is not directly related to stem properties.

Other things being equal, surface scattering should increase as soil
water content increases, but there is no evidence for this (Supplemen-
tary Information Fig. S3a); instead, the only significant effect of
increasing soil water content is to increase volume scattering. Two
factors may help explain this: (i) the instantaneous value of soil water
content, as used in Eq. (1) and Fig. 8, may indicate locations where the
soils are generally wetter, so are able to support more vigorous growth
and higher AGBD; this is supported by the fact that AGBD and N are both
correlated with soil water content (0.40 and 0.47, respectively, Sup-
plementary Information Fig. S4); (ii) in the data used, soil wetness is
modelled on the basis of rainfall, but rain may also enhance volume
scattering through water in the canopy. Again, Supplementary Infor-
mation Fig. S4 shows that if soil moisture is small, AGBD and N are
smaller; it is only as soil moisture gets to higher values that higher N and
AGBD are seen. This suggests that the rain signature is an indicator of
more general favourable growing conditions. Both effects would reduce
surface scattering because of increased attenuation of the signal
traversing the canopy.

Two L-band ALOS sensors with full-polarimetric capabilities were
used in this study to obtain polarimetric features from several de-
compositions (Cloude and Pottier, 1997; Freeman and Durden, 1998;
van Zyl, 1993). PALSAR-2 offers substantially finer resolution capability
than PALSAR-1, largely because of wider supported bandwidths (14
MHz for PALSAR-1 and 28 MHz for PALSAR-2 when operating in full-
polarimetric mode). This has implications when processing SAR data
from slant-range SLC to terrain-corrected polarimetric features. To
obtain terrain-corrected polarimetric features at 25-m ground resolu-
tion, 6 looks were applied to PALSAR-1 data (1 in range x 6 in azimuth)
and 36 looks to PALSAR-2 data (4 in range x 9 in azimuth). The resulting
values were then averaged at the plot level (1 ha, except for the 0.5 ha
plots within caatinga vegetation in north-eastern Brazil), corresponding
to approximately sixteen pixels per plot. Consequently, the equivalent
number of looks (ENL) differs between sensors, which influences the
degree of speckle-induced variability and may partly explain the
observed dispersion in the data.

We cannot rule out limitations linked to the quality and spatial res-
olution of the covariates included in the SEM model (Fig. 8). AGBD was
estimated from in situ measurements, with approximately 86 % of ob-
servations collected in 1 ha plots. Rejou-Mechain et al. (2014) reported
that AGBD estimates from 1 ha plots have an average coefficient of
variation of 17 %, compared with 46 % for 0.1 ha plots, as larger plots
help minimise local spatial variability in stem biomass. Soil moisture
was retrieved from the ECMWF ERA-5 Land product (Munoz-Sabater
et al., 2021), generated at ~10 km grid spacing, which for some sites
may result in identical soil water content estimates across multiple plots.
Soil texture data were obtained from ISRIC SoilGrids (Poggio et al.,
2021), providing global coverage at 250 m resolution using a combi-
nation of field observations and EO-derived covariates; however, these
may not fully capture local variation at specific sites.

The analysis of the relative importance of vegetation structure and
soil characteristics in controlling L-band backscatter is therefore con-
strained by the limited spatial and temporal resolution of available soil
data. In particular, soil surface roughness and near-surface soil moisture,
both known to influence L-band backscatter, are difficult to measure at
the time of satellite overpasses, and most datasets lack sufficient
coverage to represent these variables reliably. Consequently, the weaker
apparent contribution of soil properties in our results may reflect limi-
tations in data availability rather than a lack of physical relevance.
Future studies would benefit from targeted field campaigns coinciding
with satellite acquisitions to enable a more robust assessment of soil
influences on backscatter signals.
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4.3. Implications for mapping aboveground biomass density

We find that, in the dry tropics, backscatter intensity from volume
scattering, and more broadly from the cross-pol (HV) channel, is about
twice as sensitive to stem density as to mean stem biomass. This suggests
that AGBD maps based on radar intensity alone show too little change if
AGBD is changing due to stems getting bigger, and it might overestimate
changes with increases (decreases) in AGBD if driven by recruitment of
new stems (or the loss of existing stems, through e.g. selective logging).

The findings from this study can help us propose several alternative
approaches to AGBD mapping.

(i) Availability of full-polarimetric observations and therefore,
decomposition of the radar signal into volume scattering, surface
scattering and double bounce offers the potential to invert the
structural equation model and retrieve both stem density and
mean stem biomass. This confers an advantage compared to
retrieving only AGBD as a more complete description of forest
structure can be generated, although the sensitivity to stem
density becomes much weaker as stem density becomes large
(Fig. 7). This approach requires full-polarimetric data which
ALOS-4 PALSAR-3, ROSE-L and SAOCOM have capabilities to
provide. The recently launched ESA BIOMASS mission will also
acquire systematic fully polarimetric data but with a P-band
radar (Quegan et al., 2019). However, our structural equation
modelling framework is inherently independent of frequency.
While the relative magnitudes of surface, volume, and double-
bounce scattering will differ at P-band (owing to longer wave-
length penetration and altered vegetation and soil interactions),
the same physical decomposition principles and model structure
apply.

(ii) Taller trees generally contribute greater biomass (e.g., Duncan-
son et al. (2010)), so lidar observations of vegetation height could
potentially support independent retrieval of mean stem biomass.
Combining this with retrieval of stem density by inverting the
structural equation model then provides a route to overall AGBD.
However, the viability of this approach depends on the strength
of the relationship between stem biomass and height, which is
likely to vary across a landscape due to variations in tree structure
and wood density. In addition, at present it could only be un-
dertaken at local to regional scale using airborne scanning lidar,
since spaceborne lidar, such as GEDI, only provides spaced
samples of vegetation height.

4.4. The role of dual-pol L-band radar

Coverage of the dry tropics by fully polarimetric data is limited and
will remain so. Therefore, global coverage of this biome may require
exploitation of dual-polarized HH and HV data provided by JAXA, either
mosaics from fine-beam scenes or ScanSAR observations (Koyama et al.,
2019; Shimada et al., 2014; Shimada and Ohtaki, 2010). In this case Egs.
(14)-(17) (Supplementary Information Appendix 1) need to be modified
to describe the associated 2-D covariance matrix, Cs:

C; = Gy + Caq + Cyy (2
A L ®
2s s 0 0
2
Caa = fi [";‘ 0 ] )
_[3/8 0

As for full polarimetry, the total volume scattering is four times
greater than the HV scattering. The remainder after subtracting 3f,/8
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from the HH power is the sum of surface and double bounce scattering
terms, but without the VV return these can no longer be physically
separated. However, the analysis above indicates that this remainder is
usually dominated by surface scattering, at least in the dry woodlands
comprehensively represented in our plot data.

While dual-polarimetric (HH and HV) data are more widely available
than full-polarimetric acquisitions, their use in backscatter decomposi-
tion remains constrained. Recent work by Mascolo et al. (2022) dem-
onstrates progress in adapting model-based decomposition to dual-pol
data, particularly through separating volume and polarized contribu-
tions to the backscattered signal. However, they also highlight key
limitations, such as the inability of the HV channel to reliably represent
volume scattering, and the potential for misinterpretation of radar
vegetation indices if the polarized contribution is not properly accoun-
ted for. These findings reinforce the difficulty of extracting physically
meaningful scattering components from dual-pol observations, partic-
ularly in forested landscapes. Consequently, full-polarimetric SAR data
remain essential for robust decomposition and interpretation of scat-
tering mechanisms relevant to biomass estimation.

Currently, full-polarimetric data is only available roughly annually
from PALSAR-2 and PALSAR-3. In contrast, dual-pol L-band SAR data
from, e.g., PALSAR-2 and PALSAR-3 ScanSAR and soon NISAR, is/will
be available at monthly or higher temporal frequencies. This raises the
question of the trade-off between high temporal frequency dual pol and
the increased information content of full-polarimetric data. It is likely
that multi-annual data mostly improves AGBD mapping through a
mixture of a) reduced uncertainty in the backscatter estimate through
the suppression of speckle and other noise, and b) by providing data
when soils are dry and thus contribute less to the signal (Lucas et al.,
2010). In contrast, full-polarimetric data, as we show here, contains
information about the vegetation structure beyond just AGBD, which
should help to remove the systematic biases created by inconstancy in
the vegetation structure-AGBD relationship, which likely create sys-
tematic biases in time and space. Thus, retrieving AGBD with these two
approaches likely trades off random error (lower with multi-temporal
dual pol) with systematic errors (lower with annual full-polarimetric
data). The optimum solution would be to combine the two approaches
in the future to minimise both kinds of errors, and this is an area for
further work.

5. Conclusions

This study improves the understanding of how L-band SAR back-
scatter is related to woody vegetation structure and soil properties in dry
tropical ecosystems, a crucial knowledge gap for accurate AGBD esti-
mation, and a vital part of the land component in the global carbon
cycle.

Our analysis, utilizing high-quality ground observations from mul-
tiple continents and corresponding fully-polarimetric ALOS L-band SAR
data, reveals several key findings. First, volume scattering is the domi-
nant scattering mechanism in wooded areas, even at low levels of AGBD.
Second, a theory-informed structural equation model identifies stem
density as the strongest determinant of volume scattering, followed by
soil moisture, sand content, and mean stem biomass. Finally, double
bounce scattering is usually of lower importance but exhibits significant
correlations with both stem density and soil sand content. It may
therefore be possible to retrieve multiple aspects of vegetation structure
from polarimetric SAR observations, which could allow SAR observa-
tions to provide a novel and unique contribution to understanding the
global carbon cycle and forest management.

Given the current limitations of dual-pol decomposition techniques,
full-polarimetric data remain critical for reliably capturing vegetation
scattering behaviour. Our results reinforce the importance of investing
in and prioritising quad-pol SAR missions to advance large-scale
biomass monitoring.

Given our findings about the importance of surface scattering, future
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work should ensure that ground reference sites in the dry topics include
estimates of soil roughness (at relevant wavelengths), soil moisture and
soil texture, as this would remove the need to use global coarse reso-
lution estimates of soil properties. Similarly, it will be important to at
least subsample the smaller vegetation which might be involved in
volume scattering at low AGBD.

While limitations, such as potential site-specific variations, warrant
further investigation, the established relationships demonstrate the
significant promise of L-band SAR for improved AGBD estimation in dry
tropical regions, ultimately contributing to a more comprehensive un-
derstanding of the global carbon cycle.
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