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A B S T R A C T

Accurate characterization of the role of the dry tropics in the global carbon cycle requires precise estimation of 
woody biomass changes due to ecological and anthropogenic change, including deforestation, forest degradation, 
regrowth, mortality and enhanced tree growth due to climate change. L-band Synthetic Aperture Radar (SAR) 
backscatter observations offer a reliable option to consistently map these processes as they are (i) available 
globally since 2007 (JAXA ALOS-1, ALOS-2 and ALOS-4), and (ii) sensitive to woody structure, such as above
ground biomass density (AGBD) up to ~100 t ha− 1. However, we lack multi-site empirical understanding of the 
scattering processes that determine the relationship between L-band SAR and woody vegetation structure in the 
dry tropics, and how this is mediated by soil properties.

This study used observations from ground plots in Africa (n = 171), Australia (n = 6), and South America (n =
44) to understand the impact of vegetation structure and soil properties on spatially and temporally coincident 
fully-polarimetric L-band SAR data. Fully-polarimetric L-band SAR single-look complex data were converted to 
scattering mechanisms/parameters using van Zyl, Cloude-Pottier, and Freeman-Durden polarimetric de
compositions to elucidate the physical mechanisms involved. Multivariate SAR-vegetation-soil relationships were 
analysed using a theory-informed structural equation modelling approach. The strongest positive effects on 
volume scattering come from stem density (stems ha− 1) and mean stem biomass of trees, and soil water and sand 
content (standardized regression coefficients of 0.3, 0.1, 0.2 and 0.1, respectively). The only significant effect on 
surface scattering is from stem density (0.1). Significant effects on double bounce scattering are from stem 
density (0.3) and soil sand content (− 0.2). Since AGBD is the product of stem density and mean stem biomass, 
this modelling framework points to a stronger effect from the number of trees rather than their size/biomass. 
Therefore, AGBD maps relying solely on radar intensity may not reflect significant changes when AGBD is 
increasing due to the growth of existing stems. Additionally, such maps might overestimate changes in AGBD 
when driven by the recruitment of new stems or loss of existing stems. Full-polarimetric observations allow the 
decomposition of the radar signal into volume scattering, surface scattering, and double bounce, enabling the 
inversion of structural equation models to retrieve both stem density and mean stem biomass. This provides a 
more comprehensive description of forest structure compared to retrieving only AGBD. As this approach depends 
on full-polarimetric data, its effectiveness is closely tied to the availability of such observations. Our findings 
underscore the value of recent and upcoming missions such as ALOS-4 PALSAR-3, BIOMASS and ROSE-L, and 
highlight the need to prioritise the acquisition of quad-pol SAR data to support future large-scale retrieval of 
vegetation structure attributes.

1. Introduction

The dry tropics encompass complex and heterogeneous vegetation 
structures, from open savannas to closed canopy woodlands and dry 
forests and extend across ~15 million km2 (Pennington et al., 2018). 
These vegetation types are extremely important land systems in terms of 
carbon cycling (Piao et al., 2020), biodiversity (DRYFLOR et al., 2016) 
and are key to the livelihoods of hundreds of millions of people (Djoudi 
et al., 2015). Models suggest that the global dry tropics are the largest, 
most climate-sensitive, and fastest increasing component of the land 
carbon sink (Ahlstrom et al., 2015). However, there is high uncertainty 
about the carbon fluxes from land processes in these regions (Arneth 
et al., 2017), and a more accurate understanding of the structure of 
vegetation and its dynamics in the dry tropics is essential. For example, 
much improved estimates of aboveground biomass density (AGBD) dy
namics from land-use and land cover change in the dry tropics are vital 
to better constrain the geographic distribution of the land carbon sink 
and its recent trends, and to support action to protect and explore the 

potential for carbon sequestration in these lands (Piao et al., 2018).
Accurate characterization of the role of the dry tropics in the global 

carbon cycle requires precise and unbiased estimation of AGBD and its 
dynamics due to natural and anthropogenic causes, e.g., deforestation, 
forest degradation, mortality, regrowth and tree growth. L-band Syn
thetic Aperture Radar (SAR) observations are currently being used to 
consistently map these dynamics (McNicol et al., 2023; McNicol et al., 
2018). Furthermore, L-band SAR observations are well suited to map
ping forest structure in the dry tropics, where AGBD rarely exceeds 100 t 
ha− 1 (Gou et al., 2022; Rodriguez-Veiga et al., 2020; Ryan et al., 2012; 
Ryan et al., 2011; Urbazaev et al., 2015; Wessels et al., 2023). However, 
a lack of representative ground observations and limited understanding 
of the interaction between radar observations and vegetation and soil 
characteristics in these lower biomass systems have generally resulted in 
biased and imprecise AGBD estimates (Araza et al., 2022). It is therefore 
critical to have an accurate understanding of how vegetation structure 
and soil characteristics affect the signal measured by L-band SAR 
sensors.
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Although local studies based on airborne sensors have been funda
mental in investigating the relationships between biomass, frequency 
and polarisation (Le Toan et al., 1992) and the particular value of L-band 
compared to P-band in lower biomass forests (Lucas et al., 2006; 
Schlund and Davidson, 2018; Tanase et al., 2014), the emphasis changed 
to large scale applications with the advent of spaceborne L-band data. 
Dual- and fully-polarimetric L-band observations have been available 
globally since 2007 from the Japanese Aerospace Exploration Agency 
(JAXA) Advanced Land Observing Satellite (ALOS) Phased Array L-band 
SAR (PALSAR) sensors (ALOS-1 PALSAR-1: 2006–2011, ALOS-2 PAL
SAR-2: 2014-present, ALOS-4 PALSAR-3: launched in 2024, and also 
from the SAOCOM mission since 2018 (Palomeque et al., 2024). Fully 
polarimetric SAR systems transmit and receive the electric field in 
horizontal and vertical polarisations, with the resulting scattering ma
trix containing the complete information about the characteristics of the 
scatterers (i.e., the observed objects on the ground) (Lee and Pottier, 
2009). For distributed scatterers, such as woody vegetation, the infor
mation is contained in the covariance or coherency matrices, which 
describe the average backscatter properties of a region or window of 
interest. These matrices can be decomposed into three scattering 
mechanism that are thought to be dominant over land surfaces: surface 
scattering, volume scattering and double bounce. Their relative impor
tance depends on i) the structure of the scatterers (e.g., the shape, size, 
and orientation of tree branches), ii) soil roughness and texture, and iii) 
dielectric properties of the scatterers (essentially, their water content) 
(Cloude and Pottier, 1996).

Methods to extract information about the scattering mechanisms 
from fully-polarimetric SAR data over land surfaces can be divided into 
two types: those relying on the eigenvalue/eigenvector decomposition 
of the covariance or coherency matrices (Cloude, 1985; Cloude and 
Pottier, 1997; van Zyl, 1993) or model-based approximations to the 
scattering problem (Freeman and Durden, 1998; Yamaguchi et al., 
2005). Eigenvalue/eigenvector decomposition focuses on the statistical 
properties and dimensionality reduction of SAR data, while model-based 
decompositions aim to characterise the scattering mechanisms and 
polarisation properties of the targets. In this study, we assess the infor
mation content provided by both methods and how they relate to 
vegetation structure and soil properties.

The magnitude and relative importance of each scattering mecha
nism is also affected by characteristics of the sensor, such as frequency 
and incidence angle (Le Toan et al., 1992). Most studies using fully 
polarimetric spaceborne L-band SAR data to retrieve vegetation struc
ture were carried out at local level and in boreal (Antropov et al., 2017; 
Chowdhury et al., 2014) or moist forests (Bharadwaj et al., 2015; Cassol 
et al., 2019; Wiederkehr et al., 2020). In vegetation, the shape, size and 
orientation of the main scatterers (which may be the leaves, twigs, 
branches or trunks, depending on the wavelength) can affect the return 
at each polarisation (Tanase et al., 2013). In the dry tropics, soil and 
vegetation characteristics exhibit distinct ecological and physical 
properties compared to temperate and moist forest systems. Firstly, soil 
moisture content tends to be lower due to seasonal precipitation and 
higher evapotranspiration rates, leading to drier soils. This results in a 
higher proportion of bare ground and lower woody vegetation density, 
impacting the scattering mechanisms observed by SAR sensors. Addi
tionally, vegetation in the dry tropics often comprises sparse, shorter 
woody vegetation with smaller leaf sizes and lower AGBD than the 
denser, taller vegetation found in temperate and moist forests. These 
differences in vegetation structure affect the scattering behaviour of 
radar signals, with sparse canopies exhibiting stronger surface scattering 
and reduced volume scattering compared to denser canopies. Further
more, the prevalence of woody vegetation with complex (e.g. multi 
stemmed, non-vertical and “umbrella” shaped) branch architectures in 
the dry tropics introduces additional complexities in radar signal 
interactions.

Several studies have highlighted the impact of AGBD and soil prop
erties on the signal measured by L-band SAR sensors (Gou et al., 2022; 

Lucas et al., 2010; Wessels et al., 2023; Williams et al., 2022; Yu and 
Saatchi, 2016). Surface roughness and soil moisture are the main factors 
affecting scattering from the soil, both directly and via the double 
bounce mechanism. Surface scatter decreases as incidence angle in
creases but increases with increasing dielectric constant (Richards, 
2009). Also important is surface slope, which affects surface and double 
bounce scattering. The dielectric constant of the scatterers within the 
vegetation, which is strongly correlated with moisture content, has large 
effects on the strength of scattering and attenuation by the canopy and 
hence on the strength of the return from surface scattering.

Much less attention has been given to understanding the contribution 
of woody vegetation structure to backscatter. Most studies are based 
almost entirely on scattering models (e.g. (Brolly and Woodhouse, 
2012)) or relying on scattering models together with limited ground 
observations (Mermoz et al., 2015; Smith-Jonforsen et al., 2007). Using 
microwave modelling and P-band data from boreal forests, Smith-Jon
forsen et al. (2007) found very large dispersion in the relationship be
tween HV backscattering coefficient and AGBD, essentially depending 
on stand structure (i.e., few large vs many small trees). However, a much 
tighter relationship was found between HV backscatter and an indicator 
of stem biomass they termed the biomass-consolidation index. They 
concluded that information on stem density is needed to resolve ambi
guities in estimation of AGBD from P-band SAR observations. Brolly and 
Woodhouse (2012) and Imhoff (1995) generalized this finding to other 
wavelengths. Brolly and Woodhouse (2012) used a simple one-layer 
microwave scattering model configured as a set of vertical cylinders 
parametrized by number (i.e., stem density) and average diameter to 
study their influence on VV-polarized SAR observations at P-band and 
VHF frequencies. They found a strong relationship between backscatter 
and AGBD only when stem density and average diameter were highly 
correlated with AGBD. However, these quantities can have different 
relationships with AGBD, depending on the type of vegetation: in some 
cases, AGBD is positively correlated with stem density and average 
diameter, whereas in others it is positively correlated with average 
diameter but negatively correlated with stem density. Brolly and 
Woodhouse (2012) and Woodhouse et al. (2012) concluded that back
scatter does not respond to AGBD as such, but to structural properties 
that may be correlated with AGBD in different ways. However, this re
mains to be tested empirically at L-band.

There is therefore a need for an empirical understanding of how 
vegetation structure, particularly in the context of the dry tropics, in
fluences the signal measured by L-band SAR sensors. This study there
fore provides a large-scale analysis of the relationship between L-band 
microwave scattering mechanisms and woody vegetation structure and 
soil characteristics using L-band fully-polarimetric SAR data together 
with an extensive and representative set of ground observations ac
quired over the dry tropics. It aims to answer the following questions: 

1) What are the dominant scattering mechanisms driving the L-band 
SAR signal in dry tropical savannas and woodlands?

2) What is the relative importance of vegetation structure and soil 
characteristics in controlling the L-band SAR signal from woody 
vegetation in the dry tropics?

2. Data and methods

2.1. Ground observations

Tree census data from permanent plots belonging to several net
works were obtained over 12 locations across Africa, Australia and 
South America, with varying vegetation structures (Fig. 1, Supplemen
tary Information Table S1, Supplementary Information Fig. S2).

The Socio-Ecological Observatory for Studying African Woodlands 
(SEOSAW: https://seosaw.github.io/) is a network of researchers mak
ing ground observations to study the ecological and human dimensions 
of African woodlands (The SEOSAW Partnership, 2021). This study uses 
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data from 171 permanent 1-ha plots in Bicuar National Park (Angola), 
Léfini Faunal Reserve and Lesio Louna Gorilla Sanctuary (Republic of 
the Congo), Haut-Katanga (Democratic Republic of the Congo), Gor
ongosa National Park (Mozambique), Kilwa district (Tanzania), and 
multiple districts of Zimbabwe.

In Australia, we used data from 6 1-ha plots in the Northern Territory 
(NTT) near Darwin, set up by Charles Darwin University and the 
Terrestrial Ecosystem Research Network (TERN). This dataset was ob
tained through Australia's TERN-Landscapes and Joint Remote Sensing 
Research Program (https://field.jrsrp.com).

Plot data in the dry tropics of South America were obtained through 
ForestPlots.net, a global partnership aimed at monitoring the world's 
tropical forests (ForestPlots.net et al., 2021; Lopez-Gonzalez et al., 
2011). This study uses 29 permanent 1-ha plots collected in Chiquitano 
dry forests (Bolivia), Huanchaca (Bolivia), Nova Xavantina (Brazil), 
Serra do Roncador (Brazil), together with data from 15 0.5-ha plots in 
the Brazilian Caatinga (Moonlight et al., 2021).

The use of relatively large plots with 1 ha (except the 0.5 ha Caatinga 
plots) helps to minimise errors associated with geolocation and dilution 
bias, caused by heterogeneity at sub-hectare scales (Rejou-Mechain 
et al., 2014). Descriptors of woody vegetation structure at plot level 
were generated from stem-level measurements of diameter at breast 
height (DBH), height and wood density (inferred from species). AGBD 
(aboveground biomass density of all living stems per ha, in t ha− 1) was 
estimated by summing the biomass of each stem estimated from diam
eter measurements using the allometric equations of Chave et al. (2014); 
stem density (N, number of stems per ha) and mean stem biomass (b =

AGBD/N, in t stem− 1) were also estimated for all plots in this study. 
Table S1 (Supplementary Information) contains detailed information 
about the plots used, including the year the plots were measured. Only 
measurements of stems with DBH greater than 10 cm were used in the 
analysis to allow consistency between studies.

To relate the ground measurements to the SAR data, the vegetation 
descriptors obtained from a plot during a particular year were taken to 
represent the period covering two years on either side of that census (e. 
g., a census in 2005 represents the period from 2003 to 2007). When a 
plot had multiple censuses, annual estimates of the descriptors of 
vegetation structure between censuses were generated by linear 
interpolation.

2.2. L-band synthetic aperture radar (SAR) data

All available fully-polarimetric L-band SAR scenes acquired by 
ALOS-1 PALSAR-1 (2006–2011) and ALOS-2 PALSAR-2 (2014-present) 

over the plot locations were downloaded and processed, yielding 59 
acquisition dates in total, 18 for Africa, 9 for Australia and 32 for Latin 
America (Supplementary Information - Table S2 lists the scenes used). 
The polarimetric SAR data were downloaded in single-look complex 
(SLC) format, from which the local covariance and coherency matrices 
were calculated using a 5 × 5 window. The only difference between 
these two matrices is that the first is the covariance matrix arising from 
the measured complex signal, (Shh, 

̅̅̅
2

√
Shv, Svv), while the second is the 

covariance matrix arising from the Pauli basis, (Shh+Svv̅̅
2

√ , 
̅̅̅
2

√
Shv, Shh − Svv̅̅

2
√ ). 

Both carry all the information about the polarimetric properties of a 
homogeneous distributed scatterer. From these matrices the polari
metric decompositions of van Zyl (1993), Cloude and Pottier (1997) and 
Freeman and Durden (1998) were calculated, and the decomposed data 
were converted to terrain-corrected data. To obtain 25 m ground- 
resolution, terrain-corrected polarimetric features, we used 6 looks 
with ALOS-1 (1 in range and 6 in azimuth) and 36 looks with ALOS-2 (4 
in range and 9 in azimuth). The overall processing chain is illustrated in 
Fig. 2 and was implemented using SNAP (ESA's Sentinel Application 
Platform v9.0.0). More detailed information about the steps in Fig. 2 is 
available in standard SAR textbooks (Lee and Pottier, 2009; Richards, 
2009).

2.3. Decompositions of full-polarimetric L-band SAR observations

The covariance and coherency matrices are used to gain information 
on the physical interactions occurring when distributed scatterers, such 
as vegetated regions, are imaged by the SAR system (Lee and Pottier, 
2009). However, interpretation of these matrices is not straightforward 
due to the complexity of the scattering process and the variability of the 
scatterers within each pixel. Polarimetric decomposition techniques, 
building on a concept first introduced by Cloude (1985), have emerged 
as a basic tool aiding such interpretation. We use three decomposition 
methods, those of van Zyl (1993), Cloude and Pottier (1997) and 
Freeman and Durden (1998). This is because they make different as
sumptions and/or provide useful complementary information.

van Zyl (1993) used an eigen-decomposition of the covariance ma
trix to help interpret the scattering from natural terrain, especially 
vegetated areas. This decomposition considers scatterers with reflection 
symmetry (i.e., their statistical properties would be unchanged if they 
were reflected relative to the observation geometry; this is typical of 
most natural scenes, though topography can cause this condition to be 
violated). The eigenvectors of the covariance matrix are identified with 
three types of scattering mechanism: cross-polarized scattering and 
scattering involving either an odd or an even number of reflections, 

Fig. 1. Location of ground plots used as reference data (red dots). The 12 selected locations span the coverage of tropical dry forests and savannas (shown in cyan; 
Godlee et al. in prep). Angola/Bicuar, Congo/Lefini-Lesio Louna, DR Congo/Haut-Katanga, Mozambique/Gorongosa, Tanzania/Kilwa, Zimbabwe, Australia/ 
Northern Territory, Brazil/Caatinga, Bolivia/Chiquitano, Bolivia/Huanchaca, Brazil/Nova Xavantina, Brazil/Roncador. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)
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whose relative power is given by the eigenvalues. Later studies inter
preted the cross-polarized return as volume scattering, with an odd 
number of reflections coming from surface scatter and an even number 
from double bounce scattering, not least because scattering models 
showed that these would be the dominant contributions to the observed 
backscatter. However, this does not follow from the van Zyl (1993)
analysis, since it neglects the fact that scattering involving an even and 
odd number of reflections can also arise from the random volume 
making up the canopy and should be included in volume scattering.

Freeman and Durden (1998) addressed this issue with a model-based 
approach which explicitly calculates the covariance matrices arising 
from: (i) a collection of randomly oriented cylinders (corresponding to 
the volume scattering from the vegetation canopy); (ii) a set of vertical 
cylinders standing on flat ground (representing double bounce scat
tering); (iii) direct scatter from the ground, considered as a rough sur
face. The observed covariance matrix is assumed to be the sum of the 
individual covariance matrices corresponding to these three mecha
nisms. A crucial point is that this method calculates the relative powers in 
the three mechanisms, allowing the measured total power to be parti
tioned accordingly. However, while the volume scattering is unambig
uously recovered, separating the double bounce from surface scatter 
requires the use of the phase of the HH-VV element of the covariance 
matrix. This can be understood roughly as the average phase difference 
between the HH and VV signals and borrows from the discussion in van 
Zyl (1993).

Cloude and Pottier (1997) developed a different physical basis on 
which to interpret the data by using the coherency matrix to calculate 
the entropy and alpha angle associated with an extended scatterer and 
associating these quantities with combinations of scattering mecha
nisms. The entropy-alpha plane identifies where the data lie relative to 

specific zones characteristic of classes with different scattering 
behaviour.

The characteristics of each approach are briefly described in the 
Supplementary Information (Appendix 1), while detailed information 
can be found in the original publications (Cloude and Pottier, 1997; 
Freeman and Durden, 1998; van Zyl, 1993) or in reference books (Lee 
and Pottier, 2009; van Zyl and Kim, 2011).

2.4. Soil characteristics

L-band SAR data can be affected by edaphoclimatic factors (Lucas 
et al., 2010; Mattia et al., 1997). Estimates of soil moisture were ob
tained from the European Centre for Medium-Range Weather Forecasts 
(ECMWF) ERA5-Land product, a reanalysis dataset providing a consis
tent view of the evolution of land variables since 1950 at ~10 km spatial 
resolution (Munoz-Sabater et al., 2021). This dataset was downloaded 
from Earth Engine Data Catalog (https://developers.google.com/earth 
-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY). The volume 
of water in the 0–7 cm soil layer at the date of the observations was used 
as a proxy for soil moisture. Soil texture was obtained from ISRIC – 
World Soil Information's SoilGrids, a global gridded soil dataset at 250 m 
grid spacing (Poggio et al., 2021); sand content in the 0–5 cm soil layer 
was downloaded from Google Earth Engine as a community contributed 
dataset.

2.5. Modelling the determinants of L-band SAR backscatter in the dry 
tropics

To understand how vegetation and soil properties interact to deter
mine the radar signal, we used structural equation models (SEM). SEM is 
an inference method aiming at testing a concept by specifying a con
ceptual model (i.e., Eq. (1) below) representing its predictions derived 
from suitable observational data (Pearl, 2012). To address the theoret
ical expectation that the radar signal is not directly related to AGBD 
(Brolly and Woodhouse, 2012), we model separately the effect of stem 
density and mean stem biomass (whose product is AGBD). The set of 
relationships between these factors and scattering mechanisms can be 
formalized by the following set of equations: 

{sur, vol, dbl} = fi(N, b, soil wat, soil sand) (1) 

where sur, vol, and dbl refers to the three scattering mechanisms from 
(Freeman and Durden, 1998): surface scattering, volume scattering, and 
double bounce, respectively, N is stem density (stems ha− 1), b is the 
mean stem biomass (t stem− 1), soil wat is the soil volumetric water 
content (m3 m− 3), soil sand is the soil sand content (g kg− 1), and fi is a 
linear function relating dependent variables and covariates. Vegetation 
water content is not explicitly included in the structural equation model 
because comparable in situ or remotely sensed vegetation water content 
products are not available at the spatial and temporal scales of our multi- 
continental dataset. Instead, we use soil volumetric water content as a 
proxy for dielectric variability, since variations in soil moisture gener
ally exert the strongest control on L-band backscatter under dry-tropical 
and savanna conditions (Jackson and Schmugge, 1991; Ulaby et al., 
1986). While vegetation water content can modulate canopy dielectric 
properties and thus volume scattering, its effect is secondary when soil 
water content is low. Furthermore, although precipitation can tran
siently wet foliage, in dry-tropical trees the vegetation water content 
remains relatively stable because the trees have to remain turgid even in 
dry spells/seasons (Vinya et al., 2019).

Fig. 3 shows the SEM representation of Eq. (1). Stem density and 
mean stem biomass were log2 transformed to improve the linearity of 
the relationships and to allow easy comparison of their effects (i.e., the 
size of the resultant effect on scattering mechanisms estimated by the 
model is the effect of doubling these variables). The other variables were 
standardized to z-scores to allow comparison of data across variables or 

Fig. 2. Simplified processing chain for ALOS-1 PALSAR-1 and ALOS-2 PALSAR- 
2 fully-polarimetric data from single-look complex (SLC) format to terrain- 
corrected scattering mechanisms and parameters.
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datasets with different observational scales. The number of observations 
at each site ranged from 8 in Zimbabwe (ZFC) to 150 in Congo (CBN). 
We defined a weighted variable to address this unbalanced design such 
that each location had equal weight. A robust weighted least squares 
(WLS) estimator was used to accommodate weighted observations and 
account for violations of model assumptions, such as non-normality, 
non-linearity and non-constant variances (Kline, 2016). Model fitting 
was performed with the R (R Core Team, 2023) lavaan package (v 
0.6–15) (Rosseel, 2012).

To visualise the relationships between the scattering mechanisms 
and the ground observations of vegetation structure we use generalized 
additive models (GAMs; Hastie and Tibshirani (1986)). We fit: 
{scat mec} = β0 + s1(vegStr)+ s2(vegStr, location)+ ε, with vegStr 
referring to vegetation structure (AGBD, stem density or mean stem 
biomass). An adaptive smooth (s1) was selected as the smoothing basis 
to allow the smoothness of the function to vary across the range of vegStr 
values, thereby accommodating varying degrees of complexity in 
different regions of the data; s2 is the factor-smooth interaction between 
vegStr and location; ε is the error term. A 95 % confidence interval of the 
first derivative of the smooth function s1(vegStr) for each scattering 
mechanism is used to help detect saturation. When the first derivative of 

Fig. 3. Structural equation modelling (SEM) representation of Eq. (1): scat mec 
indicate scattering mechanisms; AGBD - aboveground biomass density, N - stem 
density; b - mean stem biomass; soil wat – volumetric soil water content; 
soil sand - soil sand content. N and b are encompassed by a dashed rectangle to 
indicate that their product yields aboveground biomass density (AGBD).

Fig. 4. a) Relationship between scattering mechanisms derived from the van Zyl polarimetric decomposition (van Zyl, 1993) applied to PALSAR-1 and PALSAR-2 
fully-polarimetric observations and aboveground biomass density (AGBD); scattering mechanisms are represented as backscatter intensity (dB scale): odd - odd 
number of bounces, even - even number of bounces, cross – scattering in the cross-pol channel; the solid lines represent generalized additive model fits. b) Relationship 
between the first derivative of the smooth function s1(AGBD) and AGBD. Shaded areas represent 95 % confidence intervals.
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a GAM fit includes zero, it indicates that from that vegStr value onwards, 
the response variable (scattering mechanism) is insensitive to vegStr 
(AGBD, stem density or mean stem biomass).

3. Results

3.1. Relationship between scattering mechanisms and vegetation structure

Fig. 4a shows the distribution of the intensity of the scattering 
mechanisms from van Zyl (1993) as a function of AGBD. The dominant 
mechanism is scattering by an odd number of bounces, which is likely to 
represent direct scattering from the ground together with scattering 
from branches in the canopy. There is a significant positive trend with 
AGBD up to 52 t ha− 1, 58 t ha− 1 and 52 t ha− 1 for odd, cross, and even 
scattering, respectively (Fig. 4b), after which there is no sensitivity. 
Cross-pol scattering and scattering by an even number of bounces are 
very similar to each other and their relation to AGBD closely follows that 
of scattering by an odd number of bounces, though with magnitude ~5 
dB lower.

The Cloude and Pottier (1997) polarimetric decomposition (Fig. 5) 
shows that scattering is dominated by medium entropy vegetation 
scattering, with some medium entropy surface scattering at low and 
intermediate AGBD values. As expected, vegetation scattering tends to 
dominate as AGBD increases. Only two observations exhibit low entropy 
surface scattering (entropy <0.5 and α < 42.5◦), which is characteristic 
of very smooth ground surfaces (plots ABG_17 and ABG_19, AGBD = 0.1 
and 0.3 t ha− 1, respectively), and only a single observation exhibits 
medium entropy multiple scattering (entropy = 0.5–0.9 and α > 50◦), 
characteristic of double bounce scattering (plot TKW_8, AGBD = 23.1 t 
ha− 1).

Fig. 6a displays the relationships between the intensity of the scat
tering mechanisms obtained from the Freeman and Durden (1998)
polarimetric decomposition and AGBD. Volume scattering is always the 
dominant mechanism, followed by double bounce, with surface scat
tering apparently not showing any relation with AGBD. The significance 
of the relationship between volume scattering and AGBD is only main
tained up to 58 t ha− 1 (Fig. 6b). There is no significant relationship 
between the intensity from surface scattering and AGBD (Fig. 6b), 
whereas for double bounce a positive trend is maintained for AGBD up to 

22 t ha− 1. The results from the Freeman-Durden decomposition agree 
with those from the entropy/anisotropy/α polarimetric decomposition 
(Fig. 5) in that the observed backscatter comes primarily from a mixture 
of volume and surface scattering, with volume scattering clearly being 
the dominant mechanism.

AGBD is the product of stem density and mean stem biomass, but 
these two variables are likely to influence the SAR signal in different 
ways (Brolly and Woodhouse, 2012; Smith-Jonforsen et al., 2007). 
Fig. 7a and b show the relationship between them and the intensity of 
each scattering mechanism from the Freeman-Durden polarimetric 
decomposition. Volume scattering increases with stem density up to 652 
stems ha− 1 (Fig. 7c), after which sensitivity to stem density is lost. The 
intensity from double bounce increases with stem density up to ~260 
stems ha− 1, with surface scattering showing no sensitivity to stem 
density. Sensitivity of scattering mechanisms to mean stem biomass is 
much harder to interpret because most observations are aggregated 
around a similar mean stem biomass value (Fig. 7b). There is a large 
cluster of plots with mean stem biomass around 0.1 t stem− 1, i.e., cor
responding to stems with ~10 cm DBH. The only significant and positive 
trend is between the intensity from volume scattering and mean stem 
biomass. In contrast to the 10 dB range in the trend between the in
tensity from volume scattering and stem density, it has only a 5 dB range 
and considerably more dispersion. There is moderate evidence that 
surface scattering declines at high stem density, and a non-significant 
decline in double bounce above 300 stems ha− 1.

Fig. S3a-b (Supplementary Information) show scatterplots of the 
relationship between the intensity of scattering mechanisms from 
Freeman and Durden (1998) and soil characteristics: soil water content 
and soil sand content. The only clear behaviour regarding soil properties 
is that volume scattering increases as soil moisture increases; somewhat 
surprisingly, surface scattering does not increase as soil moisture 
increases.

3.2. Structural equation modelling

The path diagram from the structural equation model (SEM) result
ing from Eq. (1) is shown in Fig. 8 for the Freeman and Durden (1998)
polarimetric decomposition. The model has a p-value <0.001, suggest
ing that our dataset supports the fitted SEM. Volume scattering is the 

Fig. 5. Distribution of reference plots on the entropy (H) - α (◦) plane obtained from the Cloude and Pottier (1997) polarimetric decomposition (see Fig. 5). The 
colour of each point is a function of aboveground biomass density (AGBD) terciles: red: AGBD < 8 t ha− 1, yellow: 8 < AGBD < 49 t ha− 1, blue: AGBD > 49 t ha− 1. The 
black dashed lines represent the nine different scattering zones according to Cloude and Pottier (1997): 1 - high entropy multiple scattering, 2 - high entropy 
vegetation scattering, 3 - (non-feasible) high entropy surface scattering, 4 - medium entropy multiple scattering, 5 - medium entropy vegetation scattering, 6 - 
medium entropy surface scattering, 7 - low entropy multiple scattering events, 8 - low entropy dipole scattering, 9 - low entropy surface scattering. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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mechanism most sensitive to vegetation structure, especially to stem 
density, as it increases by 0.32 standard deviations (SDs) for each 
doubling of stem density. The effect of mean stem biomass on volume 
scattering is much smaller (0.14 SD for each doubling of mean stem 
biomass). The strongest effect from soil variables on volume scattering 
comes from soil water content (0.23 SD increase in volume scattering for 

each SD increase of soil moisture). Double bounce scattering is strongly 
affected by stem density (0.25 SD increase of double bounce for each 
doubling of stem density). Soil sand content has a moderate negative 
effect on double bounce (− 0.18 SD). The only significant effect on sur
face scattering comes from stem density, a positive effect of 0.08 SD.

Fig. 6. a) Relationship between scattering mechanisms derived from the Freeman-Durden polarimetric decomposition (Freeman and Durden, 1998) applied to 
PALSAR-1 and PALSAR-2 fully-polarimetric observations and aboveground biomass density (AGBD); scattering mechanisms are represented as backscatter intensity 
(dB scale): sur – surface scattering, vol – volume scatteting, dbl – double bounce scattering; the solid lines represent generalized additive model fits. b) Relationship 
between the first derivative of the smooth function s1(AGBD) and AGBD. Shaded areas represent 95 % confidence intervals.
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4. Discussion

4.1. Dominant scattering mechanisms in the dry tropics

Across our dataset, most plots were characterized by medium en
tropy vegetation scattering, although for sites with lower stem densities 
/ AGBD the balance shifted towards medium entropy surface scattering. 
Such behaviour is likely to be typical of the dry tropics since our dataset 
includes most wooded types in this region. Medium entropy implies that 
more than one scattering mechanism is important, suggesting that 
investigation of vegetation properties will usually have to contend with 
a soil component in the L-band SAR signal.

Comparison with the findings in van Zyl (1989) and van Zyl (1993)
suggests that the scattering at our study locations is intermediate be
tween that of short shrub-like vegetation and dense forest (though the 
van Zyl studies dealt with coniferous forest). For the shrubby area dis
cussed in van Zyl (1993) the power due to an odd number of reflections 
was 2.0 and 2.2 times higher than from an even number of reflections 
and cross-pol scattering, respectively, and 2.7 and 3.7 times higher for 
the forested area, while our study gives values of 2.4 and 2.8 after 
averaging across all observations. This is likely to be a consequence of 
stem properties: density, size and shape. In particular, van Zyl (1993)
concluded that most of the scattering in the shrubby area came from 
vegetation with randomly oriented branches that were thin compared to 
the radar wavelength, while in the forested area it was dominated by 
scattering from the randomly oriented cylinders composing the 
branches.

The structural inferences from van Zyl (1993) are more specifically 

embedded in the Freeman and Durden (1998) decomposition, which 
assumes that: 

(i) volume (vegetation canopy), surface and double bounce scat
tering are the three main scattering mechanisms, and these add 
incoherently (more complete radiative transfer models would 
show the same);

(ii) branches are randomly oriented and thin compared to the SAR 
wavelength;

(iii) double bounce comes from a vertically oriented trunk on a flat 
ground, so would be much weaker in vegetation with a multi- 
stem structure or on sloping ground.

Particularly important is that the second assumption is likely to be 
true in the wooded vegetation we are studying, given the 24 cm L-band 
wavelength and the moderate AGBD levels (median = 23.1 t ha− 1, 
standard deviation = 53.8 t ha− 1). It is similar to van Zyl's inference 
about scattering from a shrubby area (van Zyl, 1993), and specifically 
allows the contributions to volume scattering of the HH, HV and VV 
returns to be calculated.

At our sites, volume scattering is clearly identified as the dominant 
mechanism over the wooded vegetation types, though it is mixed with a 
weaker return from surface scattering and, in most cases, a much weaker 
return from double bounce (Fig. 6). Somewhat surprising is that volume 
scattering is present even at very low levels of AGBD. This is unlikely to 
be a soil roughness effect since most soil surfaces in this region would be 
perceived as smooth by the 24 cm wavelength of the L-band sensor. 
However, it could be an effect of surface slopes, in particular aspect 

Fig. 7. Relationship between scattering mechanisms derived from the Freeman-Durden polarimetric decomposition (Freeman and Durden, 1998) applied to PALSAR- 
1 and PALSAR-2 fully-polarimetric observations and a) stem density (N), b) mean stem biomass (b); scattering mechanisms are represented as backscatter intensity 
(dB scale): sur – surface scattering, vol – volume scattering, dbl – double bounce scattering; the solid lines represent generalized additive model fits. c) relationship 
between the first derivative of the smooth function s1(N) and N; d) relationship between the first derivative of the smooth function s1(b) and b. Shaded areas represent 
95 % confidence intervals.
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angle. It could also be the signal from the small trees and shrubs that are 
not included in our AGBD estimate, i.e. are less than 10 cm DBH. More 
detailed knowledge of the vegetation and soil structure at these low 
AGBD sites would be needed to establish whether this is really a signal 
from the vegetation canopy. The low importance of double bounce is 
probably because of weaker scatter from dry soils, the presence of tree 
types that often lack a single vertical stem (Conti et al., 2019), and in 
some cases the effect of surface slopes (the double bounce mechanism 
weakens sharply as the angle between the stem and ground surface 
deviates from 90◦).

Volume scattering tends to dominate in the figures above because the 
plots are wooded, but Fig. 9 from the Mozambique site (Gorongosa 
National Park, MGR) illustrates that this is not just a feature of the plots 
but is a distinctive characteristic of the landscape and is not simply an 
artefact of the Freeman-Durden decomposition. Wooded pixels, shown 
as green in the Landsat 5 Thematic Mapper (TM) image (Fig. 9b) 
correspond to pixels dominated by volume scattering in ALOS (Fig. 9a) 
while bare soil pixels (bright red/pink in TM) relate to pixels dominated 
by surface scattering for ALOS. Regions characterized by mixed tree 
species and low canopy cover (reddish in TM) tend to exhibit a mixture 
of volume and surface scattering (yellow in ALOS). Double bounce is the 
dominant mechanism in only 0.07 % of the pixels in this scene.

The relationship between AGBD and the Freeman and Durden (1998)
decomposition is consistent with what would be expected on physical 
grounds. According to the fitted GAM, volume scattering is sensitive to 
AGBD up to ~60 t ha− 1 (Fig. 6a and b), whereas double bounce has a 
significantly lower AGBD saturation level (22 t ha− 1). Surface scattering 
has no significant relationship with AGBD (Fig. 6b). This can be inter
preted as: a) the intensity from volume scattering and double bounce 
mechanisms increases with AGBD up to ~25 t ha− 1, as lower stem 
density values allows the signal to penetrate down to the soil surface and 
return to the sensor through double bounce; b) as AGBD increases, the 
signal is more and more attenuated as it traverses the canopy, causing 
surface scattering and double bounce to be reduced. Furthermore, there 
is also a significant positive correlation between AGBD and soil moisture 
(R = 0.399, Supplementary Information Fig. S4), an indication of wetter 
soil conditions supporting higher AGBD. There is no evidence of a strong 
impact of soil moisture on scattering mechanisms (Supplementary In
formation Fig. S3a), supporting the work of, e.g., Gou et al. (2022). Also, 
vegetation moisture changes tend to be small in dryland forests and have 
little effect on L-band backscatter, unlike effects observed in other bi
omes (Monteith and Ulander, 2018).

Further insight into the relationship between AGBD and the fully- 
polarimetric SAR return is provided by considering the individual 
channels (Fig. 10; compare with Fig. 6). Volume scattering and HV 
backscatter display similar relationships with AGBD, differing only in 
terms of their magnitude. This is a consequence of the Freeman and 
Durden (1998) decomposition including contributions from the cross- 
and co-polarized channels in volume scattering. Eq. (17) (Supplemen
tary Information Appendix 1) indicates that the total volume scattering 
should be 4 times (about 6 dB) greater than the cross-pol scattering, 
which is roughly consistent with what is observed.

Fig. 8. Path diagram of the fitted structural equation model with log2 stem 
density (N) and log2 mean stem biomass (b) as vegetation covariates. The nu
merical values indicate size effects, i.e. by how many standard deviations (SDs) 
the backscatter intensity changes by due to a change of 1 SD in the soil variables 
or a doubling of the vegetation variables (N and b) (blue: positive effect; orange: 
negative effect; the line width is proportional to the size of the effect). Non- 
significant estimates are indicated by grey dashed lines. Freeman and Durden 
(1998) scattering mechanisms: sur - surface scattering, vol - volume scattering, 
dbl: double bounce. Soil variables: soil water – volumetric soil water content, 
soil sand - soil sand content. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Colour composite image (RGB) displaying a) scattering mechanisms obtained from the Freeman and Durden (1998) decomposition; red: surface scattering, 
green: volume scattering, blue: double bounce. b) surface reflectance obtained from Landsat 5 Thematic Mapper (TM); red: shortwave infrared band, green: near 
infrared band, blue: green band. a) and b) were acquired over the Mozambique location (Gorongosa National Park, MGR): ALOS PALSAR scene ALPSRP201996810 
from 8 November 2009 and Landsat 5 TM scene LT05_L2SP_167073_20091129_20200825_02_T1 from 29 November 2009, respectively. The eight black spots depict 
the 1-ha plots in this scene. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.2. Determinants of scattering mechanisms: vegetation structure vs 
environmental conditions

The SEM path diagram (Fig. 8) shows the significant effects indicated 
by the data within the model structure imposed by Eq. (1). The values on 
the diagram should be interpreted as conditional sensitivities, i.e., where 
an arrow connects box x to box y, the size effect is an estimate of dy/ 

dx (with the units of x and y either scaled or log2 transformed) when 
other variables are held at their mean. Stem density is seen to be the 
main vegetation driver of volume and double bounce scattering; this is 
not unexpected as both rely on scattering involving the canopy. Mean 
stem biomass affects volume scattering but not double bounce or surface 
scattering, and its effect is weaker than stem density. The relative 
insensitivity of volume scattering to mean stem biomass may reflect that 

Fig. 10. a) Relationship between individual polarizations from PALSAR-1 and PALSAR-2 fully-polarimetric observations and aboveground biomass density (AGBD); 
polarizations are represented as backscatter intensity (dB scale); the solid lines represent generalized additive model fits, using an adaptive smooth as smoothing 
basis. b) Relationship between the first derivative of the smooth function s1(AGBD) and AGBD. Shaded areas represent 95 % confidence intervals.
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volume scattering would be expected to arise from randomly oriented 
branches, so is not directly related to stem properties.

Other things being equal, surface scattering should increase as soil 
water content increases, but there is no evidence for this (Supplemen
tary Information Fig. S3a); instead, the only significant effect of 
increasing soil water content is to increase volume scattering. Two 
factors may help explain this: (i) the instantaneous value of soil water 
content, as used in Eq. (1) and Fig. 8, may indicate locations where the 
soils are generally wetter, so are able to support more vigorous growth 
and higher AGBD; this is supported by the fact that AGBD and N are both 
correlated with soil water content (0.40 and 0.47, respectively, Sup
plementary Information Fig. S4); (ii) in the data used, soil wetness is 
modelled on the basis of rainfall, but rain may also enhance volume 
scattering through water in the canopy. Again, Supplementary Infor
mation Fig. S4 shows that if soil moisture is small, AGBD and N are 
smaller; it is only as soil moisture gets to higher values that higher N and 
AGBD are seen. This suggests that the rain signature is an indicator of 
more general favourable growing conditions. Both effects would reduce 
surface scattering because of increased attenuation of the signal 
traversing the canopy.

Two L-band ALOS sensors with full-polarimetric capabilities were 
used in this study to obtain polarimetric features from several de
compositions (Cloude and Pottier, 1997; Freeman and Durden, 1998; 
van Zyl, 1993). PALSAR-2 offers substantially finer resolution capability 
than PALSAR-1, largely because of wider supported bandwidths (14 
MHz for PALSAR-1 and 28 MHz for PALSAR-2 when operating in full- 
polarimetric mode). This has implications when processing SAR data 
from slant-range SLC to terrain-corrected polarimetric features. To 
obtain terrain-corrected polarimetric features at 25-m ground resolu
tion, 6 looks were applied to PALSAR-1 data (1 in range × 6 in azimuth) 
and 36 looks to PALSAR-2 data (4 in range × 9 in azimuth). The resulting 
values were then averaged at the plot level (1 ha, except for the 0.5 ha 
plots within caatinga vegetation in north-eastern Brazil), corresponding 
to approximately sixteen pixels per plot. Consequently, the equivalent 
number of looks (ENL) differs between sensors, which influences the 
degree of speckle-induced variability and may partly explain the 
observed dispersion in the data.

We cannot rule out limitations linked to the quality and spatial res
olution of the covariates included in the SEM model (Fig. 8). AGBD was 
estimated from in situ measurements, with approximately 86 % of ob
servations collected in 1 ha plots. Rejou-Mechain et al. (2014) reported 
that AGBD estimates from 1 ha plots have an average coefficient of 
variation of 17 %, compared with 46 % for 0.1 ha plots, as larger plots 
help minimise local spatial variability in stem biomass. Soil moisture 
was retrieved from the ECMWF ERA-5 Land product (Munoz-Sabater 
et al., 2021), generated at ~10 km grid spacing, which for some sites 
may result in identical soil water content estimates across multiple plots. 
Soil texture data were obtained from ISRIC SoilGrids (Poggio et al., 
2021), providing global coverage at 250 m resolution using a combi
nation of field observations and EO-derived covariates; however, these 
may not fully capture local variation at specific sites.

The analysis of the relative importance of vegetation structure and 
soil characteristics in controlling L-band backscatter is therefore con
strained by the limited spatial and temporal resolution of available soil 
data. In particular, soil surface roughness and near-surface soil moisture, 
both known to influence L-band backscatter, are difficult to measure at 
the time of satellite overpasses, and most datasets lack sufficient 
coverage to represent these variables reliably. Consequently, the weaker 
apparent contribution of soil properties in our results may reflect limi
tations in data availability rather than a lack of physical relevance. 
Future studies would benefit from targeted field campaigns coinciding 
with satellite acquisitions to enable a more robust assessment of soil 
influences on backscatter signals.

4.3. Implications for mapping aboveground biomass density

We find that, in the dry tropics, backscatter intensity from volume 
scattering, and more broadly from the cross-pol (HV) channel, is about 
twice as sensitive to stem density as to mean stem biomass. This suggests 
that AGBD maps based on radar intensity alone show too little change if 
AGBD is changing due to stems getting bigger, and it might overestimate 
changes with increases (decreases) in AGBD if driven by recruitment of 
new stems (or the loss of existing stems, through e.g. selective logging).

The findings from this study can help us propose several alternative 
approaches to AGBD mapping. 

(i) Availability of full-polarimetric observations and therefore, 
decomposition of the radar signal into volume scattering, surface 
scattering and double bounce offers the potential to invert the 
structural equation model and retrieve both stem density and 
mean stem biomass. This confers an advantage compared to 
retrieving only AGBD as a more complete description of forest 
structure can be generated, although the sensitivity to stem 
density becomes much weaker as stem density becomes large 
(Fig. 7). This approach requires full-polarimetric data which 
ALOS-4 PALSAR-3, ROSE-L and SAOCOM have capabilities to 
provide. The recently launched ESA BIOMASS mission will also 
acquire systematic fully polarimetric data but with a P-band 
radar (Quegan et al., 2019). However, our structural equation 
modelling framework is inherently independent of frequency. 
While the relative magnitudes of surface, volume, and double- 
bounce scattering will differ at P-band (owing to longer wave
length penetration and altered vegetation and soil interactions), 
the same physical decomposition principles and model structure 
apply.

(ii) Taller trees generally contribute greater biomass (e.g., Duncan
son et al. (2010)), so lidar observations of vegetation height could 
potentially support independent retrieval of mean stem biomass. 
Combining this with retrieval of stem density by inverting the 
structural equation model then provides a route to overall AGBD. 
However, the viability of this approach depends on the strength 
of the relationship between stem biomass and height, which is 
likely to vary across a landscape due to variations in tree structure 
and wood density. In addition, at present it could only be un
dertaken at local to regional scale using airborne scanning lidar, 
since spaceborne lidar, such as GEDI, only provides spaced 
samples of vegetation height.

4.4. The role of dual-pol L-band radar

Coverage of the dry tropics by fully polarimetric data is limited and 
will remain so. Therefore, global coverage of this biome may require 
exploitation of dual-polarized HH and HV data provided by JAXA, either 
mosaics from fine-beam scenes or ScanSAR observations (Koyama et al., 
2019; Shimada et al., 2014; Shimada and Ohtaki, 2010). In this case Eqs. 
(14)–(17) (Supplementary Information Appendix 1) need to be modified 
to describe the associated 2-D covariance matrix, C2: 

C2 = C2s +C2d +C2v (2) 

C2s = fs

[
|β|2 0
0 0

]

(3) 

C2d = fd

[
|κ|2 0
0 0

]

(4) 

C2v = fv

[
3/8 0
0 1/8

]

(5) 

As for full polarimetry, the total volume scattering is four times 
greater than the HV scattering. The remainder after subtracting 3fv/8 
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from the HH power is the sum of surface and double bounce scattering 
terms, but without the VV return these can no longer be physically 
separated. However, the analysis above indicates that this remainder is 
usually dominated by surface scattering, at least in the dry woodlands 
comprehensively represented in our plot data.

While dual-polarimetric (HH and HV) data are more widely available 
than full-polarimetric acquisitions, their use in backscatter decomposi
tion remains constrained. Recent work by Mascolo et al. (2022) dem
onstrates progress in adapting model-based decomposition to dual-pol 
data, particularly through separating volume and polarized contribu
tions to the backscattered signal. However, they also highlight key 
limitations, such as the inability of the HV channel to reliably represent 
volume scattering, and the potential for misinterpretation of radar 
vegetation indices if the polarized contribution is not properly accoun
ted for. These findings reinforce the difficulty of extracting physically 
meaningful scattering components from dual-pol observations, partic
ularly in forested landscapes. Consequently, full-polarimetric SAR data 
remain essential for robust decomposition and interpretation of scat
tering mechanisms relevant to biomass estimation.

Currently, full-polarimetric data is only available roughly annually 
from PALSAR-2 and PALSAR-3. In contrast, dual-pol L-band SAR data 
from, e.g., PALSAR-2 and PALSAR-3 ScanSAR and soon NISAR, is/will 
be available at monthly or higher temporal frequencies. This raises the 
question of the trade-off between high temporal frequency dual pol and 
the increased information content of full-polarimetric data. It is likely 
that multi-annual data mostly improves AGBD mapping through a 
mixture of a) reduced uncertainty in the backscatter estimate through 
the suppression of speckle and other noise, and b) by providing data 
when soils are dry and thus contribute less to the signal (Lucas et al., 
2010). In contrast, full-polarimetric data, as we show here, contains 
information about the vegetation structure beyond just AGBD, which 
should help to remove the systematic biases created by inconstancy in 
the vegetation structure-AGBD relationship, which likely create sys
tematic biases in time and space. Thus, retrieving AGBD with these two 
approaches likely trades off random error (lower with multi-temporal 
dual pol) with systematic errors (lower with annual full-polarimetric 
data). The optimum solution would be to combine the two approaches 
in the future to minimise both kinds of errors, and this is an area for 
further work.

5. Conclusions

This study improves the understanding of how L-band SAR back
scatter is related to woody vegetation structure and soil properties in dry 
tropical ecosystems, a crucial knowledge gap for accurate AGBD esti
mation, and a vital part of the land component in the global carbon 
cycle.

Our analysis, utilizing high-quality ground observations from mul
tiple continents and corresponding fully-polarimetric ALOS L-band SAR 
data, reveals several key findings. First, volume scattering is the domi
nant scattering mechanism in wooded areas, even at low levels of AGBD. 
Second, a theory-informed structural equation model identifies stem 
density as the strongest determinant of volume scattering, followed by 
soil moisture, sand content, and mean stem biomass. Finally, double 
bounce scattering is usually of lower importance but exhibits significant 
correlations with both stem density and soil sand content. It may 
therefore be possible to retrieve multiple aspects of vegetation structure 
from polarimetric SAR observations, which could allow SAR observa
tions to provide a novel and unique contribution to understanding the 
global carbon cycle and forest management.

Given the current limitations of dual-pol decomposition techniques, 
full-polarimetric data remain critical for reliably capturing vegetation 
scattering behaviour. Our results reinforce the importance of investing 
in and prioritising quad-pol SAR missions to advance large-scale 
biomass monitoring.

Given our findings about the importance of surface scattering, future 

work should ensure that ground reference sites in the dry topics include 
estimates of soil roughness (at relevant wavelengths), soil moisture and 
soil texture, as this would remove the need to use global coarse reso
lution estimates of soil properties. Similarly, it will be important to at 
least subsample the smaller vegetation which might be involved in 
volume scattering at low AGBD.

While limitations, such as potential site-specific variations, warrant 
further investigation, the established relationships demonstrate the 
significant promise of L-band SAR for improved AGBD estimation in dry 
tropical regions, ultimately contributing to a more comprehensive un
derstanding of the global carbon cycle.
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