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metabolism (Castrillon et al. 2023), cognition (Yang et al. 
2023), and multiple diseases and disorders (Ricard et  al. 
2024; Hansen et  al. 2022; Morys et  al. 2024; Jiang et  al. 
2024; Wiesman et al. 2024).

Nevertheless, brain anatomy and function vary across 
individuals, manifesting as individual differences in cogni-
tion and behaviour (Mueller et  al. 2013; Bethlehem et  al. 
2022; Segal et  al. 2025). In addition, brain regions and 
systems develop at different rates, and are differentially 
subjected to influence from the environment (e.g. via sen-
sory stimuli) and transcriptomic programs (Buckner and 
Krienen 2013; Sydnor et  al. 2021). Inter-individual vari-
ability in receptor density may therefore be greater in some 
brain regions than in others. Some inferences on the inter-
individual variability of receptor density can be made from 

Introduction

Neurotransmitter receptors modulate neuronal activity, 
guide synaptic wiring, and mediate brain-wide communi-
cation. Mapping neurotransmitter receptor distributions 
in the brain is therefore necessary for understanding how 
chemoarchitecture shapes brain structure and function. We 
recently collated a Positron Emission Tomography (PET) 
atlas of in vivo whole-brain neurotransmitter receptor and 
transporter densities across 19 unique receptors and trans-
porters and 9 neurotransmitter systems (Hansen et al. 2022a; 
Markello et al. 2022). This atlas is widely used for studying 
chemoarchitectonic mechanisms underlying, for example, 
neural rhythms (Shafiei et al. 2023), pharmacological per-
turbations (Tuominen et al. 2025; Luppi et al. 2023), energy 
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Abstract
Neurotransmitter receptors guide the propagation of signals between brain regions. Mapping receptor distributions in the 
brain is therefore necessary for understanding how neurotransmitter systems mediate the link between brain structure and 
function. Normative receptor density can be estimated using group averages from Positron Emission Tomography (PET) 
imaging. However, the generalizability and reliability of group-average receptor maps depends on the inter-individual 
variability of receptor density, which is currently unknown. Here we collect group standard deviation brain maps of PET-
estimated protein abundance for 12 different neurotransmitter receptors and transporters across 7 neurotransmitter systems, 
including dopamine, serotonin, acetylcholine, glutamate, GABA, cannabinoid, and opioid. We illustrate how cortical and 
subcortical inter-individual variability of receptor and transporter density varies across brain regions and across neu-
rotransmitter systems. We complement inter-individual variability with inter-regional variability, and show that receptors 
that vary more across brain regions than across individuals also demonstrate greater out-of-sample spatial consistency. 
Altogether, this work quantifies how receptor systems vary in healthy individuals, and provides a means of assessing the 
generalizability of PET-derived receptor density quantification.
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group-average receptor density maps alone: group receptor 
density brain maps can be compared across sites, PET trac-
ers, imaging modalities, and even across biological features 
(e.g. receptor density versus protein-coding gene expres-
sion) (Hansen et al. 2022a, b; Murgaš et al. 2022; Beliveau 
et al. 2017; Nørgaard et al. 2021). However, these strategies 
can only assess the spatial similarity of brain maps rather 
than the inter-individual variability of regional receptor 
density.

To better understand how receptor abundance varies 
across individuals, we collate group standard deviation 
maps for 12 neurotransmitter receptors and transporters 
across 7 neurotransmitter systems and nearly 700 individu-
als. We show cortical and subcortical brain maps of inter-
individual receptor abundance variability, and benchmark 
receptor variability across PET tracers. We then compare 
inter-individual and inter-regional variability. By interpret-
ing the present findings alongside previous work comparing 
spatial distributions of receptors, we provide receptor-spe-
cific hypotheses for sources of variability. Altogether, this 
work serves as a reference point for assessing receptor and 
transporter measurement generalizability in the human 
brain.

Results

We collated group standard deviation maps of PET-derived 
neurotransmitter receptor and transporter densities from 
a total of 12 different receptors/transporters across 7 neu-
rotransmitter systems, including dopamine, serotonin, 
acetylcholine, glutamate, GABA, cannabinoid, and opioid 
(Table 1). All mean and standard deviation maps are parcel-
lated according to 100 cortical regions (Schaefer et al. 2018) 
and 54 subcortical regions (Tian et al. 2020) (note that allo-
cortex (e.g. hippocampus) is included in the subcortical 
atlas). Given that standard deviations scale with the mean 
(Fig. S1,S2), we normalize standard deviation by the mean, 
resulting in a brain map of the within-region inter-individual 
coefficient of variation for each neurotransmitter receptor 
and transporter (Fig. 1, Fig. 2). In both cortex and subcortex, 
inter-individual coefficient of variation is heterogeneously 
distributed and highly organized across brain regions. For 
many receptors and transporters, cortical coefficient of vari-
ation appear greatest in unimodal brain regions, including 
primary somatomotor and somatosensory cortex as well as 
primary visual cortex (Fig. 1). Meanwhile, subcortical coef-
ficient of variation is often greatest in ventral structures as 
well as the caudate (Fig. 2).

In Fig. 3 we show the distribution of cortical and subcorti-
cal coefficients of variation for each neurotransmitter recep-
tor and transporter. Density measurements in subcortical 

structures often vary more than in cortical structures. Within 
the cortex, inter-individual coefficient of variation is gen-
erally low (around 0.2), with some receptors/transporters 
showing moderate variation (around 0.4, e.g. MOR, CB1), 
and some high variation (> 0.5, e.g. NMDA, GABAA α1 
and α5 subunits). We confirm that the D2 tracer [11C]raclo-
pride, which is only suitable for quantification of striatal D2 
receptors (Dagher and Palomero-Gallagher 2020), shows 
greatest variation outside of the striatum, as a result of 
increased measurement noise (Fig.S3). In addition, we find 
that different tracers that bind to the same protein can show 
different amounts of inter-individual variability, possibly 
due to differences in study design and preprocessing (e.g. 
5-HTT [11C]MADAM tracer binding is more variable than 
5-HTT [11C]DASB tracer binding within the cortex (Nør-
gaard et al. 2019, 2020)).

Inter-individual variance of a regional measurement is 
better interpreted in light of the receptor/transporter’s mea-
surement variability across brain regions. To develop this 
point further, consider a group-averaged measurement with 
low variation across brain regions (i.e. is approximately 
homogeneously expressed in the brain) but high variation 
across individuals. This measurement will have a highly 
variable spatial profile (i.e. brain map) from one individual 
to the next. On the other hand, if a measurement varies more 
across regions than individuals, the regional rank order of 
protein density will remain similar in all individuals; that 
is, this measurement will be consistently spatially expressed 
across individuals. To quantify receptor/transporter den-
sity variability across regions, we calculate inter-regional 
coefficient of variation: the standard deviation of group-
averaged receptor/transporter density across brain regions 
normalized by the mean (Fig. 3 dashed vertical lines; see 
also schematics in Fig. 4a–c). We find that, in the cortex, 
many receptors/transporters show similar or greater vari-
ability across individuals than regions; indeed, only 3/16 
receptors/transporters demonstrate significantly greater 
inter-regional coefficient of variation than inter-individual 
coefficient of variation. Within the subcortex however, 
receptor/transporter density often varies less across indi-
viduals than across regions (9/16 receptors/transporters 
demonstrate significantly greater inter-regional coefficient 
of variation than inter-individual coefficient of variation). 
This suggests that, although population variance is gener-
ally greater in subcortex than in cortex (Fig. 3 yellow bars), 
subcortical receptor/transporter expression is likely to be 
stably spatially expressed. Indeed, we find that the ratio of 
spatial variation to population variation is positively corre-
lated with the out-of-sample consistency of a receptor/trans-
porter’s spatial distribution (i.e. mean pairwise Spearman 
correlation of receptor/transporter brain maps from different 
cohorts. r = 0.49, p = 0.057 within cortex; r = 0.77, p ≈ 0 
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Fig. 2  Inter-individual coefficient of variation of receptor/transporter 
density in the subcortex. Inter-individual coefficient of variation is 
defined as the population standard deviation of tracer binding normal-
ized by population mean, and is calculated for every subcortical region. 
Each coefficient of variation brain map is min-max scaled to showcase 
the spatial organization of inter-individual variability of neurotrans-

mitter systems. Grey colours reflect regions that have been omitted due 
to unstable coefficient of variation (see Methods for details). Tracer 
names are included in parentheses for 5-HTT and D2. GABAA recep-
tors were mapped according to two different subunits (α1 and α5) as 
well as the benzodiazepine binding site (bz). Note that D2 [11C]raclo-
pride tracer is only sensitive within the striatum

 

Fig. 1  Inter-individual coefficient of variation of receptor/transporter 
density in the cortex. Inter-individual coefficient of variation is defined 
as the population standard deviation of tracer binding normalized by 
population mean, and is calculated for every cortical region. Each 
coefficient of variation brain map is min-max scaled to showcase the 
spatial organization of inter-individual variability of neurotransmit-
ter systems. Grey colours reflect regions that have been omitted due 

to either unstable coefficient of variation or tracer binding quantifi-
cation reference regions (see Methods for details). Two tracers that 
map 5-HTT were included; tracer names are written in parentheses. 
GABAA receptors were mapped according to two different subunits 
(α1 and α5) as well as the benzodiazepine binding site (bz). D2 [11C]
raclopride tracer data is not shown due to high non-displaceable bind-
ing in the cortex
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Discussion

In the present report, we estimate standard deviation maps 
for 12 unique neurotransmitter receptors and transporters 
to better understand how receptor and transporter density 
varies across individuals. We show that receptor and trans-
porter variability is heterogeneous across brain regions and 
systems. Cortical receptor/transporter density typically var-
ies more across individuals than across brain regions, while 

within subcortex; Fig. 4). Note the non-significant relation-
ship in the cortex, which may be due to lower sensitivity and 
reliability of certain tracers (e.g. [11C]raclopride), but also 
highlights exceptions such as glutamatergic mGluR5 and 
endocannabinoid CB1, both of which demonstrate highly 
replicable spatial patterns but low regional-to-population 
coefficient of variation ratio.

Fig. 3  Distributions of inter-individual coefficient of variation. For 
each receptor and transporter (rows), the distribution of within-region 
inter-individual coefficient of variation is shown in orange for (a) cor-
tical regions and (b) subcortical regions. These are the same data as 
shown in Fig. 1 and Fig. 2. A kernel density is estimated for each dis-
tribution (solid orange line). The y-axis represents the number of brain 

regions within each histogram bin, and the smooth curve represents the 
probability density estimate of the underlying histogram. The dashed 
purple line represents the inter-regional coefficient of variation. Aster-
isks indicate receptors/transporters whose inter-regional coefficient of 
variation is significantly greater than a null distribution of mean boot-
strapped inter-individual coefficient of variation
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variability of regional receptor density is organized along 
specific anatomical landmarks, such that some brain areas 
vary more across people than others. While inter-individual 
variability of structural and functional cortical features is 
generally greater in transmodal cortex and lower in uni-
modal cortex (Cui et  al. 2020; Mueller et  al. 2013; Rear-
don et  al. 2018; Karahan et  al. 2022; Huang et  al. 2025), 
we find that the opposite is true for many neurotransmitter 
receptors and transporters (Fig. 1). This difference in find-
ings may in part be due to the mathematical relationship 
between coefficient of variation and standard deviation. 
For multiple receptors where unimodal cortical regions 
have large coefficient of variation (e.g. 5-HT1A, 5-HT1B, 
5-HT4, MOR, NMDA, GABAA, D2), these same regions 
have low standard deviation (Fig.S1). However, given the 

subcortical receptor/transporter density typically varies less 
across individuals than across regions. Finally, we show that 
receptors/transporters that vary more across regions than 
individuals are also more consistently spatially mapped.

The recent proliferation of group-averaged “reference” 
brain maps make it possible to spatially relate diverse brain 
phenotypes with one another (Markello et al. 2022; Hansen 
et al. 2022a; Hansen and Misic 2025). However, the inter-
pretation of such associations is dependent on the general-
izability and reliability of these reference maps, which are 
rarely accompanied by estimates of inter-individual vari-
ability (Segal et al. 2025). Here we aim to rectify this limi-
tation by retroactively compiling standard deviation maps 
for previously shared mean receptor density brain maps 
(see Hansen et  al. (2022a)). We find that inter-individual 

Fig. 4  Comparing inter-regional and inter-individual variation of 
receptor/transporter density | A schematic illustrating three perspec-
tives of variability: (a) inter-individual coefficient of variation quan-
tifies within-region measurement variability across participants; (b) 
inter-regional coefficient of variation quantifies variability of group-
averaged measurements across brain regions; and (c) spatial consis-
tency quantifies the similarity of group-averaged measurements of the 
same receptor/transporter. For (d) cortex and (e) subcortex, regional-
to-population coefficient of variation ratio (y-axis) is defined as the 
inter-regional coefficient of variation (dashed purple line in Fig. 3) nor-
malized by the mean inter-individual coefficient of variation (mean of 

orange bars in Fig. 3). Values above 1 represent receptors/transporters 
that vary more across regions than across individuals, and vice versa 
for values below 1. Note that y-axis limits are different in panels (d) 
and (e). Next, mean spatial consistency is defined as the mean pair-
wise spatial Spearman’s correlation of group-average tracer images of 
the same receptor/transporter (x-axis). Tracers used for each out-of-
sample comparison are detailed in Table S1. Note that GABAA images 
map different subunits of the GABAA receptor—these receptor sub-
types demonstrate unique expression profiles, resulting in lower spatial 
consistency (Sieghart and Sperk 2002)
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these proteins are consistent, they may exhibit an individual-
specific baseline shift (i.e. high biological variability, low 
measurement variability, and conserved spatial expression). 
This is supported also by the fact that mGluR5 and CB1 
appear as outliers in the correlation between mean spatial 
consistency and inter-regional to inter-individual coefficient 
of variation ratio (Fig. 4d). Finally, there are receptors that 
are systematically inconsistently expressed. Ionotropic (and 
heteromeric) receptors GABAA (α1 and α5 subunits) and 
NMDA show high population variability in regional recep-
tor abundance (coefficient of variation > 0.5) and GABAA

’s spatial patterning is only moderately replicable in sepa-
rate PET (r ≈ 0.5) and autoradiography (r = 0.20) cohorts. 
Such inconsistent measurements may reflect noise (Schoen-
berger et al. 2018), individual-specific expression (Arumu-
ham et al. 2023; Mosconi et al. 2024; Kaasinen et al. 2021), 
protein turnover rate (i.e. temporal variability), or individual 
differences in receptor subunit composition.

We end with a note on interpretation. First, while we show 
brain maps of inter-individual coefficient of variation in the 
cortex and subcortex (Figs. 1, 2), these maps are min-max 
scaled and in many cases (e.g. the serotonergic receptors), 
the inter-individual coefficient of variation is consistently 
very low. Figure 3 should be used to compare the variability 
across tracers. Second, our measurement of inter-individual 
variability is agnostic to whether the source of variability is 
individual differences, measurement noise, or study design 
(e.g. modelling technique) (Nørgaard et al. 2020). To better 
assess the generalizability and replicability of receptor brain 
maps, we apply our own out-of-sample comparisons and we 
draw on our earlier work comparing alternative PET trac-
ers, imaging modalities, and protein-coding gene expression 
(Hansen et al. 2022a, b). Third, due to ethical restrictions in 
sharing individual data, we are unable to test whether recep-
tor binding is normally distributed across individuals. Indi-
vidual outliers may therefore skew the standard deviation.

In summary, we assemble an atlas of neurotransmit-
ter receptor and transporter density variability. This atlas 
complements our previously published atlas of whole-brain 
receptor/transporter densities (Hansen et  al. 2022a). Our 
work sheds light on how receptor systems vary in healthy 
individuals, and provides a means of assessing the general-
izability of PET-derived receptor density quantification.

Methods

PET data acquisition

Our group had previously assembled group-averaged PET 
tracer images for 19 neurotransmitter receptors and trans-
porters from research groups and PET imaging centers 

fact that standard deviation scales with the mean (Eisler 
et al. 2008), a mean-normalized measurement such as the 
coefficient of variation is more interpretable than the stan-
dard deviation. How structural and functional connectivity 
varies with respect to mean connectivity remains unknown. 
Inter-individual variability of receptor expression may also 
be larger in unimodal than transmodal cortex because recep-
tor expression is tightly coupled to sensory input (Peckol 
et al. 2001; Tyler et al. 2007). Individual differences in envi-
ronmental and external stimuli may therefore exert a greater 
influence on receptor expression in unimodal over transmo-
dal cortex. As brain maps of inter-individual variability are 
generated and shared (Karahan et  al. 2022; Sydnor et  al. 
2021; Monaghan et  al. 2024), we will better understand 
how variability varies across brain regions and biological 
systems.

By combining evidence from multiple lines of analysis, 
we are able to generate hypotheses regarding the source 
of variability (e.g. measurement or biological) of different 
receptors’ expression. Aside from true biological variability, 
measurements of inter-individual variability may be influ-
enced by sample size or age (although in this dataset we 
do not find statistically significant relationships for either 
(Fig.S4)), tracer kinetics (e.g. [11C]MADAM versus [11

C]DASB when measuring 5-HTT density (Nørgaard et al. 
2019, 2020)), scanner, and PET processing pipeline (includ-
ing e.g. template space and registration method). We can 
therefore aid our interpretation of variability sources with 
reported findings that test out-of-sample spatial replica-
bility using other measurements techniques (e.g. autora-
diography, as shown in (Hansen et  al. 2022b; Nørgaard 
et al. 2021; Beliveau et al. 2017)) and proxies of receptor 
abundance (e.g. gene expression, as shown in (Rizzo et al. 
2014; Hansen et al. 2022b; Murgaš et al. 2022)). Take for 
example serotonergic 5-HT1A density: this receptor is sta-
bly expressed across both brain regions and individuals 
(coefficient of variation around 0.2), spatially replicable 
across both PET (r > 0.9) and autoradiography (r > 0.6) 
cohorts, and strongly correlated with its protein-coding gene 
(r = 0.88), indicating a protein with approximately the same 
regional receptor abundance in any brain (i.e. low biologi-
cal variability, low measurement variability, and conserved 
spatial expression) (Hansen et  al. 2022a, b; Murgaš et  al. 
2022; Beliveau et al. 2017). Similarly, the endocannabinoid 
receptor CB1, glutamatergic receptor mGluR5, and opi-
oid receptor MOR demonstrate spatial consistency (mean 
r > 0.75) and CB1 and MOR also demonstrate high coex-
pression with their protein-coding genes (CNR1 (r = 0.74) 
and OPRM1 (r = 0.84) respectively, as reported in Hansen 
et al. (2022b)). However, their regional receptor abundance 
is variable across people (coefficient of variation around 
0.4). This suggests that, while the spatial distributions of 
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tracer image. Spatial consistency refers to the spatial correla-
tion between group-mean brain maps. For the set of images 
with both group mean and group standard deviation (i.e. 
every point in Fig. 4d–e; “Original map” in Table S1), we 
collate a sample of group mean images of the same receptor/
transporter (“Other maps(s)” in Table S1). The sample of 
“Other maps” is created from a combination of alternative 
group mean images used in the present manuscript (when 
duplicates exist) and group mean images shared in Hansen 
et al. (2022a) but not used in the present work.

Mean spatial consistency is defined as the average spa-
tial correlation (Spearman’s r) between the original map 
and all maps listed under “Other map(s)”. (Note that in the 
case of 5-HT1A, there is only one alternative map, therefore 
mean spatial consistency is simply the spearman correlation 
between two group-mean images.) In other words, for each 
receptor/transporter, we calculate N choose 2 correlations 
(where N is the number of mean tracer images listed under 
“Other map(s)” in Table S1), then calculate their average. 
Note that out-of-sample mean receptor density maps may 
be collected using a different PET tracer. Furthermore, all 
MOR [11C]carfentanil images were collected at the same 
PET centre and group maps may not be independent. Mean 
spatial consistency for MOR is therefore likely inflated.

Coefficient of variation

In biological systems, the standard deviation of a distribution 
of measurements typically scales with the mean (Eisler et al. 
2008) (see also Fig. S1 and Fig. S2). Therefore, rather than 
directly analyzing standard deviation values, we normal-
ized the standard deviation by the mean. This ratio is called 
the coefficient of variation. In this work, we consider the 
coefficient of variation of tracer binding measurements (i.e. 
neurotransmitter receptor/transporter densities) both across 
individuals (“inter-indivudal”) and across regions (“inter-
regional”). When calculated across individuals, there is one 
coefficient of variation value per region, representing inter-
individual variability of within-region receptor/transporter 
density. The coefficient of variation can be unstable when 
the mean (denominator) approaches 0. Therefore, when cal-
culating coefficient of variation, we omit the regions whose 
mean tracer binding is in the bottom fifth percentile, if tracer 
binding values are below 0.1.

Likewise, when calculated across regions rather than 
individuals, there is one inter-regional coefficient of varia-
tion value per brain map, representing how much recep-
tor/transporter density varies across brain regions. More 
specifically, the standard deviation of mean tracer binding 
across brain regions (for cortex and subcortex separately) 
is divided by the mean tracer binding across brain regions. 
Finally, the regional-to-population coefficient of variation 

globally (Hansen et al. 2022a). In an effort to better under-
stand how these measurements vary across individuals, we 
recontacted all collaborators who had contributed mean 
receptor maps and asked whether they would be interested 
in providing group mean and standard deviation images for 
each tracer. Altogether we compiled 18 tracer mean and stan-
dard deviation images, encompassing 12 unique neurotrans-
mitter receptors and transporters, and 7 neurotransmitter 
systems. Each study, the associated receptor/transporter, 
tracer, number of healthy participants, age, and reference 
with full methodological details of data acquisition can be 
found in Table 1. In all cases, only scans from healthy par-
ticipants were included. Group mean and standard devia-
tion images were registered to MNI152NLin6Asym space, 
then parcellated according to 100 cortical regions as defined 
by the Schaefer parcellation (Schaefer et al. 2018) and 54 
subcortical regions as defined by the Melbourne Subcortex 
Atlas S4 (Tian et al. 2020).

We note some tracer-specific special cases: (1) while 
tracer binding for most neurotransmitter receptors is esti-
mated using the cerebellum as the reference region, the 
mu-opioid receptor (MOR) is measured using the occipital 
cortex as the reference region. We therefore set all regions 
in the occipital cortex to NaN. (2) Three dopaminergic D2 
images were shared, two measured with the tracer [11C]
raclopride and one measured with the tracer [18F]fallypride. 
Due to the lower affinity of [11C]raclopride to D2 receptors, 
this tracer can only reliably estimate binding in regions with 
high D2 density (i.e. the striatum) (Palomero-Gallagher and 
Zilles 2019). [11C]raclopride measurements outside of the 
striatum are therefore expected to demonstrate large varia-
tion across participants. On the other hand, [18F]fallypride 
is primarily suitable for estimation of extra-striatal D2 
receptors (Jaworska et al. 2020; Vernaleken et al. 2011). (3) 
Two serotonergic 5-HTT images acquired using different 
tracers ([11C]DASB and [11C]MADAM) were shared. We 
include both for comparison. (4) Two subunits (α1 and α5) 
of the GABAA receptor were mapped using a single PET 
tracer [11C]Ro15-4513 by way of spectral analysis (McGin-
nity et al. 2021); we include both for comparison. We also 
include [11C]flumazenil, a tracer that binds to the benzodi-
azepine (bz) binding site of GABAA receptors (Nørgaard 
et  al. 2021). Although subunits α1, α5, and benzodiazap-
ine are all part of the GABAA receptor, they demonstrate 
diverse spatial profiles (Sieghart and Sperk 2002). (5) Two 
mGluR5 images were shared, both measured using [11C]
ABP688; we include both for comparison.

Spatial consistency

In Fig. 4, we compare inter-regional to inter-individual coef-
ficient of variation ratio to the mean spatial consistency of a 
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