001050560 001__ 1050560
001050560 005__ 20260113204525.0
001050560 0247_ $$2doi$$a10.48550/ARXIV.2504.10298
001050560 037__ $$aFZJ-2026-00317
001050560 1001_ $$0P:(DE-HGF)0$$aLange, F.$$b0
001050560 245__ $$aCross-talk in superconducting qubit lattices with tunable couplers -- comparing transmon and fluxonium architectures
001050560 260__ $$barXiv$$c2025
001050560 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1768309529_19070
001050560 3367_ $$2ORCID$$aWORKING_PAPER
001050560 3367_ $$028$$2EndNote$$aElectronic Article
001050560 3367_ $$2DRIVER$$apreprint
001050560 3367_ $$2BibTeX$$aARTICLE
001050560 3367_ $$2DataCite$$aOutput Types/Working Paper
001050560 520__ $$aCross-talk between qubits is one of the main challenges for scaling superconducting quantum processors. Here, we use the density-matrix renormalization-group to numerically analyze lattices of superconducting qubits from a perspective of many-body localization. Specifically, we compare different architectures that include tunable couplers designed to decouple qubits in the idle state, and calculate the residual ZZ interactions as well as the inverse participation ratio in the computational basis states. For transmon qubits outside of the straddling regime, the results confirm that tunable C-shunt flux couplers are significantly more efficient in mitigating the ZZ interactions than tunable transmons. A recently proposed fluxonium architecture with tunable transmon couplers is demonstrated to also maintain its strong suppression of the ZZ interactions in larger systems, while having a higher inverse participation ratio in the computational basis states than lattices of transmon qubits. Our results thus suggest that fluxonium architectures may feature lower cross talk than transmon lattices when designed to achieve similar gate speeds and fidelities.
001050560 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001050560 588__ $$aDataset connected to DataCite
001050560 650_7 $$2Other$$aQuantum Physics (quant-ph)
001050560 650_7 $$2Other$$aFOS: Physical sciences
001050560 7001_ $$0P:(DE-HGF)0$$aHeunisch, L.$$b1
001050560 7001_ $$0P:(DE-HGF)0$$aFehske, H.$$b2
001050560 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, D. P.$$b3$$ufzj
001050560 7001_ $$0P:(DE-HGF)0$$aHartmann, M. J.$$b4
001050560 773__ $$a10.48550/ARXIV.2504.10298
001050560 909CO $$ooai:juser.fz-juelich.de:1050560$$pVDB
001050560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b3$$kFZJ
001050560 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001050560 920__ $$lyes
001050560 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001050560 980__ $$apreprint
001050560 980__ $$aVDB
001050560 980__ $$aI:(DE-Juel1)PGI-2-20110106
001050560 980__ $$aUNRESTRICTED