001     1050580
005     20260115111306.0
037 _ _ |a FZJ-2026-00337
100 1 _ |a Vibhu, Vaibhav
|0 P:(DE-Juel1)169490
|b 0
|e Corresponding author
111 2 _ |a The American Ceramic Society 2025, Conference on Electronic Materials and Applications (EMA 2025)
|c Denver
|d 2025-02-25 - 2025-02-28
|w USA
245 _ _ |a Development of high-performing and durable fuel electrodes for Solid Oxide Electrolysis Cells (Invited)
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1768471965_18321
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a The conventional Ni-yttria stabilized zirconia (YSZ) fuel electrodeshows strong degradation in SOEC operation under steam-containingfuels due to Ni migration and agglomeration. As an alternative,Ni-gadolinium doped ceria (GDC) electrode exhibit higherperformance than Ni-YSZ owing to the mixed ionic and electronicconductivity of GDC under reducing conditions, however it couldn’tprevent Ni-migration. To overcome these issues, we have consideredperovskites-based fuel electrodes, e.g. Sr2Fe2-xMox-yMyO6-δ (x=0.5, 1.0and M = Ni), as they exhibit mixed ionic and electronic conductingproperties and good redox stability under reducing atmospheres.SFM based fuel electrode materials also show higher electrochemicalperformances than Ni-YSZ electrode. Moreover, we have also investigatedNi-free fuel electrode materials and considered single-phaseceria-based materials e.g. Ce0.8Gd0.2O1.9 and Ce1-xPrxO2-δ (0.0 ≤ x ≤ 0.3).These ceria-based materials are mixed ionic and electronic conductorsand exhibit high catalytic activity under reducing atmospheres.For instance, the single cell with the GDC fuel electrode has similarperformance as that of the Ni-YSZ electrode but shows significantlylower degradation rates under SOEC operation. The structural, physicochemical,and electrochemical properties of newly developed fuelelectrodes including long-term degradation tests will be presented.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
700 1 _ |a Kumar, Rishabh
|0 P:(DE-Juel1)198713
|b 1
|u fzj
700 1 _ |a Wolf, Stephanie
|0 P:(DE-Juel1)180863
|b 2
700 1 _ |a Uecker, Jan
|0 P:(DE-Juel1)187524
|b 3
700 1 _ |a Unachukwu, Ifeanyichukwu Daniel
|0 P:(DE-Juel1)180285
|b 4
700 1 _ |a de Haart, L. G. J.
|0 P:(DE-Juel1)129952
|b 5
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 6
|u fzj
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169490
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)198713
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)198713
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)187524
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21