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Abstract

Neurotransmitter receptors guide the propagation of signals between brain regions. Mapping receptor distributions in the
brain is therefore necessary for understanding how neurotransmitter systems mediate the link between brain structure and
function. Normative receptor density can be estimated using group averages from Positron Emission Tomography (PET)
imaging. However, the generalizability and reliability of group-average receptor maps depends on the inter-individual
variability of receptor density, which is currently unknown. Here we collect group standard deviation brain maps of PET-
estimated protein abundance for 12 different neurotransmitter receptors and transporters across 7 neurotransmitter systems,
including dopamine, serotonin, acetylcholine, glutamate, GABA, cannabinoid, and opioid. We illustrate how cortical and
subcortical inter-individual variability of receptor and transporter density varies across brain regions and across neu-
rotransmitter systems. We complement inter-individual variability with inter-regional variability, and show that receptors
that vary more across brain regions than across individuals also demonstrate greater out-of-sample spatial consistency.
Altogether, this work quantifies how receptor systems vary in healthy individuals, and provides a means of assessing the

generalizability of PET-derived receptor density quantification.
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Introduction

Neurotransmitter receptors modulate neuronal activity,
guide synaptic wiring, and mediate brain-wide communi-
cation. Mapping neurotransmitter receptor distributions
in the brain is therefore necessary for understanding how
chemoarchitecture shapes brain structure and function. We
recently collated a Positron Emission Tomography (PET)
atlas of in vivo whole-brain neurotransmitter receptor and
transporter densities across 19 unique receptors and trans-
porters and 9 neurotransmitter systems (Hansen et al. 2022a;
Markello et al. 2022). This atlas is widely used for studying
chemoarchitectonic mechanisms underlying, for example,
neural rhythms (Shafiei et al. 2023), pharmacological per-
turbations (Tuominen et al. 2025; Luppi et al. 2023), energy
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metabolism (Castrillon et al. 2023), cognition (Yang et al.
2023), and multiple diseases and disorders (Ricard et al.
2024; Hansen et al. 2022; Morys et al. 2024; Jiang et al.
2024; Wiesman et al. 2024).

Nevertheless, brain anatomy and function vary across
individuals, manifesting as individual differences in cogni-
tion and behaviour (Mueller et al. 2013; Bethlehem et al.
2022; Segal et al. 2025). In addition, brain regions and
systems develop at different rates, and are differentially
subjected to influence from the environment (e.g. via sen-
sory stimuli) and transcriptomic programs (Buckner and
Krienen 2013; Sydnor et al. 2021). Inter-individual vari-
ability in receptor density may therefore be greater in some
brain regions than in others. Some inferences on the inter-
individual variability of receptor density can be made from
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group-average receptor density maps alone: group receptor
density brain maps can be compared across sites, PET trac-
ers, imaging modalities, and even across biological features
(e.g. receptor density versus protein-coding gene expres-
sion) (Hansen et al. 2022a, b; Murgas et al. 2022; Beliveau
et al. 2017; Nergaard et al. 2021). However, these strategies
can only assess the spatial similarity of brain maps rather
than the inter-individual variability of regional receptor
density.

To better understand how receptor abundance varies
across individuals, we collate group standard deviation
maps for 12 neurotransmitter receptors and transporters
across 7 neurotransmitter systems and nearly 700 individu-
als. We show cortical and subcortical brain maps of inter-
individual receptor abundance variability, and benchmark
receptor variability across PET tracers. We then compare
inter-individual and inter-regional variability. By interpret-
ing the present findings alongside previous work comparing
spatial distributions of receptors, we provide receptor-spe-
cific hypotheses for sources of variability. Altogether, this
work serves as a reference point for assessing receptor and
transporter measurement generalizability in the human
brain.

Results

We collated group standard deviation maps of PET-derived
neurotransmitter receptor and transporter densities from
a total of 12 different receptors/transporters across 7 neu-
rotransmitter systems, including dopamine, serotonin,
acetylcholine, glutamate, GABA, cannabinoid, and opioid
(Table 1). All mean and standard deviation maps are parcel-
lated according to 100 cortical regions (Schaefer et al. 2018)
and 54 subcortical regions (Tian et al. 2020) (note that allo-
cortex (e.g. hippocampus) is included in the subcortical
atlas). Given that standard deviations scale with the mean
(Fig. S1,S2), we normalize standard deviation by the mean,
resulting in a brain map of the within-region inter-individual
coefficient of variation for each neurotransmitter receptor
and transporter (Fig. 1, Fig. 2). In both cortex and subcortex,
inter-individual coefficient of variation is heterogeneously
distributed and highly organized across brain regions. For
many receptors and transporters, cortical coefficient of vari-
ation appear greatest in unimodal brain regions, including
primary somatomotor and somatosensory cortex as well as
primary visual cortex (Fig. 1). Meanwhile, subcortical coef-
ficient of variation is often greatest in ventral structures as
well as the caudate (Fig. 2).

In Fig. 3 we show the distribution of cortical and subcorti-
cal coefficients of variation for each neurotransmitter recep-
tor and transporter. Density measurements in subcortical
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structures often vary more than in cortical structures. Within
the cortex, inter-individual coefficient of variation is gen-
erally low (around 0.2), with some receptors/transporters
showing moderate variation (around 0.4, e.g. MOR, CB,),
and some high variation (> 0.5, e.g. NMDA, GABAA oy
and o subunits). We confirm that the D tracer [1!C]raclo-
pride, which is only suitable for quantification of striatal D5
receptors (Dagher and Palomero-Gallagher 2020), shows
greatest variation outside of the striatum, as a result of
increased measurement noise (Fig.S3). In addition, we find
that different tracers that bind to the same protein can show
different amounts of inter-individual variability, possibly
due to differences in study design and preprocessing (e.g.
5-HTT [''C]IMADAM tracer binding is more variable than
5-HTT [''C]DASB tracer binding within the cortex (Ner-
gaard et al. 2019, 2020)).

Inter-individual variance of a regional measurement is
better interpreted in light of the receptor/transporter’s mea-
surement variability across brain regions. To develop this
point further, consider a group-averaged measurement with
low variation across brain regions (i.e. is approximately
homogeneously expressed in the brain) but high variation
across individuals. This measurement will have a highly
variable spatial profile (i.e. brain map) from one individual
to the next. On the other hand, if a measurement varies more
across regions than individuals, the regional rank order of
protein density will remain similar in all individuals; that
is, this measurement will be consistently spatially expressed
across individuals. To quantify receptor/transporter den-
sity variability across regions, we calculate inter-regional
coefficient of variation: the standard deviation of group-
averaged receptor/transporter density across brain regions
normalized by the mean (Fig. 3 dashed vertical lines; see
also schematics in Fig. 4a—c). We find that, in the cortex,
many receptors/transporters show similar or greater vari-
ability across individuals than regions; indeed, only 3/16
receptors/transporters demonstrate significantly greater
inter-regional coefficient of variation than inter-individual
coefficient of variation. Within the subcortex however,
receptor/transporter density often varies less across indi-
viduals than across regions (9/16 receptors/transporters
demonstrate significantly greater inter-regional coefficient
of variation than inter-individual coefficient of variation).
This suggests that, although population variance is gener-
ally greater in subcortex than in cortex (Fig. 3 yellow bars),
subcortical receptor/transporter expression is likely to be
stably spatially expressed. Indeed, we find that the ratio of
spatial variation to population variation is positively corre-
lated with the out-of-sample consistency of a receptor/trans-
porter’s spatial distribution (i.e. mean pairwise Spearman
correlation of receptor/transporter brain maps from different
cohorts. 7 = 0.49, p = 0.057 within cortex; r = 0.77,p ~ 0
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Fig. 1 Inter-individual coefficient of variation of receptor/transporter
density in the cortex. Inter-individual coefficient of variation is defined
as the population standard deviation of tracer binding normalized by
population mean, and is calculated for every cortical region. Each
coefficient of variation brain map is min-max scaled to showcase the
spatial organization of inter-individual variability of neurotransmit-
ter systems. Grey colours reflect regions that have been omitted due
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Fig. 2 Inter-individual coefficient of variation of receptor/transporter
density in the subcortex. Inter-individual coefficient of variation is
defined as the population standard deviation of tracer binding normal-
ized by population mean, and is calculated for every subcortical region.
Each coefficient of variation brain map is min-max scaled to showcase
the spatial organization of inter-individual variability of neurotrans-
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mitter systems. Grey colours reflect regions that have been omitted due
to unstable coefficient of variation (see Methods for details). Tracer
names are included in parentheses for 5-HTT and D2. GABAA recep-
tors were mapped according to two different subunits (a1 and as) as
well as the benzodiazepine binding site (8z). Note that Do ['!C]raclo-
pride tracer is only sensitive within the striatum
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Fig. 3 Distributions of inter-individual coefficient of variation. For
each receptor and transporter (rows), the distribution of within-region
inter-individual coefficient of variation is shown in orange for (a) cor-
tical regions and (b) subcortical regions. These are the same data as
shown in Fig. 1 and Fig. 2. A kernel density is estimated for each dis-
tribution (solid orange line). The y-axis represents the number of brain

within subcortex; Fig. 4). Note the non-significant relation-
ship in the cortex, which may be due to lower sensitivity and
reliability of certain tracers (e.g. [1!C]raclopride), but also
highlights exceptions such as glutamatergic mGluR5 and
endocannabinoid CBj, both of which demonstrate highly
replicable spatial patterns but low regional-to-population
coefficient of variation ratio.

coefficient of variation

regions within each histogram bin, and the smooth curve represents the
probability density estimate of the underlying histogram. The dashed
purple line represents the inter-regional coefficient of variation. Aster-
isks indicate receptors/transporters whose inter-regional coefficient of
variation is significantly greater than a null distribution of mean boot-
strapped inter-individual coefficient of variation

Discussion

In the present report, we estimate standard deviation maps
for 12 unique neurotransmitter receptors and transporters
to better understand how receptor and transporter density
varies across individuals. We show that receptor and trans-
porter variability is heterogeneous across brain regions and
systems. Cortical receptor/transporter density typically var-
ies more across individuals than across brain regions, while
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Fig. 4 Comparing inter-regional and inter-individual variation of
receptor/transporter density | A schematic illustrating three perspec-
tives of variability: (a) inter-individual coefficient of variation quan-
tifies within-region measurement variability across participants; (b)
inter-regional coefficient of variation quantifies variability of group-
averaged measurements across brain regions; and (c) spatial consis-
tency quantifies the similarity of group-averaged measurements of the
same receptor/transporter. For (d) cortex and (e) subcortex, regional-
to-population coefficient of variation ratio (y-axis) is defined as the
inter-regional coefficient of variation (dashed purple line in Fig. 3) nor-
malized by the mean inter-individual coefficient of variation (mean of

subcortical receptor/transporter density typically varies less
across individuals than across regions. Finally, we show that
receptors/transporters that vary more across regions than
individuals are also more consistently spatially mapped.
The recent proliferation of group-averaged “reference”
brain maps make it possible to spatially relate diverse brain
phenotypes with one another (Markello et al. 2022; Hansen
et al. 2022a; Hansen and Misic 2025). However, the inter-
pretation of such associations is dependent on the general-
izability and reliability of these reference maps, which are
rarely accompanied by estimates of inter-individual vari-
ability (Segal et al. 2025). Here we aim to rectify this limi-
tation by retroactively compiling standard deviation maps
for previously shared mean receptor density brain maps
(see Hansen et al. (2022a)). We find that inter-individual
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orange bars in Fig. 3). Values above | represent receptors/transporters
that vary more across regions than across individuals, and vice versa
for values below 1. Note that y-axis limits are different in panels (d)
and (e). Next, mean spatial consistency is defined as the mean pair-
wise spatial Spearman’s correlation of group-average tracer images of
the same receptor/transporter (x-axis). Tracers used for each out-of-
sample comparison are detailed in Table S1. Note that GABA A images
map different subunits of the GABAA receptor—these receptor sub-
types demonstrate unique expression profiles, resulting in lower spatial
consistency (Sieghart and Sperk 2002)

variability of regional receptor density is organized along
specific anatomical landmarks, such that some brain areas
vary more across people than others. While inter-individual
variability of structural and functional cortical features is
generally greater in transmodal cortex and lower in uni-
modal cortex (Cui et al. 2020; Mueller et al. 2013; Rear-
don et al. 2018; Karahan et al. 2022; Huang et al. 2025),
we find that the opposite is true for many neurotransmitter
receptors and transporters (Fig. 1). This difference in find-
ings may in part be due to the mathematical relationship
between coefficient of variation and standard deviation.
For multiple receptors where unimodal cortical regions
have large coefficient of variation (e.g. 5-HTya, 5-HTp,
5-HT4, MOR, NMDA, GABA,4, D3), these same regions
have low standard deviation (Fig.S1). However, given the
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fact that standard deviation scales with the mean (Eisler
et al. 2008), a mean-normalized measurement such as the
coefficient of variation is more interpretable than the stan-
dard deviation. How structural and functional connectivity
varies with respect to mean connectivity remains unknown.
Inter-individual variability of receptor expression may also
be larger in unimodal than transmodal cortex because recep-
tor expression is tightly coupled to sensory input (Peckol
etal. 2001; Tyler et al. 2007). Individual differences in envi-
ronmental and external stimuli may therefore exert a greater
influence on receptor expression in unimodal over transmo-
dal cortex. As brain maps of inter-individual variability are
generated and shared (Karahan et al. 2022; Sydnor et al.
2021; Monaghan et al. 2024), we will better understand
how variability varies across brain regions and biological
systems.

By combining evidence from multiple lines of analysis,
we are able to generate hypotheses regarding the source
of variability (e.g. measurement or biological) of different
receptors’ expression. Aside from true biological variability,
measurements of inter-individual variability may be influ-
enced by sample size or age (although in this dataset we
do not find statistically significant relationships for either
(Fig.S4)), tracer kinetics (e.g. [{!CIMADAM versus [!!
C]DASB when measuring 5-HTT density (Nergaard et al.
2019, 2020)), scanner, and PET processing pipeline (includ-
ing e.g. template space and registration method). We can
therefore aid our interpretation of variability sources with
reported findings that test out-of-sample spatial replica-
bility using other measurements techniques (e.g. autora-
diography, as shown in (Hansen et al. 2022b; Nergaard
et al. 2021; Beliveau et al. 2017)) and proxies of receptor
abundance (e.g. gene expression, as shown in (Rizzo et al.
2014; Hansen et al. 2022b; Murgas et al. 2022)). Take for
example serotonergic 5-HT; s density: this receptor is sta-
bly expressed across both brain regions and individuals
(coefficient of variation around 0.2), spatially replicable
across both PET (r > 0.9) and autoradiography (r > 0.6)
cohorts, and strongly correlated with its protein-coding gene
(r = 0.88), indicating a protein with approximately the same
regional receptor abundance in any brain (i.e. low biologi-
cal variability, low measurement variability, and conserved
spatial expression) (Hansen et al. 2022a, b; Murgas et al.
2022; Beliveau et al. 2017). Similarly, the endocannabinoid
receptor CB;, glutamatergic receptor mGluRs5, and opi-
oid receptor MOR demonstrate spatial consistency (mean
r > 0.75) and CB; and MOR also demonstrate high coex-
pression with their protein-coding genes (CNRI (r = 0.74)
and OPRM1 (r = 0.84) respectively, as reported in Hansen
et al. (2022b)). However, their regional receptor abundance
is variable across people (coefficient of variation around
0.4). This suggests that, while the spatial distributions of

these proteins are consistent, they may exhibit an individual-
specific baseline shift (i.e. high biological variability, low
measurement variability, and conserved spatial expression).
This is supported also by the fact that mGluRs and CB;
appear as outliers in the correlation between mean spatial
consistency and inter-regional to inter-individual coefficient
of variation ratio (Fig. 4d). Finally, there are receptors that
are systematically inconsistently expressed. Ionotropic (and
heteromeric) receptors GABAA (a1 and a5 subunits) and
NMDA show high population variability in regional recep-
tor abundance (coefficient of variation > 0.5) and GABAx
’s spatial patterning is only moderately replicable in sepa-
rate PET (r ~ 0.5) and autoradiography (r = 0.20) cohorts.
Such inconsistent measurements may reflect noise (Schoen-
berger et al. 2018), individual-specific expression (Arumu-
ham et al. 2023; Mosconi et al. 2024; Kaasinen et al. 2021),
protein turnover rate (i.e. temporal variability), or individual
differences in receptor subunit composition.

We end with a note on interpretation. First, while we show
brain maps of inter-individual coefficient of variation in the
cortex and subcortex (Figs. 1, 2), these maps are min-max
scaled and in many cases (e.g. the serotonergic receptors),
the inter-individual coefficient of variation is consistently
very low. Figure 3 should be used to compare the variability
across tracers. Second, our measurement of inter-individual
variability is agnostic to whether the source of variability is
individual differences, measurement noise, or study design
(e.g. modelling technique) (Norgaard et al. 2020). To better
assess the generalizability and replicability of receptor brain
maps, we apply our own out-of-sample comparisons and we
draw on our earlier work comparing alternative PET trac-
ers, imaging modalities, and protein-coding gene expression
(Hansen et al. 2022a, b). Third, due to ethical restrictions in
sharing individual data, we are unable to test whether recep-
tor binding is normally distributed across individuals. Indi-
vidual outliers may therefore skew the standard deviation.

In summary, we assemble an atlas of neurotransmit-
ter receptor and transporter density variability. This atlas
complements our previously published atlas of whole-brain
receptor/transporter densities (Hansen et al. 2022a). Our
work sheds light on how receptor systems vary in healthy
individuals, and provides a means of assessing the general-
izability of PET-derived receptor density quantification.

Methods
PET data acquisition
Our group had previously assembled group-averaged PET

tracer images for 19 neurotransmitter receptors and trans-
porters from research groups and PET imaging centers

@ Springer
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globally (Hansen et al. 2022a). In an effort to better under-
stand how these measurements vary across individuals, we
recontacted all collaborators who had contributed mean
receptor maps and asked whether they would be interested
in providing group mean and standard deviation images for
each tracer. Altogether we compiled 18 tracer mean and stan-
dard deviation images, encompassing 12 unique neurotrans-
mitter receptors and transporters, and 7 neurotransmitter
systems. Each study, the associated receptor/transporter,
tracer, number of healthy participants, age, and reference
with full methodological details of data acquisition can be
found in Table 1. In all cases, only scans from healthy par-
ticipants were included. Group mean and standard devia-
tion images were registered to MNI152NLin6Asym space,
then parcellated according to 100 cortical regions as defined
by the Schaefer parcellation (Schaefer et al. 2018) and 54
subcortical regions as defined by the Melbourne Subcortex
Atlas S4 (Tian et al. 2020).

We note some tracer-specific special cases: (1) while
tracer binding for most neurotransmitter receptors is esti-
mated using the cerebellum as the reference region, the
mu-opioid receptor (MOR) is measured using the occipital
cortex as the reference region. We therefore set all regions
in the occipital cortex to NaN. (2) Three dopaminergic D»
images were shared, two measured with the tracer ['1C]
raclopride and one measured with the tracer ['8F]fallypride.
Due to the lower affinity of [*!C]raclopride to D receptors,
this tracer can only reliably estimate binding in regions with
high D2 density (i.e. the striatum) (Palomero-Gallagher and
Zilles 2019). [*!C]raclopride measurements outside of the
striatum are therefore expected to demonstrate large varia-
tion across participants. On the other hand, ['8F]fallypride
is primarily suitable for estimation of extra-striatal Do
receptors (Jaworska et al. 2020; Vernaleken et al. 2011). (3)
Two serotonergic 5-HTT images acquired using different
tracers ([''C]DASB and [''C]MADAM) were shared. We
include both for comparison. (4) Two subunits (o and as)
of the GABA, receptor were mapped using a single PET
tracer [1!C]R015-4513 by way of spectral analysis (McGin-
nity et al. 2021); we include both for comparison. We also
include ["'C]flumazenil, a tracer that binds to the benzodi-
azepine (Bz) binding site of GABAa receptors (Nergaard
et al. 2021). Although subunits a1, a5, and benzodiazap-
ine are all part of the GABAA receptor, they demonstrate
diverse spatial profiles (Sieghart and Sperk 2002). (5) Two
mGluR5 images were shared, both measured using ['1C]
ABP688; we include both for comparison.

Spatial consistency

In Fig. 4, we compare inter-regional to inter-individual coef-
ficient of variation ratio to the mean spatial consistency of a
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tracer image. Spatial consistency refers to the spatial correla-
tion between group-mean brain maps. For the set of images
with both group mean and group standard deviation (i.e.
every point in Fig. 4d—e; “Original map” in Table S1), we
collate a sample of group mean images of the same receptor/
transporter (“Other maps(s)” in Table S1). The sample of
“Other maps” is created from a combination of alternative
group mean images used in the present manuscript (when
duplicates exist) and group mean images shared in Hansen
et al. (2022a) but not used in the present work.

Mean spatial consistency is defined as the average spa-
tial correlation (Spearman’s r) between the original map
and all maps listed under “Other map(s)”. (Note that in the
case of 5-HT 4, there is only one alternative map, therefore
mean spatial consistency is simply the spearman correlation
between two group-mean images.) In other words, for each
receptor/transporter, we calculate N choose 2 correlations
(where N is the number of mean tracer images listed under
“Other map(s)” in Table S1), then calculate their average.
Note that out-of-sample mean receptor density maps may
be collected using a different PET tracer. Furthermore, all
MOR [!!C]carfentanil images were collected at the same
PET centre and group maps may not be independent. Mean
spatial consistency for MOR is therefore likely inflated.

Coefficient of variation

In biological systems, the standard deviation of a distribution
of measurements typically scales with the mean (Eisler et al.
2008) (see also Fig. S1 and Fig. S2). Therefore, rather than
directly analyzing standard deviation values, we normal-
ized the standard deviation by the mean. This ratio is called
the coefficient of variation. In this work, we consider the
coefficient of variation of tracer binding measurements (i.e.
neurotransmitter receptor/transporter densities) both across
individuals (“inter-indivudal”) and across regions (“inter-
regional”). When calculated across individuals, there is one
coefficient of variation value per region, representing inter-
individual variability of within-region receptor/transporter
density. The coefficient of variation can be unstable when
the mean (denominator) approaches 0. Therefore, when cal-
culating coefficient of variation, we omit the regions whose
mean tracer binding is in the bottom fifth percentile, if tracer
binding values are below 0.1.

Likewise, when calculated across regions rather than
individuals, there is one inter-regional coefficient of varia-
tion value per brain map, representing how much recep-
tor/transporter density varies across brain regions. More
specifically, the standard deviation of mean tracer binding
across brain regions (for cortex and subcortex separately)
is divided by the mean tracer binding across brain regions.
Finally, the regional-to-population coefficient of variation
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ratio is calculated as the inter-regional coefficient of varia-
tion divided by the mean inter-individual coefficient of
variation. Values above 1 reflect neurotransmitter recep-
tors/transporters that vary more across brain regions than
across individuals, and values below 1 reflect neurotrans-
mitter receptors/transporters that vary more across individu-
als than brain regions. We note that field-wide standards for
“high” or “low” thresholds of coefficient of variability do
not currently exist for PET tracer binding.

In Fig. 1 and Fig. S3 we test whether the inter-regional
coefficient of variation is significantly greater than inter-
individual coefficient of variation. Those receptors/trans-
porters that show greater inter-regional than inter-individual
coefficients of variation are more stably expressed across
the brain and therefore group average normative maps are
likely to be representative of the population. To conduct this
statistical analysis, we bootstrap the distribution of inter-
individual coefficient of variation (Fig. 3 and Fig. S3 histo-
grams) 10 000 times and calculate the mean inter-individual
coefficient of variation, resulting in a null distribution of
10 000 mean inter-individual coefficient of variations. We
then compare the empirical inter-regional coefficient of
variation with this null distribution (p = number of times
mean inter-individual coefficient of variation is greater than
or equal to inter-regional coefficient of variation).
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