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I. INTRODUCTION

We rebut the principal points made in the Comment. The
singular circuit quantization that it introduces is not
relevant, as it disagrees with the quantization of the more
physical nearly singular circuits. Compactification of
circuit variables presents no difficulties. We note some
interesting points made in the Comment about the current
experimental literature, and we provide some discussion
about these. We refer to the paper in question [1] as RD
(Rymarz and DiVincenzo) and to the subject Comment [2]
as EP-R.

The lossless electric circuits at issue here are pairs of
circuits that are related in a particular way: In one (the
“nearly singular” one) there are small capacitors present,
while in the other (“singular”) the small capacitors are
rigorously absent. The dynamics, including the quantum
dynamics, of the nearly singular circuit are obtained by an
uncontroversial analysis, using a Hamiltonian involving the
so-called node flux variables [3]. The related singular
circuit cannot be quantized by this route, the reason being
that its Lagrangian (which is straightforward to write down)
cannot be Legendre transformed to a Hamiltonian, due to
the noninvertibility of the capacitance matrix.

For the purpose of this Reply, we focus entirely on the
particular circuits shown in EP-R as Figs. 1(b) (nearly
singular) and 1(c) (singular).

The formal question of how to quantize the singular
circuit has arisen. The problem is not a new one, and an
analysis procedure can be adopted. RD refers to this
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procedure as Dirac-Bergmann (DB), after two of the
famous authors who have developed such prescriptions,
although the names Faddeev and Jackiw can also be
mentioned. But, for the singular electric circuit, the DB
analysis procedure boils down to a simple prescription: Use
the Kirchhoff current law to eliminate node-flux variables
in the Lagrangian before Legendre transforming. For the
simple singular circuit shown as Fig. 1(c) of EP-R, there is a
parameter range S < 1 [cf. Eq. (1) of EP-R] where this
application of the Kirchhoff current law gives a
Hamiltonian function which can be quantized, so it con-
stitutes an internally consistent mathematical procedure—
but one that does not give the correct quantum dynamics of
the nearly singular circuit.

Looking more closely at this DB-generated Hamiltonian,
it is derived as follows (see EP-R Fig. 1): One eliminates
the variable ¢, (which has no kinetic energy due to C; = 0)
in the classical Lagrangian, leaving a Lagrangian for the
single remaining variable ¢. After this, via a Legendre
transform, one obtains the classical Hamiltonian which
includes a potential Upg(¢). One then quantizes this
system. For f < 1, Upg(¢) is single valued; for g > 1,
Upg(¢) is multivalued, making it clear that one cannot
proceed further with DB.

Let us summarize the alternative provided by our work
(RD): We start by keeping both variables in the classical
Lagrangian with C; finite. We derive the classical
Hamiltonian and then quantize the system. Only after
quantization at finite C; do we consider the singular limit
C; — 0. For small C;, we show that one can eliminate the
additional fast degree of freedom ¢. using a Born-
Oppenheimer (BO) approximation, which puts this degree
of freedom into its quantum ground state. Indeed, the BO
approximation is increasingly accurate as C; approaches 0.

We show that Ugg(¢p) # Upg(¢p)—the effective poten-
tial Ugg(¢p) for the remaining degree of freedom is entirely
different from the one obtained by the DB procedure—
including in the limit C; — 0. At an intuitive level, the
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reason for this discrepancy is that, quantum mechanically,
there is the zero-point energy, and associated zero-point
fluctuations, of the eliminated degree of freedom ¢, while
in DB ¢.. is taken to have a fixed function of ¢ without any
additional fluctuations.

This difference between Ugg(¢p) and Upg(¢p) was
already shown to be significant in our previous work [4]
for moderate values of C;; see Fig. 2.12(a) for f = 0.7. In
RD, we prove (Theorem 1) that, in the limit C; — O,
Ugo(¢) becomes a zero-point constant, independent of ¢.
We prove that this is a fixed-point flow behavior and that
this fixed point is shared by a large family of other circuits
[e.g., Fig. 1(a) of EP-R].

II. ITEMIZED REPLY

To address EP-R’s criticisms more directly, we provide
here a discussion of their points, organized according to the
“three arguments” in EP-R, starting on p. 2.

Argument I: Classical adiabatic limit.—In RD Sec. I B,
the cosine potential has been chosen to provide an example
featuring the well-known nonlinearity of the Josephson
junction. In principle, any other sufficiently well-behaved,
subparabolic potential would similarly suffice for the
subsequent analysis, leading to RD’s Theorem 1. In RD,
we show that the effective Hamiltonians in Eqgs. (12) and
(18), and consequently their spectra, generally do not
coincide. This discrepancy between the results obtained
through the classical adiabatic approximation followed by
quantization (i.e., the procedure of EP-R), and those
derived from quantization followed by a quantum adiabatic
approximation, represents the type of failure RD identifies.
To be explicit, we find that Eq. (14) of EP-R is an incorrect
effective potential, particularly for the circuit in Fig. 1(b)
for small C;.

For the cosine potential, we agree that the classical
adiabatic approximation breaks down for f > 1. But this
breakdown is not the problem or the type of “failure” with
DB that is identified in RD. The failure is the inequality of
the effective Hamiltonians (classical adiabatic elimination
vs quantum adiabatic elimination), and it arises for all
values of f (although the problem is less in the vicinity of
P = 0; see the discussion of Argument III below). This and
other items of relevance in this Reply were extensively
studied in the Master’s thesis of Rymarz [4].

In the course of their argument, EP-R impugn the BO
approximation, without providing details. Although not
emphasized in RD, Theorem 1, in employing the BO
procedure, provides a means of obtaining the full spectrum
up to high energy—actually, up to an energy scale set by
the fast-variable zero-point energy scale, which diverges as
C; = 0. As pointed out by EP-R, RD does not give any
rigorous proofs of the applicability of the BO approxima-
tion. We invoke physical experience here and the various
computations reported already in Ref. [4]. Again, a well-
known feature of BO is that, if the fast-slow ratio is big

enough, the range of energies within which the spectrum is
reliable is quite large. (The traditional BO approximation of
molecular physics can accurately predict the entire infrared
rotovibrational spectrum of many important molecules, and
the zero-point scale at which the BO approximation has to
be modified is often in the ultraviolet.)

We do not plan to work on a program of making the BO
approximation mathematically rigorous; in looking at what
has been done, starting in the 1970s, it would clearly take
another deep dive into the work of Reed and Simon [5]. But
we rest on the 50 years of experience in using the BO
approximation as a physical theory, before there were any
rigorous proofs of its validity. We would finally observe
that the problem that we are discussing in this case
[Fig. 1(b) of the Comment of EP-R] is easy enough that,
with care, it can be reliably solved numerically—it just
requires the solution of a 2D Schrédinger equation, which
can be accurately discretized and solved on a computer. The
evidence from Ref. [4] is that solving directly reveals that
the wave function ansatz of the BO approximation is
already well satisfied for moderately small C; and that
the tendency of the eigenspectrum to approach that of the
free rotor (or free particle, in the noncompact point of view)
is already quite evident in such numerics.

Here and in the Supplement part of the Comment, EP-R,
when accepting the validity of BO, seem to imply that two
models (DB and BO) agree just because they both have a
purely continuous spectrum (taking the noncompact point
of view). This is by no means the case. It is not correct to
call two spectra the same if they are both continuous spectra
(sometimes called scattering spectra). For the two models
being discussed here, the two spectra disagree in their
energy onset, in their density of states (which, among other
things, determines the so-called band-edge masses), and in
the position and size of band gaps. In the correct spectrum,
these gaps in the continuous spectrum are all vanishing as
C;/C — 0, while for the Hamiltonian of EP-R [their Eq. (5)]
the gaps are all finite for their circuit in Fig. 1(c) (Josephson
junction case). To see an excellent account of how such band
gaps depend on the form of a 1D periodic potential, it is
instructive to consult the original Kronig and Penney 1931
paper [6].

Argument I1: Compact or noncompact?—EP-R state that
they detect an implicit assumption in Sec. III of RD that the
variable ¢,. is noncompact. In fact, RD on purpose refrained
from indicating any such assumption, because it is clear
that the results there apply whether or not ¢, is considered
to be compact or extended. This point has already been
explicitly stated as Ref. [45] of RD. It was our intention
from the beginning to make the results here usable, no
matter which “camp” one happens to belong to. This easy
transition from extended to compact rests on a few
observations: (i) A simple observation that RD neglected
to make (but was clear in Ref. [4]) is that if Uy, is periodic,
and, thus, can be potentially viewed as compact, then Ugg
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is also periodic for any nonzero value of C; (or of « in the
EP-R notation). In this case then, Ugg for the effective
reduced system can also be viewed as compact. (ii) If Uy,
is periodic, then the eigenspectrum of the problem, in the
noncompact view, obeys Bloch’s theorem. This is just a
statement that the eigenfunctions must belong to irreducible
representations of the translation group. Then, the discrete
eigenspectrum of the compact version of the model is
obtained by simply selecting the states from one of the
irreducible representations (that with k = 0, in the band-
structure language, if there is no offset charge). We point
out that the BO ansatz also respects Bloch’s theorem.

Thus, we cannot accept the view of EP-R that the BO
approximation can be good for the noncompact problem
but bad for the compact version of the problem. Among the
continuous spectrum of states that are obtained in solving
the Hamiltonian derived with the BO approximation (non-
compact), the point-spectrum solutions of the compact
version of the problem have, thus, already been obtained—
no further or alternative approximations need to be made.

Given the intimate relation between the compact and
noncompact spectra, we can explain why we consider all
compact problems as belonging to our type 1 definition of
nonlinear inductors. The reasoning is just to “decompac-
tify” the domain, thus associating the compact Uy, with the
corresponding periodic function on the noncompact space.
Then, the classification criteria can be applied and put any
such potential in the type 1 category (a or b). Finally, any
conclusions about the eigensolutions of the problem can be
transferred back to the compact problem by the “k =0
selection” stated above.

In the Appendix, we comment on fallacies in EP-R’s
analysis of the quantum adiabatic limit for supposedly
compact variables in the Josephson junction case.

Argument III: [Alleged] lack of experimental evidence.—
EP-R bring forward a set of experimental results, old and
new, which they feel are not aligned with RD. The
examples of EP-R are diverse and interesting; several of
them are not so much experiments as issues raised in the
modeling of experiments. None of them are, in fact, in
contradiction with RD, but they raise a variety of important
issues that are worth commenting upon.

In many examples, singular circuits are invoked to
explain some aspect of experiment—that is, circuits for
which the capacitance matrix is not invertible. Of these,
many involve a chain of Josephson junctions [7,8]; there
are, in fact, many other examples in the literature. These
works give the impression that one obtains an effective
inductive response by series addition (invoking Kirchhoff’s
current law) of nonlinear inductances. RD would argue
that, in the limit of very small capacitances, quantum
fluctuations would erase the inductive response (Ugg — 0).

This is clearly not the case experimentally. But neither
are the capacitances (shunting or to ground) actually
infinitesimal. It is implicitly understood that they are in

a “not very small” range, so that, in fact, the quantum
fluctuations of the phases along the chain are fairly small.
Thus, the classical reasoning is not so far off. Within the
experimental community there is an understanding (but
unfortunately not entirely widespread) that the junction
capacitance should for this reason not be extremely small
and that one, in fact, strives for a kind of “transmon
regime”; see also RD Sec. IVA 1. There have been papers
(e.g., Yale group analysis of SNAIL elements; see the
analysis of Fig. 1 in Ref. [9]) in which the relatively small
fluctuation suppression of the effective Josephson energy
has been carefully calculated. On the other hand, the recent
work in Ref. [7] misses the importance of small capaci-
tances and misquotes the conclusion of RD on this point.

Thus, RD is not in contradiction with any of this but
provides a warning that chain capacitances, if too small,
would suppress the desired “superinductance” effect.

In other examples [10] provided by EP-R, the singular
effect (absence of nodes with capacitances) occurs in a
linear part of the circuit. As stated in RD, linear cases like
this are harmless—taking these capacitances to zero, while
leading to diverging quantum fluctuations, still leads to
agreement with normal series-combination laws.

In the transmon example discussed by EP-R, and in
Ref. [11], it is noted by EP-R that it seems that it can be
assumed that one does normal series-combination argu-
ments, neglecting extra capacitances. We agree that we
should have made some note of this in Ref. [11]
(DiVincenzo is an author of that work). It should be noted
that the cases at issue are exactly the canonical circuit of
RD, but with f <« 1. There is, in fact, an interesting
interplay of small L and small Cj;, such that, if L is
sufficiently small, there is a significant range of small but
finite C; in which the series-combination rule is quite
accurate, even though it ultimately fails when C; is taken
even smaller. The work in Ref. [11] implicitly assumed that
C; was falling in this range and so could be neglected.

Thus, we agree that analyses involving series-combina-
tion rules (DB, if you will) are sometimes satisfactory. But
we disagree on what the regimes of applicability are: For
our circuit, EP-R say that the failure occurs at # = 1 (which
they also refer to as a “singular point”), while we say that
the applicability is restricted to f < 1.

Finally, EP-R points out the fundamental early work of
Golubov, Kupriyanov, and II’ichev [12] and II’ichev et al.
[13] on physical models of two-terminal devices leading to
a variety of Josephson-like characteristics (alternative
periodic phase-current relations). Among these are char-
acteristics that exactly match the L-JJ series combination
that RD has criticized. We would reply that such device
models are naturally understood to have a specific range of
validity (frequency ranges, for example), which would
imply the presence of other parasitics in a more exact
model. Furthermore, the devices of earlier decades were
often rather “classical” (large parameter values), so that
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quantum-fluctuation effects can be neglected. It is well
known that, in such a classical limit, various interesting
phenomena occur for £ > 1, in particular, multistability.
But these phenomena must be reconsidered in the
“modern” setting in which quantum fluctuations can play
a very significant role.

III. FINAL REMARKS

We can close by reflecting on some aspects of the solution
to the classical dynamics of their Fig. 1(b) that EP-R may
have overlooked. It is true that the classical dynamics has a
1D slow manifold, whose embedding in the 2D coordinate
space is given by Kepler’s equation, EP-R’s Eq. (2). In the
adiabatic limit, if the system is started at rest on this
manifold, it will travel slowly along this manifold. But
one should not proceed to quantize this 1D motion, because,
if the initial condition does not lie on this manifold, the
classical motion is quite different: The system will experi-
ence fast oscillatory (transverse) motion around the 1D
manifold, while additionally drifting slowly along it.

These fast and slow motions are coupled because of the
anharmonicity, so that the parametric slow motion is a
function of the amplitude of the rapid transverse oscillation.
Classical physics does not constrain the amplitude of this
transverse motion (although see the aside in the next
paragraph); but quantum mechanics does constrain it. In
the quantum setting, this motion cannot have zero ampli-
tude; its size is set by Bohr-Sommerfeld quantization, so
that there is a certain minimal transverse motion, which is
the “zero-point fluctuation.” In the extreme quantum case,
C; — 0, this transverse motion significantly renormalizes
the parametric slow motion. This is a classical explanation
of the Ugg — 0 tendency that RD has identified.

A final aside: The EP-R 1D manifold assumes higher
importance in the classical dynamics if there is a moderate
amount of viscosity. In this case, the fast transverse motion
can be strongly overdamped, but the slow motion very
underdamped, so that in this case trajectories will indeed
spend most of their time on the slow manifold determined
by the Kepler equation (at least for # < 1). But this viscous
theory is not the one that we quantize.

APPENDIX: BORN-OPPENHEIMER
APPROXIMATION FOR PERIODIC Uyy,

We emphasize that, in contrast to the claims made by EP-R
in their Argument II and their Supplemental Sec. IV, neither
an intrinsic scale nor a “compact” ¢, affect the application of
the BO approximation. First of all, note that nonperiodic
potentials defined on R can also provide a natural flux scale
(e.g., the fluxonium potential), which, however, does not
“skew” the hierarchy fast and slow as claimed by EP-R.
Although EP-R correctly observe that their Hamiltonians in
Egs. (7) and (15) are related by a dilation transformation, they
consider different fast Hamiltonians for both representations

of H,; butthe (rescaled) choice of H, in Eq. (8) is an equally
adequate fast Hamiltonian for both H, in Eq. (7) and H, in
Eq. (15), naturally resulting in equivalent descriptions of the
system featuring identical spectra. However, EP-R consider
the choice Hy,y o n? for H, in Eq. (15), which does not
correspond to the “electronic Hamiltonian™ of the system
[i.e., the sum of the “small-mass” kinetic terms and the
potential terms; see RD Eq. (16) and Ref. [68] | as would be
the case for a conventional BO approximation. EP-R’s choice
of Hp, does not depend on ¢, at all. Consequently, they
misleadingly identify a breakdown of the adiabatic separa-
tion for the extended case and thereby a seeming dissimilarity
between the “extended” and “compact” cases. In the follow-
ing, we comment on the quantum mechanical description of
the system.

For the extended case, EP-R correctly point out that the
spectrum of n. would be the entire real line, and they
conclude that Hy,, « n2 does not represent a proper fast
Hamiltonian for a BO approximation. In their words, “the
determination of the slow Hamiltonian is not achieved
simply through reading out the coefficients of various terms
of the full Hamiltonian.” This conclusion, however, should
initiate a reconsideration of Hy, (also for the compact case)
as no particular assumption on Uy has been made (apart
from an intrinsic scale), and two-dimensional systems with
extended variables are considered by EP-R the “harmless”
case for the application of a BO approximation.

For the supposedly “compact” case, however, EP-R
restrict the flux variable to the circle and insist on an
integer spectrum of n., although for a fixed value of ¢, the
Hamiltonian in EP-R Eq. (15) is not periodic in ¢, even
with a periodic extension of Uy, in order to “decom-
pactify” its domain; see the discussion of Argument II in
the main text above. In other words, the system cannot be in
the same state before and after a full orbit of ¢,. on the circle
for a fixed value of ¢, or the (absolute) values of the wave
function do not coincide at the domain borders of ¢, for a
fixed value of ¢ (as required for a circle). Thus, n,. does not
have to be an integer multiple of 2e, as the electric charge
can continuously flow through the linear inductor.
Regardless of these implausible restrictions to the integer
spectrum of n. and the circle domain of ¢., EP-R’s choice
of the fast Hamiltonian leads to further problems in their
analysis made in Supplemental Sec. V B. There, EP-R
naturally conclude that the spectrum of their fast
Hamiltonian is independent of ¢, and they derive their
effective Hamiltonian in the form of a shifted harmonic
oscillator by computing the (operator-valued) expectation
value of the slow Hamiltonian in the ground state of their
fast Hamiltonian, which has a wave function that is
constant on its domain. Note that such an expectation
value depends on the domain of ¢,; e.g., it differs for the
choices ¢, € [0,27) and ¢, € [-x, x), which is nonsensical
if ¢, lives on a circle. This dependency on the domain is not
mentioned by EP-R, as a shift of the harmonic oscillator
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does not affect its spectrum. However, it will crucially
change the spectrum as soon as H, is not quadratic in
@ — @., which is the case if the linear inductor is replaced
by a nonlinear one. Finally, the problematic choice of the
fast Hamiltonian is also demonstrated by the fact that—
taking the overall energy scale E. in EP-R Supplemental
Eq. (20) into account—the spectrum of EP-R’s effective
Hamiltonian (i.e., the properly scaled shifted harmonic
oscillator) depends neither on Uy, nor C' at all, although
the limit k — 0 has not been considered (yet).

To complete the discussion of the BO approach for
periodic Uy, we comment on the dilation transformation
discussed by EP-R: Note that the identification of the fast
Hamiltonian and the spectrum of both the fast Hamiltonian
as well as of the final effective Hamiltonian and the validity
of the BO approximation do not depend on such a dilation
transformation, even if the rescaling of a variable is singular
as k = 0. However, in their Supplemental Sec. IV D, EP-R
claim that the equivalence between the Hamiltonians in
their Supplemental Egs. (5) and (20) is suspect in the limit
k — 0. Such an equivalence of the Hamiltonians in the limit
k — 0 prior to applying the BO approximation has not been
considered and is not required in RD, because a rescaling
of the fast variables does not affect the BO potential.
Moreover, in RD, only the one-dimensional “electronic”
subproblem, i.e., the fast variables (with extended
domains due to the quadratic term in the correctly
identified fast Hamiltonian), have been rescaled, and
the potential issues with a two-dimensional dilation trans-
formation are an artifact introduced by the allegedly
controversial adimensionalization of EP-R. Their con-
cerns might originate from the fact that, although EP-R
state that “dilations are not canonical transformations of
the cylinder” and that a dilation “maps from one cylinder
to another, different, cylinder, changing its radius,” they
apparently insist on unchanged symmetries of the
Hamiltonian; cf. their Supplemental Sec. IVFE
However, it should be clear that the boundary conditions
of the underlying Schrodinger equation (i.e., the perio-
dicity or the interval or domain of the wave functions) are
naturally changed by a dilation transformation. Consider
the following simple example: On the one hand, the
eigenfunctions y(¢) of the standard CPB or transmon
Hamiltonian ~ Hcpg = 4Ec(n—n,)* — E;cos(p)  with
[p,n] =i satisfy y(@ + 27) = y(p). Here, the Cooper
pair number operator n has an integer spectrum. On the
other hand, the CPB Hamiltonian is related to H =
4Ec(R/2 —n,)* — Ejcos(2p) with [, 7] =i via a dila-
tion transformation. Obviously, the eigenfunctions of H

satisfy @ (@ + n) = (@), and the spectrum of the electron
number operator 7 is restricted to all even integers
0,+2,44,..., which is not equivalent to that of n.
These observations have to be compared with the claims
in EP-R’s Supplemental Sec. IV F, stating that “a trans-
formation [...] would change the spectrum, and spectra
are invariant under unitary conjugation”.
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