001050546 001__ 1050546
001050546 005__ 20260127203440.0
001050546 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00306
001050546 0247_ $$2URN$$aurn:nbn:de:0001-2601271033499.327456697914
001050546 020__ $$a978-3-95806-876-6
001050546 037__ $$aFZJ-2026-00306
001050546 1001_ $$0P:(DE-Juel1)176282$$aKorcsak-Gorzo, Agnes$$b0$$eCorresponding author$$ufzj
001050546 245__ $$aFunctions of spiking neural networks constrained by biology$$f- 2025-08-27
001050546 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2025
001050546 300__ $$axvi, 145
001050546 3367_ $$2DataCite$$aOutput Types/Dissertation
001050546 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
001050546 3367_ $$2ORCID$$aDISSERTATION
001050546 3367_ $$2BibTeX$$aPHDTHESIS
001050546 3367_ $$02$$2EndNote$$aThesis
001050546 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1768822158_31203
001050546 3367_ $$2DRIVER$$adoctoralThesis
001050546 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Information / Information$$v119
001050546 502__ $$aDissertation, RWTH Aachen University, 2025$$bDissertation$$cRWTH Aachen University$$d2025$$o2025-08-27
001050546 520__ $$aArtificial intelligence (AI) solutions are increasingly taking on tasks traditionally performed by humans. However, their rising computational demands and energy consumption are unsustainable, highlighting the need for more efficient designs. The human brain, evolved to function effectively even when energy is scarce, offers inspiration. Since learning is central to both artificial intelligence and the brain, insights about its underlying principles can deepen our understanding of human learning while informing the development of algorithms that transcend purely engineering-based methods. This thesis investigates biological learning through two studies, examining it from mechanistic and functional perspectives at an abstraction level commonly employed in neurophysics and computational neuroscience. These fields distill complex neural systems and phenomena into tractable mathematical and computational models, enabling insights beyond the reach of traditional biological approaches. Recognizing that synapses — the connections between neurons — are fundamental to learning, the thesis begins with a review of state-of-the-art computational neuroscience methods for modeling synaptic organization. This review highlights critical aspects of synaptic signaling, including connectivity, transmission, plasticity, and heterogeneity. In the first study, a synaptic plasticity model is integrated into a spiking neural network simulator and extended with biologically plausible features, for example, continuous dynamics and increased locality. The effectiveness of this enhanced model is demonstrated by training it on a standard neuromorphic benchmark task, incorporating biologically realistic sparse connectivity and weight constraints. The second study demonstrates that the sampling efficiency of pre-trained spiking neural networks can be enhanced by exposing them to oscillating background spiking activity. Analogous to simulated tempering, these rhythmic oscillations modulate state space exploration, facilitating transitions between high-probability states within the learned representation. These findings establish a link between cortical oscillations and sampling-based computations, offering new insights into memory retrieval and consolidation from a computational perspective. The research involves developing mathematical and computational models, which are simulated on high-performance computing systems, evaluating learning and sampling performance using standard machine learning metrics, and assessing computational efficiency by analyzing runtime. This thesis shows how biologically inspired mechanisms enhance the functional capabilities of spiking neural networks and how they can guide the development of scalable and efficient AI systems.
001050546 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001050546 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001050546 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
001050546 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
001050546 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
001050546 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x5
001050546 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x6
001050546 536__ $$0G:(DE-Juel-1)HiRSE_PS-20220812$$aHiRSE_PS - Helmholtz Platform for Research Software Engineering - Preparatory Study (HiRSE_PS-20220812)$$cHiRSE_PS-20220812$$x7
001050546 536__ $$0G:(DE-Juel1)BMBF-03ZU1106CB$$aBMBF 03ZU1106CB - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - B (BMBF-03ZU1106CB)$$cBMBF-03ZU1106CB$$x8
001050546 536__ $$0G:(DE-Juel1)jinb33_20220812$$aBrain-Scale Simulations (jinb33_20220812)$$cjinb33_20220812$$fBrain-Scale Simulations$$x9
001050546 8564_ $$uhttps://juser.fz-juelich.de/record/1050546/files/Dissertation_Agnes_Korcsak-Gorzo_2025_FZJ.pdf$$yOpenAccess
001050546 909CO $$ooai:juser.fz-juelich.de:1050546$$pec_fundedresources$$pVDB$$pdriver$$purn$$popen_access$$popenaire$$pdnbdelivery
001050546 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050546 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001050546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176282$$aForschungszentrum Jülich$$b0$$kFZJ
001050546 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001050546 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001050546 920__ $$lyes
001050546 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001050546 980__ $$aphd
001050546 980__ $$aVDB
001050546 980__ $$aUNRESTRICTED
001050546 980__ $$abook
001050546 980__ $$aI:(DE-Juel1)IAS-6-20130828
001050546 9801_ $$aFullTexts