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The ability to perform quantum error correction (QEC) and robust gate operations on encoded
qubits opens the door to demonstrations of quantum algorithms. Contemporary QEC schemes
typically require mid-circuit measurements with feed-forward control, which are challenging for
qubit control, often slow, and susceptible to relatively high error rates. In this work, we propose
and experimentally demonstrate a universal toolbox of fault-tolerant logical operations without
mid-circuit measurements on a trapped-ion quantum processor. We present modular logical state
teleportation between two four-qubit error-detecting codes without measurements during algorithm
execution. Moreover, we realize a fault-tolerant universal gate set on an eight-qubit error-detecting
code hosting three logical qubits, based on state injection, which can be executed by coherent gate
operations only. We apply this toolbox to experimentally realize Grover’s quantum search algorithm
fault-tolerantly on three logical qubits encoded in eight physical qubits, with the implementation
displaying clear identification of the desired solution states. Our work demonstrates the practical
feasibility and provides first steps into the largely unexplored direction of measurement-free quantum
computation.

A. Introduction

The practical implementation of quantum algorithms
depends on their resilience to errors, alongside the abil-
ity to perform arbitrary quantum operations. Quantum
error correction (QEC) enables the detection and correc-
tion of errors arising during computation by encoding in-
formation across multiple physical qubits [1–3]. Compu-
tations on these encoded qubits can be realized through a
discrete, universal set of gates [3]. These operations have
to be implemented in a robust, fault-tolerant (FT) fash-
ion, meaning that local faults in the underlying gate oper-
ations do not proliferate uncontrollably across the logical
qubits [4]. However, no QEC code intrinsically supports
a full, inherently FT universal gate set [5]. Completing
this FT universal gate set is a key challenge for realiz-
ing a potential advantage beyond the reach of algorithms
that can be efficiently simulated classically. Recent ex-
periments have demonstrated QEC cycles on trapped-
ion quantum processors [6–10], superconducting architec-
tures [11–14], as well as neutral-atom platforms [15, 16].
FT universal gate sets have been realized on these plat-
forms by means of code switching [17, 18], where informa-
tion is transferred between two codes with complemen-
tary sets of inherently FT gates, as well as magic-state
injection [12, 19–21], which requires high-fidelity magic
states as a resource [22, 23]. These advancements in the
practical and scalable implementations of logical qubits
enabled the execution of first, small quantum algorithms
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run on encoded qubits, such as the Bernstein-Vazirani al-
gorithm [24, 25], one-bit addition [26, 27] or the quantum
Fourier transform on three logical qubits [28].

Many practical protocols rely on measurements dur-
ing algorithm execution and feed-forward operations con-
ditioned on these measurement outcomes, which is ex-
perimentally demanding on many hardware platforms
and limits their success probability: In both atomic and
superconducting quantum processors, measurements re-
main orders of magnitude slower than typical gate times,
which poses speed limitations and results in decoherence
of idling qubits during measurements. Moreover, fluores-
cence read-out in atomic setups requires additional cool-
ing during and after measurements, as atoms are heated
during this process [17, 20, 29–31].

Following early works [32, 33], recent theoretical works
have proposed practical measurement-free protocols for
logical state preparation [34], rounds of QEC [35–37] and
the implementation of a FT universal gate set [38–40]. In
these protocols, stabilizer information is transferred onto
auxiliary qubits, allowing decoding and coherent feed-
back to be carried out within the quantum algorithm it-
self. This approach avoids the need for mid-circuit mea-
surements or feed-forward operations entirely. At the
end, auxiliary qubits are replaced or reset to be reused,
effectively removing the entropy introduced by the noise.

In this work, we develop and experimentally demon-
strate a complete toolbox of logical operations needed
for FT universal quantum computing on an ion-trap
quantum processor, without mid-circuit measurements or
feed-forward operations. First, we construct protocols for
modular logical quantum state teleportation, such that
different encoded blocks are never directly coupled to one
another, which is a key desideratum for scaling up quan-
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FIG. 1: Measurement-free logical state teleportation with the [[4, 1, 2]]-code. a, Stabilizers SZ , SX
and logical operators of the [[4, 1, 2]]-code. b, Experimental logical quantum state tomography for FT logical state
initialization. The black dashed boxes correspond to ideal values in a fault-free case. c, High-level circuit for
measurement-based modular logical teleportation. The source (S) and target (T) code blocks are merged by measuring
the joint logical XS

LX
T
L -operator via an auxiliary register (Aux.) and applying a Z-type feedback operation based on

the measurement outcome (first green box). The two blocks are then split again by measuring ZS
L and applying a

X-type operation to the target register conditioned on the measurement outcome (second green box). d, Schematic
illustration of modular state teleportation, where the source and target registers are never directly coupled to one
another, but only interact via an auxiliary quantum register (Aux). e, High-level circuits for measurement-free

logical teleportation and experimental logical quantum state tomography. We replace the measurements and feed-
forward operations with coherent feedback operations to teleport a state without mid-circuit measurements (blue).
An additional HL is applied to the target state using the circuit shown in orange. The reset operation can either be
carried out explicitly by physically resetting the auxiliary qubits and reusing them afterwards, or implemented by
replacing them with fresh qubits.

tum computations to large numbers of logical qubits.
We analyze the performance of these measurement-free
protocols for different logical input states, accompanied
by numerical simulations. We then complete a FT,
measurement-free universal gate set for an eight-qubit
error-detecting code by constructing and implementing
circuits for a logical Hadamard-gate on an encoded qubit.
Finally, we use this implementation as a building block
for Grover’s algorithm to search two elements out of
eight, for the first time demonstrating a small-scale FT
and measurement-free universal quantum algorithm.

B. Experimental setup

The experimental data was obtained with a 16-qubit
quantum computing device based on trapped ions [41].
The chain of 16 40Ca+ ions is confined in a linear
Paul trap. The physical qubits are encoded in |0⟩ =
|42S1/2,mJ = −1/2⟩ and |1⟩ = |32D5/2,mJ = −1/2⟩
Zeeman sub-levels. The state of each qubit can be ma-
nipulated individually by optically addressing the ions
with 729 nm laser light. Two-qubit gates are realized
as a Mølmer-Sørensen (MS) interaction [42], providing
all-to-all two-qubit-gate connectivity. Overall, the na-
tive gate set of the device includes arbitrary-angle rota-
tion gates R(θ, ϕ) = exp(−i θ2 [X cosϕ+Y sinϕ]), ‘virtual’

Z-gates RZ(θ) = exp(−i θ2Z), and maximally-entangling
two-qubit gates XX(π/2) = exp(−iπ4X⊗X). A descrip-
tion of the experimental setup can be found in [21, 41, 43].
Our trapped-ion platform is capable of performing

mid-circuit measurement operations, as was shown in [7].
However, such an operation, together with an additional

feed-forward, represents a substantial experimental over-
head in both sequence duration and infidelity. In our
protocols, we do not need to perform these operations
but require only resets of the quantum state of certain
qubits, which is discussed further in Appendix A. In-
stead of re-initializing physical qubits, one can also re-
place them with fresh physical qubits. In our experi-
ments, we make use of the full 16-ion register and use
fresh physical qubits whenever possible.

C. Logical state teleportation without mid-circuit

measurements

In this section, we discuss how to teleport a logi-
cal state between two four-qubit registers without mid-
circuit measurements or feed-forward operations, and
demonstrate this concept experimentally. We consider
a [[4, 1, 2]]-code instance that encodes k = 1 logical qubit
in n = 4 physical qubits and has distance d = 2, meaning
that any single error can be detected. The stabilizers and
logical operators defining the code are shown in Fig. 1a.
A standard approach for teleporting a state between

registers is based on lattice surgery [44, 45], which is il-
lustrated in Fig. 1c. First, two code blocks are merged
by measuring the joint logical X-operator. Based on this
measurement outcome, one applies a logical Z-operation
to the target register. In a second step, the two blocks
are split again by measuring the logical Z-operator of
the source register and applying a conditional logical X-
operation to the target register. The measurement-based
approach has been realized experimentally on various
platforms [12, 20, 46–48].
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Instead of performing measurements and conditional
operations based on the measurement outcomes, we now
map the respective operators to an auxiliary register
and apply coherent feedback operations, as illustrated in
Fig. 1e in blue. In the first step, we couple both logical
qubit registers to the auxiliary register by applying pairs
of CNOT-gates to map the information about the joint
logical operator XS

LX
T
L of the source (S) and the tar-

get (T) register to the auxiliary qubits. The conditional
logical Z-operation can then be implemented coherently
with a combination of CZ-gates that act on the auxil-
iary and target register, as shown in the green dashed
box in Fig. 1e. In the second step, we map the logical
ZS
L to the auxiliary register and apply a coherent feed-

back with a combination of CNOT-gates. The scheme
is made FT by repeating subroutines, i.e. by mapping
multiple stabilizer-equivalent logical operators onto aux-
iliary qubits, as discussed further in Apps. B and C. The
explicit circuits can be found in App. D.

We construct a similar protocol that enables the im-
plementation of a logical HL-gate (shown in Fig. 1e in
orange) with the same resources as the bare teleportation
protocol. We find this circuit by inserting a physical H-
gate to the target qubit and propagating it back through
the circuit, such that no H-gate has to be performed ex-
plicitly. This means that no HL-gate has to be applied
to a [[4, 1, 2]] instance when shifting this circuit to the
logical level.

We experimentally perform logical state tomography
for three protocols: state initialization, logical state tele-
portation and the application of a logical HL-gate for
logical input states |0⟩L and |+⟩L, which is shown in
Fig. 1b, e. Further details on the measurement bases
and number of shots can be found in Apps. E and F. We
achieve fidelities of up to 93(2)% for state teleportation
and 95(3)% for a HL-gate. The difference in fidelities
for the two logical input states can be traced back to
two sources. First, dephasing on idling qubits due to
fluctuations in the magnetic fields introduces a strong
bias towards Z-type errors. Furthermore, we measure
the qubits in the Z-basis in the end and determine the
logical value from this measurement, if the target state is
a |0⟩L-state. Based on these outcomes, we perform a clas-
sical round of error detection and postselect on the two
Z-stabilizers of the [[4, 1, 2]]-code. When the target state
is the |+⟩L-state and we determine the logical X-value,
we can only postselect on one X-stabilizer. By accepting
fewer runs, we effectively also discard a fraction of runs
where higher-weight errors lead to a failure, and fidelities
increase the more we postselect.

Our FT logical state teleportation scheme can, in prin-
ciple, be scaled to higher-distance surface codes, which is
discussed further in App. B. Here, the key idea is to use d
representations of logical operators on a distance-d code
to ensure that no weight-d fault leads to a logical failure.
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FIG. 2: FT logical operations on an [[8, 3, 2]]-code.
a, Definition of stabilizers and logical operators on the
[[8, 3, 2]]-code [26, 27, 49]. b, The upper left circuit im-
plements measurement-based H-gate injection, where an
auxiliary qubit is prepared in |+⟩ and entangled with the
data qubit in state |ψ⟩. In this protocol, one would mea-
sure the auxiliary qubit and apply a Pauli operation that
depends on the measurement outcome m. The measure-
ment and conditional operation (green dashed box) can
be replaced with a combination of CNOT-gates (lower
left), such that no mid-circuit measurements or feed-
forward operations are required. We shift this scheme
to the logical level by replacing the data qubit with one
logical qubit of the [[8, 3, 2]]-code and the auxiliary qubit
with one logical qubit of a [[4, 2, 2]]-code, which supports
a natively transversal HL-gate, up to a simple relabeling.

D. FT toolbox for universal operations on the

[[8, 3, 2]]-code

In this section, we discuss circuit constructions for a
FT universal gate set on an eight-qubit error-detecting
code, which we use to implement Grover’s search algo-
rithm on three logical qubits experimentally in the fol-
lowing section. The [[8, 3, 2]]-code is the smallest instance
of a three-dimensional color code [26, 27, 49–51] that en-
codes k = 3 logical qubit in n = 8 physical qubits and
has distance d = 2, meaning that any single error can
be detected. The X-stabilizer and a Z-stabilizer of this
code have support on all eight qubits, while three addi-
tional weight-4 Z-stabilizers are defined on three faces of
a cube, intersecting on edges, as shown in Fig. 2a. The
three logical Pauli X-operators of this code have sup-
port on the weight-4 faces of the cube, while the logical
Z-operators are defined on edges of weight 2.

The [[8, 3, 2]]-code supports a transversal non-Clifford
gate [26, 27, 49]: the CCZ-gate can be implemented
by applying single-qubit T - and T †-gates to individual
qubits as illustrated in Fig. 3a, such that errors do not
propagate within one code block. A logical CNOT-gate
between qubits, that are encoded within the same en-
coded block, can be implemented by swapping pairs of
qubits. In the following, we implement these CNOT-
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gates within one block by relabeling pairs of qubits,
which does not require any physical gate operations. The
[[8, 3, 2]]-code has in the past been used for multiple ex-
perimental demonstrations [15, 26, 27]. Recent theoreti-
cal works have proposed constructions for measurement-
free, FT universal quantum computing [38, 39], but re-
quire a substantial overhead in gate operations and qubit
count. Here, we introduce an implementation of a HL-
gate for the [[8, 3, 2]]-code that does not rely on mid-
circuit measurements or feed-forward operations, and,
together with the CCZ-gate, completes a FT universal
gate set. Our construction for the FT single-qubit logi-
cal HL-gate is based on state injection [52]. State injec-
tion makes use of a suitable resource state [53], that is
injected onto the data qubit by, first, entangling the two
qubits, then, measuring the resource qubit and, finally,
applying a Clifford operation to the data qubit condi-
tioned on the measurement outcome in the second step.
Fig. 2b1 shows the circuit that may be used to apply
a HL-gate to a state |ψ⟩L by means of state injection.
Here, an auxiliary qubit is prepared in |+⟩ as a resource
state, then entangled with the data qubit with a combi-
nation of a CNOT- and a CZ-gate. Finally, the auxiliary
qubit is measured in the X-basis and either a Pauli X-
or Z-flip is applied to the data qubit, depending on the
measurement outcome m.

We now replace the measurement of the auxiliary
qubit with a coherent feedback operation comprising two
CNOT-gates, as shown in Fig. 2b2. A measurement can
always be replaced with a quantum circuit [3, 33], but
does not automatically obey fault-tolerant circuit design
principles. In our circuit construction, we have to apply
H-gates to the auxiliary qubit in order to achieve the de-
sired H-gate injection to the data qubit. If both qubits
corresponded to logical qubits of the same code, there
would be no benefit in using this approach, because it
would require a HL-gate in order to inject one. We there-
fore use different types of codes to inject the desired gate
operation. Specifically, we consider the three encoded
qubits of the [[8, 3, 2]]-code and inject a HL-gate onto one
of the logical qubits by means of an auxiliary [[4, 2, 2]]-
code prepared in |+0⟩L as a resource state. In this circuit,
we require a CNOT-gate that acts on two logical qubits
that are encoded in two different code blocks. This gate
can be implemented with a non-transversal, yet FT, gate
implementation implying that any single fault that may
propagate through the full circuit remains detectable af-
terwards. This logical inter-block CNOT-gadget and the
full circuit for the injection of a HL-gate are depicted in
App. Fig. 8. Our implementation of the FT logical HL-
gate requires 4 auxiliary qubits and 26 two-qubit gates.

We perform experimental logical state tomography for
each logical qubit considering FT logical state initial-
ization, the single-logical HL-gate and the transversal
CCZL-gate on the [[8, 3, 2]]-code. We achieve fidelities
of up to 81(3)% for HL on logical qubit 0, accepting 10%
of the runs after postselection. Moreover, we find fidel-
ties between 65(6)% and 99.89(14)% for the two idling

logical qubits, depending on the logical input state and
its sensitivity to dephasing. All results are shown and
further analyzed in App. G. Notably, we identify dephas-
ing of idling qubits as a major error source, which we
estimate to account for almost two-thirds of the overall
logical error rate, as discussed further in App. H.
The presented FT universal gate set on the [[8, 3, 2]]-

code unlocks the capability to run minimal logical algo-
rithms without relying on explicit mid-circuit measure-
ment or feed-forward operations. In the next step, we
use it to implement a FT Grover search on three logical
qubits encoded in the [[8, 3, 2]]-code.

E. Grover search on logical qubits

Grover’s search algorithm [54, 56] enables quantum
computers to search through unsorted databases signifi-
cantly more efficiently than classical methods. It achieves
a quadratic speedup by reducing the number of queries
required to find a desired item, and can be used as a sub-
routine for other quantum algorithms [57–60]. Grover’s
algorithm consists of three steps [3, 61]:

1. Initialization: Prepare all qubits in an equal-weight
superposition of the computational basis states with
the Hadamard transform, i.e. apply single-qubit H-
gates to all qubits.

2. Grover iteration: Perform (a) and (b) j times to am-
plify the amplitude of the solution-states s:

(a) Apply an oracle operator O, that marks the so-
lutions by flipping the sign of these states.

(b) Apply a diffusion operator D that reflects the
state about the initial state.

3. Measurement: Measure the qubit register in the com-
putational basis.

We implement Grover’s algorithm on three logical
qubits, thus searching a database of size N = 2n = 8
bits. As an example, we consider the phase oracle that
marks s = 2 solution-states |011⟩ and |101⟩. In this set-
ting, the probability to find a solution after one Grover
iteration in a noise-free setting is 1, which is discussed
further in App. I. The optimal classical search corre-
sponds to performing a single query, followed by a ran-
dom guess, and the probability to find a solution in this
case is s/N + (N − s)/N · s/(N − 1) ≈ 0.46 in our case.
Grover’s search algorithm has been implemented on phys-
ical qubits on trapped ions [55, 62], superconducting ar-
chitectures [63–65], on spin qubits in silicon [66], and
on molecules using NMR techniques [67]. It has also
been realized on two logical qubits encoded in a [[4, 2, 2]]-
code [68] searching a database of N = 4, which does not
require a universal set of gates, but can be realized with
Clifford gate operations only.
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We implement the three-qubit Grover’s algorithm on
logical qubits encoded in the [[8, 3, 2]]-code by utilizing
the universal FT gate set {HL,CNOTL,CCZL}. We re-
compile the initial circuit [3, 54, 55] into the available
FT gates introduced in the previous section, as shown
in Fig. 3a. We then implement this circuit on our ex-
perimental trapped-ion quantum processor, accompanied
by numerical simulations according to a multi-parameter
noise model specified in App. B. Fig. 3b shows the de-
termined probabilities for each of the eight possible final
states, two of which correspond to the correct solution-
states as marked in green. The total probability to
find a solution using the experimental data is psuccess =
p011 + p101 = 0.40(4). This overall probability to find a
solution in a single shot is slightly lower than the optimal
classical probability of 0.46, as determined above. How-
ever, as discussed further in App. J, only slight enhance-
ments to the current setup are sufficient to outperform
the optimal classical algorithm. Numerical simulations
show that reducing, e.g., the two-qubit-gate error rate by
1% to p2 ≈ 0.015, which has been demonstrated on ex-
perimental trapped-ion platforms [31, 69, 70], leads to an
overall success rate of ≈ 0.52, which clearly outperforms
the optimal classical strategy. Instead of reducing p2, also
extending the coherence time to T2 =100ms, which has
been shown in independent technical demonstrations [71–
75], leads to a success probability of psuccess ≈ 0.67. This
demonstrates that for only slightly smaller error rates
on idling qubits and two-qubit gate operations, a regime
where the measurement-free quantum algorithm outper-
forms its classical counterpart is reachable today.

Our scheme for Grover’s algorithm can be scaled to
a larger search space, provided enough qubits and suffi-
ciently reliable gate operations are available. One can im-
plement the FT gate set {HL, CNOTL, CCZL} on logical
qubits encoded within one [[8, 3, 2]] block. In addition,
one can apply an inter-block CNOT-gate between two

logical qubits of two distinct [[8, 3, 2]]-codes [76]. These
operations enable the implementation of an oracle and
the amplification on more than three qubits by decom-
posing the required gates into the available gate sets [3].

F. Outlook

In this work, we introduce and experimentally imple-
ment a complete toolbox of operations for fault-tolerant
(FT) universal quantum computing without mid-circuit
measurements. Our work presents the first experimental
realization of a FT universal gate set that operates with-
out mid-circuit measurements and marks the FT imple-
mentation of Grover’s algorithm on a search space of up
to N = 8 on encoded logical qubits, demonstrating for
the first time a FT logical algorithm without mid-circuit
measurements.
Our schemes are tailored towards trapped-ion architec-

tures that provide all-to-all connectivity [9, 31, 74, 77],
but they can be analogously implemented on other ar-
chitectures. For example, neutral atom platforms have
demonstrated the capabilities required for implement-
ing the presented code constructions [15, 78]. These
architectures offer long-range connectivity and high-
fidelity single- and two-qubit gates, while mid-circuit
measurements and real-time feedback are still experi-
mentally demanding due to relatively long measurement
times [15, 78–80]. These features make our measurement-
free implementations ideal candidates for neutral atom
platforms, potentially enhancing performance by avoid-
ing costly circuit components.
Future work will include the analysis of our proto-

cols for higher-distance codes, as outlined above, and
the investigation of thresholds and required overheads
in terms of qubit count and gate operations, including
extensions to fault-tolerant realizations under restricted
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qubit-connectivity [81]. Moreover, we have identified de-
phasing on idling qubits during two-qubit gates as a ma-
jor logical-error source in our experimental demonstra-
tion. Further adjustment of our schemes to a biased noise
setting [40, 82], which is often given in experimental ar-
chitectures [15, 17, 79], could therefore potentially boost
the performance while reducing overheads.

Our work presents the first demonstration of
measurement-free fault-tolerant quantum computation
and lays the ground for further exploring the full poten-
tial of this new paradigm of fault-tolerant quantum in-
formation processing without mid-circuit measurements.
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Appendix A: Qubit reset

The qubit reset procedure allows for a selective
reinitialization of some of the qubits to state |0⟩.
Physically, the reset is performed by quenching the
lifetime of the 32D5/2 manifold by illuminating the
ion chain with the 854 nm laser with subsequent
optical pumping to reinitialize the qubits in the |0⟩
state. The data qubits are hidden in the 42S1/2
manifold |42S1/2,mJ = −1/2⟩ , |42S1/2,mJ = +1/2⟩
by means of the electron shelving technique [83]
during the life time quenching to preserve their
state. This re-encoding of the data qubits in the
|42S1/2,mJ = −1/2⟩ , |42S1/2,mJ = +1/2⟩ levels instead
of the |42S1/2,mJ = −1/2⟩ , |32D5/2,mJ = −1/2⟩ levels
results in a higher sensitivity to magnetic field noise
and, consequently, lower coherence time. Therefore, we
perform two dynamical decoupling pulses (DD) with the
radio-frequency (RF) antenna driving the transition be-
tween the |42S1/2,mJ = −1/2⟩ and |42S1/2,mJ = +1/2⟩
levels. The sketch of the procedure is shown in Fig. 4a
while additional details can be found in [7].
The reset procedure does not require recooling of the

ion chain, unlike the full mid-circuit measurement, since
the reset ions emit only a few photons during the proce-
dure. Consequently, the reset is faster than our current
implementation of the mid-circuit measurement (1.7ms
vs. ≈ 30ms) and the preservation of the data qubit’s
state is higher (process fidelity 0.955(9) vs. 0.908(12)).
The χ-matrix for the reset procedure obtained via quan-
tum process tomography is depicted in Fig. 4b. We
make use of the full 16-ion register and use fresh aux-
iliary qubits as long as possible. The reset procedure is
only used in our implementation of Grover’s algorithm
(see Fig. 3) to reset one auxiliary qubit that is used for
the FT preparation of |+00⟩L for the [[8, 3, 2]]-code (see
Fig. 7e). This auxiliary qubit is later used for the map-
ping of one Z-stabilizer of the [[8, 3, 2]]-code, as discussed
in App. E.

Appendix B: Anticipated performance of

measurement-free state teleportation

The measurement-free logical teleportation schemes
are made FT as illustrated in Fig. 5a. First, we prepare
auxiliary two-qubit GHZ-states |ψaux⟩ = (|00⟩+|11⟩)/

√
2

stabilized by Saux
X = X8X9 and Saux

Z = Z8Z9, which en-
sures that no single fault on an auxiliary qubit propagates
to a logical error when the two registers are coupled. In
addition, we map two representations of the joint log-
ical operator XS

LX
T
L , that have fully disjoint support,

onto the auxiliary register such that no single fault on
a data qubit leads to a logical error on the output state
(panels 1. and 2. in Fig. 5a). Here, the information
about each representation of the joint logical operator is
stored in one physical auxiliary qubit, which then acts as
a control qubit in the coherent feedback operation con-

sisting of CZ-gates. The same strategy is used in step 3,
where two representations of ZS

L with disjoint support are
mapped onto two physical qubits. The explicit circuits
can be found in App. D. The non-FT (nFT) counterparts
of these protocols make use of a bare physical auxiliary
qubit and only map a single representation of the respec-
tive operators onto this auxiliary qubit, which is then
used to control the coherent feedback operation.

In Fig. 5b, we simulate the scaling of the logical infi-
delity for FT and non-FT measurement-free logical state
teleportation and the application of the HL-gate opera-
tion by means of teleportation. Here, we consider a multi-
parameter noise model, attributing different error rates
to each type of component in the circuits. Specifically, we
consider depolarizing noise on single-qubit gates with a
probability p1 = 3.6 · 10−3, two-qubit depolarizing noise
on two-qubit gates with a probability p2 = 2.5 · 10−2,
flipped physical qubit initializations with a probability
pi = 3 · 10−3, and flips before the final projective mea-
surements with a probability pm = 3 · 10−3. The values
of the error rates correspond to the ones in our experi-
mental setup [7, 17, 21, 41]. We implement dephasing on
all idling qubits, where a Z-fault is applied to each idling
physical qubit with a probability pidle = (1 − e−tgate/T2)
given the gate time of the respective operation and the
coherence time T2 = 50ms. Note that gates in the exper-
imental setup can only be executed sequentially, which
increases the total dephasing time. The noise channels
and numerical methods are explicitly given in App. C. We
scale the error parameters p⃗(λ) = λ · (p1, p2, pi, pm, pidle)
with a common factor λ, such that λ = 1 corresponds to
the set of parameters as given in the current experimental
setup. As expected, the FT protocols scale quadratically
with λ, indicating that the required fault-tolerance prop-
erties are fulfilled.

Our approach for logical state teleportation without
mid-circuit measurements is, in principle, scalable to
higher distance d > 2 surface codes, as illustrated in
Fig. 5c. These codes have d equivalent representations
of the logical Pauli-operators which do not share sup-
port. For the FT mapping of the weight-d logical op-
erators, we then have to prepare the auxiliary register
fault-tolerantly in a d-qubit GHZ-state, and apply coher-
ent feedback steps controlled on the state of d physical
auxiliary qubits.

Appendix C: Numerical methods

We use Monte Carlo simulations to estimate the logical
infidelities of our protocols [84]. Each circuit component
is modeled by first applying the respective ideal opera-
tion, followed by an error E occurring with probability
p. We simulate a depolarizing noise channel after every
single- and two-qubit gate. With probabilities p1 and
p2, an error from the respective sets is applied. These
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FIG. 4: Experimental details of the qubit reset procedure. a, The pulse sequence implementing the qubit reset
procedure. Firstly, the data qubits are hidden in the 42S1/2 manifold by applying a global RF pulse and individually
addressing each data qubit with a π-pulse. After that, the auxiliary qubits are reinitialized as |0⟩. Finally, the
data qubits’ encoding is restored to the original. The dynamical decoupling (DD) pulses are inserted to mitigate
decoherence of the data qubits in the 42S1/2 manifold. b, The χ-matrix representation of the reset procedure as the
process acting on data qubits, averaged over all data qubits. The area and the color coding of the squares correspond
to the absolute value and the phase of an element of the χ-matrix, respectively. The dashed square represents an
ideal outcome, specifically the identity process.

probabilities define the corresponding error channels

E1(ρ) = (1− p1)ρ+
p1
3

3
∑

i=1

Ei1ρE
i
1 (C1)

E2(ρ) = (1− p2)ρ+
p2
15

15
∑

i=1

Ei2 ρE
i
2.

with Ek1 ∈ {X, Y , Z} for k = 1, 2, 3 and Ek2 ∈ {IX, XI,
XX, IY , Y I, Y Y , IZ, ZI, ZZ, XY , Y X, XZ, ZX,
Y Z, ZY } for k = 1, ..., 15. All qubits are initialized and
measured in the Z-basis, at the very end of the respective
protocols. To simulate faults in these operations, we ap-
ply X-flips after initialization and before measurement,
each occurring with probabilities pinit and pmeas, respec-
tively. Moreover, qubits that remain idle during gate
operations may experience dephasing, which we model
with the error channel

Eidle(ρ) = (1− pidle)ρ+ pidleZρZ. (C2)

The probability pidle depends on the execution time t of
the performed gate and the qubit coherence time T2 =
50ms

pidle =
1

2

[

1− exp

(

− t

T2

)]

. (C3)

Operation Error rate Duration

Two-qubit gate p2q = 0.025 350 µs

Single-qubit gate p1q = 0.0036 70 µs

Measurement pmeas = 0.003 -

Preparation pinit = 0.003 -

TABLE I: Error rates and duration of operations

on a trapped-ion quantum processor. These val-
ues correspond to the trapped-ion setup that was used
in the experiments and are used in the numerical simu-
lations. Furthermore, the coherence time is determined
to be T2 =50ms in our experimental setup.

In our simulations, we use t1 = 70 µs as the gate time
of single-qubit gates and t2 = 350 µs as the gate time of
two-qubit gates, as summarized in Tab. I.

We measure the final state in the logical X-, Y -, and
Z-basis for each protocol, as described in App. E, and
calculate the state fidelity between the ideal logical state
ρ1 and the reconstructed density operator ρ2 obtained
after postselecting, as

F (ρ1, ρ2) = Tr

[

√√
ρ1ρ2

√
ρ1

]2

. (C4)

We use Qiskit’s Quantum Information package to calcu-
late fidelities [85].
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FIG. 5: Fault tolerance and scaling to higher code distances for measurement-free logical state telepor-

tation. a, We prepare an auxiliary two-qubit GHZ-state, to prevent single faults on auxiliary qubits from causing a
logical failure. In addition, we map two stabilizer-equivalent representations of the joint logical operator with fully
disjoint qubit support onto the auxiliary registers (1., 2.). The same strategy is used in step 3, where two equivalent
but fully disjoint logical Z-operators of the source register are mapped onto two physical qubits. b, Numerically
determined scaling of the logical infidelity for FT and non-FT logical teleportation and the HL-gate, averaged over
initial states |0⟩L and |+⟩L. We fix the error parameters p⃗ = (p1, p2, pm, pi, pidle) to experimental error rates [7, 17]
and scale these with a common improvement factor λ. We identify a quadratic scaling of the infidelity for the FT
protocols with λ, which indicates–as expected–that no single fault leads to a logical failure. The FT teleportation
protocol outperforms its non-FT counterpart already for the current experimental noise parameters (λ = 1). The
inset shows the logical infidelities at λ = 1 obtained from the experiment (darker color) and numerical simulations
(lighter color). c, Scaling measurement-free state teleportation to surface codes with higher distances d > 2. Each
string of qubits connecting opposing boundaries supports a representation of a logical XS

L (upper lattice) and XT
L

(lower lattice); one exemplary representation is shown in red. There are d equivalent representations that have fully
disjoint support. Each one can be mapped onto an auxiliary d-qubit GHZ-state, and coherent feedback steps can be
applied, which are controlled by the state on d physical auxiliary qubits.

Appendix D: Circuits

Figure 6 shows the explicit circuits that were imple-
mented for FT logical state teleportation discussed in
Sec. C. Figure 7 shows the circuit constructions for the
FT logical state initializations on the [[4, 1, 2]]- and the
[[8, 3, 2]]-code without mid-circuit measurements as im-
plemented in the demonstrated protocols. In these cir-
cuits, fault tolerance is maintained even without mea-
surements by means of a flag-qubit-controlled reduction
of potentially dangerous weight-2 errors to weight-1 con-
figurations. Figure 8 depicts the circuit construction
for the application of a single-logical HL-gate on the
[[8, 3, 2]]-code.

Appendix E: Tomography

[[4, 1, 2]]-code
We perform logical state tomography for two logical
input states |0⟩L and |+⟩L considering logical state
preparation, state teleportation and the application of
a HL-gate on the [[4, 1, 2]]-code, as shown in Fig. 1.
To this end, we measure in the X-, Y -, and Z-basis
to extract the respective logical expectation values.
For measurements in the X-basis, we measure all
physical qubits in the X-basis in the end and infer the
logical X-operator and the X-type stabilizer from this
measurement. Analogously, we can extract the logical

Z-operator and the Z-type stabilizers for measurements
of all physical qubits in the Z-basis. However, we
cannot simply determine the required stabilizers and
the logical value at the same time for measurements
in the Y -basis, because they share support but are of
different Pauli-type, as for example YL = Y0X1Z2 and
the Y -type stabilizer SY = Y0Y1Y2Y3. We therefore map
out the Y -stabilizer onto a physical auxiliary qubit with
the circuit shown in Fig. 10. Here, the gate ordering
ensures that no hook error, i.e. a fault on an auxiliary
qubit that may propagate onto multiple data qubits,
leads to a logical flip in the subsequent measurement,
as any single propagated fault is still detected in
the end by a Z-stabilizer. We finally measure the
4 qubits in the Y -, X-, and Z-basis, allowing us to
determine YL and one additional Z-stabilizer S2

Z = Z2Z3.

[[8, 3, 2]]-code
We perform logical state tomography for each state pre-
pared with the specified protocol, i.e. logical state prepa-
ration and the logical operations HL and CCZL on
[[8, 3, 2]] for different input states, as shown in Fig. 11.
We consider each individual logical qubit and perform to-
mography for each one independently. For measurements
in the X-basis, we measure all physical qubits in the X-
basis and determine the three logical Pauli-operators X0

L,
X1

L, X
2
L and the X-stabilizer SX , as defined in Fig. 2a.

Analogously, we extract the logical Z-operators simulta-
neously, along with the Z-stabilizers, when measuring all
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FIG. 6: Circuits for modular measurement-free logical state teleportation from a source to the target

register and the application of a HL-gate by means of teleportation. a, We first map two stabilizer-equivalent
joint logical operators XS

LX
T
L = X2X3X4X5 and XS

LX
T
L = X0X1X6X7 that have fully disjoint support onto auxiliary

two-qubit GHZ-states (green). Then, two CZ-gates are applied implementing the desired ZT
L , if both values of the

joint logical operators are in 1 (blue). Here, Res. corresponds to a reset operation as described in App. A, which
can either be carried out explicitly by physically resetting the auxiliary qubits to the |0⟩ state and reusing them
afterwards, or implemented by replacing them with fresh qubits. In the second step, we map two equivalent operators
ZS
L = Z0Z2 and ZS

L = Z1Z3 onto physical auxiliary qubits (red) and implement two CNOT-gates to apply XT
L , if

both auxiliary qubits are in the |1⟩-state (orange). b, Analog circuit for applying a HL-gate to the [[4, 1, 2]]-code.
We now prepare the target register in |+⟩L, instead of |0⟩L. Then we map out two disjoint, but equivalent operators
XS

LZ
T
L (green), implement a coherent quantum feedback with CNOT-gates (blue), map two ZS

L to physical auxiliary
qubits (red) and apply a coherent feedback operation with two CNOT-gates (orange). Note that the last two steps
are recompiled into CZ- and CNOT-gates and some H-gates acting on the auxiliary qubits at the end are omitted,
as the auxiliary qubits are disentangled from the data-qubit registers and discarded afterwards.

physical qubits in the Z-basis. In this case, we addition-
ally map out the X-stabilizer SX onto an auxiliary qubit
when performing the HL-gate to achieve fault tolerance.
The circuit that is used for measurements in the Z-basis
is shown in Fig. 9a. In this circuit, a single fault may
propagate as illustrated in red, but is detected by the
Z-stabilizers afterwards.
For measurements in the Y -basis, we have to take into

account that the different logical operators may share
support but are of different Pauli-type, as for example
Y 0
L = Y0X1Z2X4X5 and Y 1

L = Y0X1X2X3Z4, so they
cannot be extracted simultaneously in a single measure-
ment. We therefore perform three sets of independent
experiments and determine Y 0

L , Y
1
L and Y 2

L individu-
ally. For measurements in the Y -basis, we also map
the Y -stabilizer SY = Y0Y1Y2Y4Y3Y5Y6Y7 onto an aux-
iliary qubit when performing the HL-gate. We then
measure the physical qubits in different bases to extract
the respective logical Y -operator and one additional Z-
stabilizer. An exemplary circuit that is used for measure-
ment in the Y -basis for the extraction of Y 0

L is shown in
Fig. 9b. When extracting Y 1

L and Y 2
L , we measure the

physical qubits in the bases Y0X1X2X3Z4Z5Z6Z7 and
Y0Z1X2Z3X4Z5X6Z7, respectively.

Moreover, the logical auxiliary qubit is still intact af-
ter performing the single-logical HL-gate. We also pro-
jectively measure the logical auxiliary qubit, extract the
stabilizers of the [[4, 2, 2]]-instance, and postselect for a
trivial syndrome to increase the fidelities in our proto-
cols. Here, we map the SZ-stabilizer of the logical auxil-

iary qubit onto another physical auxiliary with the circuit
shown in Fig. 9c.
When we run the full logical Grover search algorithm

on the three qubits of the [[8, 3, 2]]-code, we addition-
ally map two Z-stabilizers S1

Z = Z0Z1Z2Z3 and S2
ZS

3
Z =

Z1Z2Z5Z6 onto physical auxiliary qubits in the end in
order to maintain fault tolerance.

Appendix F: Number of measurements

In the tomography experiments described in App. E,
each logical state was measured in three measurement
bases {X,Y, Z} with the same number of measurements
for each basis. The teleportation experiment with the
[[4, 1, 2]]-code (see Fig. 1) took 40000 shots for each log-
ical state per measurement basis. The initialization and
logical operations with the [[8, 3, 2]]-code (see Fig. 11)
took 7500 shots for each logical state and logical qubit
per measurement basis. The Grover’s algorithm demon-
stration (see Fig. 3) took 37500 shots per measurement
basis. All data sets were split into 12 equal subsets, the
tomography was performed for every subset, yielding 12
values for the fidelity for every experiment. The final fi-
delity numbers are the mean and the standard deviation
of these 12 values.
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FIG. 8: Circuit for a single-logical qubit HL-gate on the [[8, 3, 2]] code, as illustrated in Fig. 2b3. We
first prepare the auxiliary register in the |+0⟩L-state of the [[4, 2, 2]]-code (orange). Then, we apply the inter-block
CNOT-gate (green) where the control-bit corresponds to the first qubit of the [[4, 2, 2]]-block, and the target qubit to
the first qubit of the [[8, 3, 2]]-code. The inter-block CNOT-gate is not transversal but FT in the sense that any single
fault may propagate, but is still detectable in the end. In the next step, the H⊗2

L -gate is applied to the auxiliary
register. This step includes an additional SWAP operation, which is absorbed by the following gates, as the physical
qubits are simply relabeled accordingly. We then apply an inverted CNOT-gate (blue), that is controlled by the first
logical qubit of the [[8, 3, 2]] and acts on the first one of the [[4, 2, 2]]-code. The two inter-block logical CNOT-gates are
not symmetric, but the implementation depends on the orientation of the gate. After again applying Caux,1NOTψ1
(green), and H⊗2

L X1
L to the logical auxiliary qubits, we finally apply the last logical gate Cψ1NOTaux1 (blue).
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for FT measurements in the Z-basis. A single X-fault
on the auxiliary qubit may propagate to a weight-4 error
configuration, as for example to X3X5X6X7. This error
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Z = Z0Z1Z2Z3. b,

Exemplary circuit for FT measurement in the Y -basis.
We first map the Y -stabilizer SY onto a physical auxil-
iary qubit and subsequently measure the physical data
qubits in different bases, as indicated, to infer Y 0

L . c,

Circuit for stabilizer extraction on the logical auxiliary
[[4, 2, 2]]-code. We map the Z-stabilizer onto an auxiliary
qubit and then destructively measure the physical qubits
in the X-basis.

FIG. 10: FT measurement of YL. We first map the
Y -stabilizer onto an auxiliary qubit and then measure
the physical qubits in the Y -, X- and Z-basis to fault-
tolerantly measure YL.
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Appendix G: Performance of the FT universal gate

set on the [[8, 3, 2]]-code

Fig. 11 shows the logical state fidelities that were ob-
tained experimentally for FT logical state initialization,
the single-logical HL-gate and the transversal CCZL-gate
on the [[8, 3, 2]]-code. We find that fidelities are higher
if the final target state is a Z-eigenstate, as opposed to
an X-eigenstate, due to dephasing, which does not af-
fect the fidelity for Z-eigenstates. Additionally, postse-
lection based on the four Z-stabilizers is more selective
than only a singleX-stabilizer, which boosts the fidelities
in these cases. The degree of postselection is reflected in

the acceptance rates: the average acceptance rates in the
experiment[simulation] after the state initialization are
0.6[0.64] in the X-basis, 0.48[0.53] in the Y -basis, and
0.3[0.48] for measurements in the Z-basis; the numbers
in brackets indicate the acceptance rate obtained in the
simulation. After the injection of a HL-gate, these are
0.3[0.2] for measurements in the X-basis, 0.2[0.13] in the
Y -basis and 0.1[0.07] in the Z-basis. The fidelities for
the state initialization of |+00⟩L and CCZL|+00⟩L agree
with each other within the given uncertainty interval,
since the CCZL consists entirely of virtual Z-rotations,
thus no additional operations are physically applied to
the qubits.

Fig. 12 shows the simulated scaling of the logical
infidelity for the logical HL-gate on the [[8, 3, 2]]-code
for each logical qubit. We scale the noise parameters
p⃗(λ) = λ · (p1, p2, pi, pm, pidle) given the same values as
specified in App. B, such that λ = 1 corresponds to the
set of parameters as given for the current experimental
setup. The inset shows the state fidelities for the dif-
ferent logical input states obtained from experiment and
simulation.

We find that the fidelities of the first logical qubit ob-
tained from simulation, shown in blue in Fig. 12a, differ
from the experimental result by more than 14% for logical
states |+00⟩L and |000⟩L. We attribute this deviation to
global dephasing effects due to random fluctuations in the
effective magnetic field that act on all physical qubits si-
multaneously [86], instead of locally and uncorrelated on
each individual qubit. The effect of this global dephasing
on the eight-qubit state can be estimated by considering

the explicit basis states, for example

|000⟩L =
1√
2
(|00000000⟩+ |11111111⟩). (G1)

Local dephasing on this state leads to decay of the off-
diagonal elements of the density matrix with a factor of
e−∆n/2·γt, where γ is a decay constant and t is time. ∆n
is the number of positions in the basis states, where the
entries of two basis states differ, and corresponds to the
Hamming distance. For |000⟩L, ∆n = 8 and the decay
factor is given by e−4γt. Global dephasing on the other
hand will cause the off-diagonal elements to decay with a

factor of e−(∆m/2)2/2·γt [86]. ∆m is the difference in mag-
netization of the basis states, where the magnetization of
a state is given by the difference between the number of
qubits in the ground state |0⟩ and the remaining number
of bits in the excited state |1⟩ [86].

For |000⟩L, ∆m = 16 and, thus, this prefactor is given
by e−32γt. This means that, for |000⟩L, the off-diagonal
elements decay eight times faster for global dephasing
than for local. |000⟩L is most sensitive to this global ef-
fect, since it is an eight-qubit GHZ-state with maximal
difference in the magnetization between its basis states.
This effect is expected and found to be less pronounced
for |+00⟩L = 1

2 (|00000000⟩ + |11111111⟩ + |11001100⟩ +

|00110011⟩), where only some coherences decay accord-
ing to ∆m = 8 and some with ∆m = 4, so twice and
eight times faster than for local dephasing. We only ac-
count for local dephasing in our simulations, as charac-
terized in App. C, which may partly explain the observed
differences between the numerically determined and the
experimental fidelities.
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FIG. 12: Scaling of the logical infidelity for different logical qubits during the single logical HL-gate.

We fix the error parameters p⃗ = (p1, p2, pm, pi, pidle) and scale these with λ. λ = 1 corresponds to the current values
in the experimental setup. We determine the scaling of the logical infidelity for the logical qubit 0(a), on which the
HL is applied, and idling logical qubits 1(b) and 2(c). The inset shows the logical infidelities at λ = 1 obtained from
the experiment (darker color) and from numerical simulations (lighter color).

Appendix H: Error budget

Logical errors can be correlated in quantum codes that
encode multiple logical qubits, such as block codes [87]
or quantum low-density parity-check codes [88, 89]. We
investigate these correlated errors by determining the
probabilities for each logical error configuration, includ-
ing single and correlated errors, for the non-transversal
single-logical HL-gate on the [[8, 3, 2]]-code. To this end,
we prepare logical state |+00⟩L(|0++⟩L), then apply the
HL-gate to the first qubit and measure destructively in
the Z(X)-basis. From this, we infer if one, two or all
three logical qubits have been flipped, which corresponds
to the probability of logical X(Z)-errors. Fig. 13a and b

show the probabilities for logical X- and Z-error configu-
rations on the experimental setup. Notably, logical errors
do not occur independently as p(Xi

LX
j
L) ̸= p(Xi

L)p(X
j
L)

and p(ZiLZ
j
L) ̸= p(ZiL)p(Z

j
L), as theoretically predicted in

previous works on quantum LDPC codes [90]. Fig. 13c
and d show numerical data for a setting without dephas-
ing on idling qubits and for perfectly initialized logical
states, to isolate the contribution of the HL-gate pro-
tocol. Logical error probabilities decrease substantially,
while the overall distribution is maintained. Notably,
we find that dephasing attributes for a large part of the
overall logical error rate: without dephasing, the logical
Z-error rate on qubit 0 drops from almost 0.3 (left most
light blue column in Fig. 13b) to less than 0.1 (left most
orange column in Fig. 13d).

Appendix I: Grover’s search algorithm

The number of required Grover iterations n providing
the highest amplification of the solution-states depends
on the size of the search space N (N = 23 = 8 in our
case) and the number of solutions s. In this work, we
use a phase oracle [55, 61] with two solutions (s = 2)
w ∈ {|011⟩ , |101⟩}: states |011⟩ and |101⟩ are marked by

the oracle of the form

O = C1Z2 · C0Z2. (I1)

The initial equal-superposition state can be repre-
sented as a superposition of solutions and non-solution
states [3]

|ψ⟩ = 1√
8

∑

ψ′′ /∈{011,101}

|ψ′′⟩+ 1√
8
(|011⟩+ |101⟩) (I2)

=

√

N − s

N
|ψ′⟩+

√

s

N
|w⟩ = cos θ |ψ′⟩+ sin θ |w⟩

with
√

s/N = sin θ, i.e. θ = π/6 in our case. The prob-
ability of obtaining a valid solution w when measuring
in the computational basis is s/N = 1/4 and the prob-
ability of obtaining an orthogonal non-solution state ψ′

equals to (N−s)/N = 3/4. One Grover step is a product
of two reflections, first about the solution states |w⟩ with
the oracle O and then about the initial state |ψ⟩ with
the diffusion operator D. This corresponds to an overall
rotation of the initial state, and the rotation angle can
be identified to be 2θ = π/3 in our case. A single ap-
plication of the Grover iteration including the oracle O
and the diffusion operator D, amplifies the probability of
success to 1 [3, 61], since

D ·O |ψ⟩ = cos((2+ 1)θ) · |ψ′⟩+sin((2+ 1)θ) · |w⟩ = |w⟩ ,
(I3)

meaning that a solution in the fault-free case is found
with certainty. Analogously, the probability to find a
solution after k Grover iterations in a noise-free setting
is given by sin2((2k + 1)θ).
A quantum circuit implementing this algorithm is

shown in Fig. 3a. This original circuit can be simpli-
fied to allow for a more simple implementation with log-
ical qubits compiled into available logical gates of the
[[8, 3, 2]]-code, reducing the number of required HL-gates
to one. All operations in the resulting circuit can be
fault-tolerantly implemented within the [[8, 3, 2]]-code as
described in Sec. D.
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FIG. 14: Anticipated performance of the two-

solution Grover search on logical qubits. We sim-
ulate Grover’s search algorithm for the set of noise pa-
rameters as characterized by the current experimental
setup (blue), indicating a success probability of psuccess =
0.40(4). For a slightly lower two-qubit-gate error rate of
p′2 = p2 − 0.01 = 0.015, we already obtain a total success
probability of 0.52(1), which is above the classical opti-
mal success probability of 0.46, as discussed in Sec. E.
If instead of lowering p2, we increase T2 by a factor of 2
to 100ms (orange), we find even higher success rates of
psuccess = 0.67(1).

Appendix J: Projected performance of Grover’s

algorithm

We simulate Grover’s algorithm on logical qubits for
different sets of noise parameters in order to estimate
how much physical error rates have to improve to gain
an advantage over the classically optimal success proba-
bility of 0.46. Fig. 14 shows the simulated probabilities
to find each possible solution state for the initial set of
noise parameters (blue), for a two-qubit-gate error rates
reduced by a factor of 2 and for an increased coherence
time T ′

2 = 2T2 = 100ms. Both projected scenarios out-
perform the classical counterpart, indicating that even
minor enhancements to the current setup could push per-
formance beyond this break-even point.

Appendix K: Grover search on physical qubits

We implement Grover’s search algorithm on physi-
cal qubits, as compiled in Fig. 3a on our experimen-
tal trapped-ion setup, accompanied by numerical simula-
tions; the results are shown in Fig. 15. The total experi-
mental[simulated] success probability of 76(2)%[77(1)%]
is larger than for the FT implementation on logical
qubits, indicating that the quantum algorithm executed
on logical qubits is currently still operated above the
break-even point with its counterpart realization on phys-
ical qubits.
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